WorldWideScience

Sample records for aisi 304l similares

  1. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  2. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  3. Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA)

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi; Firat, Emrah Hanifi; Caligulu, Ugur [Firat Univ., Elazig (Turkey)

    2013-06-01

    Materials difficult to weld by fusion welding processes can be successfully welded by friction welding. The strength of the friction welded joints is extremely affected by process parameters (rotation speed, friction time, friction pressure, forging time, and forging pressure). In this study, statistical values of tensile strength were investigated in terms of rotation speed, friction time, and friction pressure on the strength behaviours of friction welded AISI 1040 and AISI 304L alloys. Then, the tensile test results were analyzed by analysis of variance (ANOVA) with a confidence level of 95 % to find out whether a statistically significant difference occurs. As a result of this study, the maximum tensile strength is very close, which that of AISI 1040 parent metal of 637 MPa to could be obtained for the joints fabricated under the welding conditions of rotation speed of 1700 rpm, friction pressure of 50 MPa, forging pressure of 100 MPa, friction time of 4 s, and forging time of 2 s. Rotation speed, friction time, and friction pressure on the friction welding of AISI 1040 and AISI 304L alloys were statistically significant regarding tensile strength test values. (orig.)

  4. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu+ ion. In each essay stayed a displacement velocity was constant of 1x10-9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  5. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10-9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  6. XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing

    Directory of Open Access Journals (Sweden)

    Rokosz K.

    2015-03-01

    Full Text Available In the paper, the passive surface layers of AISI 304L after standard (EP50 and very-high-current density electropolishing (EP1000 in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

  7. Comparative study of the microbiological corrosion among an AISI 304L and an API X65

    International Nuclear Information System (INIS)

    Metallic samples of AISI 304L sensitized and API X65, were subjected to the action of an inoculated media with reductive sulphate microorganisms (SBR), carrying out electrochemical evaluations by means of the techniques of Polarization Resistance (RP), Tafel extrapolation (ET) and Electrochemical Noise (RE). The generated information was complemented with the analysis and diagnostic of the present damage in the surfaces exposed in both metals. The used electrochemical techniques allow to determine the corrosion velocities associated to each system, establishing that the uniform corrosion is not affected by the effect of the microorganisms; however, electrochemical noise, evidenced the formation of stings associated to the presence of bacteria. (Author)

  8. Fatigue of welded joint in a stainless steel AISI 304 L

    International Nuclear Information System (INIS)

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author)

  9. Effect of rare earth oxide additions on oxidation behavior of AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2006-12-01

    Full Text Available AISI 304L stainless steel powder compacts containing 2 vol% high purity rare earth oxides were prepared by mixing the different powders in a vibratory mill followed by pressing. The compacts thus obtained were sintered in a vacuum furnace and isothermal oxidation measurements were carried out in a muffle furnace, in air, up to 200 hours at 900 °C. The oxidized surfaces were examined in a scanning electron microscope and micro regions of the reaction products were studied using energy dispersive analysis. The addition of rare earth oxides decreased the oxidation rate of the stainless steel. Further evidence of predominant oxygen ion diffusion controlling the overall oxidation process in rare earth containing chromium oxide forming alloys has been observed.

  10. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    International Nuclear Information System (INIS)

    Research highlights: → At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. → The parameters of Olsen-Cohen model were found as n = 4.5, α = 3.257 and β = 3.573. → The appropriate grain refining zone for annealing treatment was determined. → A diagram showing different zones for each level of grain sizes via annealing conditions is presented. → The hardness improves 2.5 times higher after the thermo-mechanical process. → Final structure exhibits not only high strength (above 1 GPa) but also good elongation (∼40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  11. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process

    Energy Technology Data Exchange (ETDEWEB)

    Forouzan, Farnoosh, E-mail: forouzan.iut@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, Abbas; Kermanpur, Ahmad; Hedayati, Ali; Surkialiabad, Roohallah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-10-25

    Research highlights: {yields} At least 50% reduction is necessary to complete the transformation of austenite to martensite at 0 deg. C. {yields} The parameters of Olsen-Cohen model were found as n = 4.5, {alpha} = 3.257 and {beta} = 3.573. {yields} The appropriate grain refining zone for annealing treatment was determined. {yields} A diagram showing different zones for each level of grain sizes via annealing conditions is presented. {yields} The hardness improves 2.5 times higher after the thermo-mechanical process. {yields} Final structure exhibits not only high strength (above 1 GPa) but also good elongation ({approx}40%). - Abstract: Production of nano/submicron grained AISI 304L austenitic stainless steel through formation of strain-induced martensite and its reversion to austenite are studied in this paper. The effects of annealing parameters on the microstructural development and mechanical properties are also investigated. Heavily cold rolling at 0 deg. C is employed to induce the formation of martensite in the metastable austenitic material, followed by reversion treatment at the temperature range of 700-900 deg. C for 0.5-300 min. Microstructural evolutions are analyzed using Feritscope, X-ray diffraction, and scanning electron microscopy, whereas the mechanical properties are determined by hardness and tensile tests. The smallest grain size (about 135 nm) is obtained in the specimen annealed at 700 deg. C for 20 min. The resultant nano/submicron grained steel not only exhibits a high strength level (about 1010 MPa) but also a desirable elongation of about 40%. Moreover, an annealing map is developed which indicates the appropriate range of annealing parameters for grain refinement of AISI 304L stainless steel through the martensite reversion process.

  12. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    International Nuclear Information System (INIS)

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  13. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    The solution treated commercial grade AISI 304L austenitic stainless steel plate was heavily cold rolled to 90% of thickness reduction. Cold rolled specimens were annealed at various temperatures by thermal cycles and isothermal annealing. Strain-induced phase transformations and microstructure studies were carried out both in the cold rolled and annealed conditions. The X-ray diffraction and magnetic measurements were used for phase transformation studies. The transmission electron microscope characterisation revealed that the cyclic thermal process resulted in ultrafine grain austenite formation whereas, the isothermal annealing developed coarser grain size microstructure. The different microstructural evolutions by the above two processes largely influenced the development of the recrystallisation texture. The thermal cycling produced a distinct γ-fibre texture while the isothermal annealing resulted in a cube texture component along with the γ-fibre. The γ-fibre texture evolution was attributed to the over critical subgrains or nuclei and {1 0 0} cube texture to the coarser grains of micrometer size.

  14. Electronic structures and nitride formation on ion-implanted AISI 304L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, G.S.; Son, J.H.; Kim, S.H.; Chae, K.H.; Whang, C.N. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics); Menthe, E.; Rie, K.-T.; Lee, Y.P.

    1999-02-01

    A N[sub 2][sup +] implantation technique was employed to improve the surface hardness of stainless steel, and the electronic structures and nitride formation of the ion-implanted layer were investigated and compared with those produced using other techniques, including plasma nitriding. AISI 304L austenite stainless steel was irradiated by 80 keV N[sub 2][sup +] with a dosage ranging from 1.0 x 10[sup 16] to 1.0 x 10[sup 18] ions cm[sup -2] at room temperature. The formation of various nitrides was confirmed by X-ray diffraction. The quantitative hardness of the samples was measured by using a Knoop microhardness tester. X-ray photoelectron spectroscopy was also carried out to elucidate the chemical states and electronic structures of the ion-implanted layers. The measurements were repeated after post-annealing at 400 C for 1 h in a high vacuum. Changes in phase, chemical state and electronic structures were observed according to the ion dose and heat treatment. (orig.) 12 refs.

  15. Microstructural features of hot pressure bonding between stainless steel type AISI-304 L and ziracloy-2

    International Nuclear Information System (INIS)

    The diffusion zone formed after reaching quasi-equilibrium in hot pressure bonding between stainless steel type AISI-304 L and Zircaloy-2 under particular thermal and compressive conditions (1000-11000C and 2-3 atm) contains two distinct layers, each separately localized in the modified stainless steel and Zircaloy matrices. SEM, TEM, X-ray diffraction and microanalysis were used to identify the phase structure and composition of the two diffusion layers. The nature and distribution of phases found in the diffusion layers can be explained in connection with the diffusion mechanisms operating after the initial stages of bond formation and interface disappearance: (a) The strog zirconium diffusion promotes ferrite and ZrCr2 formation in a narrow zone located near the stainless steel matrix. (b) Iron and nickel diffusion over large distances in the Zircaloy matrix leads to the occurrence of a larger zone having a two-phase structure. The light grey phase consists of untransformed α-Zr and a small precentage of high-temperature β-Zr phase. The darker grey phase contains essentially a very high amount of intermetallic bct compounds Zr-Fe-Ni, Zr2Fe and Zr2Ni dispersed in the small residue of Zircaloy matrix. (orig.)

  16. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  17. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  18. Comparative study of the microbiological corrosion among an AISI 304L and an API X65; Estudio comparativo de la corrosion microbiologica entre un AISI 304L y un API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Gonzalez F, E. [ITT, Toluca, Estado de Mexico (Mexico)

    2004-07-01

    Metallic samples of AISI 304L sensitized and API X65, were subjected to the action of an inoculated media with reductive sulphate microorganisms (SBR), carrying out electrochemical evaluations by means of the techniques of Polarization Resistance (RP), Tafel extrapolation (ET) and Electrochemical Noise (RE). The generated information was complemented with the analysis and diagnostic of the present damage in the surfaces exposed in both metals. The used electrochemical techniques allow to determine the corrosion velocities associated to each system, establishing that the uniform corrosion is not affected by the effect of the microorganisms; however, electrochemical noise, evidenced the formation of stings associated to the presence of bacteria. (Author)

  19. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Science.gov (United States)

    Fulger, Manuela; Mihalache, Maria; Ohai, Dumitru; Fulger, Stefan; Valeca, Serban Constantin

    2011-08-01

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  20. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment

    Energy Technology Data Exchange (ETDEWEB)

    Fulger, Manuela, E-mail: manuela.fulger@nuclear.ro [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Mihalache, Maria; Ohai, Dumitru [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Fulger, Stefan [University Politechnica Bucharest, Splaiul Independentei Street, No. 313, Bucharest 060042 (Romania); Valeca, Serban Constantin [University of Pitesti, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2011-08-15

    Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.

  1. Effect of prior deformation on the 76-K fracture toughness of AISI 304L and AWS 308L stainless steels

    International Nuclear Information System (INIS)

    AISI 304L and its weld metal, AWS 308L, may undergo a partial transformation to martensite during cryogenic service owing to thermal and mechanical stresses. In this study, the effect of service-induced deformation on the toughness of these materials were determined. Low temperature compressive loading in the laboratory produced larger deformations. Crack initiation toughness, K/sub Ic/(J), and tearing resistance, dJ/da, at 76 K were evaluated as a function of martensite content, a measure of the deformation in these steels. The results showed that the toughness properties of the 304L decrease gradually as the martensite content increases from the 5 to 8% level found in the service condition to the 45% level obtained by compressive loading. The decrease was less than that expected on the basis of the increased flow stress. The toughness properties of the 308L weld metal decreased more sharply with increased martensite content than those of the 304L. The sharp decrease is associated with a degradation of the properties of the delta ferrite rather than that of the austenite

  2. THE EFFECT OF SMALL AMOUNTS OF ELEMENTS ON SHAPES OF POTENTIODYNAMIC AND POTENTIOSTATIC CURVES OF AISI 304L AND AISI 316L STAINLESS STEELS IN CHLORIDE MEDIA

    Directory of Open Access Journals (Sweden)

    D. Pulino-Sagradi

    1997-06-01

    Full Text Available Abstract - Samples of high purity grade and commercial purity grade type AISI 304L and AISI 316L steels were studied by the potentiodynamic and potentiostatic techniques in a naturally aerated 3.5% NaCl aqueous solution at a controlled temperature of (23±2°C. The anodic polarization curves of the potentiodynamic technique showed that not always is it possible to determine pitting potential: most of the curves of commercial purity grade steels displayed a smooth curvature in the region where the current density should increase sharply. The density current versus time potentiostatic curves also showed different shapes according to the purity grade steels: for the commercial purity grade steels, the current density showed large oscillations with time (related to unstable pits, whereas for the high purity grade steels, a regular behavior of current density as a function of time was found (related to stable pits

  3. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-06-11

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.

  4. An electrochemical noise study of tribo-corrosion processes of AISI 304L in Cl- and SO42- media

    International Nuclear Information System (INIS)

    The spectral analysis method of the electrochemical noise has been performed during pin-on-disc friction tests, in which an aluminium oxide pin having a spheric extremity rubbing on a AISI 304L stainless steel disc, in aqueous Cl- and SO42- medium, and submitted or not to an imposed electrochemical polarization. The power spectral densities (PSD) of the free potential and those of the imposed polarization current as well as the normal and tangential forces fluctuations have been analyzed and compared. At frequencies superior to 0.1 Hz, the electrochemical signal PSD seems to mainly depend of the kinetics of the electrochemical phenomena (dissolution, passivation). The PSD signals reveal that the electrochemical phenomena (passivation, re-passivation) inducing the noise are not sensibly affected by an increase of the normal force, but are activated by an increase of the pin rotation velocity. (O.M.)

  5. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    The nature of the near-surface γN phase produced by low-temperature (∼400 °C) plasma-assisted nitriding of an austenitic stainless steel 304L is studied. A combination of global probes (X-ray diffraction, nuclear reaction analysis, glow discharge optical emission spectroscopy) and local probes (field ion microscopy, conversion electron Mössbauer, X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies) is employed to reveal the morphology, phase structure, atomic ordering and chemical state of the obtained γN phase. The results consistently reveal the heterogeneous nature of the nitrided layer consisting of nanometric CrN precipitates embedded in a Fe4N-like matrix. The size of the precipitates is found to be larger at the surface than at the nitrided layer–steel interface. The precipitates have irregular, sphere-like shapes. Moreover, X-ray spectroscopic investigation revealed three different intermetallic distances and different chemical environments for Fe, Cr and Ni, accompanied by a large static disorder. These findings suggest that the presence of the interstitial N destabilizes the homogeneous element distribution in 304L even at such low temperatures. This leads to the segregation into Cr-rich zones that are coherent with the Fe4N matrix. Possible atomistic decomposition mechanisms are discussed. Based on the heterogeneous nature of the γN phase revealed in 304L, an alternative view of its remarkable combination of properties such as large hardness, induced ferromagnetism and preserved corrosion resistance is considered.

  6. Resistance Spot Weldability of Dissimilar Materials: BH180-AISI304L Steels and BH180-IFT123 Steels

    Institute of Scientific and Technical Information of China (English)

    Fatih Hayat

    2011-01-01

    In this study, resistance spot weldability of 180 grade bake hardening steel (BH180), 7123 grade interstitial free steel (IF7123) and 304 grade austenitic stainless steel (AISI304L) with each other was investigated. In the joining process, electrode pressure and weld current were kept constant and six different weld time were chosen. Microstructure, microhardness, tensile-shear properties and fracture types of resistance spot welded joints were examined. In order to characterize the metallurgical structure of the welded joint, the microstructural profile was developed, and the relationship between mechanical properties and microstructure was determined. The change of weld time, nugget diameter, the HAZ (heat affected zone) width and the electrode immersion depth were also investigated. Welded joints were examined by SEM (scanning electron microscopy) images of fracture surface. As a result of the experiment, it was determined that with increasing weld time, tensile shear load bearing capacity (TLBC) increased with weld time up to 25 cycle and two types of tearing occurred. It was also determined that while the failure occurred from IF side at the BHIS0+IF7123 joint, it occurred from the BH180 side at the BHIS0+AISI304L joint.

  7. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  8. Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This test method covers a laboratory procedure for conducting an electrochemical reactivation (EPR) test on AISI Type 304 and 304L (UNS No. S30400 and S30403, respectively) stainless steels. This test method can provide a nondestructive means of quantifying the degree of sensitization in these steels (1, 2, 3). This test method has found wide acceptance in studies of the effects of sensitization on intergranular corrosion and intergranular stress corrosion cracking behavior (see Terminology G15). The EPR technique has been successfully used to evaluate other stainless steels and nickel base alloys (4), but the test conditions and evaluation criteria used were modified in each case from those cited in this test method. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this...

  9. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    Science.gov (United States)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  10. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Pacquentin, Wilfried, E-mail: wilfried.pacquentin@cea.fr [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Caron, Nadège [CEA, DEN/DANS/DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Oltra, Roland [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, UMR CNRS 5209, 21078 Dijon Cedex (France)

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  11. An electrochemical noise study of tribocorrosion processes of AISI 304 L in Cl- and SO42- media

    International Nuclear Information System (INIS)

    Electrochemical noise measurements were performed to investigate the intrinsically stochastic character of the tribocorrosion process. Unidirectional sliding tests (pin-on-disc) were performed using AISI 304L stainless steel sliding against corundum. Experiments were carried out in Cl- and SO42 containing media under open-circuit and potentiostatic polarization conditions. The power spectral density (PSD) of the current and potential signals showed a strong dependence on the sliding frequency but did not depend significantly on the normal load between 5 and 20 N. The fluctuations of the tangential and normal loads were also recorded, and a critical comparison between the PSD of the electrochemical response and the PSD of the mechanical solicitation (load) is proposed. At high frequencies (f > 0.1 Hz), the PSD of current or potential fluctuations have significantly different shapes than the PSD of load signals: the electrochemical signal PSD is governed by the dynamic balance between local depassivation and repassivation which only depends on the kinetics of the electrochemical phenomena. For lower frequencies, a plateau is observed for both the electrochemical PSD and the load PSD. The electrochemical signal is then governed by the continuous depassivation induced by sliding which appears as a low frequency component. These results suggest that the electrochemical noise technique investigated in the frequency domain might be a promising electrochemical tool for successfully unfolding tribocorrosion signatures for material parings in sliding-corrosion tests

  12. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    International Nuclear Information System (INIS)

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  13. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    Directory of Open Access Journals (Sweden)

    Francisco J. Baldenebro-Lopez

    2015-01-01

    Full Text Available In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed.

  14. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    OpenAIRE

    Neusa Alonso-Falleiros; Stephan Wolynec

    2002-01-01

    We investigated the effect of surface finish of two AISI 304L (UNS S30403) stainless steels on the corrosion potential (Ecorr) in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep) value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear corr...

  15. Correlation between Corrosion Potential and Pitting Potential for AISI 304L Austenitic Stainless Steel in 3.5% NaCl Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Alonso-Falleiros Neusa

    2002-01-01

    Full Text Available We investigated the effect of surface finish of two AISI 304L (UNS S30403 stainless steels on the corrosion potential (Ecorr in 3.5% NaCl aqueous solution and its value was compared with the pitting potential (Ep value and the type of anodic potentiodynamic curve obtained for determination of Ep in this solution. Five different surface finishes were examined. Ecorr and its standard deviation are strongly affected by the type of surface finish. Moreover, there are evidences of a linear correlation between Ecorr and Ep, as well as between the percentage of anodic curves with a well-defined pitting potential and the uncertainty in the determination of Ecorr.

  16. Selection of suitable stainless steels for nuclear reprocessing plants: application of chemical and electrochemical testing methods to austenitic CrNi steel AISI type 304L in various chemical compositions

    International Nuclear Information System (INIS)

    DIN Standard Huey testing has been performed in boiling 14.4n nitric acid during 5-15 periods (240-720 h) for selection of appropriate nitric acid resistant materials for nuclear fuel reprocessing applications. The paper describes the testing process during which the intermediate and final results of metal loss by dissolution are directly transferred from the balance to the computer, stored and activated - besides material properties data - for documentation purposes. Further routine evaluation of these experiments includes metallography in cross-section and surface microscopy to look after uniform and local metal dissolution phenomena and their relationship to the bulk structure. A large variety of materials have been tested this way through the last years. It was shown how sensitively the chosen testing conditions are able to differ between materials of the same nominal composition AISI 304L/Material No. 1.4306 in different contents of residual elements. Especially, for the purest electroslag-molten steel (ESU) results of parameter studies concerning the influence of sensitization, cold deformation, grain size and sheet thickness (in respect to end grain attack) are given. Within an attempt to define faster methods of corrosion testing, e.g. to differ within a group of materials of similar composition, but different corrosion behaviour, electrochemical tests in heated nitric acid were performed under potentiostatic conditions. The necessary electrochemical equipment and the results of its application by potentiostatic tests on AISI 304L in above mentioned three chemical compositions at 1250 mV, 14n HNO3 are presented. The evaluation by light and electron microscopy of the corroded surfaces, supported by measurements of current density, weight change, metallography and surface roughness, proved that within one hour a remarkable differentiation of the corrosion behaviour took place which can serve as a basis of materials preselection and to diminish the extent of

  17. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  18. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    International Nuclear Information System (INIS)

    The α-Al9FeMnSi and α-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  19. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    Directory of Open Access Journals (Sweden)

    Marcelo Senatore

    2007-03-01

    Full Text Available Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústrias química e petroquímica, de papel e celulose, siderúrgicas, alimentícias e de geração de energia. O presente trabalho estabelece um comparativo entre as propriedades físicas, mecânicas e de resistência à corrosão dos aços inoxidáveis duplex e os tradicionais aços inoxidáveis austeníticos AISI 304L e 316L, largamente utilizados na indústria brasileira. Resultados de ensaios laboratoriais e dados relevantes de experiências práticas desses materiais também são apresentados.Ferritic-austenitic duplex stainless steels are part of a class of material having a two-phase microestructure, comprised of a ferritic matrix and austenitic islands, with the volumetric fractions approximately the same in these phases. This class of material is characterized by the presentation of an interesting combination of high mechanical properties and corrosion resistance and is therefore considered quite versatile. The duplex stainless steels are often used in the chemical, petrochemical, pulp & paper and food industries, as well as in steel foundaries and energy power plants. This paper shows a comparison between the physical, mechanical and corrosion resistance properties of duplex stainless steels and the traditional austenitic stainless steels 304L and 316L, largely used in the Brazilian industry. Results of laboratory tests and relevant data on practical experiments on these materials are also presented.

  20. Constant extension rate tensile tests on 304L stainless steel in simulated hazardous low-level waste

    International Nuclear Information System (INIS)

    New waste tanks which handle hazardous low-level waste were proposed to be constructed in H-area. The candidate material for the tanks is AISI Type 304L (304L) stainless steel. Constant extension rate tensile (CERT) tests were conducted to assess the susceptibility of 304L to stress-corrosion cracking (SCC) in these waste solutions. The tests demonstrated that 304L was not susceptible to SCC in simulated wastes. Based on these tests and previous pitting corrosion studies 304L is a suitable material of construction for the new tanks. Comparison tests in the same simulants were performed on A537 carbon steel (A537), a material that is similar to material of construction for the current tanks. Stress-corrosion cracking was indicated in two of the simulants. If carbon steel tanks are utilized to handle the hazardous low-level wastes, inhibitors such as nitrite or hydroxide will be necessary to prevent corrosion

  1. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    International Nuclear Information System (INIS)

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  2. 24 h-corrosion tests combined with electrochemical potential measurements of CrNi-steel DIN W.Nr. 1.4306 (AISI Type 304 L) in 7 molar nitric acid containing oxidizing metal ions at 90deg C

    International Nuclear Information System (INIS)

    Corrosion experiments - combined with measurements of the free corrosion potential of the steels under test and the redox potential of the corrosive nitric acid media - have been performed. Three different versions of the austenitic CrNi steel DIN W.Nr. 1.4306 (AISI Type 304 L) in the solution annealed condition were tested at 90deg C during 24 h in nitric acid and nitric acid solutions containing single or combined additions of Fe(III)-, Cr(VI)- and Ce(IV)-ions. The relationship between the rate of metal loss and the free corrosion potential of the corroding steels was confirmed to be an exponential one. Furthermore, it was shown that these short-term tests could reveal within a narrow band of free corrosion potentials (1150-1250 mV) an extent of surface corrosion which is specific for small compositional or microstructural differences of these steels. (orig.)

  3. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel

    International Nuclear Information System (INIS)

    Effect of plastic deformation induced by cold rolling or surface machining on the susceptibility to chloride-induced stress corrosion cracking at ambient temperature of 304L austenitic stainless steel was investigated in this study. The test material was subjected to three treatments: (a) solution annealed, (b) cold rolled and (c) surface machined to induce different levels of strain/stresses in the material. Subsequently constant strained samples were produced as per ASTM G30 for each condition and these were exposed to 1 M HCl at ambient temperature until cracking occurred. Subsequently the cracked samples were characterized using stereo microscopy, optical microscopy and atomic force microscopy to understand the effect of microstructural changes produced by straining on the susceptibility to stress corrosion cracking at ambient temperature. Strained surface produced by machining accelerated the process of crack initiation resulting in densely distributed shallow surface cracks in a very short period of time as compared to solution annealed and cold worked sample. Crack propagation in cold worked sample was along the slip lines and cracking occurred much earlier than in the solution annealed sample.

  4. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some

  5. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mudali, U. Kamachi. E-mail: kamachi@igcar.ernet.in; Ananda Rao, B.M.; Shanmugam, K.; Natarajan, R.; Raj, Baldev

    2003-09-01

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application.

  6. Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel

    International Nuclear Information System (INIS)

    To link titanium and zirconium metal based (Ti, Zr-2, Ti-5%Ta, Ti-5%Ta-1.8Nb) dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution to other nuclear fuel reprocessing plant components made of AISI type 304L stainless steel (SS), high integrity and corrosion resistant dissimilar joints between them are necessary. Fusion welding processes produce secondary precipitates which dissolve in nitric acid, and hence solid-state processes are proposed. In this work, various dissimilar joining processes available for producing titanium-304L SS joints with adequate strength, ductility and corrosion resistance for this critical application are highlighted. Developmental efforts made at IGCAR, Kalpakkam are outlined. The possible methods and the microstructural-metallurgical properties of the joints along with corrosion results obtained with three phase (liquid, vapour, condensate) corrosion testing are discussed. Based on the results, dissimilar joint produced by the explosive joining process was adopted for plant application

  7. Forging evaluaion of 304L stainless steel

    International Nuclear Information System (INIS)

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 11450C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 8430C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 8430C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 11450C upset forgings, was significantly lowered by annealing

  8. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  9. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    OpenAIRE

    Akinlabi OYETUNJI; Nwafagu NWIGBOJI

    2014-01-01

    The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS) was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS) of the butt joint samples increases with increase in core diameter of...

  10. Experimental investigation of the residual stresses of 304L tubular welded joints; Caracterisation des contraintes residuelles sur assemblages soudes tubulaires en acier 304L

    Energy Technology Data Exchange (ETDEWEB)

    Monin, L.; Panier, S.; Hariri, S.; Zakrzewski, D. [Ecole des Mines de Douai, 941, rue Charles Bourseul, BP 10838, 59508 DOUAI Cedex (France); Faidi, C. [EDF-SEPTEN, 12-14, avenue Dutrievoz, 69628 VILLEURBANNE (France)

    2007-07-01

    In the nuclear energy industry, the use of components made of austenitic stainless steel is widely spread, because of its specific thermal properties. The assembly of these pressure vessels and piping by welding processes often requires surface mechanical operations. These operations aim at hardening surfaces and lowering roughness. Nevertheless the main effect of these operations is the occurrence of residual stresses which can have positive or negative effects on the fatigue life. In this study, we focus on the evaluation and relaxation of residual stresses level on AISI 304L austenitic stainless steel tubular welded structures. Some of these rings are base metal rings (which stand as reference), the rest presents a longitudinal and symmetrical Y-weld joint, with or without grinding. Surface residual stresses, and their relaxation, were determined by using the X-ray diffraction method. (authors) [French] L'utilisation de composants en acier inoxydable austenitique, aux proprietes thermiques bien specifiques, est tres courante dans le domaine de la production d'energie nucleaire. Les procedes d'assemblage par soudage de ces equipements sous pression requierent des traitements de parachevement mecanique afin d'ameliorer l'etat de surface et modifier l'etat mecanique en introduisant des contraintes residuelles, qui peuvent avoir une influence sur la duree de vie de la structure. Cette etude porte sur la caracterisation et la relaxation des contraintes residuelles, determinees sur des eprouvettes annulaires specifiques en acier inoxydable austenitique de type 304L, a l'etat brut ou avec des soudures, arasees ou non. La methode de determination utilisee est la diffraction des rayons X. La relaxation de ces contraintes au cours d'essais de fatigue est egalement etudiee. (auteurs)

  11. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    International Nuclear Information System (INIS)

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 1500C, and the 316L SS at 950C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 1500C. 12 refs., 27 figs., 13 tabs

  12. Dynamic Strength of 304L stainless steel under impact

    Science.gov (United States)

    Werdiger, Meir; Bakshi, Lior; Glam, Benny; Pistinner, Shlomi

    2011-06-01

    We use the Asay self consistent technique to analyze the effects of pressure hardening and strain hardening on SS304L. Previously unloading experiment has been used to infer the strength of this material at high pressure, and recently the Johnson-Cook (JC) model has been calibrated at low strain rate. Release and reshock experiments with impact velocity range of 300-1700 m/s were preformed. We used VISAR to extract the particle velocity of the SS304L- LiF window interface. The velocity profile compared to hydrodynamic simulation using JC model. Our unloading experiments have clearly demonstrate that the material yield but does not fail. Thus infer substantial effect of pressure hardening.

  13. Corrosion and slow-strain-rate testing of Type 304L stainless steel in tuff groundwater environments

    International Nuclear Information System (INIS)

    Type 304L stainless steel (SS) is the nuclear waste package reference material by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The stress-corrosion cracking (SCC) resistance of this material to elevated-temperature tuff groundwater environments was determined under irradiated and unirradiated conditions. The material was found to be susceptible to SCC (in both the solution-annealed and solution-annealed-and-sensitized conditions) when exposed to an irradiated (3 x 105 rad/h) air/water vapor/crushed tuff rock environment at 900C. A similar exposure at 500C did not result in failure after a 25-month test duration. Specimens of sensitized Type 304 SS failed in both the 900C and 500C environments. U-bend specimens of Type 304L SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which an environment of tuff rock and groundwater held at 2000C was allowed to boil to dryness on a cyclical (weekly) basis. All specimens of sensitized Type 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The Type 304L steel was tested in J-13 well water at 1500C; the Type 316L steel at 950C. Neither material showed evidence of SCC in these tests. Sensitized Type 304 SS, on the other hand, did exhibit SCC in J-13 well water in tests conducted at 1500C

  14. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite α' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  15. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, X., E-mail: xavier.kleber@insa-lyon.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Barroso, S. Pirfo [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2010-08-20

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite {alpha}' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  16. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    In connection with the safe storage of high level nuclear waste, effect of H2O2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H2O2. The experimental results show that H2O2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H2O2 concentration increased, indicating that pitting resistance was decreased by the existence of H2O2 in the electrolyte. These effects of H2O2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H2O2 with those of O2, cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H2O2 on the corrosion behavior were very similar to those of O2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H2O2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H2O2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  17. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    International Nuclear Information System (INIS)

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH)2), the critical value [Cl-] / [OH-], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na3PO4. The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH)2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na3PO4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl-] / [OH-] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na3PO4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  18. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  19. Literature study - Sigma phase in 316L and 304L

    International Nuclear Information System (INIS)

    A literature survey of the existence, formation and kinetics of the sigma phase has been made. It was early realised that the precipitation of the sigma phase and that of 23-carbide were intimately coupled, why both are treated. The mechanical properties of both 304L and 316L are highly affected by the presence of sigma phase. The dominating features are: Yield strength is reduced, due to reduced solution hardening, Deformation hardening increases, Ultimate tensile stress increases, due to the presence of a hard phase, Impact strength is generally decreased. This is however dependant on the microstructure and processing. There are conditions where the impact strength can increase due to crack deflection, Ductility is significantly reduced. An additional conclusion is that the Huey test is too a blunt and conservative instrument to identify sensitization, caused by sigma phase. In a material that contains ferrite in some form, before aging, 23-carbide will precipitate in all welded 304L and 316L steels according to the literature. It is also clear that the first carbide to form is very fine and is precipitated before the sigma phase. This has the consequence that welded and annealed weldments will show some sensitization from 23-carbide. It is also clear that the amount of 23-carbide reduces as the amount of sigma phase increases. The time to the start of the dissolution, which could decrease the level of sensitization, depends on temperature. This could for instance explain why there are examples of sensitized 30L steel that showed excellent corrosion resistance. Direct corrosion of the sigma phase is highly pH-dependant. The sμμma phase has little resistance against oxidizing acids. It is thus important to understand the coupling between the sensitization caused by the 23-carbide and the change in ductility caused by the 23-carbide with sigma phase present. This is in turn primarily depending on the carbon content and the ferrite content after welding

  20. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  1. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    Science.gov (United States)

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  2. Effect of sensitization on the mechanical properties of type 304 L stainless steel

    International Nuclear Information System (INIS)

    The sensitization is a corrosion cause that it has studied broadly in the austenitic steels; however its relations don't knowed very well, into the sensitization and the steel's mechanical properties. Wherefore, the objectives of this work was to study the mechanical properties, in tension of austenitic steel with different levels of sensitization. The material utilized was a 304 L steel of standard composition AISI. The samples were sensitized at 450, 650 and 850 Centigrade degree, by short expositions, following by a temper in water. After this treatment, the tension test tubes were carried to rupture at low deformation velocity. The sensitization was evaluated by the method of Akashi EPR cyclic polarization. The sensitization distribution was analyzed by optical metallography in color and the fracture surface were studied by sweeping electronic microscopy. The distribution and length of the carbides were the factor that control the mechanic behavior of materials. At 450 Centigrade, the border of the grain its founded free of carbides, also for the longest times of exposition, but the particles are presented as fine precipitates in the grain interior, with this is increased the mechanical properties by the internal interactions of hardness or oldness types. At 650 Centigrade the frontiers show a dense distribution of fine carbides. These precipitates are interacting with the borders grain, increasing lightly the mechanical properties of steel. At 850 Centigrade, were formed discontinued carbides that not affect the mechanical behavior, but whether the fracture; the resistance is reduced and the ductility is increased although to impose the thermic effect of treatment. (Author)

  3. Evolution of microstructure in laser welding of SS304L

    International Nuclear Information System (INIS)

    Laser welding is an important joining process and its application in industries is growing rapidly. One can produce laser welds over a wide range of process parameters and this offers very good opportunity for producing microstructure of different morphology and scales in the weldment. Weld beads have been produced on 5 mm thick plates of SS304L using CW Nd-YAG laser. Laser power was varied in 200 W to 1000 W range and welding speed was varied in 100 mm/mm to 1000 mm/mm. This resulted in weld beads of different morphology. Microstructure of the weld beads was examined on the cross-section as well as in the axial direction using optical microscopy and Transmission Electron Microscopy (TEM) to study evolution of the microstructure in the weldment. Microstructure was cellular and cellular-dendritic with grains growing from the fusion line towards the centerline. In the central region, cellular growth along the welding direction was observed. The cell size was found to increase with increasing laser power and decreasing welding speed. The findings are presented in this paper. (author)

  4. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  5. Comportamiento termomecánico de aceros AISI 304

    Directory of Open Access Journals (Sweden)

    El Wahabi, M.

    2001-04-01

    Full Text Available The hot deformation behaviour of three AISI 304 (H, L and HP austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free displayed the lower stress levels as its hardening rate was slower than in the other two steels.

    Se llevó a cabo un estudio del comportamiento termomecánico de tres aceros inoxidables austeníticos tipo AISI 304 (H, L y HP con diferentes contenido en carbono, mediante la determinación de los parámetros que describen las etapas de deformación en caliente. No se notó un fuerte efecto del carbono en dichos parámetros, excepto en los que describen los procesos de endurecimiento y de restauración dinámica que muestran una cierta dependencia con la composición química, especialmente a bajos valores del parámetro de Zener-Hollomon, donde el acero de alto carbono (304H endurece y restaura más rápido que el de bajo carbono (304L, alcanzándose valores de tensión de pico similares en ambos casos. El material de alta pureza (libre de intersticiales toma valores de tensión de pico más bajos que los otros aceros, endureciendo más lentamente y con una velocidad de restauración similar a la del 304H.

  6. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  7. Passivity and passivity breakdown of 304L stainless steel in hot and concentrated nitric acid

    International Nuclear Information System (INIS)

    The objective of this study is to characterize the oxidation behavior of 304L stainless steel (SS) in representative conditions of spent nuclear fuel reprocessing, i.e. in hot and concentrated nitric acid. In these conditions the SS electrochemical potential is in the passive domain and its corrosion rate is low. However when the media becomes more aggressive, the potential may be shifted towards the trans-passive domain characterized with a high corrosion rate. Passivity and passivity breakdown in the trans-passive domain are of a major interest for the industry. So as to characterize these phenomenons, this work was undertaken with the following representative conditions: a 304L SS from an industrial sheet was studied, the media was hot and concentrated HNO3, long term tests were performed. First, the surface of an immersed 304L SS was characterized with several complementary techniques from the micro to the nanometer scale. Then oxidation kinetics was studied in the passive and in the trans-passive domain. The oxidation behavior was studied thanks to weight loss determination and surface analysis. Finally, oxidation evolution as a function of the potential was studied from the passive to the trans-passive domain. In particular, this allowed us to obtain the anodic curve of 304L SS in hot and concentrated and to define precisely the 304L SS limits of in such conditions. (author)

  8. Contribution to analysis of fatigue crack propagation at room temperature in low carbon austenitic steels type 18-10(304L) and Mo 17-12(316L). Relation between macroscopic and microscopic phenomena

    International Nuclear Information System (INIS)

    Low cycle fatigue phenomenon on the structural components of reactors is one of the most important problem. In this paper were carried out some fatigue tests on stainless steels type Z2CN18-10 (AISI 304L) and Z2CND17-12 (AISI 316L) at room temperature in air and in a corrosive medium (NaCl solution at different pH values). Length of cracks and crack propagation under stresses were determined. Z2CND17-12 has a better behavior than Z2CN18-10 because of a better structural stability both in air and in a corrosive environment. Structure was examined by transmission electron microscopy and microhardness was measured in the perturbed zones

  9. Assessment and comparison of oxides grown on 304l ods steel and 304l ss in water environment in supercritical conditions

    International Nuclear Information System (INIS)

    In order to fulfil superior cladding for new reactor generation G IV, the austenitic304L stainless steel was improved by oxide dispersion strengthening (ODS), using two nano-oxides: titanium and yttrium oxides. The behaviour of the new material resulted, 304 ODS, in water at supercritical temperature of about 550OC and 25 MPa pressure, was considered. The oxidation kinetics by weigh gain measurements for both materials have been estimated and compared. The weight gain of ODS samples is higher than basic austenitic steel up to 1320 hours. The oxides developed on the ODS samples in SCPW are layered and more uniform than in 304L SS. The protectively character of oxide films was estimated by different techniques. The morphology of oxide surface, the layering and chemical formula of oxides films were investigated by scanning electron microscopy (SEM), Energy Dispersion X-Ray Spectrometry (EDS), electrochemical impedance spectrometry (EIS) and by Small Angle X-ray Diffraction (SAXD). 1. (authors)

  10. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  11. Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates

    International Nuclear Information System (INIS)

    Explosive cladding is a solid state welding process best suited for joining incompatible metals. The selection of process parameters viz., explosive mass ratio, stand off distance and initial angle of inclination dictate the nature of the cladding. Optimization of process parameters in explosive cladding of titanium-stainless steel 304L plates, based on two level three factorial design, is attempted to establish the influencing parameters. Analysis of variance was employed to find the linear, regression and interaction values. Mathematical models to estimate the responses-amplitude and wavelength were developed. The microstructure of the Ti-SS304L explosive clad interface reveals characteristic undulations concurrent with design expectations. (orig.)

  12. Comparison of SCC Behavior of 304L Stainless Steels With and Without Boron Addition in Acidic Chloride Environment

    Science.gov (United States)

    Sivai Bharasi, N.; Pujar, M. G.; Nirmal, S.; Mallika, C.; Kamachi Mudali, U.; Angelo, P. C.

    2016-07-01

    The stress corrosion cracking (SCC) behavior of 304L B4 grade borated stainless steel (SS) as well as 304L SS was investigated by constant load and slow strain rate testing (SSRT) techniques. The microstructure, pitting, and SCC behavior of borated SS in the as-received, sensitized, and solution-annealed conditions were analyzed. Potentiodynamic anodic polarization and double loop electrochemical potentiokinetic reactivation (DLEPR) experiments were carried out to find out pitting corrosion resistance and degree of sensitization (DOS). The number of boride particles (composed of Cr, Fe, and B) were highest for the specimen solution annealed at 1423 K/2 h. Solution-annealing treatment at 1423 K/4 h was found to be beneficial in improving the corrosion resistance of borated 304L SS. Although the borated 304L SS exhibited a higher DOS, it showed improved pitting corrosion resistance compared to 304L SS. Constant load experiments revealed the time to failure to be the highest for the specimen solution annealed at 1423 K/4 h. SCC susceptibility index (Iscc) values obtained from SSRT tests were lower for solution-annealed borated 304L SS compared to the as-received and sensitized conditions. The improved SCC resistance of borated 304L SS was attributed not only to the solution-annealing treatment but also the higher stacking fault energy (SFE) value compared to 304L SS.

  13. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Directory of Open Access Journals (Sweden)

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  14. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    International Nuclear Information System (INIS)

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  15. Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Asaduzzaman M.D.

    2011-01-01

    Full Text Available The pitting corrosion behavior of the austenitic stainless steel in aqueous chloride solution was investigated using electrochemical technique. Corrosion potential (Ecorr measurement, potentiodynamic experiments, potential-hold experiments in the passive range, and microscopic examination were used for the evaluation of corrosion characteristics. The experimental parameters were chloride ion concentration, immersion time and anodic-hold potential. Ecorr measurements along with microscopic examinations suggest that in or above 3.5 % NaCl at pH 2 pitting took place on the surface in absence of applied potential after 6 hour immersion. The potentiodynamic experiment reveals that Ecorr and pitting potential (Epit decreased and current density in the passive region increased with the increase of chloride ion concentrations. A linear relationship between Epit and chloride ion concentrations was found in this investigation. The analysis of the results suggests that six chloride ions are involved for the dissolution of iron ion in the pitting corrosion process of austenitic stainless steel.

  16. Evaluation of crevice corrosion initiation condition and repassivation condition of SUS304L

    International Nuclear Information System (INIS)

    Crevice corrosion has been concerned in the Fukushima Daiichi Nuclear Power Station, since seawater was injected to make up water level as part of the emergency action. To evaluate structural integrity, it is important to investigate whether crevice corrosion occurred. The purpose of this study is to investigate conditions of crevice corrosion initiation and repassivation of SUS304L. SUS304L specimens with acrylic crevice were held at constant electrochemical potentials in 1000ppm Cl- solution. It was investigated the crevice corrosion initiation time as a function of the holding potential. Next, crevice-corroding specimens were held at constant electrochemical potentials in 1000ppm Cl- solution. It was investigated the repassivation time against the holding potential. The initiation potential and repassivation potential are in good agreement with ER,CREV obtained according to the JIS standard. (author)

  17. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  18. Evaluation of the austenitic alloys 304L, 316L, and alloy 825 under Tuff repository conditions

    International Nuclear Information System (INIS)

    Austenitic alloys 304L and 316L and stainless steel 825 were investigated as candidate materials for containers for waste disposal in the relatively benign conditions of the Yucca Mountain site. In this vault there will be very little water, and what there is will contain small amounts of chlorides, nitrates, sulphates and carbonates. The radiation fields will be 104 rad/h initially, but will decay to low levels by the end of the containment period. The initial temperature will be around 250 C, and it will remain above the boiling point of water for the containment period (approximately 300 years). There will be no lithostatic or hydrostatic pressure. Type 304L stainless steel is a base case material used in comparisons with other candidates. Type 316L stainless steel possesses enhanced resistance to sensitization and localized corrosion; alloy 825 is stabilized to have a much better resistance to sensitization and localized corrosion and performs better in chloride environments

  19. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    OpenAIRE

    Marina Odnobokova; Andrey Belyakov; Rustam Kaibyshev

    2015-01-01

    The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by m...

  20. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  1. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    Science.gov (United States)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Charpy impact energy evolution, with sensitization treatments, in absence and presence of internal hydrogen in austenitic 304 L

    International Nuclear Information System (INIS)

    Charpy impact energy measurement is a sensitive method, specially at low temperature (-180+-50C), to evaluate the sensitization treatments on austenitic 304 L, in presence or absence of cathodic hydrogen

  3. Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel

    Science.gov (United States)

    Gupta, R. K.; Kumar, Aniruddha; Nagpure, D. C.; Rai, S. K.; Singh, M. K.; Khooha, Ajay; Singh, A. K.; Singh, Amrendra; Tiwari, M. K.; Ganesh, P.; Kaul, R.; Singh, B.

    2016-07-01

    Machining of austenitic stainless steel components is known to introduce significant enhancement in their susceptibility to stress corrosion cracking. The paper compares stress corrosion cracking susceptibility of laser machined 304 L stainless steel specimens with conventionally milled counterpart in chloride environment. With respect to conventionally milled specimens, laser machined specimens displayed more than 12 times longer crack initiation time in accelerated stress corrosion cracking test in boiling magnesium chloride as per ASTM G36. Reduced stress corrosion cracking susceptibility of laser machined surface is attributed to its predominantly ferritic duplex microstructure in which anodic ferrite phase was under compressive stress with respect to cathodic austenite.

  4. Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel

    International Nuclear Information System (INIS)

    Highlights: • Multipass gas tungsten arc welding of 304L stainless steel was successfully done. • All welds were austenitic with the presence of a small amount of δ-ferrite. • The morphology of δ-ferrite showed the lathy and skeletal δ-ferrite in the welds. • Hardness and corrosion resistance were improved by multipass welding. • The best joint properties were obtained after three passes welding. - Abstract: The purpose of this study was to discuss the effect of single pass and multipass (double and triple pass) gas tungsten arc welding (GTAW) on microstructure, hardness and corrosion behavior of 304L stainless steel. In this investigation, 308 stainless steel filler metal was used. Microstructures and hardness of the weldments were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and Vickers microhardness (HV0.5). A ferritescope was also used in the non-destructive evaluation to observe the ferrite content on the weldments. Corrosion behavior of weldments in 1 M H2SO4 solution at 25 ± 1 °C was investigated using potentiodynamic polarization and immersion tests. Results indicated that the microstructure of fusion zones exhibited dendritic structure contained lathy and skeletal δ-ferrite. The contents of δ-ferrite in the weld zone increased by increasing the number of passes. Therefore, as the number of passes increased, the hardness and corrosion resistance increased

  5. Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    A. Momeni; S.M. Abbasi

    2011-01-01

    Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α'-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.

  6. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    Science.gov (United States)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  7. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    Science.gov (United States)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  8. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate

    International Nuclear Information System (INIS)

    304L stainless steel specimens are pre-strained to 0.15 or 0.5 and are then deformed at strain rates ranging from 2000 s-1 to 6000 s-1 at temperatures of 300 deg. C, 500 deg. C and 800 deg. C using a compressive split-Hopkinson pressure bar. The results show that for both values of the pre-strain, the flow stress increases with increasing strain rate, but reduces with increasing temperature. At deformation temperatures of 300 deg. C or 500 deg. C, the flow stress in the 0.5 pre-strained specimen is higher than that in the specimen pre-strained to 0.15. However, at a temperature of 800 deg. C, the two specimens exhibit a similar level of flow stress. Transmission electron microscopy (TEM) observations reveal that the strengthening effect observed in the specimens deformed at 300 deg. C or 500 deg. C is the combined result of dislocations, mechanical twins and martensite transformation. However, at a deformation temperature of 800 deg. C, the strengthening effect is the result primarily of dislocation multiplication. The volume fraction of martensite transformation decreases with increasing strain rate and temperature. In addition, both the dislocation density and the twin density increase with increasing strain rate, but decrease with increasing temperature. Finally, the quantitative analysis results indicate that the flow stress varies with the square root of the dislocation density, the twin density and the volume fraction of martensite, respectively.

  9. Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K., E-mail: shaju@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Das, C.R. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute of Plasma Research, Gandhi Nagar (India); Mastanaiah, P.; Patel, M. [Defence Research and Development Laboratory, Hyderabad (India); Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Murthy, C.V.S. [Defence Research and Development Laboratory, Hyderabad (India); Kumar, Rajendra [Institute of Plasma Research, Gandhi Nagar (India)

    2014-10-15

    Highlights: • Increase of W content in RAFM steel can result in retention of delta ferrite in the EB weld of the steel. • Presence of delta ferrite seems to affect the ductile brittle transition temperature of the weld metal. • There is improper mixing of the two base metals in the fusion zone dissimilar welds of RAFM steel and austenitic stainless steel made by EB welding. - Abstract: Effect of weld metal composition on microstructure and toughness of weld metal is studied in this paper. Weld joints of reduced activation ferritic/martensitic (RAFM) steel containing 1.0 and 1.4 wt.% W were prepared using electron beam welding (EBW) process. Dissimilar weld joints between 1.0 wt.% W RAFM steel and AISI 316L (N) SS were also prepared using EBW process. The effect of post weld heat treatment (PWHT) temperatures on microstructure and mechanical properties was also studied. Microstructural observation reveals delta–ferrite in 1.4 wt.% W containing weld metal, which is absent in 1.0 wt.% W weld metal. In the case of the dissimilar weld metal, microstructure shows presence of lath martensite and retained austenite. Austenite was stable even after PWHT and its presence is attributed to high nickel (5–6 wt.%) content in the dissimilar weld metal. Hardness of RAFM steel weld metal was found to be 270–290 VHN after PWHT at 750 °C for 2 h. Impact toughness of both 1.0 and 1.4 wt.% W RAFM steel is high (>250 J) at ambient temperature. However, after PWHT, variation of toughness with temperature is more drastic for 1.4 wt.% W RAFM steel weld metal than the other. As a result, ductile brittle transition temperature (DBTT) for the 1.4 wt.% steel weld metal is close to 0 °C while that of the 1.0 wt.% W steel is close to that of the base metal (∼−80 °C)

  10. Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Highlights: • Increase of W content in RAFM steel can result in retention of delta ferrite in the EB weld of the steel. • Presence of delta ferrite seems to affect the ductile brittle transition temperature of the weld metal. • There is improper mixing of the two base metals in the fusion zone dissimilar welds of RAFM steel and austenitic stainless steel made by EB welding. - Abstract: Effect of weld metal composition on microstructure and toughness of weld metal is studied in this paper. Weld joints of reduced activation ferritic/martensitic (RAFM) steel containing 1.0 and 1.4 wt.% W were prepared using electron beam welding (EBW) process. Dissimilar weld joints between 1.0 wt.% W RAFM steel and AISI 316L (N) SS were also prepared using EBW process. The effect of post weld heat treatment (PWHT) temperatures on microstructure and mechanical properties was also studied. Microstructural observation reveals delta–ferrite in 1.4 wt.% W containing weld metal, which is absent in 1.0 wt.% W weld metal. In the case of the dissimilar weld metal, microstructure shows presence of lath martensite and retained austenite. Austenite was stable even after PWHT and its presence is attributed to high nickel (5–6 wt.%) content in the dissimilar weld metal. Hardness of RAFM steel weld metal was found to be 270–290 VHN after PWHT at 750 °C for 2 h. Impact toughness of both 1.0 and 1.4 wt.% W RAFM steel is high (>250 J) at ambient temperature. However, after PWHT, variation of toughness with temperature is more drastic for 1.4 wt.% W RAFM steel weld metal than the other. As a result, ductile brittle transition temperature (DBTT) for the 1.4 wt.% steel weld metal is close to 0 °C while that of the 1.0 wt.% W steel is close to that of the base metal (∼−80 °C)

  11. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  12. Corrosion of type 304L stainless steel in boiling dilute neptunium nitrate solution

    International Nuclear Information System (INIS)

    Corrosion of type 304L stainless steel in nitric acid solution containing neptunium was studied under immersion and heat-transfer condition. Corrosion rates of stainless steel were obtained by the weight loss measurement and the quantitative analysis of metallic ions dissolved in solution. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate in boiling 9M nitric acid was accelerated by addition of neptunium. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. It was suggested that the accelerated corrosion in nitric acid solution containing neptunium was caused by re-oxidation of neptunium. (author)

  13. On the dynamic strength of 304l stainless steel under impact

    Science.gov (United States)

    Werdiger, Meir; Glam, Benny; Bakshi, Lior; Moshe, Ella; Horovitz, Yossef; Pistinner, Shlomi Levi

    2012-03-01

    Uniaxial strain plane impact (300-1700 m/s), loading and reloading experiments carried out on SS304L are reported. The aim of these experiments was to measure the material strength properties under shock compression. Most of the experiments reported here show a viscous type elastic precursor. The experimental results are compared to numerical simulations performed using a 1D code. The input physics to the simulations are the Steinberg equation of state and Johnson-Cook strength model. This model has been previously calibrated under uniaxial stress conditions in the rangee ɛ =1-5×103 s-1. Our experiments extended the data into the regione ɛ =105 -106 s-1. In spite of this extrapolation, there is a general agreement between simulations and experiments. However, differences in some details still exist.

  14. In situ study by atomic force microscopy of localised corrosion on a 304L stainless steel

    International Nuclear Information System (INIS)

    At this time, the understanding of the initiation of localized corrosion on stainless steels (SS) is still limited. In this context, the present work aimed at observing in situ by Atomic Force Microscopy (AFM) the initiation of corrosion pits and stress corrosion cracking (SCC) cracks. In order to complete the project, a new technique associating an AFM, an electrochemical cell and a traction platform as been developed. It allows in situ imaging of the surface evolutions of a 304L SS at the nano-scale. under controlled potential and/or under stress conditions. We show that corrosion pits initiate preferentially in relation with nano-metric defects of the surface. For the first time, a real-time kinetic study of the first steps of nano-metric pits growth has been performed. This study corroborates the 'point-defect' model (vertical pit growth speed of 0.18 angstrom.s-1, current densities inside pits evaluated to 73 μjA.cm-2. Combined with the EBSD technique (Electron Backscattered Diffraction), the AFM allows a total indexing of the activated slip systems during deformation and give information about the number of emerged dislocations (few units). The effect of strain hardening at the nano-scale on pitting susceptibility has been investigated: 70% of the pits set up at strain hardened areas. To explain this phenomenon, we propose a simple model based on the modification of the local work function of the surface due to local stress gradients. Concerning SCC, the first in situ observations seem to validate Magnin's mechanism: crack initiation appears at strain concentration spots. Observed after anodization of our 304L surface, organized arrays of nano-cavities (period of 50-100 nm) have been analyzed. In collaboration with an INSERM team, we showed that such nano-structured surfaces increase the adhesion and differentiation of bone cells. (author)

  15. Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels

    Science.gov (United States)

    Shibata, K.; Ogata, T.; Nyilas, A.; Yuri, T.; Fujii, H.; Ohmiya, S.; Onishi, T.; Weiss, K. P.

    2008-03-01

    Tensile tests of 310S steel were performed at temperatures below 300 K and the yield strength and deformation behavior were compared with those of 304L and 316L steels. Computer simulations were also carried out to graph stress-elongation curves in order to discuss the effects of martensitic transformations induced during deformation on their strengths and deformation behavior at low temperatures. Tensile tests showed that yield strength of 310S steel is highest and that of 304L is lowest. The differences in yield strengths between 316L and 310S steels and between 304L and 316L steels are larger than those expected from the differences in solid solution strengthening. This can be explained by the effect of the strain through γ to ɛ martensitic transformation induced by elastic stress in 304L and 316L steels. The strength level and the shape of stress-elongation curves at cryogenic temperatures excluding serration can be qualitatively revealed by simulation when higher strength of ɛ phase comparing to α' phase and the window effect of α' were considered simultaneously. In liquid hydrogen, the three steels exhibit large serrations on the stress-elongation curves after the deformation near to the ultimate stress, while the curves are smooth before the onset of the serration. Such serrations in liquid hydrogen could not be revealed by simulation.

  16. The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment

    Science.gov (United States)

    Maloy, S. A.; James, M. R.; Willcutt, G.; Sommer, W. F.; Sokolov, M.; Snead, L. L.; Hamilton, M. L.; Garner, F.

    2001-07-01

    The Accelerator Production of Tritium (APT) project proposes to use a 1.0 GeV, 100 mA proton beam to produce neutrons via spallation reactions in a tungsten target. The neutrons are multiplied and moderated in a lead/aluminum/water blanket and then captured in 3He to form tritium. The materials in the target and blanket region are exposed to protons and neutrons with energies into the GeV range. The effect of irradiation on the tensile and fracture toughness properties of candidate APT materials, 316L and 304L stainless steel (annealed), modified (Mod) 9Cr-1Mo steel, and Alloy 718 (precipitation hardened), was measured on tensile and fracture toughness specimens irradiated at the Los Alamos Neutron Science Center accelerator, which operates at an energy of 800 MeV and a current of 1 mA. The irradiation temperatures ranged from 50°C to 164°C, prototypic of those expected in the APT target/blanket. The maximum achieved proton fluence was 4.5×10 21 p/ cm2 for the materials in the center of the beam. This maximum exposure translates to a dpa of 12 and the generation of 10 000 appm H and 1000 appm He for the Type 304L stainless steel tensile specimens. Specimens were tested at the irradiation temperature of 50-164°C. Less than 1 dpa of exposure reduced the uniform elongation of the Alloy 718 (precipitation hardened) and Mod 9Cr-1Mo to less than 2%. This same dose reduced the fracture toughness by 50%. Approximately 4 dpa of exposure was required to reduce the uniform elongation of the austenitic stainless steels (304L and 316L) to less than 2%. The yield stress of the austenitic steels increased to more than twice its non-irradiated value after less than 1 dpa. The fracture toughness reduced significantly by 4 dpa to ˜100 MPa m 1/2. These results are discussed and compared with results of similar materials irradiated in fission reactor environments.

  17. Thermomechanical history measurements on Type 304L stainless steel pipe girth welds

    International Nuclear Information System (INIS)

    Thermal and strain histories were recorded for three 40-cm-diameter (16 inch), Type 304L stainless steel (SS), schedule 40 (1.27 cm thickness) pipe girth welds. Two weld groove preparations were standard V grooves while the third was a narrow groove configuration. The welding parameters for the three pipe welds simulated expected field practice as closely as possible. The narrow gap weld was completed in four continuous passes while the other two welds required six and nine (discontinuous) passes, due to the use of different weld wire diameters. Thermomechanical history measurements were taken on the inner counterbore surface, encompassing the weld centerline and heat-affected zone (HAZ), as well as 10 cm of inner counterbore surface on either side of the weld centerline; a total of 47 data acquisition instruments were used for each weld. These instruments monitored: (1) weld shrinkages parallel to the pipe axis; (2) surface temperatures; (3) surface strains parallel to weld centerline; and (4) radial deformations. Results show that the weld and HAZ experienced cyclic deformation in the radial direction during welding, indicating that the final residual stress distribution in multi-pass pipe weldments is not axisymmetric. Measured radial and axial deformations were smaller for the narrow gap groove than for the standard V grooves, suggesting that the narrow gap groove weldment may have lower residual stress levels than the standard V groove weldments. This study provides the experimental database and a guideline for further computational modeling work

  18. Establishing precursor events for stress corrosion cracking initiation in type 304L stainless steel

    International Nuclear Information System (INIS)

    The present study attempts to establish slip band emergence, due to localized deformation, as a precursor event for SCC initiation in type 304L SS. The unidirectional tensile loading was used for straining flat tensile specimen, less than 10% strain, in air, 0.5 M NaCl + 0.5 M H2SO4 and boiling water reactor (BWR) simulated environment (288 C. degrees, 10 MPa). The surface features were characterized using optical microscopy, scanning electron microscopy (including electron backscattered diffraction-EBSD) and atomic force microscopy. The study shows that with increase in strain level, during unidirectional slow strain rate test (SSRT), average slip band height increases in air and the attack on slip lines occurs in acidified chloride environment. In BWR simulated environment, preferential oxidation on slip lines and initiation of a few cracks on some of the slip lines are observed. Based on the observation, the study suggests slip bands, formed due to localized deformation, to act as a precursor for SCC initiation. (authors)

  19. Cracking of 304L stainless steel observed within CANDU nuclear power plants under cyclic moist environments

    International Nuclear Information System (INIS)

    The stress corrosion cracking (SCC) of stainless steel Type 304L has been observed recently in a CANDU nuclear station. The cracking occurred on the inside surface of a piping structure and was transgranular in nature. It was mainly present in sections adjacent to welds, at pipe bends, and straight pipe sections. Such cracking mechanisms are governed by specific intrinsic parameters associated with stress, environment, and material factors. In this case, environmental factors not typical, and, presumably, the stresses at the affected locations are low. This paper discusses the results of the failure analysis conducted on affected component materials. The assessment of the observed mechanism includes the investigation of the affected piping (e.g., undamaged test welds, bends, and around the crack locations) using Orientation Imaging Microscopy (OIM) to evaluate the relative degree of residual plastic strain present in the crack locations and in the general pipe microstructure. Advance surface analysis (ToF-SIMS) was used to examine metal surface oxides buried beneath deposits and at strained regions of the pipe in order to elucidate the chemical species likely involved in the cracking/degradation process. (author)

  20. Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Raghuram Karthik Desu

    2016-01-01

    Full Text Available Austenitic Stainless Steel grade 304L and 316L are very important alloys used in various high temperature applications, which make it important to study their mechanical properties at elevated temperatures. In this work, the mechanical properties such as ultimate tensile strength (UTS, yield strength (YS, % elongation, strain hardening exponent (n and strength coefficient (K are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of 50 °C from 50 °C to 650 °C and at three different strain rates (0.0001, 0.001 and 0.01 s−1. Artificial Neural Networks (ANN are trained to predict these mechanical properties. The trained ANN model gives an excellent correlation coefficient and the error values are also significantly low, which represents a good accuracy of the model. The accuracy of the developed ANN model also conforms to the results of mean paired t-test, F-test and Levene's test.

  1. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  2. Development of Nanocrystalline 304L Stainless Steel by Large Strain Cold Working

    Directory of Open Access Journals (Sweden)

    Marina Odnobokova

    2015-04-01

    Full Text Available The microstructural changes leading to nanocrystalline structure development and the respective tensile properties were studied in a 304L stainless steel subjected to large strain cold rolling at ambient temperature. The cold rolling was accompanied by the development of deformation twinning and martensitic transformation. The latter readily occurred at deformation microshear bands, leading the martensite fraction to approach 0.75 at a total strain of 3. The deformation twinning followed by microshear banding and martensitic transformation promoted the development of nanocrystalline structure consisting of a uniform mixture of austenite and martensite grains with their transverse sizes of 120–150 nm. The developed nanocrystallites were characterized by high dislocation density in their interiors of about 3 × 1015 m−2 and 2 × 1015 m−2 in austenite and martensite, respectively. The development of nanocrystalline structures with high internal stresses led to significant strengthening. The yield strength increased from 220 MPa in the original hot forged state to 1600 MPa after cold rolling to a strain of 3.

  3. Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L

    Science.gov (United States)

    Zubelewicz, Aleksander; Oliferuk, Wiera

    2016-03-01

    We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading.

  4. Effect of pre-hardening on the lifetime of type 304L austenitic stainless steels

    International Nuclear Information System (INIS)

    This study deals with the effect of the loading history on the cyclic behavior and the fatigue life of two kinds (THYSSEN and CLI) of 304L stainless steel at room temperature. The experiments have been performed using two specimens' categories. The first one (virgin) has been submitted to only classical fatigue tests while in the second category, prior to the fatigue test, the specimen is subjected to a pre-hardening process under either monotonic or cyclic strain control. Cyclic softening followed by cyclic hardening are observed for the virgin specimens while only cyclic softening is exhibited by the pre-hardened specimens. The obtained results show that fatigue life is strongly influenced by the pre-hardening: it seems beneficial under stress control but detrimental under strain control, even in the presence of a compressive mean stress. The results are discussed regarding the cyclic evolution of the elastic modulus as well as the isotropic and kinematic parts of the strain hardening, and strain energy density per cycle, in different configurations: with or without prehardening,stress or strain control. (author)

  5. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    International Nuclear Information System (INIS)

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm2 and −13.5225 mg/cm2 respectively. The surface morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe3O4, Fe2O3 were the main phases developed and detected by XRD technique. Cr2O3 was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region

  6. Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L.

    Science.gov (United States)

    Zubelewicz, Aleksander; Oliferuk, Wiera

    2016-01-01

    We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading. PMID:27026209

  7. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    Science.gov (United States)

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  8. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  9. Chemical interaction between granular B4C and 304L-type stainless steel materials used in BWRs in Japan

    International Nuclear Information System (INIS)

    Chemical reactions between stainless steel and boron carbide were investigated using the materials applied for control rods in BWRs in Japan, specifically 304L-type stainless steel and granular boron carbide. The reaction region consisted of 2–4 layers, in which the significant composition variation of each element was detected, especially for B and C. Assuming that the reaction layer growth obeys the parabolic law, the effective rate constant between 304L-type stainless steel and granular boron carbide was evaluated to be approximately one order of magnitude smaller than the previously reported values for boron carbide pellets or powers. This difference might originate from the loose contact between the stainless steel and the granular boron carbide in the present study. Regarding liquefaction progress, the stainless steel components were selectively dissolved in the melt; consequently, the unreacted boron carbide tended to remain. (author)

  10. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    International Nuclear Information System (INIS)

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  11. Experimental investigation of Tie6Ale4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Institute of Scientific and Technical Information of China (English)

    R. KUMAR; M. BALASUBRAMANIAN

    2015-01-01

    The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4V and SS304L into which pure oxygen free copper (OFC) was introduced as interlayer were investigated. BoxeBehnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  12. Examination of irradiated 304L stainless steel to 6061-T6 aluminum inertia welded transition joints after irradiation in a spallation neutron

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) designed and fabricated tritium target/blanket assemblies which were irradiated for six months at the Los Alamos Neutron Science Center (LANSCE). Cooling water was supplied to the assemblies through 1 inch diameter 304L Stainless Steel (SS) tubing. To attach the 304L SS tubing to the modules a 304L SS to 6061-T6 Aluminum (Al) inertia welded transition joint was used. These SS/Al inertia weld transition joints simulate expected transition joints in the Accelerator Production of Tritium (APT) Target/Blanket where as many as a thousand SS/Al weld transition joints will be used. Materials compatibility between the 304L SS and the 6061-T6 Al in the spallation neutron environment is a major concern as well as the corrosion associated with the cooling water flowing through the piping. The irradiated inertia weld examination will be discussed

  13. Corrosion behaviour of single (Ti) and duplex (Ti-TiO2) coating on 304L stainless steel in nitric acid medium

    International Nuclear Information System (INIS)

    Highlights: → Ti coated 304L SS showed moderate to marginal corrosion resistance in 1 M and 8 M HNO3. → Duplex Ti-TiO2 coated 304L SS showed minimization of structural heterogeneities. → Passive film property improves by minimizing structural heterogeneities. → Protection efficiency for 304L SS increases with duplex Ti-TiO2 coating in HNO3. - Abstract: Sputter deposited single titanium (Ti) layer, and duplex Ti-TiO2 coating on austenitic type 304L stainless steel (SS) was prepared, and the corrosion performance was evaluated in nitric acid medium using surface morphological and electrochemical techniques. Morphological analysis using atomic force microscope of the duplex Ti-TiO2 coated surface showed minimization of structural heterogeneities as compared to single Ti layer coating. The electrochemical corrosion results revealed that, titanium coated 304L SS showed moderate to marginal improvement in corrosion resistance in 1 M, and 8 M nitric acid, respectively. Duplex Ti-TiO2 coated 304L SS specimens showed improved corrosion resistance as compared to Ti coating from dilute (1 M) to concentrated medium (8 M). The percentage of protection efficiency for base material increases significantly for duplex Ti-TiO2 coating as compared to single Ti layer coating. The oxidizing ability of nitric acid on both the coatings as well as factors responsible for improvement in protection efficiency are discussed and highlighted in this paper.

  14. Corrosion behavior of mild steel and SS 304L in presence of dissolved nickel under aerated and deaerated conditions

    Directory of Open Access Journals (Sweden)

    Mohd Mobin

    2011-12-01

    Full Text Available In dual purpose water/power co-generation plants, the presence of high concentration of Cu and Ni in the re-circulating brine/condensate as a result of condenser tubes corrosion has been attributed as one of the several causes of corrosion damage of flash chamber materials and water touched parts of the boilers. The present investigation deals with the effect of dissolved nickel in the concentration range of 10 ppb to 100 ppm on the corrosion behavior of mild steel and SS 304L in two aqueous medium namely, distilled water and artificial seawater. The effect of pH, dissolved oxygen and flow condition of aqueous medium on the corrosion behavior was also monitored. The experimental techniques include immersion test and electrochemical tests which include free corrosion potential measurements and potentiodynamic polarization measurements. The corrosion rate of mild steel and SS 304L under different experimental conditions was determined by weight loss method and spectrophotometric determination of iron ion entered into the test solution during the period of immersion. The pH of the test solution was also monitored during the entire period of immersion. The left over nickel ions present in the test solution after completion of immersion was also estimated using Atomic Absorption Spectrophotometer. The surface morphology of the corroded steel surface was also examined using scanning electron microscopy (SEM. The results of the studies show that SS 304L largely remains unaffected in both distilled water and artificial seawater under different experimental conditions. However, the effect of nickel on the corrosion behavior of mild steel is quite pronounced and follows interesting trends.

  15. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  16. Corrosion behavior of mild steel and SS 304L in presence of dissolved nickel under aerated and deaerated conditions

    OpenAIRE

    Mohd Mobin; Hina Shabnam

    2011-01-01

    In dual purpose water/power co-generation plants, the presence of high concentration of Cu and Ni in the re-circulating brine/condensate as a result of condenser tubes corrosion has been attributed as one of the several causes of corrosion damage of flash chamber materials and water touched parts of the boilers. The present investigation deals with the effect of dissolved nickel in the concentration range of 10 ppb to 100 ppm on the corrosion behavior of mild steel and SS 304L in two aqueous ...

  17. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    OpenAIRE

    Marcelo Senatore; Leandro Finzetto; Eduardo Perea

    2007-01-01

    Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústri...

  18. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    International Nuclear Information System (INIS)

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO3-HF for dissolution, the best alloy for service at 1300C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 1300C, Inconel 671 is best. At 950C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr4+ and Th4+; Al3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO3-HF used occasionally for flushing and in solutions of HNO3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  19. Corrosion fatigue behavior of cold-worked 304L stainless steel in a simulated BWR coolant environment

    International Nuclear Information System (INIS)

    Fatigue crack growth tests were performed to evaluate the effect of cold work on the fatigue behavior of 304L stainless steel in the ambient air at room temperature and 300degC and in a simulated BWR coolant environment, respectively. The fatigue crack growth rates (FCGRs) for the as-received (AR) and cold-rolled specimens as room temperature were in the same range and the FCGRs obtained at 300degC in air were higher than at room temperature. In addition, the FCGRs for the AR specimens were higher at 300degC in air compared with those for the cold-rolled. The specimens tested in the water environment at 300degC showed higher corrosion fatigue crack growth rates (CFCGRs) relative to those measured in air at room temperature and 300degC. Local quasi-cleavages could account for the observation that the FCGRs in air at 300degC were faster than at room temperature. The dominant fracture features of quasi-cleavages, along with corrosion products, were observed with all the 304L specimens tested in the simulated BWR water environment, which could be related to the higher crack growth rates in the corrosive environment. (author)

  20. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    Science.gov (United States)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  1. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    International Nuclear Information System (INIS)

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  2. Action of an aerobic hydrogenotroph bacteria isolated from ultrapure water systems on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Several microbial studies have been recently performed in nuclear power stations. These studies concerned essentially the formation of bio-films on submerged metal coupons. Heterotrophic micro-organisms have been found in bulk water of nuclear fuel storage basins but the in situ nutrient sources for bacterial development in such highly oligo-trophic water was unknown. In nuclear environments, radiations lead to the production of molecular hydrogen, hydrogen peroxide and some radicals (OH, O2-) by radiolysis of water or embedding matrices. Bacterial oxidation of molecular H2 commonly occurs in nature, as molecular hydrogen represents a high-energy reductant. We investigated the microbiology of a ultra-pure water basin containing irradiating waste. The initial aim of this study was to determine if autotrophic bacterial growth was possible in this basin. A major bacteria was isolated (Ralstonia sp. GGLH002) which was able to grow autotrophically with hydrogen as the electron donor and oxygen as the electron acceptor, and heterotrophically with organic nutrients. Its hydrogenase activity has been characterized. We focused then our study on the effects of this strain on 304L AISI stainless steel depending on the nutrient source used for bacterial development, e.g hydrogen or organics. In conclusion, the mechanism of passivation enhanced by Ralstonia sp. GGLH002 on AISI 304L SS still remains unknown. Several techniques could give substantial information, including XPS and polarization curves. It seems for the moment that the major bacteria inhabiting an oxic environment containing hydrogen due to radiolysis is not aggressive to stainless steel in conditions near from its environment. Further investigations are needed to test this hypothesis, including a study of the molecular diversity of the bacteria using culture-independent techniques, as cultivatable bacterial populations represent in general only a fraction of the total bacteria. (authors)

  3. Result of International Round Robin Test on Young's Modulus Measurement of 304L and 316L Steels at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiated within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique

  4. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    International Nuclear Information System (INIS)

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO2, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm2. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  5. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  6. Precipitated phases and corrosion behavior in the dissimilar alloy 690-SUS 304L joints formed by EBW and GTAW

    International Nuclear Information System (INIS)

    This study investigates the correlation between the microstructure and the corrosion resistance properties of the fusion zone of Alloy 690-SUS 304L stainless steel dissimilar weldments formed by electron beam welding (EBW). The effects of the EBW process are evaluated by comparing the microstructure and corrosion resistance properties of the EBW weldment with those of Alloy 690-SUS 304L weldment formed by gas tungsten arc welding (GTAW). The experimental results reveal that the interdendritic region of the fusion zone of the EBW weldment contains fine TiN precipitates and Cr-Ni rich phases. The TiN precipitates are originated from the Alloy 690 base metal, while the Cr-Ni rich phases, a new formation of precipitates, is precipitated in the region around TiN during solidification. Microscopic analysis of the samples following a modified Huey test indicates that the matrix around TiN precipitate and the Cr-Ni rich phase precipitate provide the preferred sites for corrosion pit initiation. Due to the rapid cooling in the EBW process, relatively fewer and smaller TiN precipitates and Cr-Ni rich phases are formed in the weldment. Consequently, only limited corrosive pitting is observed which indicates better interdendritic corrosion resistance properties in comparison to joints with GTAW process. Furthermore, rapid solidification in the fusion zone results not only the suppression of chromium carbide precipitation but also the chromium depletion at the grain boundaries. As a result, the intergranular corrosion resistance and interdendritic corrosion resistance of the EBW weldment are significantly higher than that of the GTAW weldment. (author)

  7. Influence of the temperature and the time of sensitization heat treatment on the rupture energy of notched specimen of 304 L austenitic stainless steel

    International Nuclear Information System (INIS)

    This study allowed us to show that the measurement of rupture energy on notched specimen, at low temperature (-180+-50C) is a sensitive method for evaluating the importance of carbide precipitation at grain boundaries when austenitic stainless steel 304 L is sensitized. This process had been studied between 500 and 9000C, and during 3 to 100 hrs

  8. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  9. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds

    International Nuclear Information System (INIS)

    Highlights: •Measured crack growth resistance of welds at 223 K with 140 wppm H (gas charged). •H reduced fracture initiation toughness by >59% and altered fracture mode. •223 K altered fracture mode but had no effect on JIC of precharged welds. •At 293 K, microcracks initiate at δ-ferrite, and ferrite governed crack path. •At 223 K, microvoids form at γ deformation band intersections near phase boundaries. -- Abstract: Effects of low temperature on hydrogen-assisted cracking in 304L/308L austenitic stainless steel welds were investigated using elastic–plastic fracture mechanics methods. Thermally precharged hydrogen (140 wppm) decreased fracture toughness and altered fracture mechanisms at 293 and 223 K relative to hydrogen-free welds. At 293 K, hydrogen increased planar deformation in austenite, and microcracking of δ-ferrite governed crack paths. At 223 K, low temperature enabled hydrogen to exacerbate localized deformation, and microvoid formation, at austenite deformation band intersections near phase boundaries, dominated damage initiation; microcracking of ferrite did not contribute to crack growth

  10. Study on prevention of chloride induced stress corrosion cracking for type 304L, 316L stainless steel canister

    International Nuclear Information System (INIS)

    For the practical application of multi-purpose canisters (MPCs), there are technical issues for containment function to prevent the initiation of chloride induced stress corrosion cracking (SCC). Therefore, the SCC test were conducted to clarify the critical salt density to initiate SCC and the effect which the reduction treatment of weld residual stress influents to prevent SCC. (1) The minimum threshold of salt for SCC initiation could be 4 g/cm2 as Cl under the condition of the temperatures of 50degC and the relative humidity of 35% with the 316 type L-grade austenite stainless steel used over 5000 hr. However, the threshold could be reduced to 2 g/m2 as Cl under the actual equipment surface condition corresponding to the conventional stainless steel MPC. (2) An accelerated corrosion test was performed using mock-up MPC made of Type 304L, in which the salt concentration on the surface of weld lines was kept to 4 g/cm2 as Cl. As the result of the test, SCC on the surface-treated weld line by ZSP didn't occur because of the compressed stress induced appropriately, therefore the validity of surface treatment techniques was confirmed. (author)

  11. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Science.gov (United States)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  12. Microelectrochemical investigation of the effect of cathodic polarisation on the corrosion resistance of 304L stainless steel in a 1 M NaCl solution

    OpenAIRE

    Arjmand Gholenji, Farzin; Adriaens, Annemie

    2012-01-01

    304L stainless steel was cathodically polarised in a 1 M sodium chloride solution using a microcapillary electrochemical droplet cell. During the cathodic polarisation the produced hydrogen atoms penetrate into the sample and accumulate at sites of the steel surface. We observed that the pitting potential (E-pit), the anodic current density (I-corr) and the corrosion potential (E-corr) of the polarised steel are strongly influenced by the applied cathodic potential and therefore by the amount...

  13. Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments

    OpenAIRE

    Vishal Parashar; Rehman, A.; J.L.Bhagoria,; Y.M.Puri

    2010-01-01

    In this paper, statistical and regression analysis of Material removal rate (MRR) using design of experiments is proposed for WEDM operations. Experimentation was planned as per Taguchi’s L’32 (21 X 44) mixed orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, pulseOFF time, wire feed and dielectric flushing pressure. Stainless Steel grade 304L was selected as a work material to conduct the xperiments. From experimental resul...

  14. Environmental effect on cracking of an 304L austenitic stainless steels in PWR primary environment under cyclic loading

    International Nuclear Information System (INIS)

    The present study was undertaken in order to get further insights on cracking mechanisms in a 304L stainless steel. More precisely, a first objective of this study was to evaluate the effect of various cold working conditions on the cyclic stress-strain behavior and the fatigue life in air and in PWR primary environment. In air a prior hardening was found to reduce the fatigue life in the LCF regime but not in primary environment. In both environments, the fatigue limit of the hardened materials was increased after cold working.The second objective addresses the effect of the air and the PWR primary environments on the cracking mechanisms (initiation and propagation) in the annealed material in the LCF regime. More precisely, the kinetics of crack initiation and micro crack propagation were evaluated with a multi scale microscopic approach in air and in primary environment. In PWR primary environment, during the first cycles, preferential oxidation occurs along emerging dissociated dislocation and each cycle generates a new C-rich/Fe-rich oxide layer. Then, during cycling, the microstructure evolves from stacking fault into micro twinning and preferential oxidation occurs by continuous shearing and dissolution of the passive film. Beyond a certain crack depth (≤3 μm), the crack starts to propagate with a direction close to a 90 degrees angle from the surface. The crack continues its propagation by successive generation of shear bands and fatigue striations at each cycle up to failure. The role of corrosion hydrogen on these processes is finally discussed. (author)

  15. The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement of type 304L stainless steel

    Institute of Scientific and Technical Information of China (English)

    潘川; 褚武扬; 李正邦; 梁东图; 宿彦京; 乔利杰

    2002-01-01

    The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement in slow strain rate tensile tests and hydrogen-induced delayed cracking (HIC) in sustained load tests for type 304 L stainless steel was quantitatively studied.The results indicated that hydrogen-induced martensites formed when hydrogen concentration C0 exceeded 30 ppm,and increased with an increase in C0,i.e.M(vol%)=62-82.5exp(-C0/102).The relative plasticity loss caused by the martensites increased linearly with increasing amount of the martensites,i.e.Iδ(M),%=0.45M(vol %)=27.9-37.1 exp(-C0/102).The plasticity loss caused by atomic hydrogen Iδ(H) increased with an increase in C0 and reached a saturation value Iδ(H)max=40% when C0>100 ppm.Iδ(H) decreased with an increase in strain rate ,i.e.Iδ(H),%=-21.9-9.9,and was zero when ≥c=0.032/s.HIC under sustained load was due to atomic hydrogen,and the threshold stress intensity for HIC decreased linearly with lnC0,i.e.KIH(Mpam1/2)=91.7-10.1 lnC0(ppm).The fracture surface of HIC was dimple if KI was high or/and C0 was low,otherwise it was quasi-cleavage.The boundary line between ductile and brittle fracture surface was KI-54+25exp(-C0/153)=0.``

  16. A 3D finite element analysis of temperature and stress fields in girth welded 304L stainless steel pipe

    International Nuclear Information System (INIS)

    A 3D finite element analysis model was developed to simulate a multipass, narrow gap pipe girth welding process. The pipe simulated was a Type 304L stainless steel pipe with a diameter of 406 mm, a thickness of 12.7 mm, and a narrow groove configuration. This pipe was finished in four continuous welding passes with one start-stop position. Temperatures, deformations and strains were recorded in real time during pipe welding. The thermal results from this model were tuned to match the calculated temperature histories with the comparable experimental thermal cycles. The calculated temperature histories were found to be axisymmetrically distributed around the pipe except in locations close to the welding start-stop position. This is in good agreement with what was observed from the experimental data. The calculated stress results show that the tensile residual stress zone on the pipe inner surface is about 30 mm from the weld centerline on each side and the tensile residual stress zone in the pipe wall thickness is about 5 mm from the pipe inner surface for up to 19 mm from the weld centerline (WCL). The calculated residual stresses are, in general, axisymmetrically distributed around the pipe except in locations near the welding start-stop position. This is not in agreement with what was noted from the experimental results. The comparison between the calculated stress results with the limited neutron diffraction residual stress measurements on the pipe inner surface demonstrates reasonable agreement between them. This 3D model is the first attempt at simulation of a full multipass girth pipe welding process. Much improvement could be realized, but more experimental residual stress measurements on pipe weldments are needed to verify this model

  17. RESULTS OF EXPERIMENT TO DETERMINE CORROSION RATES FOR 304L IN HB-LINE DISSOLVER VESSEL VENTILATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J; Kathryn Counts, K

    2008-02-22

    Radioactive material being processed as part of the DE3013 program for HB-Line will result in the presence of chlorides, and in some cases fluorides, in the dissolver. Material Science and Technology developed an experimental plan to evaluate the impact of chloride on corrosion of the dissolver vessel ventilation system. The plan set test variables from the proposed operating parameters, previous test results, and a desired maximum chloride concentration for processing. The test variables included concentrations of nitric acid, fluorides and chlorides, and the presence of a welded and stressed metal coupon. Table 1 contains expected general corrosion rates in the HB-Line vessel vent system from dissolution of 3013 contents of varying nitric acid and chloride content. These general corrosion rates were measured upstream of the condenser in the experiment's offgas system near the entrance to the dissolver. However, they could apply elsewhere in the offgas system, depending on factors not simulated in the testing, including offgas system temperatures and airflow. Localized corrosion was significant in Tests One, Two, and Three. This corrosion is significant because it will probably be the first mode of penetration of the 304L steel in several places in the system. See Table 2. For Tests One and Three, the penetration rate of localized corrosion was much higher than that for general corrosion. It was approximately four times higher in Test One and at least 45 times higher in Test Three, penetrating an entire coupon thickness of 54 mils in 186 hours or less. There was no significant difference in corrosion between welded areas and un-welded areas on coupons. There was also no significant attack on stressed portions of coupons. It is probable that the lack of corrosion was because the stressed areas were facing downwards and offered no place for condensation or deposits to form. Had deposits formed, pitting may have occurred and led to stress corrosion cracking. The

  18. THE EMPHASIS OF PHASE TRANSFORMATIONS AND ALLOYING CONSTITUENTS ON HOT CRACKING SUSCEPTIBILITY OF TYPE 304L AND 316L STAINLESS STEEL WELDS

    OpenAIRE

    RATI SALUJA; K. M. MOEED

    2012-01-01

    Hot cracking is a significant problem due to transformation of retained ferrite into sigma phase, which results preferential corrosion of ferrite. The Hot Cracking Susceptibility is high for fully austenitic compositions but specimens with 5 to 30% ferrite were quite resistant to cracking. Hot cracking in 304L and 316L is amplified by low-melting eutectics containing impurities such as S, P, Si, N. It could be diminished by small increase in C, N, Cr, Ni, Si or by substantial increase in Mn c...

  19. Non destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments

    International Nuclear Information System (INIS)

    The aim of this work is to demonstrate the ability of acoustic signature technique to detect in a non-destructive way mechanical property variations due to damage of the internal material structure for 304L steel samples, provided by EDF company. For this purpose, the velocity and the attenuation of Rayleigh acoustic waves have been measured for rolled, drawn and thermally treated samples. Complementary information provided by echography have also been used to calculate the corresponding variations of the dynamic Young's modulus E

  20. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    International Nuclear Information System (INIS)

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N2 and 30% H2 gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples

  1. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  2. Optimisation of CO2 laser welding of thin sheets made of stainless steel 304 L. Fabrication of prototype detection modules for a large size electromagnetic calorimeter

    International Nuclear Information System (INIS)

    For the new calorimeter detector, to be used in UA1 experiment at CERN proton-antiproton collider, about 35'000 stainless steel boxes with a volume of the order of 500 x 400 x 3 mm3, containing immerged electrodes in Tetramethylpentane (TMP) are required. The first hundred prototype boxes were built at CERN using CO2 laser welding technique. The results of a systematic experimental investigation and optimization of the welding parameters for 0.1 mm thick 304 L stainless steel sheets are presented

  3. Oligo-cyclic damage and behaviour of a 304 L austenitic stainless steel according to environment (vacuum, air, PWR primary water) at 300 C

    International Nuclear Information System (INIS)

    Nowadays, for nuclear power plants licensing or operating life extensions, various safety authorities require the consideration of the primary water environment effect on the fatigue life of Pressurized Water Reactor (PWR) components. Thus, this work focused on the study of low cycle fatigue damage kinetics and mechanisms, of a type 304L austenitic stainless steel. Several parameters effects such as temperature, strain rate or strain amplitude were investigated in air as in PWR water. Thanks to targeted in-vacuum tests, the intrinsic influence of these parameters and environments on the fatigue behaviour of the material was studied. It appears that compared with vacuum, air is already an active environment which is responsible for a strong decrease in fatigue lifetime of this steel, especially at 300 C and low strain amplitude. The PWR water coolant environment is more active than air and leads to increased damage kinetics, without any modifications of the initiation sites or propagation modes. Moreover, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both initiation and micropropagation of 'short cracks'. Finally, the deleterious influence of low strain rates on the 304L austenitic stainless steel fatigue lifetime was observed in PWR water environment, in air and also in vacuum without any environmental effects. This intrinsic strain rate effect is attributed to the occurrence of the Dynamic Strain Aging phenomenon which is responsible for a change in deformation modes and for an enhancement of cracks initiation. (author)

  4. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    Science.gov (United States)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  5. Dependence of the cyclic stress–strain curve on loading history and its interaction with fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Highlights: ► Contrary to low deformation, cyclic curve is not unique at high strain amplitude. ► However, as the loading was continued cyclic hardening tends to stabilize. ► Cyclic hardening is mainly kinematic type, isotropic component remains quasi-linear. ► Increasing in pre-hardening strain amplitude has almost no effect on fatigue damage. ► Fatigue life decreasing is associated with formation of walls, cells and defect bands. - Abstract: This study investigates the effects of loading history on the cyclic stress–strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension–compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results show that the cyclic curve is not unique, as it depends on the loading sequence. The same predeformed specimens were subjected to fatigue tests. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after preloading and their evolution during the fatigue cycles were characterized by transmission electron microscopy (TEM). The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction.

  6. Materials Reliability Program Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-100), Phase A (Optimization of Test Procedures and Baseline Testing)

    International Nuclear Information System (INIS)

    OAK-B135 Laboratory data generated over the past two decades indicate the possibility of a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been confirmed by nuclear power plant component operating experience. In a recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but is applicable in plant operating environments. Available corrosion fatigue data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of reactor water environments. Similar information is lacking for stainless steel piping materials. MRP-49 recommended that additional laboratory testing be performed to improve the applicability of laboratory test results under simulated reactor water environmental conditions for stainless steel materials. This report documents progress made in an extensive testing program underway to evaluate the effects of flow rate on fatigue of 304L stainless steel in simulated PWR primary water

  7. Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments

    Directory of Open Access Journals (Sweden)

    Vishal Parashar

    2010-05-01

    Full Text Available In this paper, statistical and regression analysis of Material removal rate (MRR using design of experiments is proposed for WEDM operations. Experimentation was planned as per Taguchi’s L’32 (21 X 44 mixed orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, pulseOFF time, wire feed and dielectric flushing pressure. Stainless Steel grade 304L was selected as a work material to conduct the xperiments. From experimental results, the MRR was determined for each machining performance criteria. Analysis of variance (ANOVA technique was used to find out the variables affecting the MRR.Assumptions of ANOVA were discussed and carefully examined using analysis of residuals. Variation of the MRR with machining parameters was mathematically modeled by using the regression analysis method. Finally, the developed model was validated with a new set of experimental data and appeared to be satisfactory.

  8. Casting AISI 316 steel by gel cast

    International Nuclear Information System (INIS)

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160oC to 1300oC under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  9. Studies on mechanical properties, microstructure and fracture morphology details of laser beam welded thick SS304L plates for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Buddu, Ramesh Kumar, E-mail: buddu@ipr.res.in [Fusion Reactor Materials Development and Characterization Division, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Chauhan, N.; Raole, P.M. [Fusion Reactor Materials Development and Characterization Division, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd, Jigani, Bengaluru 560105 (India)

    2015-06-15

    Highlights: • CO{sub 2} laser welding of 8 mm thick SS304L plates has been carried out and full penetration welds fabricated and characterized for mechanical properties and microstructure details. • Welded samples have shown tensile properties comparable to base indicating good weld quality joints. • Impact fracture tests of weld zone and heat affected zone samples have shown poor toughness compared to the base metal. • SEM analysis of fracture samples of tensile and impact specimens indicated the complex microstructure features in weld zone and combined ductile and brittle fracture features. • Combined features of dendrite and cellular structures are observed in weld microstructures with narrow HAZ and delta ferrite is found in the welds and further confirmed by higher Ferrite Number data. - Abstract: Austenitic stainless steel is widely used structural material for the fabrication of the fusion reactor components. Laser welding is high power density process which offers several advantages over the other conventional processes like Tungsten Inert Gas welding. The features like low distortion, narrow heat affected zone, deep penetration in single pass, good mechanical properties are some of the advantages of laser welding process. The laser weld process parameters optimization has several challenges in terms of overcoming the weld defects like voids due to lack of penetration over depth, undercuts and porosity. The present paper reports the studies carried out with CO{sub 2} laser welding of 8 mm thick austenitic stainless steel SS304L plates and their characterization of mechanical properties, microstructure and fracture morphology details. The weld process parameter optimization towards defect free welds with full penetration welding has been carried out. The welded samples have shown tensile properties comparable to base metal, bend tests are successfully passed. The hardness measurements have shown slightly higher for weld zone compared to base metal

  10. Studies on mechanical properties, microstructure and fracture morphology details of laser beam welded thick SS304L plates for fusion reactor applications

    International Nuclear Information System (INIS)

    Highlights: • CO2 laser welding of 8 mm thick SS304L plates has been carried out and full penetration welds fabricated and characterized for mechanical properties and microstructure details. • Welded samples have shown tensile properties comparable to base indicating good weld quality joints. • Impact fracture tests of weld zone and heat affected zone samples have shown poor toughness compared to the base metal. • SEM analysis of fracture samples of tensile and impact specimens indicated the complex microstructure features in weld zone and combined ductile and brittle fracture features. • Combined features of dendrite and cellular structures are observed in weld microstructures with narrow HAZ and delta ferrite is found in the welds and further confirmed by higher Ferrite Number data. - Abstract: Austenitic stainless steel is widely used structural material for the fabrication of the fusion reactor components. Laser welding is high power density process which offers several advantages over the other conventional processes like Tungsten Inert Gas welding. The features like low distortion, narrow heat affected zone, deep penetration in single pass, good mechanical properties are some of the advantages of laser welding process. The laser weld process parameters optimization has several challenges in terms of overcoming the weld defects like voids due to lack of penetration over depth, undercuts and porosity. The present paper reports the studies carried out with CO2 laser welding of 8 mm thick austenitic stainless steel SS304L plates and their characterization of mechanical properties, microstructure and fracture morphology details. The weld process parameter optimization towards defect free welds with full penetration welding has been carried out. The welded samples have shown tensile properties comparable to base metal, bend tests are successfully passed. The hardness measurements have shown slightly higher for weld zone compared to base metal and the

  11. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions

    International Nuclear Information System (INIS)

    Highlights: • Cracking consistent with corrosion enhanced plasticity model of Magnin. • Cracking stress threshold is 10 MPa, substantially lower than current guidance. • Humidity threshold for cracking is 30%. • Measured length of cracks very dependent on polishing practice. • Cracking could occur at 290–300 K, based on measured activation energy. - Abstract: Bending tests were used to investigate the stress-corrosion cracking of 304L stainless steel in a corrosive atmosphere containing magnesium chloride. Initially smooth specimens showed multiple closely spaced cracks after exposures of up to 500 h. These showed threshold stresses of 10 MPa and a threshold humidity of 30%. Cracking rates increased with stress but were a maximum at plastic strains of 2%. Examination of cracks using focussed ion beam milling and electron diffraction indicated a multi-stage mechanism of propagation via preferential oxidation of slip planes. The apparent activation energy was 34 kJ mol−1 in the temperature range 333–363 K

  12. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  13. Study on interim storage of spent nuclear fuel by concrete cask for practical use. Feasibility study on prevention of chloride induced stress corrosion cracking for type304L stainless steel canister

    International Nuclear Information System (INIS)

    For the practical use of the concrete cask storage method, remaining issues are preventive design (monitoring, inspection and countermeasures) and its demonstration of the Stress Corrosion Cracking (SCC) on the canister surface. Scenarios to maintain its confinement function of the canister made of the conventional SUS 304L materials during storage period were established by keeping the salt density on the canister surface not be exceed its critical salt density to initiate SCC or by controlling the crack propagation if the salt density exceeded the critical value. Furthermore the feasibility of the scenarios were demonstrated by tests defining the critical salt density for the SCC initiation and by tests of crack propagation based on metrological data of representative coastal sites in Japan. On top of that, methods of reduction of welding residual stress to prevent SCC were demonstrated by SCC tests using small scale test model made of SUS 304L simulating wall thickness of the real canister and welding methods. (author)

  14. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium

    International Nuclear Information System (INIS)

    Because of the complexity of several simultaneous physical processes, most heat transfer models of keyhole mode laser welding require some simplifications to make the calculations tractable. The simplifications often limit the applicability of each model to the specific materials systems for which the model is developed. In this work, a rigorous, yet computationally efficient, keyhole model is developed and tested on tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. Unlike previous models, this one combines an existing model to calculate keyhole shape and size with numerical fluid flow and heat transfer calculations in the weld pool. The calculations of the keyhole profile involved a point-by-point heat balance at the keyhole walls considering multiple reflections of the laser beam in the vapour cavity. The equations of conservation of mass, momentum and energy are then solved in three dimensions assuming that the temperatures at the keyhole wall reach the boiling point of the different metals or alloys. A turbulence model based on Prandtl's mixing length hypothesis was used to estimate the effective viscosity and thermal conductivity in the liquid region. The calculated weld cross-sections agreed well with the experimental results for each metal and alloy system examined here. In each case, the weld pool geometry was affected by the thermal diffusivity, absorption coefficient, and the melting and boiling points, among the various physical properties of the alloy. The model was also used to better understand solidification phenomena and calculate the solidification parameters at the trailing edge of the weld pool. These calculations indicate that the solidification structure became less dendritic and coarser with decreasing weld velocities over the range of speeds investigated in this study. Overall, the keyhole weld model provides satisfactory simulations of the weld geometries and solidification sub-structures for diverse engineering metals and alloys

  15. Phenomena of the coupling between steel 304L and platinum group metal particles in the environment of the dissolution of burned nuclear fuels

    International Nuclear Information System (INIS)

    This work describes the phenomena of the electrochemical coupling between stainless steel (304L) and platinum group metal particles in the environment of the recycling of burned nuclear fuels. The main goals of this work are to prove the acceleration of the corrosion by these deposits, the comprehension of the mechanisms and the development of a corrosion model. First the corrosion phenomena are evidenced for steel in contact with noble particles (RuO2,xH2O and Ru(0)). Their accelerating effect on the corrosion process is quantified in 8 mol.L-1 HNO3. Second a local approach on the reduction process is performed using Scanning Electrochemical Microscopy (SECM). The reduction reaction is investigated for microelectrodes and for different substrates (Ru, Pt, bare steel and steel with deposit). This approach clearly showed the catalytic effect of the noble particles on the reduction process of nitrate. Most probably the limiting step of the reduction process, the chemical formation of NO2, is catalyzed by these particles. Third a reduction scheme is developed for different materials which can describe the experimental results. Simulation results were in agreement with the experimental results. This demonstrates the validity of the assumptions for the model. Finally a model was developed for the bare steel as well as the covered steel, taking into account the dissolution step. It is shown that the most important parameter, that governs the whole corrosion process is the concentration of N(III) species. It can be concluded that, due to the presence of the deposits, the concentration of these species is higher in the vicinity of the steel substrate. (author)

  16. Superficial and electrochemical study of stainless steel 304l with an inhibitory protective coating (TiO{sub 2} and ZrO{sub 2}); Estudio superficial y electroquimico de acero inoxidable 304L con una capa protectora inhibidora (TiO{sub 2} y ZrO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Davila N, M. L.; Contreras R, A.; Arganis J, C. R., E-mail: aida.contreras@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The degradation mechanisms in the boiling water reactors (BWR) have been an alert focus for owners, especially the cracking by stress corrosion cracking (SCC), therefore different techniques have been studied to inhibit this problem inside which is the water injection of hydrogen feeding (HWC, Hydrogen Water Chemistry), together with the noble metals injection (NMCA, Nobel Metal Chemical Addition) and the ceramic materials injection that form an inhibitory protective coating (Ipc). In this work the Ipc was simulated, for which were carried out hydro-thermals deposits starting from suspensions of 1000 ppm of zirconium oxide in its crystalline phase baddeleyite and titanium oxides in its anatase and rutile phases, on test tubes of stainless steel 304l previously rusty under simulated conditions of pressure and temperature of a BWR (288 C and 8 MPa). The superficial characterization was realized by scanning electron microscopy, energy-dispersive of X-ray and X-ray diffraction. The capacity to mitigate the corrosion was studied with the electrochemical technique of Tafel polarization (288 C and 8 MPa). The steel presents the formation of two oxide coatings formed by magnetite and hematite. The baddeleyite presents a deposit more thick and homogeneous it also presents the most negative electrochemical potential of corrosion, what indicates that it has the bigger capacity to mitigate the SCC. (Author)

  17. Study of diffusion welding between the zirconium alloy Zy{sub 4} and the stainless steel 304L. Morphology of the interface and nature of the phases formed; Etude du soudage diffusion entre l'alliage de zirconium Zy{sub 4} et l'acier inoxydable 304L. Morphologie de l'interface et nature des phases formees

    Energy Technology Data Exchange (ETDEWEB)

    Taouinet, M. [Centre de Recherche Nucleaire de Draria (CRNA), Alger (Algeria); Lebaili, S. [Universite des Sciences et de la Technologie Houari Boumediene, Lab. de Science et Genie des Materiaux, Faculte de Genie Mecanique et Genie des Procedes, Alger (Algeria); Souami, N. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger (Algeria)

    2009-07-01

    We approach a study on the solid state diffusion bonding between zircaloy (Zy{sub 4}) and stainless steel (304L) for an application in the sector of the nuclear power. The diffusion couples prepared underwent treatments at the temperatures ranging between 850 and 1020 C in a controlled atmosphere and under dynamic pressures. We give a particular attention to the morphology of the interface, formed, and to the determination of the nature of the compounds formed. The observations and chemical analysis are realized by ESEM-EDX and XRD. The quantitative distribution as well as the detailed localization of the basic chemical elements are defined by chemical profiles, and series of images X. The junction of diffusion consists of three zones distinct, formed from a solid solution FeCr({alpha}), rich in Cr in the form of a homogeneous edge, localized in steel side. The two other zones of the center of the Zy{sub 4} side are two phase of type Zr{sub {alpha}}, (FeCr){sub {alpha}}-Zr(Fe, Cr){sub 2} and Zr{sub {alpha}}-Zr{sub 2}(Fe{sub 1-x}Ni{sub x}), 0.15{<=}x{<=}0.25. The detailed results obtained, are a regrouping, between those obtained from the observations and chemical analysis and radio crystallographic. The values of the measured micro-hardnesses give very heterogeneous filiations to the level of the interface. (authors)

  18. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  19. Characterization of AISI 4140 borided steels

    International Nuclear Information System (INIS)

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC(π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.

  20. CO2 laser welding of AISI 321stainless steel

    International Nuclear Information System (INIS)

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel

  1. Corrosion of AISI 316 and AISI 304 stainless steel with iodine vapor

    International Nuclear Information System (INIS)

    The weight loss of stainless steel in corrosion with iodine vapor was studied at 500 to 10000C and an iodine vapor pressure range of 0.05 to 0.5 mm Hg, using a thermobalance. In the initial stage of corrosion, the weight loss rate is largely influenced by solution treatment or surface treatment; the induction period, observed for solution-treated samples, is shortened or eliminated by fission-fragment irradiation, ion-bombardment or mechanical polishing, and in some cases corrosion is even accelerated by the surface treatments. A constant weight loss region follows the initial stage of corrosion. In this region, the weight loss rate is not dependent on treatment to the samples, and has a linear relationship with the vapor pressure of iodine. The rate is the largest at about 800 and 7500C for AISI 316 s. s. and AISI 304 s. s. The rates in general are larger for AISI 304 s. s. than for AISI 316 s. s. below 7000C but almost the same above 8000C. Corrosion product layer is observed on the surface of the sample below 7000C. Based on these findings, the corrosion process is discussed. The deposition of corrosion product in a temperature gradient tube is also described

  2. AES depth profiles in Mo-coated 304L stainless steel achieved by RF-magnetron sputtering and influence of Mo on the corrosion in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Saoula, N. [Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées CDTA, Cité du 20 août 1956, Baba Hassan, BP n 17, Alger (Algeria); Siad, M. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France); Biberian, J.P. [CINaM, UMR 7525 CNRS, Aix Marseille Université, 13288 Marseille Cedex 9 (France)

    2015-10-05

    Highlights: • Mo coating of 304L stainless steel is achieved via RF-magnetron sputtering. • The AES depth profiles before and after annealing in air (at 973 K) are analyzed. • The corrosions in NaCl solution of bare and Mo-coated samples are compared. • Mo-coated steels exhibit better corrosion behaviors. • The positive action of Mo oxide via its semi-conducting properties is deduced. - Abstract: Molybdenum-coated 304L stainless steel samples, fabricated by RF-magnetron sputtering, are characterized by Auger Electron Spectroscopy (AES) before and after annealing in air at 973 K. The electrochemical parameters of bare and coated materials, in NaCl 3.5% water solution at 298 K, are derived from the potentiodynamic polarization curves. The corrosion current of Mo-coated samples (before and after annealing) is significantly lower than that of its bare counterpart. The information gained from the AES depth profiles leads us to infer that the positive action of molybdenum on the corrosion behavior may be attributed to the changes induced by the semi-conducting properties of Mo oxide in the passive film.

  3. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    Science.gov (United States)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  4. The structure of austenitic steel AISI 316 after ECAP and low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    L. Kander

    2008-06-01

    Full Text Available Purpose: The article presents results of investigation of structure and properties of austenitic steel grade AISI 316 after application of Equal Channel Angular Pressing (ECAP at the temperature of approx. 290ºC.Design/methodology/approach: The ECAP method led to significant improvement of strength of investigated material. Experiments were planned and realised at the temperature ranging from room temperature up to above mentioned temperature.Findings: It was established with use of the EBSD technique that after 8 passes through the ECAP die the sub-grains with an angle of disorientation smaller than 10º formed less than 20% of resulting structure. Average size of austenitic grains with high angle boundary after 8 passes was approx. 0.32 µm. It was proven that the ECAP method enables obtaining of ultra fine-grained austenitic structure formed by recrystallised grains with very low density of dislocations.Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verification of ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel, because ECAP technology influence on fatigue properties was confirmed.Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue the ultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatigue characteristics, particularly fatigue limit.

  5. Structure and low-cycle fatigue of steel AISI 316 after ECAP

    Directory of Open Access Journals (Sweden)

    M. Greger

    2008-05-01

    Full Text Available Purpose: Main aim of this paper is to describe the plastic deformation executed by ECAP on low cycle fatigueof steel AISI 316. Among others was attention fixed on mechanical properties after this treatment.Design/methodology/approach: Experiments were planned and realised at the temperature ranging fromroom temperature up to 280 °C. After application of deformation the structure was investigated in dependence onaccumulation of deformation and deformation temperature as well as abovementioned final properties.Findings: Accumulated real (logarithmic deformation varied from the value 2 to 8. Investigation of structure byelectron microscopy was made with use of microscope JEOL JEM 2100. Mechanical properties were investigatedby conventional tensile test and penetration test. Selected samples were subjected to low-cycle fatigue. Statisticevaluation of angular disorientation and of size of grains/sub-grains was also made with use of electron diffraction(EBSD in combination with scanning electron microscope FEG SEM Philips.Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verificationof ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel,because ECap technology influence on fatigue properties was confirmed.Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue theultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatiguecharacteristics, particularly fatigue limit.

  6. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    OpenAIRE

    Fabiana Cristina Nascimento; Carlos Eugênio Foerster; Silvio Luiz Rutz da Silva; Carlos Mauricio Lepienski; Carlos José de Mesquita Siqueira; Clodomiro Alves Junior

    2009-01-01

    Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses o...

  7. Microstructural features of a type 304L stainless steel deformed at 1473 K in the strain rate interval 10[sup [minus]3] s[sup [minus]1] to 10[sup 2] s[sup [minus]1

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, D.; Divakar, R.; Raghunathan, V.S. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India))

    1993-05-01

    Deformation processing of materials in continuously being refined by dynamic materials modeling procedures to establish a safe window for the manufacture of engineering components. Microstructure development during the processing and its correlation with the mechanical properties is inevitable for better understanding of the materials. On this basis, microstructural examination of the dynamically processed type 304L austenitic stainless steels has been carried out. The samples that have been deformed at 1,473 K under various strain rates, ranging from 10[sup [minus]2]s[sup [minus]1] to 10[sup 2]s[sup [minus]1], were observed by transmission electron microscopy, to corroborate the energy efficiency of the process. The details of the energy efficiency contours and their implications are reported elsewhere. In this report the authors present some of the unusual microstructural features that, in general, are not desirable for the safe processing of materials.

  8. Modélisation tridimensionelle de la fermeture induite par plasticité lors de la propagation d'une fissure de fatigue dans l'acier 304L

    OpenAIRE

    Fiordalisi, Saverio,

    2014-01-01

    Ce travail de thèse s’inscrit dans le cadre des problèmes de fissuration par fatigue, détectéesnotamment dans des structures nucléaires et se situe dans la continuité de travaux déjà réalisésau laboratoire. L’objectif de cette étude est la réalisation d’un outil numérique de prédictiondu phénomène de fermeture induite par plasticité, au cours de la propagation d’une fissure defatigue dans une éprouvette CT, dans un acier inoxydable 304L, en prenant en comptel’influence simultanée de la forme ...

  9. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  10. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    OpenAIRE

    João Paulo Sampaio Eufrásio Machado; Cleiton Carvalho Silva; Ana Vládia Cabral Sobral-Santiago; Hosiberto Batista de Sant'Ana; Jesualdo Pereira Farias

    2006-01-01

    This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration). In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (...

  11. Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Analytic Hierarchy Process

    OpenAIRE

    Rajkamal Singh Banga; Mukesh Verma

    2014-01-01

    WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. AISI M2 and AISI H13 materials are taken for studyand molybdenum wire electrode diameter (0.18mm); experiment is conducted according to Taguchi‟s L16 OA, with input parameters as Peak current, Pulse on, Pulse off their respons...

  12. Environment-tensile property relationship in AISI 1018 steel

    International Nuclear Information System (INIS)

    Environment-material interaction depends on several concurrent and mutually competitive variables ranging from nature of the environment to composition of the steel and including: the test temperature; the time of exposure of the material to the environment; the deformation rate; and intrinsic microstructural effects; The present work is a characterization of strain rate and environment influences on the tensile properties of a steel, AISI 1018, having a fully spheroidized microstructure. Tensile tests were performed at ambient temperature (300 K) in environments which are mildly aggressive (moist laboratory air-relative humidity 50%) and inert (dry gaseous nitrogen). The specimens were deformed to failure at strain rates of 10-4sec-1 and 10-5sec-1. No appreciable increase in yield and tensile strengths was observed at the strain rate of 10-4sec-1. However, the increase in both was of the order of 10 to 12% at the strain rate of 10-5sec-1. Ductility showed no variation with strain rate, but increased in the inert environment at both strain rates. Both environment and strain rate were found to have little to no influence on reduction in area of the test specimens. The true fracture stress followed a similar trend to the yield strength and ultimate tensile strength. (author)

  13. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.Y. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Cheng, F.T. [Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: apaftche@polyu.edu.hk; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-02-15

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained.

  14. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi

    International Nuclear Information System (INIS)

    The present study is part of a project on the surface modification of AISI 316 stainless steel using various forms of NiTi for enhancing cavitation erosion resistance. In this study, NiTi powder was preplaced on the AISI 316L substrate and melted with a high-power CW Nd:YAG laser. With appropriate laser processing parameters, an alloyed layer of a few hundred micrometers thick was formed and fusion bonded to the substrate without the formation of a brittle interface. EDS analysis showed that the layer contained Fe as the major constituent element while the XRD patterns of the surface showed an austenitic structure, similar to that of 316 stainless steel. The cavitation erosion resistance of the modified layer (316-NiTi-Laser) could reach about 29 times that of AISI 316L stainless steel. The improvement could be attributed to a much higher surface hardness and elasticity as revealed by instrumented nanoindentation tests. Among various types of samples, the cavitation erosion resistance was ranked in descending order as: NiTi plate > 316-NiTi-Laser > 316-NiTi-TIG > AISI 316L, where 316-NiTi-TIG stands for samples surfaced with the tungsten inert gas (TIG) process using NiTi wire. Though the laser-surfaced samples and the TIG-surfaced samples had similar indentation properties, the former exhibited a higher erosion resistance mainly because of a more homogeneous alloyed layer with much less defects. In both the laser-surfaced and TIG-surfaced samples, the superelastic behavior typical of austenitic NiTi was only partially retained and the superior cavitation erosion resistance was thus still not fully attained

  15. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    International Nuclear Information System (INIS)

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well

  16. Comparative electrochemical study of 08H18N10T, AISI 304 and AISI 316L stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Zsolt; Horvath, Akos [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary); Nagy, Gabor [KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary)], E-mail: nagyg@sunserv.kfki.hu

    2007-10-10

    The aim of this work was to determine the main characteristics of the passivation and surface oxidation of 08H18N10T, AISI304 and AISI316L stainless steels, which serve as structural materials of VVER and PWR nuclear reactors. With the help of electrochemical experiments these materials were ranked according to their resistance against uniform corrosion. The measurements were done as a function of temperature in the range between room temperature and 80 deg. C. A sample of 08H18N10T steel was irradiated in the Budapest research reactor. With cyclic voltammetry we found that AISI 304 exhibits a very large passivation peak as a classical example for passivation. The peak is much smaller for AISI 316L and it is very small for 08H18N10T. This implies that the native oxide layer on AISI 316L and 08H18N10T is more protective than on AISI 304. The 08H18N10T steel has the best protective passive oxide layer which forms already in air and it is very difficult to remove it even at negative potentials. By comparing impedance spectra of the various stainless steels results lead to the same conclusions we obtained from cyclic voltammetry. Our experimental results of the irradiated steel are in accord with the fact that neutron irradiation increases the number of defect sites within the oxide layer. We found that irradiation has no considerable effect on the active-to-passive transition process. The small variations in the alloy composition do not alter the transition process significantly, as well.

  17. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    OpenAIRE

    Thanee Toomprasen; Chawalit Thinvongpituk; Sukangkana Talangkun

    2014-01-01

    This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grain...

  18. Investigation of residual stress in laser welding between carbon steel AISI 1010 and stainless AISI 304

    International Nuclear Information System (INIS)

    The dissimilar materials union has the residual stress formation as one of the most critical problems, which occurs mainly because these materials have both different thermal expansion coefficients and thermal conductivities. In this study, it was investigated the laser welding technique between steels, AISI 1010 and AISI 304. The materials were joined by butt autogenous welding with a continuous Nd:YAG laser. The main objective was to identify the welding parameters influence by the residual stresses analysis in the heat affected zone (HAZ). It was executed a factorial design with three-factor at two levels with a replica, which were varied power, welding speed and focal position of the laser beam. Residual stress measurements by the diffraction of X-rays were performed on the sample surface, to study their variation as a function of the parameters investigated. The blind hole method was also used to evaluate the residual stress along the samples depth, up to depth of 1mm. Besides residual stress measurement, weld seams were evaluated by optical and scanned electron microscopy, which were aimed to determine the weld geometry and changes in the microstructure. It was also made Vickers hardness measurements to evaluate the extent of HAZ. To evaluate the mechanical properties of the union were performed tensile and fatigue test. The MINITAB 15 software was used to analyze the residual stresses obtained by the blind hole method at different depths of the HAZ. It was also used statistical regression based on both the influences different and the combination of this input factors, in the residual stress of union. The results indicate that the models can satisfactorily predict the responses and provide users a guide to better define the welding parameters. (author)

  19. Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds

    International Nuclear Information System (INIS)

    Highlights: ► Measured crack growth resistance of welds with 140 wppm H from gas charging. ► H reduced fracture initiation toughness by over 67% and altered fracture mode. ► With H, microcracks initiate at weld ferrite. Without H, fracture is uniformly ductile. ► With H, localized deformation in austenite creates stress concentrations at ferrite. ► In austenite/ferrite microstructures, JIC decreases with increasing vol.% ferrite. - Abstract: Elastic–plastic fracture mechanics methods were used to characterize hydrogen-assisted crack propagation in two austenitic stainless steel gas tungsten arc (GTA) welds. Thermally precharged hydrogen (140 wppm) degraded fracture initiation toughness and crack growth toughness and altered fracture mechanisms. Fracture initiation toughness in hydrogen-precharged welds represented a reduction of >67% from the estimated toughness of non-charged welds. In hydrogen-precharged welds, microcracks initiated at ferrite, and dendritic microstructure promoted crack propagation along ferrite. Deformation twinning in austenite interacts with ferrite, facilitating microcrack formation. While hydrogen altered fracture mechanisms similarly for both welds, the amount of ferrite governed the severity of hydrogen-assisted crack propagation.

  20. Colloquium on Large Scale Improvement: Implications for AISI

    Science.gov (United States)

    McEwen, Nelly, Ed.

    2008-01-01

    The Alberta Initiative for School Improvement (AISI) is a province-wide partnership program whose goal is to improve student learning and performance by fostering initiatives that reflect the unique needs and circumstances of each school authority. It is currently ending its third cycle and ninth year of implementation. "The Colloquium on Large…

  1. Modal Similarity

    OpenAIRE

    Vigo , Dr. Ronaldo

    2009-01-01

    Just as Boolean rules define Boolean categories, the Boolean operators define higher-order Boolean categories referred to as modal categories. We examine the similarity order between these categories and the standard category of logical identity (i.e. the modal category defined by the biconditional or equivalence operator). Our goal is 4-fold: first, to introduce a similarity measure for determining this similarity order; second, to show that such a measure is a good predictor of the similari...

  2. Web Similarity

    OpenAIRE

    Cohen, Andrew; Vitányi, Paul

    2015-01-01

    Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or any other large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a similarity on a scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity according to all (upper semi)computable properties. We develop the theory and give applications. The derivation of ...

  3. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  4. Effects of biofilm formation on the electrochemical behavior of AISI 304 SS in board machine environment

    Energy Technology Data Exchange (ETDEWEB)

    Carp, L.; Hakkarainen, T. [VTT Manufacturing Technology (Finland); Raaska, L. [VTT Biotechnology and Food Research (Finland)

    1999-11-01

    The electrochemical behavior of and biofilm formation on AISI 304 stainless steel were studied in board machine environment with natural bacteria population. Open circuit potentials, redox-potential as well as different electrochemical measurements were performed. The biofilms formed were analyzed by microbial cultivation and by epifluorescence microscopy. The results of the measurements were compared with those performed both in sterilized white water and in artificial white water. The anodic polarization behavior of just immersed specimens was very similar in biotic (real), artificial and abiotic (sterilized) white water. Pitting initiated at very low potentials and continued to very negative values. The initiation of pitting became more difficult when the immersion time increased to 7 or 8 days in real, artificial or sterilized water. When the immersion time further increased, the pitting nucleated more easily in sterilized white water as well as in artificial white water than in biotic white water. In the laboratory equipment it was possible to maintain the biofilm already formed in the board mill, but the amount of sulfate reducing bacteria decreased and the amount of biofilm did not further increase. The composition and structure of the biofilm formed in laboratory differed from that formed in board mill conditions. The preliminary results indicate that the formation of biofilm in biotic white water rather inhibits than enhances the pitting corrosion of type AISI 304 stainless steel.

  5. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    Directory of Open Access Journals (Sweden)

    Thanee Toomprasen

    2014-06-01

    Full Text Available This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grains. in the welded area. This is the result of friction pressure and upset pressure in the welding process. In addition, the observation result indicated some changes of Ferrite and Pearlite in welded zone. This phase change resulted in the increment of hardness in AISI 4140 at the contact area and adjacent. In part of AISI 1040, the portion of Pearlite and Ferrite are not significantly changed, therefore the value of hardness is almost constant.

  6. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2009-06-01

    Full Text Available Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

  7. Process Parameter Optimization of WEDM for AISI M2 & AISI H13 by Anova & Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Rajkamal Singh Banga

    2014-10-01

    Full Text Available WEDM is a widely recognized unconventional material cutting process used to manufacture components with complex shapes and profiles of hard materials. In this thermal erosion process, there is no physical contact between the wire tool and work materials. AISI M2 and AISI H13 materials are taken for studyand molybdenum wire electrode diameter (0.18mm; experiment is conducted according to Taguchi‟s L16 OA, with input parameters as Peak current, Pulse on, Pulse off their response on MRR, Surface Roughness, Kerf width & Spark Gap is analysed to check the significance of each using ANOVA. Process parameter optimization is done by Analytic Hierarchy Process with the criteria Maximum MRR, minimum kerf and surface roughness. It is observed that for material AISI M2 at low value of peak current (1 A, pulse off (20µs and pulse on (30µs we can minimize surface roughness (3.30µm, kerf width (0.195 mm and maximize MRR (0.022 g/min,from the selected levels whereas for material AISI H13 Peak current (1A, Pulse On (40µs and high Pulse Off (30µs we get better Surface roughness (3.71 µm, kerf width (0.196mm and maximum MRR (0.020g/min, from the selected levels.

  8. Irradiation creep in bending of cold-worked AISI 316 stainless steel at low neutron fluence

    International Nuclear Information System (INIS)

    The results from the first and second interim examinations of a test to measure irradiation creep in bending of 20 percent cold-worked AISI 316 stainless steel are presented. These low-fluence results indicate that irradiation creep in bending exhibits a larger primary creep component of the total strain as compared with creep in biaxial pressurized tubes of the same heat of material, but the secondary creep rates in the two cases appear to be similar. The data also indicate that the bending strains have a linear fluence and stress dependency, and strains measured on beams fabricated parallel to and transverse to the direction of cold work are similar, indicating that material texture anisotropy does not effect irradiation creep in bending. 6 refs

  9. Experimental evaluation of mechanical properties of friction welded AISI steels

    Directory of Open Access Journals (Sweden)

    Amit Handa

    2014-12-01

    Full Text Available In the present study, an experimental setup was designed and fabricated in order to accomplish friction welded joints between austenitic stainless steel and low-alloy steel. Thereafter, the effect of axial pressures on the mechanical properties of friction welded AISI 304 with AISI 1021 steels, produced by mechanical joining, have been investigated. Samples were welded under different axial pressures ranging from 75 to 135 MPa, at constant speed of 1250 rpm. The tensile strength, impact strength, and micro-hardness values of the weldments were determined and evaluated. Simultaneously, the fractrography of the tensile-tested specimens were carried out, so as to understand the failure analysis.

  10. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  11. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  12. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    OpenAIRE

    Carlos Eduardo Pinedo; André Paulo Tschiptschin

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  13. Hot forming of AISI A2 tool steel

    OpenAIRE

    Večko Pirtovšek, T.; Peruš, I.; Kugler, G.; Turk, R.; M. Terčelj

    2008-01-01

    For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization...

  14. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author)

  15. An investigation on fatigue life of borided AISI 1010 steel

    Directory of Open Access Journals (Sweden)

    O.N. Celik

    2009-01-01

    Full Text Available Purpose: This study aims to investigate the fatigue life of box borided AISI 1010 steel materials.Design/methodology/approach: Fatigue specimens firstly have been prepared according to ASTM E466-96 standard and normalized. Then their surfaces have been cleaned by polishing. Boriding heat treatment has been applied in solid media with the help of Ekabor2 powder. Specimens have been borided at 1173-1223-1273 and 1323 K temperatures for 2-4 and 6 hours respectively. Fatigue tests have been made in rotating-bend test device. Separate S-N diagram has been formed for each boriding condition and then their results were compared with the results of the specimens on which any heat treatment has not been made.Findings: As a result it has been seen that boriding has no positive effect on fatigue life of AISI 1010 steel materials. And also it has been determined that fatigue life of the materials on which boriding heat treatment applied, decreases in between 14 %-55 %.Research limitations/implications: It can be noted that the reasons of short fatigue life determination are the boride layer’s much higher hardness than the substrate material’s, and the micro cracks existed between boride phases formed onto the surface.Originality/value: The investigations on fatigue life of borided AISI 1010 steel were made.

  16. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Eufrásio Machado

    2006-06-01

    Full Text Available This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration. In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (200, 300 and 400 °C. The procedure was done in conditions close to those in the distillation column. Heat was gradually increased from room temperature, and directly heated to working temperature. Each treatment took 4 hours to be completed. Scanning electronic microscopy (SEM and the analysis of X rays dispersive energy (EDX were used after the trials to characterize the samples. The results show that treatment temperature, as well as the type of heating, has distinct influences on each type of steel.

  17. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm2 obtained at aging temperature of 210oC for hours with homogenous dendritic microstructure

  18. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.; Souza, S. D. de [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil); Souza, S. de [Instituto de Pesquisas Energeticas e Nucleares, Centro de Ciencia e Tecnologia de Materiais (Brazil); Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil)

    2011-11-15

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic {gamma}{sup Prime} phase (Fe{sub 4}N), the hexagonal phase {epsilon} (Fe{sub 2 - 3}N) and a nitrogen supersatured solid phase {gamma}{sub N}. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Moessbauer Spectroscopy results: the larger the ratio between {epsilon} and {gamma}{sup Prime} phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for {epsilon}/{gamma}{sup Prime} is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h ({epsilon}/{gamma}{sup Prime} = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the {gamma}{sub N} phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the {gamma}{sub N} phase.

  19. Microstructural Characteristic of Dissimilar Welded Components (AISI 430 Ferritic-AISI 304 Austenitic Stainless Steels) by CO2 Laser Beam Welding (LBW)

    OpenAIRE

    Caligulu, Ugur; Dikbas, Halil; Taskin, Mustafa

    2012-01-01

    In this study, microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW) was investigated. Laser beam welding experiments were carried out under argon and helium atmospheres at 2000 and 2500 W heat inputs and 100-200-300 cm/min. welding speeds. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy, SEM, EDS and XRD analysis. The tensile strengt...

  20. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    OpenAIRE

    Francisco Javier Cárcel-Carrasco; Manuel Pascual-Guillamón; Miguel Angel Pérez-Puig

    2016-01-01

    This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds i...

  1. Mössbauer studies on an AISI 1137 type steel

    Indian Academy of Sciences (India)

    E Güler; H Akta

    2006-06-01

    An AISI 1137 type medium carbon steel was studied by means of scanning electron microscopy and Mössbauer spectroscopy. This steel in as received state at room temperature was ferritic. Different heat treatments on related steel exhibited different microstructures such as pearlite and bainite. Also magnetism of these product phases was determined as 32.7 T and 32.6 T relatively where ferromagnetism of ferritic phase in as received state was 33.05 T. Mössbauer parameters such as isomer shifts and % volumes were also determined before and after transformations.

  2. Study on stress corrosion of the zone affected by the AISI 316L steel heat under PWR reactor environment at 325 deg Celsius

    International Nuclear Information System (INIS)

    This paper evaluates the stress corrosion susceptibility of the HAZ (heat affected zone) of the AISI 316L stainless steel of a dissimilar welding done between the ASTM A-508 steel and the AISI 316L steel, using a nickel alloy, under a chemical environment similar to the PWR (Pressurized Water Reactor) nuclear reactor primary circuit. The nickel 82 and 182 alloys were used in the GTAW (Gas Tungsten Arc Welding) and SMAW (Shielded Metal Arc Welding) processes respectively. The test at slow deformation - SSRT (Slow Strain Rate Test) was applied, using a deformation rate of 3x10-7 s-1, at a temperature of 325 degree Celsius and pressure of 12.5 MPa. The susceptibility under tress corrosion evaluation was performed comparing the resistance limit, the total deformation and the fracture time obtained at the inert medium (nitrogen) and at the PWR medium. Also, the fracture surfaces were observed under a scanning electron microscope, verifying the fragile fracture regions

  3. Aluminum coating by fluidized bed chemical vapor deposition on austenitic stainless steels AISI 304 and AISI 316

    Directory of Open Access Journals (Sweden)

    Jose Luddey Marulanda-Arevalo

    2015-01-01

    Full Text Available Los revestimientos de aluminio f ueron depositados sobre aceros inoxidables AISI 304 y AISI 316 en el rango de temperatura de 5 60 a 600 °C por deposición química de vapor en lecho fluidizado(CVD – FBR. Se utilizó un lecho que consistía en 10 % de aluminio en polvo y 90 % de lecho inerte (alúmina, el cual fue fluidizado con Ar y como ga ses activadores se utilizó una mezcla de ácido clorhídrico con hidrógeno (HCl/H 2 . En el recubrimiento si n tratamiento térmico están las siguiente s especies: Al 13 Fe 4 , Fe 2 Al 5 , FeAl 2 y Al 5 FeNi, las cuales están presentes para ambos aceros. Además, el tratamiento térmico provoca la difusa de alu minio hacia el sustrato y la difusa de hierro del sustrato haci a la superficie del recubrimiento, haciendo la trans formación de los compuestos ant eriores a FeAl, Fe 2 Al 5 , FeAl 2 , Al 0.99 Fe 0.99 Ni 0.02 , AlNi y el Fe 2 AlCr. Se realizó la simulación termodinámica con el s oftware Thermo Calc para obt ener información de la posible composición y la cantidad de mat erial depositado, para condiciones seleccionadas. Las muestras recubi ertas y sin recubrir, se expus ieron a 750 ºC en una atmósfera d onde el vapor agua se transporta a las muestras usando un flujo de N 2 de 40 ml/min, más 100 % vapor de agua (H 2 O. Los dos sustratos sin revestir se comportaron de manera diferente, ya que el acero AISI 304 soportó bien el a taque y ganó poco peso (0.49 mg/cm 2 , en comparación con el acero AISI 316 que perdió mucho peso (25.4 mg/cm 2 . Los aceros recubiertos ganaron poco de peso durante las mil horas de exposición (0.26 mg/cm 2 y soportaron muy bien el ataque corrosivo en c omparación con sustratos sin r ecubrimiento.

  4. Fiber laser welding of AISI 304 stainless steel plates

    International Nuclear Information System (INIS)

    Compared with conventional lasers, fiber laser welding is characterized by high melting efficiency, deferent keyhole modes and power density characteristics, which could affect the heat and melt flow of the molten pool during welding. The objective of the present work was to study the fiber laser weldability of 5 mm thick AISI 304 austenitic stainless steel plates; therefore, bead-on-plate welding was exploited on AISI 304 stainless steel plates with different laser powers, welding speeds, defocused distances with different types of shielding gas and their effects on the weld zone geometry and properties and final solidification microstructure at room temperature. Laser power, welding speed and defocused distance have a great effect on the bead appearance and weld zone shape while almost no significant effect on both the type of microstructure and mechanical properties of welds. The microstructure of all laser welds was always austenitic including about 3-5 % ferrite. However, the lower the laser power and/or the higher the welding speed, the finer solidification structure, primary ferrite or mixed-mode solidification resulted in crack-free welds. (author)

  5. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  6. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  7. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde

    International Nuclear Information System (INIS)

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na2Pt (OH)6 and Na3Rh (NO2)6, Silver (Ag) with an aqueous solution of AgNO3, zirconium (Zr) with aqueous Zr O (NO3) and ZrO2, and zinc (Zn) in aqueous solution of Zn (NO3)2 under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides formed on the surface of 304l stainless steel in normal water

  8. Computer Aided Design of Heat Treatment for AISI P20+Ni Mold Steel with Good Machinability

    Institute of Scientific and Technical Information of China (English)

    HU Xin-bin; GAO Wen; HE Yan-lin; LI Lin

    2004-01-01

    Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching &tempering has optimal machinability; normalizing at the temperature of 910℃ & tempering can avoid cracking and result in acceptable machinability in small thickness module.

  9. Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    This paper concerns a fractographic examination of hydrogen embrittlement of a stable AISI 316L type austenitic stainless steel. The objective is a better understanding of the possible role of hydrogen in stress corrosion cracking processes. (author)

  10. Hot forming of AISI A2 tool steel

    Directory of Open Access Journals (Sweden)

    T. Večko Pirtovšek

    2008-10-01

    Full Text Available For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization purposes the activation energies and constants of the hyperbolic sine function for two temperatures ranges (850-1000°C and 1000-1150°C were calculated.

  11. Radiation-induced phase development in AISI 316

    International Nuclear Information System (INIS)

    During irradiation at temperatures between 460 and 6500C, the alloy AISI 316 decomposes into an austenite matrix of altered composition and some mixture of six possible precipitate phases. These phases are γ', G, eta-silicide, M23C6, M6C, and Laves. The balance of phases developed is exceptionally sensitive to a large number of material and environmental variables and frequently varies within a single grain. All of these phases are found to be either naturally rich in nickel and silicon or to become progressively enriched in these elements as the irradiation proceeds. The precipitates can be considered to be classified as thermally stable but modified, irradiation-enhanced, irradiation-induced, and irradiation-transformed

  12. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    Science.gov (United States)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  13. Corrosion of AISI 304 stainless steel in polluted seawater

    International Nuclear Information System (INIS)

    The sequence of microbiofouling settlement on AISI 304 stain steel samples exposed to polluted harbor sea water of a power cooling water intake is studied. The firts sates of bacterial colonization are followed by means of scanning electron microscopy during two weeks of exposure. The relation between microbiofouling and corrosion is also followed by scanning electron microscopy and evaluated through electrochemical polarization experiments. The results obtained show that microbial colonization and extracellular polimeric substances forming the biofilms have a marked influence on the electrochemical behaviour of stainless steel in sea water. Laboratory experiments using inorganic chloride solutions or artificial sea water show a considerably lesser attack of the metal than those performed 'in situ' with natural sea water. Passivity breadown is highly facilitated when complex biological and inorganic deposits (fouling) have settled on the metal surface. (Author)

  14. Pileup Behavior in Sharp Nanoindentation of AISI 1045 Steel

    Science.gov (United States)

    Zhu, L. N.; Xu, B. S.; Wang, H. D.; Wang, C. B.

    Experimental measurements have been used to investigate the pileup behavior during nanoindentation with a sharp indenter. The AISI 1045 steels treated by quenching and annealing were examined. The results show that during sharp nanoindentation process, the amount of pileup is related to the residual stress state, the indentation depth and the work hardening. The quenched steel with compressive residual stress will tend to pile up, and the stress-free annealed steel can decrease the pileup height. It is found that the pileup height gradually increases for the two steels as the indentation depth becomes larger. It is also shown that the low work hardening of the two steels can also result in the pileup deformation.

  15. Stress Ratio Effect on Ratcheting Behavior of AISI 4340 Steel

    Science.gov (United States)

    Divya Bharathi, K.; Dutta, K.

    2016-02-01

    Ratcheting is known as accumulation of plastic strain during asymmetric cyclic loading of metallic materials under non-zero mean stress. This phenomenon reduces fatigue life of engineering materials and thus limits the life prediction capacity of Coffin-Manson relationship. This study intends to investigate the ratcheting behavior in AISI 4340 steel which is mainly used for designing of railway wheel sets, axles, shafts, aircraft components and other machinery parts. The effect of stress ratio on the ratcheting behaviour in both annealed and normalised conditions were investigated for investigated steel. Ratcheting tests were done at different stress ratios of -0.4, -0.6 and -0.8. The results showed that the material responds to hardening behavior and nature of strain accumulation is dependent on the magnitude of stress ratio. The post ratcheted samples showed increase in tensile strength and hardness which increases with increasing stress ratio and these variations in tensile properties are correlated with the induced cyclic hardening.

  16. Study of discordancy mobility in the AISI 304 steel

    International Nuclear Information System (INIS)

    Internal Friction (IF), measurements were carried out in a type AISI 304 austenitic stainless steels at approximately 1HZ of frequency in the temperature interval from 120 to 573K. The IF spectra and the vibration frequency were obtained in samples were submitted to specific heat treatments. The results showed IF spectra with a well defined peak at 260K. The intensity dependes on the amount of plastic deformation previously introduced in the sample. Another broad peak was detected between 300 and 400K. Both peaks could only be detected after plastic deformation in uniaxial tension or torsion. In torsionably deformed samples at liquid nitrogen temperature, 77 K, the IF spectrum is observed only after linear annealing at 400K. This apparently results from a high damping due to a possible phase transformation which occurs around room temperature. The broad peak at higher temperature is sensitive to recovery induced by linear annealings. (Author)

  17. Evolução da textura cristalográfica de chapas de aço inoxidável ferrítico do tipo AISI 430 durante laminação a frio, recozimento e estampagem Crystallographic texture evolution of ferritic stainless steel strips (AISI 430 during cold rolling, annealing and drawing

    Directory of Open Access Journals (Sweden)

    Antenor Ferreira Filho

    2008-06-01

    Full Text Available A evolução da textura, nos estados "como recebido", laminado a frio, recozido e após a estampagem, e a estampabilidade de aços inoxidáveis ferríticos AISI 430, estabilizados ao nióbio, foram estudadas. Duas corridas de chapas com espessuras de 3,0 e 0,7 mm foram utilizadas. A de maior espessura foi relaminada a frio e recozida. A de menor espessura, de composição química semelhante à primeira, foi laminada a frio, na usina siderúrgica, e, posteriormente, submetida a estampagem. A textura foi avaliada usando DRX em todas as condições. O aço AISI 430, na condição "como recebido", apresentou forte textura {100}, {100} e a fibra g. Após a deformação, a intensidade da fibra g aumentou e apareceu a fibra a. O recozimento causou o desaparecimento da fibra a e o fortalecimento da fibra g, que é uma textura adequada para a estampagem. Embora o aço AISI 430, de espessura 0,7 mm, tivesse apresentado uma forte textura de fibra g, no estado inicial, as propriedades de estampagem não foram boas e o material trincou durante a conformação.Texture evolution in AISI 430 Nb stabilized ferritic stainless steels in the "as-received", hot-and cold-rolled, annealed and stamped conditions have been studied, along with their formability. Two ferritic stainless steels (Nb stabilized having a thickness of 3.0 and 0.7mm, were employed. The thicker one was cold rolled and annealed. The thinner one, with similar composition, was cold rolled at the steel plant and subsequently submitted to deep drawing. Texture has been evaluated using DRX for all conditions. The AISI 430 stainless steel, in the "as-received" condition presented a strong {100} texture in the and directions and the gamma fibre. After cold rolling the material presented stronger gamma and weaker alpha fibres. Annealing of the cold rolled steel conduced to the vanishing of the alpha fibre and strengthening of the gamma fibre, adequate for deep drawing operations. Although the AISI 430

  18. Linear friction welding of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → Linear friction welding is a feasible process for joining AISI316L. → Most welds had tensile strengths superior to the parent material. → Welding parameters had a significant impact on weld microstructure. → Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {1 1 1} type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  19. Kepekaan Retak Korosi Tegangan Baja Tahan Karat Austenitik AISI 304 Dalam Lingkungan Air Laut Buatan

    OpenAIRE

    Daud, Marzuki

    2012-01-01

    The component of AISI 304 stainless steel construction is used as a prop of linking up the ropes on the boat on the sea, such as socket swaged, chain plate, turnbuckle, and so on. This component usually has a failure problem of Stress Corrosion Cracking (SCC) although the stress which operates mechanically is far from its yield strength. The aim of this research is to analyze the SCC susceptibility of AISI 304 austenite stainless steel in artificial sea water which is represent...

  20. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  1. Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyección térmica por arco eléctrico

    OpenAIRE

    López-Covaleda, E. A.; Mercado-Velandia, J. L.; Olaya-Flórez, J. J.

    2013-01-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical micros...

  2. Study on residual stress of AISI304 TIG welding line with laser shock processing by x-ray stress analyzer

    Science.gov (United States)

    Zhang, Y. K.; Kong, D. J.; Yin, S. M.; Feng, A. X.; Lu, J. Z.; Ge, T.

    2006-02-01

    The surface of AISI304 TIG welding line was processed by LSP (laser shock processing). The effects on the microstructure, hardness and residual stress of AISI304 welding line by LSP were observed, and its mechanical properties were researched by SEM (scanning electron microscope) and test device of mechanical property. Residual stresses of AISI304 TIG welding line by LSP were measured with Model X-350A X ray analyzer. The test results show that compressive residual stress values of AISI304 TIG welding line by LSP are about 110MPa. Strengthening effects of AISI304 TIG welding line by LSP is very obvious, and fatigue properties of welding line is improved, and tensile residual stresses of welding line are obviously reduced, the distribution of residual stress tends to equality, and service life of AISI304 TIG welding line is improved.

  3. Breakdown and evolution of the protective oxide scales of AISI 304 and AISI 316 stainless steels under high-temperature oxidation

    OpenAIRE

    Habib, K. A.; Damra, M. S.; Saura, J. J.; Cervera, I.; Bellés, J.

    2011-01-01

    The failure of the protective oxide scales of AISI 304 and AISI 316 stainless steels has been studied and compared at 1,000°C in synthetic air. First, the isothermal thermogravimetric curves of both stainless steels were plotted to determine the time needed to reach the breakdown point. The different resistance of each stainless steel was interpreted on the basis of the nature of the crystalline phases formed, the morphology, and the surface structure as well as the cross-section structure of...

  4. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Science.gov (United States)

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  5. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    Science.gov (United States)

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  6. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  7. Effect of two synthetic lubricants on life of AISI 9310 spur gears

    Science.gov (United States)

    Townsend, Dennis P.; Shimski, John

    1991-01-01

    Spur-gear fatigue tests were conducted with two lubricants using a single lot of consumable-electrode vacuum-melted (CVM) AISI 9310 spur gears. The gears were case carburized and hardened to Rockwell C60. The gear pitch diameter was 8.89 cm. The lot of gears was divided into two groups, each of which was tested with a different lubricant. The test lubricants can be classified as synthetic polyol-ester-based lubricants. One lubricant was 30 percent more viscous that the other. Both lubricants have similar pressure viscosity coefficients. Test conditions included a bulk gear temperature of 350 K, a maximum Hertz stress of 1.71 GPa at the pitch line, and a speed of 10,000 rpm. The surface fatigue life of gears tested with one lubricant was approximately 2.4 times that for gears tested with the other lubricant. The lubricant with the 30 percent higher viscosity gave a calculated elastohydrodynamic (EHD) film thickness that was 20 percent higher than the other lubricant. This increased EHD film thickness is the most probable reason for the improvement in surface fatigue life of gears tested with this lubricant over gears tested with the less viscous lubricant.

  8. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing; Estudo comparativo de acos rapidos AISI M3:2 produzidos por diferentes processos de fabricacao

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de

    2006-07-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  9. The influence of low oxygen and contaminated sodium environments on the fatigue behavior of solution treated AISI 316 stainless steel

    International Nuclear Information System (INIS)

    The influence of air and sodium environments on the fatigue properties of solution treated AISI 316 steel was studied by predictive methods and by conducting tests in air, in high temperature sodium, or following pre-exposure to sodium. The sodium environments studied included contaminated sodium or the products of sodium/water flames possibly typical of fast reactor fault conditions, and low oxygen sodium more appropriate to normal plant operation. Generally, fatigue properties were reduced by contaminated sodium or the products of sodium/water flames and improved by low oxygen sodium when compared with similar tests conducted in air. However, complex effects were observed with respect to crack initiation. The experimental results are discussed and generally follow trends predicted by physically based fatigue models. (author)

  10. The influence of low oxygen and contaminated sodium environments on the fatigue behaviour of solution treated AISI 316 stainless steel

    International Nuclear Information System (INIS)

    The influence of air and sodium environments on the fatigue properties of solution treated AISI 316 steel was studied by predictive methods and by conducting tests in air, in high temperature sodium, or following pre-exposure to sodium. The sodium environments studied included contaminated sodium or the products of sodium/water flames possibly typical of fast water reactor fault conditions, and low oxygen sodium more appropriate to normal plant operation. Generally, fatigue properties were reduced by contaminated sodium or the products of sodium/water flames and improved by low oxygen sodium when compared with similar tests conducted in air. However, complex effects were observed with respect to crack initiation. The experimental results are discussed and generally follow trends predicted by physically based fatigue models. (author)

  11. Solid-particle erosion of tungsten carbide/cobalt cermet vs. hardened AISI 440C stainless steel

    International Nuclear Information System (INIS)

    Solid-particle erosion tests were conducted on hardened AISI 440C stainless steel and a cermet that consisted of ∼90 vol.% submicrometer WC embedded in ∼10 vol.% Co. Angular Al2O3 abrasives were used as the erodent. Experimental variables were: angle of impact = 20, 50, or 90 degrees; erodent velocity = 60 or 120 m/s; erodent nominal diameter = 63 or 143 (micro)m. For all test conditions, the stainless steel eroded faster than the cermet. Analysis of weight-loss data and examination of eroded surfaces by scanning electron microscopy indicated that the erosion mechanisms were similar for the two hard materials. Both exhibited significant plasticity when impacted, but the stainless steel's response to impact appeared to have been more ductile in nature

  12. Study on tempering behaviour of AISI 410 stainless steel

    International Nuclear Information System (INIS)

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M23C6) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe2C and M23C6 types of carbides coexisting in the material. The nucleation of Fe2C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M23C6 carbides, instead of Fe2C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with temperature of tempering

  13. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing

    International Nuclear Information System (INIS)

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  14. AISI waste oxide recycling program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  15. Qualification criteria verification for aisi-4340 steel suspension lug

    International Nuclear Information System (INIS)

    All external loads carried underneath an aircraft are mounted onto it through mechanism generally known as suspension system. The externally mounted attachments like bombs, missiles and fuel tanks etc. experience enormous aerodynamic and inertial forces in the flights. These forces are transferred to the interface point of suspension system, known as 'Suspension Lug'. Thus lugs are considered critical component and have extremely stringent qualification criteria standards used in the aviation industry in USA, Europe, Russia, etc. Different standards prevail in different parts of the world about qualification and testing of these lugs. As Pakistan is entering into aviation industry, therefore there is a need to fulfill the requirements of these standards, to suit Pakistani environment. The suspension lug under study is 2000 Ibs. load class made from AISI-4340 Steel having good mechanical properties as per required standard. The manufacturing processes included forging, machining and vacuum heat treatment. The prototypes of suspension lugs were manufactured in the local industry and subjected to the required mechanical tests such as tensile testing at 5 to 35 degree angles. Impact testing at cryogenic temperatures of -50 to -70 degree C, and breaking load testing were performed. The acceptable results were obtained and mechanical testing for qualification of lugs was finalized and standardized. The options were compared with practical viability, utilization of product and cost effectiveness. (author)

  16. High-temperature oxidation behavior of aluminized AISI 4130 steel

    Science.gov (United States)

    Badaruddin, Mohammad; Wang, Chaur Jeng; Wardono, Herry; Tarkono, Asmi, Dwi

    2016-02-01

    AISI 4130 steel was dipped into a molten aluminum bath at 700°C for 16 s to produce an aluminide coating on the steel substrate. The coating, which consisted of an Al-rich layer and an FeAl3 and Fe2Al5 intermetallic layer, strongly adhered to the steel substrate. High-temperature oxidation of the bare steel and aluminized steel was performed by thermogravimetry at 850°C for 49 h in static air. The oxidation products were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The aluminide coating could increase the oxidation resistance of the bare steel by a factor of ˜19. The increase in high-temperature oxidation resistance of the aluminized steel is attributed to the formation of protective alumina scale (α-Al2O3). Although iron oxide nodules grew on the aluminide coating surface, the oxidation rate of the aluminide coatings was very low. After 49 h of oxidation, agglomerates of α-Al2O3 fine grains grew on the rod-shaped FeAl phases.

  17. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  18. Plasma post oxidation of nitrocarburized AISI 4140 steel

    Institute of Scientific and Technical Information of China (English)

    LEE Insup

    2006-01-01

    Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of AISI 4140 steel.Plasma nitrocarburizing was conducted for 3 h at 570 ℃ in the nitrogen, hydrogen and methane atmosphere to produce the ε-Fe2-3(N,C) phase.It was found that the compound layer produced by plasma nitrocarburising was predominantly composed of ε-phase, with a small proportion of γ'-Fe4(N,C) phase.The thickness of the compound layer was about 10 μm and the diffusion layer was about 300 μm in thickness, respectively.Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at a constant temperature of 500 ℃ for 1 h.The very thin magnetite (Fe3O4) layer 1-2 μm in thickness on top of the compound layer was obtained by plasma post oxidation.It was confirmed that the corrosion characteristics of the nitrocarburized compound layer can be further improved by the application of the superficial magnetite layer.

  19. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy

    International Nuclear Information System (INIS)

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic γ′ phase (Fe4N), the hexagonal phase ε (Fe2 − 3N) and a nitrogen supersatured solid phase γN. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Mössbauer Spectroscopy results: the larger the ratio between ε and γ′ phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for ε/γ′ is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h (ε/γ′ = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the γN phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the γN phase.

  20. Characterization of AISI 1005 corrosion films grown under cyclic voltammetry of low sulfide ion concentrations

    International Nuclear Information System (INIS)

    Highlights: •The corrosion of AISI 1005 in sulfide solutions was investigated. •The mechanism of film growth on carbon steel in sulfide solutions was studied. •Film growth was characterized using SEM, EDX, XRD and Mössbauer spectroscopy. •Growth of AISI 1005 corrosion films under cyclic voltammetry. -- Abstract: The mechanism of AISI 1005 corrosion in sulfide ion solutions has been investigated using cyclic voltammetry, electrochemical impedance spectroscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The proposed mechanism occurs with the initial formation of oxygenated ferrous species followed by adsorption of HS− species, precipitation of iron monosulfides and their partial conversion to bisulfide iron. This mechanism was demonstrated by XRD results that revealed Fe-O and Fe-S phases and by MS results that detected pyrite as the major proportion (94%) of the iron species in the corrosion product

  1. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel Cementação sob plasma à baixa temperatura do aço inoxidável austenítico AISI 316L e do aço inoxidável duplex AISI F51

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pinedo

    2013-06-01

    Full Text Available In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462 stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon supersaturation and expansion of the FCC lattice. For the duplex stainless steel AISI F51, the austenitic grains transformed to carbon expanded austenite (γC, the ferritic grains transformed to carbon expanded ferrite (αC and M23C6 type carbides precipitated in the nitrided case. Hardness of the carburized case of the F51 duplex steel reached 1600 HV due to the combined effects of austenite and ferrite lattice expansion with a fine and dispersed precipitation of M23C6 carbides.O aço inoxidável austenítico AISI 316L e o aço inoxidável duplex AISI F51 (EN 1.4462 foram cementados sob plasma-DC na temperatura de 480ºC, utilizando-se CH4 como gás de arraste. A cementação sob plasma à baixa temperatura conduziu a uma elevada supersaturação do reticulado cristalino em carbono com a formação de austenita expandida(γC, sem a precipitação de carbonetos. A dureza do aço 316L, após a cementação, atingiu um valor máximo de 1000 HV, devido à supersaturação de ∼ 13 at% de carbono e à expansão do reticulado cristalino CFC. Para o aço inoxidável duplex AISI F51, os grãos de austenita se transformaram em austenita expandida pelo carbono e os grãos de ferrita se transformaram para ferrita expandida com a precipitação de carbonetos do tipo M23C6, na camada cementada. A dureza da camada cementada, no aço F51, atingiu 1600HV, devido ao efeito combinado da expansão dos reticulados cristalinos da austenita e da ferrita com a precipitação fina e

  2. Laser gas assisted treatment of AISI H12 tool steel and corrosion properties

    Science.gov (United States)

    Yilbas, B. S.; Toor, Ihsan-ul-Haq; Malik, Jahanzaib; Patel, F.

    2014-03-01

    Laser gas assisted treatment of AISI H12 tool steel surface is carried out and the electrochemical response of the laser treated surface is investigated. Morphological and metallurgical changes in the treated layer are examined using a scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Potentiodynamic polarization tests are carried out for untreated and laser treated specimen in 0.2 M NaCl solution at room temperature. It is found that the laser treated AISI H12 workpiece surfaces exhibit higher corrosion resistance as compared to untreated specimen as confirmed by lower corrosion rate, higher pitting potential, and lower passive current density.

  3. Corrosion Behavior of TiN Coated AISI D2 Steel

    OpenAIRE

    ÇEĞİL, Özkan; Şen, Şaduman

    2014-01-01

    In this study, the corrosion behaviors of nitride and titanium nitride (TiN) layers deposited on AISI D2 steel samples are reported. Steel was at first nitrided in a nitrogen and ammonia atmosphere at 575 °C for 8 h and then titanium nitride coating treatment was performed in the powder mixture consisting of ferro-titanium, ammonium chloride and alumina at 1000°C for 2h by pack diffusion coating. TiN coating layer thickness realized on the AISI D2 steel is 6,71 ± 0,9 μm. The hardness of TiN l...

  4. Study of radiation damages in AISI 316 and 347 steels

    International Nuclear Information System (INIS)

    The CV-28 cyclotron at IEN (Nuclear Engineering Institute) has been used to simulated, in a short time scale, uniform He concentrations produced during neutron irradiation of metals by (n, α) reactions. Helium was implanted at concentrations of 1 to 300 ppm in 100 μm thick sheet samples of AISI 316 and 347 S S by degrading a 28 MeV alpha particle beam with a rotating energy degrader. The effects of He on the mechanical properties of the steels were studied by both non-destructive (positron annihilation) and destructive tests (tensile, creep, TEM and SEM). The positron lifetime measurements of irradiated and annealed samples were used as the base to discuss the He diffusion mechanism. Activation energies of 0.34±0.04 eV for 316 S S and 0.57±0.06 eV for 347 S S, characterized a dissociative process above 6500 C. TEM analyses have suggested the Ostwald ripening process for bubble growth over the full range of He concentrations studied. It was shown, in agreement with theoretical calculations that, by themselves the displacements produced during the helium implantation, at rate of 1.8 x 10-3 d pa/ppm, were not sufficient to cause significant changes in ductility. However, a strong ductility loss with increasing He concentration was observed for both types of steel for tensile tests at 250 C, as well as in creep at 7500 C over the range of strain (100 to 200 MPa). Finally, it was shown that charged particle simulation associated with positron annihilation techniques provides a fast, relatively low cost, and useful method to study different kinds of neutron damage in materials. (author)

  5. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  6. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L

    International Nuclear Information System (INIS)

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  7. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    International Nuclear Information System (INIS)

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  8. Characteristics of sintered HA coating deposited by chemical method on AISI 316L substrate

    International Nuclear Information System (INIS)

    Graphical abstract: Potentiodynamic polarization curves of various conditions tested in Ringer’s solution at 37 ± 1 °C. - Highlights: • Sintering resulted in a well-dispersed HA-coating. • Sintering of HA resulted in a slightly higher surface roughness. • Sintering improved the coating/substrate adhesion. • Sintering of HA-coated samples possessed higher corrosion resistance. - Abstract: Hydroxyapatite (HA) coating is widely applied for biomaterials because of its chemical similarity to the mineral component of bones. The bioactive nature of HA coating enhances the formation of strong chemical bonds with surrounding bones. The present work is aimed at investigating the effects of sintering at 500, 600 and 700 °C on the crystallization and adhesive properties of HA coating, deposited by chemical method on AISI 316L stainless steel substrate. The properties of HA coating were studied by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and standard tensile adhesion test. In addition, the corrosion behavior after heat treatments was evaluated in Ringer’s solution at 37 °C as a simulated body fluid. The results refer to a good enhancement of the crystallization of the HA coating sintered at 700 °C. The adhesive strength of as-coated (AC) material increased from 8.3 MPa to 12.2, 16.8 and 19.8 MPa after sintering at 500, 600 and 700 °C, respectively. The corrosion rate of the as-coated material reduced sharply from 0.405 to 0.094 μA cm−2 after sintering at 700 °C

  9. Effects of neutron irradiation on the tensile properties of the stainless steel DIN 1.4948 (similar to AISI 304)

    International Nuclear Information System (INIS)

    Tensile properties of DIN 1.4948 stainless steel irradiated at 723 K and 823 K in the HFR at Petten and of the parallel heat treated steel are compared for the temperature range 723 K - 923 K and strain rates ranging from 6.10-6 s-1 up to 6 s-1. This was done for base materials as well as welded joints. Two types of irradiations were carried out: the first one up to a fast fluence (E>0.1 MeV) of 1023 n.m-2 and a thermal fluence of 4.4x1022 n.m-2, the second one up to a fast fluence of 5.1024 n.m-2 and a thermal fluence of 1.6x1024 n.m-2. Results indicate only a minor influence of irradiation on the 0.2% yield stress and the ultimate tensile strength. A significant loss of ductility was observed at high temperature and low strain rates. After irradiation to a thermal fluence of 1.6x1024 the total elongation at 923 K remained unchanged at a strain rate of 6 s-1 but was reduced from 42% to 6% at a strain rate of 6.10-6 s-1. (Auth.)

  10. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma; Estructura y propiedades del acero inoxidable AISI 316 nitrurado con plasmas de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Becerril R, F

    1999-07-01

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as {gamma}N which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  11. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc

    International Nuclear Information System (INIS)

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  12. Anisotropic swelling observed during stress-free reirradiation of AISI 304 tubes previously irradiated under stress

    International Nuclear Information System (INIS)

    Full text of publication follows: Structural steels anticipated for fusion applications will experience time-dependent changes in the radiation environment, i.e. stress level, stress state, irradiation temperature and dpa rate. There are insufficient data available to allow confident prediction of the effects of such environmental changes on subsequent behavior of swelling and irradiation creep. Data on the effect of changes in stress state or irradiation temperature are especially lacking. In this paper are presented the results of a reirradiation experiment conducted in EBR-II. Cladding tubes constructed from 304L stainless steel were removed from irradiated metal-driver fuel elements. These tubes were stressed during irradiation by fission gas buildup and fuel clad mechanical interaction. After cutting and cleaning, the density and diameter changes of each section were measured to determine swelling and irradiation creep. The tubes sections were re-irradiated in the absence of stress to 10 dpa, followed by measurement of their density and changes in both diameter and length. Also irradiated beside the previously stressed specimens were adjacent tube sections of 304L that encapsulated the fuel pins during the original irradiation. The cladding-capsule pairs experienced the same flux-spectral exposures, but the capsules were stress-free and operating at ∼50 deg. C lower temperatures. Tube pairs were irradiated at either the original irradiation temperature or at significantly different temperatures. The first major conclusion is that once significant swelling was reached in the initial irradiation, the swelling continued thereafter without changing in response to temperature or stress changes, approaching or reaching ∼1%/dpa. The second major conclusion is that the previously-stressed material retained a memory of its earlier stress state, swelling in absence of stress with an anisotropic distribution of strains. The swelling of the previously unstressed

  13. Anisotropic swelling observed during stress-free reirradiation of AISI 304 tubes previously irradiated under stress

    Energy Technology Data Exchange (ETDEWEB)

    Gamer, F. [Pacific Northwest National Laboratory, P.O. Box 999, Richland WA, AK 99352 (United States); Flinn, J.E. [Argonne National Laboratory, EBR-II Project, Idaho Falls Ill, AK (United States); Hall, M.M. [Bechtel Bettis Company, West Mifflin, PA, AK (United States)

    2007-07-01

    Full text of publication follows: Structural steels anticipated for fusion applications will experience time-dependent changes in the radiation environment, i.e. stress level, stress state, irradiation temperature and dpa rate. There are insufficient data available to allow confident prediction of the effects of such environmental changes on subsequent behavior of swelling and irradiation creep. Data on the effect of changes in stress state or irradiation temperature are especially lacking. In this paper are presented the results of a reirradiation experiment conducted in EBR-II. Cladding tubes constructed from 304L stainless steel were removed from irradiated metal-driver fuel elements. These tubes were stressed during irradiation by fission gas buildup and fuel clad mechanical interaction. After cutting and cleaning, the density and diameter changes of each section were measured to determine swelling and irradiation creep. The tubes sections were re-irradiated in the absence of stress to 10 dpa, followed by measurement of their density and changes in both diameter and length. Also irradiated beside the previously stressed specimens were adjacent tube sections of 304L that encapsulated the fuel pins during the original irradiation. The cladding-capsule pairs experienced the same flux-spectral exposures, but the capsules were stress-free and operating at {approx}50 deg. C lower temperatures. Tube pairs were irradiated at either the original irradiation temperature or at significantly different temperatures. The first major conclusion is that once significant swelling was reached in the initial irradiation, the swelling continued thereafter without changing in response to temperature or stress changes, approaching or reaching {approx}1%/dpa. The second major conclusion is that the previously-stressed material retained a memory of its earlier stress state, swelling in absence of stress with an anisotropic distribution of strains. The swelling of the previously

  14. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  15. Influence of plasma nitriding on the hardness of AISI 304 and low carbon steel

    International Nuclear Information System (INIS)

    Nitriding with plasma/ion nitriding technique for surface treatment of AISI 304 and low carbon steel as a machine component material has been done. Surface treatment is meant to improve the surface quality of metal especially its hardness. To reach the optimum condition it has been done a variation of nitriding pressure, while to analyse the result it has been done the hardness and microstructure test, and the nitrogen content. Result of the test indicates that: the optimum hardness obtained at 1.8 mbar of pressure that is 624.9 VHN or 2.98 times while the initial hardness is 210.3 VHN for AISI 304 and 581.6 VHN or 3.07 times compare with initial hardness 142.9 VHN for low carbon steel. The thickness of nitride layer for AISI 304 and low carbon steel is around 30 µm. Nitrogen contents after nitriding are 10.74% mass or 30.32% atom for AISI 304 and 6.81% mass or 21.76% atom for low carbon steel. (author)

  16. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  17. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Hadzima, B.; Fintová, Stanislava

    2015-01-01

    Roč. 22, č. 2 (2015), s. 77-84. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * EIS * Corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/167/278

  18. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    International Nuclear Information System (INIS)

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  19. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Moghanizadeh, Abbas; Farzi, Abolfazl [Islamic Azad Univ., Esfarayen (Iran, Islamic Republic of). Dept. of Civil Engineering

    2016-07-01

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  20. Microstructural changes of AISI 316L due to structural sensitization and its influence on the fatigue properties

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Nový, F.; Fintová, Stanislava

    2014-01-01

    Roč. 21, č. 4 (2014), s. 172-177. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : AISI 316L * Structural sensitization * Rotating bending fatigue test Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. EFFECTS OF CARBURIZING AND NITRIDING PROCESSES ON THE COST AND QUALITY OF GEARS PRODUCED WITH AISI 4140 AND 8620 STEELS

    OpenAIRE

    Claudio José Leitão; Paulo Roberto Mei; Rodolfo Libard

    2012-01-01

    This study compares the effects of nitriding and carburizing processes applied to gears subjected to contact stresses below 1300 MPa. The manufacturing cost, as well the depth of hardened layer and the distortion produced by two processes are analyzed. AISI 4140 gears quenched, tempered, liquid and gas nitriding and AISI 8620 gears after liquid carburizing, quenching and tempering are analyzed. The dimensional control of the gears was carried out before and after heat and thermoch...

  2. AISI 316L under electron radiolysis at high temperature and pressure in PWR modelling conditions

    International Nuclear Information System (INIS)

    temperature (HT), 280-320 deg. C, and high pressure (HP), 15.5 MPa. Very few data are available in the literature on the role of HTHP water radiolysis on the corrosion of metallic reactor components. The present approach use electron beam to control the production of radiolytic species at a AISI 316L/PWR solution interface in a high temperature and high pressure (HTHP) electrochemical cell working at the range [25 deg. C, 1 bar] - [300 deg. C, 90 bar]. The cell is designed to record the free corrosion potential of the AISI 316L/PWR solution interface mounted on line at the SIRIUS pelletron delivering the electron beam (LSI, Ecole Polytechnique, France). The PWR primary solutions are simulated by aqueous solutions prepared at room temperature by adding boric acid and lithium hydroxide to high purity water and, in some cases, purged with Ar/H2 flow. At the AISI 316L/PWR solution interfaces irradiated between 25 deg. C/ 1 bar and 300 deg. C/ 90 bar, electrons emerge at ∼0.6 MeV and the flux varies from ∼1010 to 1012 e-.cm-2.s-1. The results clearly show that the response of the free potential between the AISI316L/water interface and a pseudo-reference electrode, i.e. a platinum wire during the irradiation (from electron beam switch-on until cut-off) depends on many parameters: the energy of the electron beam, the temperature and pressure, the concentration of hydrogen in the solution, the ageing of the disc electrode, the growth conditions of the initial oxide passive layers, etc... These results can be compared with those which have obtained by using the proton beam (CEMHTI, CNRS Orleans, France). Surface characterization experiments (XPS, SEM, Raman spectroscopy, photoluminescence...) on the oxide layer of AISI316L which are formed under the irradiation could also bring new information about the irradiation influence on the AISI316L. (authors)

  3. Contribution à la modélisation du soudage TIG des tôles minces d'acier austénitique 304L par un modèle source bi-elliptique, avec confrontation expérimentale

    Science.gov (United States)

    Aissani, M.; Maza, H.; Belkessa, B.; Maamache, B.

    2005-05-01

    Ce travail contribue dans la modélisation du phénomène du soudage de l'acier inoxydable Austénitique 304L, afin d'étudier le comportement thermique d'un joint de soudure, obtenu par le procédé de soudage à l'arc électrique TIG (Tungsten-Inert-Gas). Le modèle simulant la source d'énergie de soudage, utilise une distribution surfacique Gaussienne du flux de chaleur provenant de l'arc électrique. La forme de cette source est supposée circulaire pour un premier cas et de forme bi-elliptique pour un second cas, tout en procédant à l'évaluation des champs et cycles thermiques à chaque instant, pour déterminer l'étendu des zones à risque, et l'effet de la vitesse de soudage sur ces dernières. Permettant ainsi de remonter par la suite, aux problèmes de contraintes résiduelles et déformations générées dans l'assemblage soudé. L'équation de chaleur régissant le problème est discrétisée par la méthode des volumes finis. Les calculs sont effectués en considérant que les propriétés physiques et thermiques ainsi que les conditions aux limites de convection et rayonnement, sont dépendante de la température. Pour évaluer la précision du modèle, une comparaison avec des mesures expérimentales de température d'un essai de soudage a été effectuée, les résultats indiquent un bon accord.

  4. Hot rolling of the superaustenitic stainless steel AISI 904L: Vroče valjanje superavstenitnega nerjavnega jekla AISI 904L:

    OpenAIRE

    Arh, Boštjan; Burja, Jaka; PODGORNIK, Bojan; Tehovnik, Franc; Žužek, Borut

    2014-01-01

    The AISI 904L superaustenitic stainless steel has a narrow processing window. In this work the hot rolling of steel, specifically the hot deformation behavior, is investigated. Specimens of steel were hot rolled at temperatures from 1000 °C to 1250 °C with 50 °C increments and the rolling loads were measured and recorded. Microstructural changes were examined, with the accent on the recrystallization. From changes of the hot-rolling loads and microstructure it is concluded that the recrystall...

  5. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Directory of Open Access Journals (Sweden)

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  6. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  7. Textual Spatial Cosine Similarity

    OpenAIRE

    Crocetti, Giancarlo

    2015-01-01

    When dealing with document similarity many methods exist today, like cosine similarity. More complex methods are also available based on the semantic analysis of textual information, which are computationally expensive and rarely used in the real time feeding of content as in enterprise-wide search environments. To address these real-time constraints, we developed a new measure of document similarity called Textual Spatial Cosine Similarity, which is able to detect similitude at the semantic ...

  8. Behavior of AISI SAE 1020 steel implanted by titanium and exposed to bacteria sulphate deoxidizer

    International Nuclear Information System (INIS)

    A hybrid technology to treat solid surfaces with the pulse high voltage and electric arc discharges of low pressure with a three-dimensional ion implantation technique (3DII) is applied. This technology is used to protect AISI SAE 1020 steel against a microbiological corrosion. The titanium ion implanted steel samples (coupons) are subjected to a medium of bacteria sulphate deoxidizer (BSD) which are very typical of the hydrocarbon industry and are potentially harmful for structures when are in contact with petroleum and some of its derivatives. The used technology aims to find an effective hybrid procedure to minimize the harmful effects of bacteria on AISI SAE 1020 steel. The hybrid technology efficiency of superficial titanium implantation is estimated through the measurements of the point corrosion characteristics obtained after testing both the treated and non-treated coupons. The three-dimensional surface structures of the samples are reconstructed with help of a confocal microscope.

  9. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  10. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  11. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  12. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Energy Technology Data Exchange (ETDEWEB)

    Guu, Y.H. [Department of Mechanical Engineering, National United University, 1 Lien Da, Kung-Ching Li, Miaoli 360, Taiwan (China)]. E-mail: yhorng@nuu.edu.tw

    2005-04-15

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  13. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  14. Analysis of pulsed Nd:YAG laser welding of AISI 304 steel

    International Nuclear Information System (INIS)

    Pulsed laser welding of AISI 304 stainless steel plate was simulated using commercial finite element software to determine the optimal welding conditions. Due to geometric symmetry, only one plate was modeled to reduce the simulation computation time. User subroutines were created to account for a moving three-dimensional heat source and to apply boundary conditions. The material properties such as conductivity, specific heat, and mass density were determined as functions of temperature. The latent heat was considered within the given temperature range. The three-dimensional heat source model for pulsed laser beam butt welding was designed by comparing the finite element analysis results and experimental data. This successful simulation of pulsed Nd:YAG laser welding for AISI 304 stainless steel will prove useful for determining optimal welding conditions

  15. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 1022 n/cm2 (E > 0.1 MeV at temperatures ranging from 4000C to 6000C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  16. Martensitic transformation on AISI 304 stainless steel produced by a coaxial plasma gun

    International Nuclear Information System (INIS)

    Full text: In a previous paper, a surface treatment of AISI 304 stainless steel irradiated by a Nitrogen ion beam generated in a coaxial plasma gun has been reported. The device is operated with a Titanium insert at the end of the inner electrode, producing a TiN coating on the surface of the sample. Because of the ion and plasma energy deposition, the sample surface is strongly heated during the treatment resulting in titanium diffusion. Preliminary X-ray diffraction (XRD) studies have shown the presence of a martensitic transformation on AISI 304 samples, probably induced by Ti atoms. In this work, the transformation depth is studied with grazing-incidence XRD on samples subjected to several superimposed shots. For this purpose, multiple low angles of incidence are used, allowing the analysis at different depths of the substrate

  17. Analysis of pulsed Nd:YAG laser welding of AISI 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwan Woo; Lee, Jung Kil; Cho, Hae Yong [Chungbuk National University College of Medicine, Jeonju (Korea, Republic of)

    2010-11-15

    Pulsed laser welding of AISI 304 stainless steel plate was simulated using commercial finite element software to determine the optimal welding conditions. Due to geometric symmetry, only one plate was modeled to reduce the simulation computation time. User subroutines were created to account for a moving three-dimensional heat source and to apply boundary conditions. The material properties such as conductivity, specific heat, and mass density were determined as functions of temperature. The latent heat was considered within the given temperature range. The three-dimensional heat source model for pulsed laser beam butt welding was designed by comparing the finite element analysis results and experimental data. This successful simulation of pulsed Nd:YAG laser welding for AISI 304 stainless steel will prove useful for determining optimal welding conditions

  18. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    Science.gov (United States)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  19. INFLUENCE OF AISI 316Ti STAINLESS STELL SURFACE TREATMENT ON PITTING CORROSION IN VARIOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Pavol Fajnor

    2010-12-01

    Full Text Available Investigation of the surface treatment effect on the resistance of AISI 316Ti stainless steel to pitting corrosion is presented in this paper. The grinded surfaces without additional chemical treatment, grinded and pickled, grinded, pickled and passivated surfaces are tested. The corrosion tests are carried out by exposition in solution which evoke pitting and by electrochemical cyclic potential - sweep method. According to the results the surface treatment has a great influence on the resistance of the tested material to pitting. It is not possible to estimate the best surface treatment because behavior of AISI 316Ti stainless steel with different surface state depends on the mechanism of corrosion processes which vary in the used experimental methods.

  20. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  1. Embrittlement and strain hardining of the hydrogenated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    The influence of hydrogen the mechanical properties of type AISI 304 austenitic stainless steel was analysed. Hydrogenation was performed cathodically, at room temperature, in a 1N H2SO4 solution. The variables controlled for analysis were current density and time. Uniaxial tensile tests were conducted with constant nominal strain rate. Fracture morphology was analysed by scanning electron microscopy and the kinetics of strain hardening by applying Ludwick's equation to the resulting stress-strain curves. It was verified that hydrogen embrittles markedly, the austenitic AISI 304 steel, leading to a significant loss of ductility and modifying the fracture made, from essentially ductile to a transgrannular fragile fracture, containing small regions of intergranular fracture. With increasing amounts of hydrogen there was also a decrease in the maximum uniform stress, the strength coefficient, the strain hardening exponent and in the range the deformation stages II and III extended. (Author)

  2. Microhardness measurement in AISI 321 stainless steel with niobium additions before and after fast neutron irradiation

    International Nuclear Information System (INIS)

    Data about influence of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05 and 0.1wt.% Nb additions are presented. The microhardness measurements were made in the range of 300 to 6500C, before and after fast neutron irradiation with fluences about 1017n/cm2. Our results indicate that radiation damage peaks occur around 4800C for the stainless steel of type AISI 321 without Nb addition, around 5000C for the composition with 0.05 wt.% Nb addition and around 5700C for the composition with 0.1 wt.% Nb addition. Microhardness data are in agreement with those obtained by means of electrical resistivity measurements, performed at the same conditions. (Author)

  3. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  4. Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K

    Energy Technology Data Exchange (ETDEWEB)

    Pipatnukun, Peeraya; Wangyao, Panyawat; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2015-11-01

    This work investigates the isothermal oxidation behavior of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 at 1,173 K in air flow rate of 40 cm{sup 3} x min{sup -1} using thermogravimetric analysis (TGA). In 33 hours, the oxidation resistance declines from high to low are as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309, respectively. The oxidation kinetic results show that the exponential rate constant of the as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 8.79 x 10{sup -6}, 4.02 x 10{sup -5} and 4.35 x 10{sup -5} g x cm{sup -2} x s{sup -n}, respectively. The exponential growth rates of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 0.42, 0.29 and 0.32, respectively. It indicates that the oxidation kinetic of as cast 26Cr-16Ni approaches a parabolic rate law, but those of as cold-rolled and as cast AISI 309 approach the cubic rate law. The sequence of oxide scale formations on the tested samples is also discussed.

  5. Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K

    International Nuclear Information System (INIS)

    This work investigates the isothermal oxidation behavior of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 at 1,173 K in air flow rate of 40 cm3 x min-1 using thermogravimetric analysis (TGA). In 33 hours, the oxidation resistance declines from high to low are as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309, respectively. The oxidation kinetic results show that the exponential rate constant of the as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 8.79 x 10-6, 4.02 x 10-5 and 4.35 x 10-5 g x cm-2 x s-n, respectively. The exponential growth rates of as cast 26Cr-16Ni, as cold-rolled AISI 309 and as cast AISI 309 are 0.42, 0.29 and 0.32, respectively. It indicates that the oxidation kinetic of as cast 26Cr-16Ni approaches a parabolic rate law, but those of as cold-rolled and as cast AISI 309 approach the cubic rate law. The sequence of oxide scale formations on the tested samples is also discussed.

  6. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  7. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    OpenAIRE

    Rômulo Ribeiro Magalhães de Sousa; Francisco Odolberto de Araújo; José Alzamir Pereira da Costa; Antonio Maia de Oliveira; Mineia Sampaio Melo; Clodomiro Alves Junior

    2012-01-01

    AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN), with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  8. Multi-scale modelling of AISI H11 martensitic tool steel surface anisotropic mechanical behaviour

    OpenAIRE

    Zouaghi Ahmed; Velay Vincent; Soveja Adriana; Rézaï-Aria Farhad

    2014-01-01

    In this work, a numerical investigation is carried out on the anisotropic and heterogeneous behaviour of the AISI H11 martensitic tool steel surface using finite element method and a multi-scale approach. An elasto-viscoplastic model that considers nonlinear isotropic and kinematic hardenings is implemented in the finite elements code ABAQUS using small strain assumption. The parameters of the constitutive equations are identified using macroscopic quasi-static and cyclic material responses b...

  9. Optimization of Machining Parameters for improved Surface Integrity of AISI H13 Tool Steel

    OpenAIRE

    OUTEIRO, José

    2012-01-01

    The surface integrity plays a very important rule in this functional performance, being dependent of a large number of machining parameters. The major concern of the industry is to know which combination of machining parameters provides a better surface integrity of the machined components. AISI H13 tool steel has been applied widely to produce many different types of hot working dies due to its excellent mechanical properties, such as: good resistance to thermal softening, high hardenabil...

  10. Laser welding of butt joints of austenitic stainless steel AISI 321

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-11-01

    Full Text Available Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters which ensures high quality joints of mechanical strength not lower than the strength of the base material (BM. The butt joints of austenitic steel AISI 321 sheets welded by the HPDL diode laser at optimal parameters are very high quality, without any internal imperfections and the structure and grain size of weld metal and HAZ is very small and also the HAZ is very narrow and the fusion zone is very regular.Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding.Practical implications: The technology of laser welding can be directly applied for welding of butt joints of austenitic steel AISI 321 sheets 0.5 and 1.0 [mm] thick.Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 321.

  11. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  12. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means of...... irreversible fatigue cohesive elements. Different orientations of the cracks and different matrix-inclusion bonding conditions are analyzed and compared....

  13. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    OpenAIRE

    Adão Felipe Oliveira Skonieski; Giovanni Rocha dos Santos; Thomas Karl Hirsch; Alexandre da Silva Rocha

    2013-01-01

    Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscop...

  14. Deposition and characterization of duplex treated coating system applied on hot work steel AISI H13

    OpenAIRE

    Bejarano Gait??n, Gilberto; Arroyave Franco, Mauricio; G??mez Botero, Maryori

    2015-01-01

    AISI H13 steel is widely used for extrusion moulds and other hot work tools fabrication, due to its high toughness, strength and hardness around 56 HRC (Rockwell C) -- However, this steel possesses a relatively low wear resistance, which reduces its life time under high loading conditions -- The aim of this work was to enhance the wear resistance of the steel H13 using the following surface treatments:austenitizing + quenching + tempering (further called ???tempering???), tempering and bath n...

  15. Corrosion behaviour of AISI 316L steel in artificial body fluids

    Directory of Open Access Journals (Sweden)

    W. Kajzer

    2008-12-01

    Full Text Available Purpose: The paper presents the comparison of corrosion resistance of AISI 316L stainless steel in various corrosive media such as artificial urine, Tyrode’s physiological solution and artificial plasma.Design/methodology/approach: The tests were carried out on samples of the following surfaces: grinded – average roughness Ra = 0.31 μm and electropolished and chemically passivated average roughness Ra = 0.10 μm. The corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests was applied. The tests were carried out in electrolyte simulating urine (pH = 6-6.4, Tyrode’s physiological solution (pH = 6.8-7.4 and plasma (pH = 7.2-7.6 at the temperature of 37±1°C.Findings: Surface condition of AISI 316L stainless steel determines its corrosion resistance. The highest values of breakdown potentials were recorded for all electropolished and chemically passivated samples in all simulated body fluids. The highest values of anodic current density were recorded for samples tested in artificial urine, the lowest values were recorded for samples tested in Tyrode’s physiological solution.Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the AISI 316L stainless steel.Practical implications: On the basis of the obtained results it can be stated that stainless steel meets the basic biocompatibility criteria and can be applied in reconstruction surgery, operative cardiology and urology.Originality/value: The paper presents the influence of various corrosive media simulating human body fluids on corrosion resistance of AISI 316L stainless steel.

  16. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  17. The influence of microstruture on fracture toughness of vacuum heat treated HSS AISI M2

    OpenAIRE

    Leskovšek, Vojteh; Ule, Boris; Liščić, Božidar

    2015-01-01

    The microstructure of AISI M2 high-speed can be substantially modified by vacuum heat treatment in order to optimize the ratio between hardness and fracture toughness, which is, however, significantly affected by the volume fractions of retained austenite and undissolved eutectic carbides, as well as the mean distance between these carbides. Calculated fracture toughness values, which were obtained using a newly developed semi-empirical equation, based on the stress-modified critical strain c...

  18. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel

    Czech Academy of Sciences Publication Activity Database

    Dundeková, S.; Zatkalíková, V.; Fintová, Stanislava; Hadzima, B.; Škorík, Viktor

    2015-01-01

    Roč. 22, č. 1 (2015), s. 48-53. ISSN 1335-0803 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : AISI 316L stainless steel * Corrosion * Immersion test * Corrosion rate Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://ojs.mateng.sk/index.php/Mateng/article/view/166/251

  19. AN ELECTROCHEMICAL PROCESSING STRATEGY FOR IMPROVING TRIBOLOGICAL PERFORMANCE OF AISI 316 STAINLESS STEEL UNDER GREASE LUBRICATION

    OpenAIRE

    JIAOJUAN ZOU; MAOLIN LI; NAIMING LIN; XIANGYU ZHANG; LIN QIN; BIN TANG

    2014-01-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribolo...

  20. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  1. Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    The degree of sensitization for tensile pre-strain (0%, 10%, 20%, 30%, 40%) of AISI 304 stainless steels and sensitization at 575 °C was investigated by the double loop electrochemical potentiokinetic reactivation technique and scanning electron microscopes (SEMs). The properties of passive films of all the sensitized specimens in borate buffer solution (pH = 9.2) with 5000 ppm Cl− were investigated by the Mott–Schottky analysis. The degree of sensitization results showed that two reactivation current peak values were obtained for the sensitized specimens after 30% and 40% pre-strain. The degree of sensitization was decreased by pre-strain, except for specimen with 10% pre-strain. The results were further confirmed by the Mott–Schottky analysis. -- Highlights: ► Two reactivation current peaks occur for sensitized specimens with large strain. ► Change trend of acceptor concentration and degree of sensitization is similar. ► The Mott–Schottky analysis is effective in evaluating degree of sensitization.

  2. In-Process Prediction of Tool Wear and Workpiece Surface Temperature in Turning of AISI D2 Steel

    Directory of Open Access Journals (Sweden)

    Sudhansu Ranjanjan Das

    2012-08-01

    Full Text Available Present days increasing the productivity and the quality of the machined parts are the main challenges of metal cutting industry during turning processes. Optimization methods in turning processes, considered being a vital role for continual improvement of output quality in product and processes include modeling of input-output and in process parameters relationship and determination of optimal cutting conditions. This paper presents an optimization method of the cutting parameters (cutting speed, depth of cut and feed in dry turning of AISI D2 steel to achieve minimum tool wear and low workpiece surface temperature. The experimental layout was designed based on the Taguchi’s L9 (34 Orthogonal array technique and analysis of variance (ANOVA was performed to identify the effect of the cutting parameters on the response variables. The results showed that depth of cut and cutting speed are the most important parameter influencing the tool wear. The minimum tool wear was found at cutting speed of 150 m/min, depth of cut of 0.5 mm and feed of 0.25 mm/rev. Similarly low workpiece surface temperature was obtained at cutting speed of 150 m/min, depth of cut of 0.5 mm and feed of 0.25 mm/rev. Thereafter, optimal ranges of tool wear and workpiece surface temperature values were predicted. Finally, the relationship between factors and the performance measures were developed by using multiple regression analysis.

  3. Monitoring early biofilm formation in cooling water systems using electrochemical probes made of AISI Type 316 stainless steel

    International Nuclear Information System (INIS)

    Microorganisms in natural waters often adhere onto material surfaces in cooling water systems; they secrete slime, trap nutrients and reproduce, resulting in a complex biofilm that hampers the property of the condenser material. Biofilm formation on titanium material (commercial y pure, CP), used as condenser material, reduces heat-transfer efficiency. Experience worldwide has shown that routine water treatment programmes cannot remain effective under varying environmental, design and operation factors. Thus, the need of the hour is a means to continuously monitor the effectiveness of the control programmes and facilities to modify it as per need. In our laboratory we are involved in developing a probe based on electrochemical techniques to monitor early biofilm formation. Our earlier experience has shown that changes in some electrochemical parameters like open circuit potential (OCP) ennoblement, increase in passive current density and active repassivation potential would indicate crevice-stabilization tendencies of a heterogeneous biofilm on stainless steel materials. Literature further explains that there is a distinct time lag between crevice initiation and crevice propagation. Hence, it was hypothesized that if we can provide necessary conditions of crevice initiations artificially by intermittent polarization, electrochemical signals generated during crevice initiation can diagnose the causative agent of the crevice, that is, biofilm. However, care should be taken to avoid crevice propagation. Thus, attempts were made to distinguish the response of current to temporary application of a potential difference between two similar stainless steels (AISI Type 304, 316) and titanium electrodes in the biofilm forming environment. (author)

  4. Deformability analysis of the AISI 304 DDQ stainless steel under deep drawing multiaxial condition. Evaluation of the initial strain influence

    International Nuclear Information System (INIS)

    The deep drawing formability of a material is established as a function of standard indexes, as strength coefficient and anisotropy coefficient. But these indexes are determined in different conditions to those that take place in the forming process. The simulative assays do not separate the actions due to the different variables that work in the process, as for example, the rolling direction. In the present work a test that uses a wedge shape die is considered in order to obtain the strength and anisotropy coefficients as a function of rolling direction. This way, the assays are carried out under a tensile-biaxial compression stress state similar to that one taking place in the flange zone in deep drawing. The experimented material is a deep drawing quality stainless steel AISI 304. The influence of initial strengthened states, rolling and uniaxial tensile on the steel behaviour are also studied. The results permits the authors establish the validity of the assay from the point of view of the strains produced in the sheet. The initial strain has a higher effect on the material than that one obtained from the tensile-biaxial of the state than the tensile-biaxial compression causes. The anisotropy coefficient changes with the strain for the sheet rolling direction. (Author).

  5. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  6. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  7. Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy and magnetic measurements on thermally oxidized AISI 304 and AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Maachi, B. [Universite d' Oran, Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique (LPC2ME), BP 1524, El M' Naouer, 31000 Oran (Algeria); Pirri, C.; Mehdaoui, A. [Universite de Haute Alsace (UHA), Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 - CNRS, 4 rue des freres Lumiere, 68093 Mulhouse (France); Hakiki, N.E., E-mail: hakiki.nourredine@yahoo.f [Universite d' Oran, Laboratoire de Physique des Couches Minces et Materiaux pour l' Electronique (LPC2ME), BP 1524, El M' Naouer, 31000 Oran (Algeria); Bubendorff, J.L., E-mail: jean-luc.bubendorff@uha.f [Universite de Haute Alsace (UHA), Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 - CNRS, 4 rue des freres Lumiere, 68093 Mulhouse (France)

    2011-03-15

    Research highlights: {yields} The surface roughness of the bare substrate influence the oxide layer growth. {yields} The oxide layer roughness follows power laws and belongs to universality class. {yields} At low growth temperature, the p-n heterojunction disappears in some places. {yields} SKPFM images allow the direct visualization of local corrosion sites. {yields} Presence of a magnetite phase in the outer iron rich layer of the oxide thin film. - Abstract: Thermally oxidized AISI304 and AISI316 stainless steels are studied by Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy (SKPFM) and Magneto-Optical Kerr effect as a function of their growth temperature. The surface roughness is a competition between the roughness of the bare substrate and the roughness resulting from the oxide layer growth. Cr oxide is present at some places on the surface at low growth temperature as shown by SKPFM. The observed decrease of surface potential with the oxide layer thickness indicates an effective protection against corrosion. Magnetic measurements demonstrate that the outer layer contains a magnetite phase (in-plane magnetization).

  8. Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy and magnetic measurements on thermally oxidized AISI 304 and AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Research highlights: → The surface roughness of the bare substrate influence the oxide layer growth. → The oxide layer roughness follows power laws and belongs to universality class. → At low growth temperature, the p-n heterojunction disappears in some places. → SKPFM images allow the direct visualization of local corrosion sites. → Presence of a magnetite phase in the outer iron rich layer of the oxide thin film. - Abstract: Thermally oxidized AISI304 and AISI316 stainless steels are studied by Atomic Force Microscopy, Scanning Kelvin Probe Force Microscopy (SKPFM) and Magneto-Optical Kerr effect as a function of their growth temperature. The surface roughness is a competition between the roughness of the bare substrate and the roughness resulting from the oxide layer growth. Cr oxide is present at some places on the surface at low growth temperature as shown by SKPFM. The observed decrease of surface potential with the oxide layer thickness indicates an effective protection against corrosion. Magnetic measurements demonstrate that the outer layer contains a magnetite phase (in-plane magnetization).

  9. A study on the control of melting ratio to increase mechanical properties of laser welded joints between AISI 440C and AISI 430F

    Science.gov (United States)

    Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.

    2015-05-01

    Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.

  10. Approximate similarity search

    OpenAIRE

    Amato, Giuseppe

    2000-01-01

    Similarity searching is fundamental in various application areas. Recently it has attracted much attention in the database community because of the growing need to deal with large volume of data. Consequently, efficiency has become a matter of concern in design. Although much has been done to develop structures able to perform fast similarity search, results are still not satisfactory, and more research is needed. The performance of similarity search for complex features deteriorates and does...

  11. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints

    International Nuclear Information System (INIS)

    Highlights: • Friction stud welding of AA 6063 and AISI 1030 was done successfully. • Ultrasonic evaluation of interfacial properties. • EDX analysis confirms intermetallic compound (FeAl) in the interfacial region. - Abstract: Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the

  12. Clustering by Pattern Similarity

    Institute of Scientific and Technical Information of China (English)

    Hai-xun Wang; Jian Pei

    2008-01-01

    The task of clustering is to identify classes of similar objects among a set of objects. The definition of similarity varies from one clustering model to another. However, in most of these models the concept of similarity is often based on such metrics as Manhattan distance, Euclidean distance or other Lp distances. In other words, similar objects must have close values in at least a set of dimensions. In this paper, we explore a more general type of similarity. Under the pCluster model we proposed, two objects are similar if they exhibit a coherent pattern on a subset of dimensions. The new similarity concept models a wide range of applications. For instance, in DNA microarray analysis, the expression levels of two genes may rise and fall synchronously in response to a set of environmental stimuli. Although the magnitude of their expression levels may not be close, the patterns they exhibit can be very much alike. Discovery of such clusters of genes is essential in revealing significant connections in gene regulatory networks. E-commerce applications, such as collaborative filtering, can also benefit from the new model, because it is able to capture not only the closeness of values of certain leading indicators but also the closeness of (purchasing, browsing, etc.) patterns exhibited by the customers. In addition to the novel similarity model, this paper also introduces an effective and efficient algorithm to detect such clusters, and we perform tests on several real and synthetic data sets to show its performance.

  13. The semantic similarity ensemble

    Directory of Open Access Journals (Sweden)

    Andrea Ballatore

    2013-12-01

    Full Text Available Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgment of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on how closely it mimics human behavior. Thus selecting the most appropriate measure for a specific task is a significant challenge. To address this issue, we make an analogy between computational similarity measures and soliciting domain expert opinions, which incorporate a subjective set of beliefs, perceptions, hypotheses, and epistemic biases. Following this analogy, we define the semantic similarity ensemble (SSE as a composition of different similarity measures, acting as a panel of experts having to reach a decision on the semantic similarity of a set of geographic terms. The approach is evaluated in comparison to human judgments, and results indicate that an SSE performs better than the average of its parts. Although the best member tends to outperform the ensemble, all ensembles outperform the average performance of each ensemble's member. Hence, in contexts where the best measure is unknown, the ensemble provides a more cognitively plausible approach.

  14. Gender similarities and differences.

    Science.gov (United States)

    Hyde, Janet Shibley

    2014-01-01

    Whether men and women are fundamentally different or similar has been debated for more than a century. This review summarizes major theories designed to explain gender differences: evolutionary theories, cognitive social learning theory, sociocultural theory, and expectancy-value theory. The gender similarities hypothesis raises the possibility of theorizing gender similarities. Statistical methods for the analysis of gender differences and similarities are reviewed, including effect sizes, meta-analysis, taxometric analysis, and equivalence testing. Then, relying mainly on evidence from meta-analyses, gender differences are reviewed in cognitive performance (e.g., math performance), personality and social behaviors (e.g., temperament, emotions, aggression, and leadership), and psychological well-being. The evidence on gender differences in variance is summarized. The final sections explore applications of intersectionality and directions for future research. PMID:23808917

  15. Evaluation of performance of AISI 444 steel for application in distillation towers; Avaliacao do desempenho do aco AISI 444 para aplicacao como 'lining' em torres de destilacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R.F.; Miranda, H.C. de; Farias, J.P. [Universidade Federal do Ceara (DEMM/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Caracterizacao de Materiais], e-mail: rf.guimaraes@yahoo.com.br

    2008-07-01

    In this work, the behavior of the AISI 444 ferritic stainless steel submitted to thermal fatigue test and their corrosion resistance in heavy crude oil was evaluated. The AWS E309MoL-16 and E316L-17 weld metal was employed as filler metal. Plates of the AISI 444 were welded on ASTM A-516 Gr. 60 plates and submitted to fatigue thermal cycle. Samples were extracted from plates welded and heat treated immersed in heavy crude oil at 300 deg C. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive of X-ray analysis (EDX) were used to characterize the microstructure and the corroded surface. The results show that the AISI 444 stainless steels did not present cracks after the thermal fatigue cycle and the heat treated immerse in heavy crude oil. The electrode AWS E309MoL-16 show better corrosion resistance than the AWS E316L-17. (author)

  16. Modification and characterization of the AISI 410 martensitic stainless steels surface; Modificacao e caracterizacao da superficie do aco inoxidavel martensitico AISI 410

    Energy Technology Data Exchange (ETDEWEB)

    Bincoleto, A.V.L. [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Nascente, P.A.P. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  17. Approach to the prediction of thermal fatigue of aluminium high pressure die casting (AISI H13 using the Basquin equation and finite elements

    Directory of Open Access Journals (Sweden)

    D. Concer

    2012-12-01

    Full Text Available Purpose: The main aim of the present study was to analyze the influence of the thermal fatigue on the AISI H13 die surface during the aluminium high pressure die casting process.Design/methodology/approach: Two different gradients of temperature were considered (ΔT = 200 and 250°C. The thermal stresses were obtained through computer numerical analysis - Finite Element Method. Then an analytical study, through the equation of Basquin, was conducted to determine the number of cycles until the die failure.Findings: Taking in account the divergences found in the solutions for determining the number of life cycles to die failure and guided by technical data and commercial experience of life cycles for the AISI H13 steel it was possible to propose coefficients of correction for the equation of Basquin.Research limitations/implications: It should be highlighted that the use of the proposed corrected coefficients for the Basquin equation can show a satisfactory results related to the practice - valid only for similar conditions of this work.Practical implications: The behavior of the steel used for the dies are dependent of the temperature and density, elastic modulus, Poisson’s ratio, coefficient of thermal expansion, hardness, thermal conductivity and yield strength and an incorrect steel selection can lead to thermal stresses amplitude favorable for the onset of the cracks.Originality/value: The dies play an important role in the aluminium high pressure die casting process. During the die manufacturing process the die design and the steels behavior are a major concern on efficient manufacturing, i.e. related to maximize the life cycle. During the injection process the thermal fatigue is one of the responsible factor of onset of cracks - estimated to be approximately 80%.

  18. Production and characterization of multilayer coatings of Ti/TiN on AISI 316L stainless steel by the PVD technique of cathodic arc ion plating

    International Nuclear Information System (INIS)

    Multilayer coatings were produced from bi-layers (compound layers) of Ti/TiN in a PVD reactor of cathodic arc ion plating. The process was carried out at an Argon gas pressure of 5x10-3 Torr for the interlayer of Ti and a nitrogen + argon pressure of 2x10-2 Torr for the deposit of TiN and a Bias voltage of -500V for the Ti layer and -100V for the TiN layer. The arc current held constant at 80 amp. The samples were kept at high temperatures ≥ 300oC, mounted on a rotating system that held the test piece 15-25 cm from the Ti electrode. Certified composition AISI 316L and AISI 410 stainless steel were used for the substrate. Coatings with one or two compound layers with similar thicknesses were made. The coatings were characterized mechanically by adherence, thickness and microhardness by Vickers indentation with 25g loads. The texture was studied by X-ray diffraction and present phases and residual tensions were determined. The results of the X-ray diffraction show the presence of the mostly TiN phase, with fcc structure in the mono-layer and the bi-layer. Residual tensions are compressive and elevated due to the expansion of the TiN network during the deposition process. Measurements of the bi-layers at different angles showed a relaxing of the tensions close to the surface, which could be due to the effect of the second interlayer of Ti. Preferential orientations associated with the growth process of the layers and the developed microstructure were detected in the TiN (CW)

  19. Influencia de los regímenes de lubricación en la vida de la herramienta y el acabado superficial del fresado de aceros endurecidos AISI D2 y AISI D6

    OpenAIRE

    Maritza Mariño-Cala; Yanier Sánchez-Hechavarría

    2015-01-01

    Se realizó un análisis de la calidad superficial y la vida de la herramienta durante el mecanizado con altas velocidades de los aceros endurecidos AISI D2 y AISI D6, en dos regímenes de lubricación. Los ensayos fueron realizados en un centro de mecanizado MORI SEIKI SV 40 y se emplearon herramientas intercambiables de metal duro recubiertas. La evaluación de la calidad superficial se realizó mediante el monitoreo off-line de la rugosidad superficial media Ra en el sentido del avance y perpend...

  20. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  1. Effect of aging at 700 deg. C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds

    International Nuclear Information System (INIS)

    A detailed knowledge of changes in microstructures and mechanical behaviour that occur in austenitic stainless steels with or without Nb/Ti-stabilized weld during heat treatment is of great interest, since the ductility and toughness of the material may change drastically after long aging times. Two kinds of materials, i.e. AISI 321 base and without Ti-stabilized weld steel and AISI 347 base with Nb-stabilized weld steel, were compared during aging at 700 deg. C up to 6000 h. Both materials present increased amount of precipitate and decreased impact energy as the aging time increases. The decreased extent of impact energy with aging is almost the same for both base materials. However, it presents differences for 347 and 321 weld samples. The latter shows a more drastic decrease of impact energy than the former due to the different amount of precipitates. 321 weld sample precipitates more numerously than 347 weld sample due to the absence of stabilized Ti/Nb on the former. Large amount of carbides is formed on 321 weld sample immediately after welding. The carbides are transformed to sigma phase, which is mainly responsible for the much more sigma phase precipitation compared with other samples, after high-temperature aging. The fractographs showed, in general, brittle fracture mode in 321 weld impact-fractured specimens after aging at 700 deg. C for 6000 h. However, other samples show ductile fracture mode in general. Several approaches should be employed to control sigma phase precipitation in weld material. These approaches include: decreasing content of ferrite and M23C6 carbide in weld and selecting Nb added weld wire during welding

  2. Numerical-experimental analysis of a rin AISI{sub 7}Mg Alloy; Analisis numerico experimental de un rin de aleacion AISi{sub 7}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Sauceda Mesa, Israel; Mata Lucero, Omar; Tirado Delgado, Luis; Ocampo Diaz, Juan de Dios [Universidad Autonoma de Baja California, Mexicali, Baja California (Mexico)

    2005-10-15

    The present work shows the results obtained from an investigation mode on the behaviour of a rin of alloy AISi{sub 7}Mg, which is used in compact Volkswagen's cars. Due to two kind of analysis were realized, firstly an experimental and numerical analysis was done, using a special machine for test the flexionante torque and material fatigue, besides was used an equipment of laser to scanner zone with strength concentrations and the maximum displacement amplitudes. The second analysis was done with the finite element technique, using the software ANSYS and CATIA. The difference between life fatigue cycles obtained from the two analyses was 0.6%. While the time optimize by MEF, was of 85% less than experimental analysis. [Spanish] En el presente trabajo se hicieron investigaciones del comportamiento de un rin de aleacion AISi{sub 7}Mg, el cual es usado en automoviles compactos de volkswagen (VW). Para esto, se realizo analisis experimental y numerico. En el primero se utilizo una maquina para prueba de fatiga de momento flexionante, un equipo de medicion de laser escaner donde se detectaron las zonas de concentraciones de esfuerzos y la maxima amplitud de desplazamiento en el rin. Mientras que en el segundo se obtuvieron los esfuerzos que ocasionaban la fatiga por el elemento finito, utilizando los paquetes de computo Ansys y Catia. La diferencia de los ciclos de vida de fatiga obtenidos entre ambos analisis fue del 0.6%. Mientras que el tiempo que se optimizo por el MEF, fue de un 85% menos que el analisis experimental.

  3. Constructive Similarity of Soils

    Czech Academy of Sciences Publication Activity Database

    Koudelka, Petr

    Singapore : Design, CRC a iTEK CMS Web solutions, 2012 - (Phoon, K.; Beer, M.; Quek, S.; Pang, S.), s. 206-211 ISBN 978-981-07-2218-0. [APS on Structural Reliability and Its Application – Sustainable Civil Infrastructures /5./. Singapore (SG), 23.05.2012-25.05.2012] Grant ostatní: GA ČR(CZ) GAP105/11/1160 Institutional support: RVO:68378297 Keywords : model similarity * database of soil properties * soil similarity characteristic * statistical analysis * ultimate limit states Subject RIV: JM - Building Engineering

  4. Cognitive residues of similarity

    OpenAIRE

    OToole, Stephanie; Keane, Mark T.

    2013-01-01

    What are the cognitive after-effects of making a similarity judgement? What, cognitively, is left behind and what effect might these residues have on subsequent processing? In this paper, we probe for such after-effects using a visual search task, performed after a task in which pictures of real-world objects were compared. So, target objects were first presented in a comparison task (e.g., rate the similarity of this object to another) thus, presumably, modifying some of their features befor...

  5. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  6. Creep behaviour and microstructural evolution in AISI 316LN + Nb steels at 650 deg. C

    International Nuclear Information System (INIS)

    Research highlights: → We studied the effect of Nb additions to AISI 316LN steels on creep and microstructure at 650 deg. C. → Nb additions resulted in a reduction of secondary creep rate and shortening of the tertiary stage. → Two nitrogen rich minor phases were present in the niobium-bearing casts: Z-phase and M6X. → The dimensional stability of Z-phase during creep at 650 deg. C was much better than that of M6X. → Nb accelerated σ-phase and η-Laves formation and this surpassed the positive effect of Z-phase. - Abstract: The paper deals with the effect of niobium in the wrought AISI 316LN steels on the long-term creep characteristics at 650 deg. C. Casts B and C contained 0.1 and 0.3 wt.%Nb, respectively. As a reference material the niobium free Cast A was used. Small additions of niobium to the AISI 316LN steel resulted in a significant reduction of the minimum creep rate and shortening of the tertiary creep stage. At time to rupture exceeding 104 h the creep rupture strength of the niobium-bearing Casts B and C was slightly inferior to the Cast A. Two nitrides formed in the Casts B and C: Z-phase and M6X. The minimum creep rate in niobium-bearing casts was favourably affected by precipitation of the Z-phase. The dimensional stability of Z-phase particles was very high, but niobium additions also accelerated the formation and coarsening of η-Laves and σ-phase. Coarse σ-phase particles at grain boundaries contributed significantly to the shortening of the tertiary creep stage.

  7. Characterization Of Oxide Layers Produced On The AISI 321 Stainless Steel After Annealing

    Directory of Open Access Journals (Sweden)

    Bochnowski W.

    2015-09-01

    Full Text Available In this study, the structure, chemical composition and topography of oxide layers produced on the surface of the AISI 321 austenitic steel in the annealing process were analyzed. Heat treatment was done at 980°C temperature for 1 hour time in different conditions. The annealing was done in a ceramic furnace in oxidation atmosphere and in vacuum furnaces with cylindrical molybdenum and graphite chambers. The analysis was carried out using the following methods: a scanning electron microscope (SEM equipped with an energy-dispersive X-ray spectrometer (EDX, a transmission electron microscope (TEM equipped with an energy-dispersive X-ray spectrometer (EDX, an X-ray diffractometer (XRD, a secondary ion mass spectrometer with time-of-flight mass analyzer (TOF SIMS and an atomic force microscope (AFM. The oxide layer formed during annealing of the AISI 321 steel at 980°C consisted of sub-layers, diversified in the chemical composition. The thickness of the oxidized layer is depended on the annealing conditions. In a ceramic furnace in oxidation atmosphere, the thickness of the oxide layer was of 300-500 nm, in a vacuum furnace with molybdenum and graphite heating chambers, it ranged from 40 to 300 nm and from a few to 50 nm, respectively. TOF SIMS method allows to get average (for the surface of 100 μm × 100 μm depth profiles of concentration of particular elements and elements combined with oxygen. In oxide layers formed in vacuum furnaces there are no iron oxides. Titanium, apart from being bounded with carbon in carbides, is a component of the oxide layer formed on the surface of the AISI 321 steel.

  8. Compatibility studies of AISI type 316 stainless steel with lead-lithium eutectic alloy

    International Nuclear Information System (INIS)

    Spent fuel subassemblies from the Fast Breeder Test Reactor (FBTR) are to be stored in leak tight cotainers until they are required to be sent for reprocessing. Use of advanced fuels like uranium carbides and plutonium carbides, which are known to be highly chemically active with oxygen and moisture demands adequate leak tightness during long term storage to avoid undesirable chemical reactions. Use of low melting alloys which acts as liquid/solid sealants in the storage containers in which fuel subassemblies are to be kept is being considered for this purpose. Lead-lithium (0.7 wt % lithium) eutectic alloy was chosen as one of the candidate alloys for the purpose on the basis of theoretical assessments. The candidate sealing alloy should have good compatibility with the structural materials of fuel subassemblies as well as the fuel and fission products. AISI type 316 stainless steel in solution annealed, ten and twenty percent cold worked condition is the clad and wrapper material used for the fabrication of fuel pins and subassemblies. Compatibility studies between eutectic Pb-Li alloy and AISI type 316 stainless steel material in the above conditions were undertaken at different temperatures and time durations. The studies indicate that the tensile properties of AISI type 316 stainless steel are not subject to any serious jeopardisation through contact with this molten Pb-Li eutectic alloy for periods extending even upto 7000 hours at 873 K. Thus use of Pb-Li eutectic alloy would be suitable for the storage of irradiated fuel. (author). 16 refs., 38 figs., 3 tabs

  9. Elastic-plastic fracture toughness characteristics of irradiated AISI 316 H stainless steel

    International Nuclear Information System (INIS)

    The objective of this research is the FM assessment of neutron damage to AISI 316 H steel commonly used in LMFBR's permanent primary circuit components. The material FM characteristics studied are the crack-initiation toughness and the crack-resistance curves. The AISI 316 H stainless steel has been considered in the base condition, the welded deposit and the HAZ material. The specimens tested are 3PB bars. The results presented cover the 0, 0.1 dpa and 0.3 dpa fluences at 350 deg. C and 550 deg. C. The crack-growth-resistance curves were obtained following the dimensional analysis approach together with the deformation theory of plasticity concepts. This method, using key curves has effectively shown trends in the above-mentioned fracture mechanics characteristics of the irradiated AISI 316 H steel. The results obtained so far indicate generally low degradation at both temperatures between the non-irradiated and the irradiated base material, one note-worthy exception being the significant lowering at 550 deg. C and 0.1 dpa of sup(dJ)/da by about 35% and of sup(J)Ic by about 50% with respect to those parameters values in the other conditions of fluences and temperatures. As far as the weld material is concerned, it exhibits significantly lower initiation toughness and tearing moduli in the pre and post irradiation conditions with respect to the base material but those FM parameters values are practically unaltered at both temperatures and all fluence levels. The HAZ material was studied too and it was found that all J values corresponding to various crack advances fell within the base material results at 350 deg. C as upper bound and the welded material at 550 deg. C as lower bound at corresponding fluence levels. (author)

  10. Similarity of molecular shape.

    Science.gov (United States)

    Meyer, A Y; Richards, W G

    1991-10-01

    The similarity of one molecule to another has usually been defined in terms of electron densities or electrostatic potentials or fields. Here it is expressed as a function of the molecular shape. Formulations of similarity (S) reduce to very simple forms, thus rendering the computerised calculation straightforward and fast. 'Elements of similarity' are identified, in the same spirit as 'elements of chirality', except that the former are understood to be variable rather than present-or-absent. Methods are presented which bypass the time-consuming mathematical optimisation of the relative orientation of the molecules. Numerical results are presented and examined, with emphasis on the similarity of isomers. At the extreme, enantiomeric pairs are considered, where it is the dissimilarity (D = 1 - S) that is of consequence. We argue that chiral molecules can be graded by dissimilarity, and show that D is the shape-analog of the 'chirality coefficient', with the simple form of the former opening up numerical access to the latter. PMID:1770379

  11. The Qualitative Similarity Hypothesis

    Science.gov (United States)

    Paul, Peter V.; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within…

  12. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    OpenAIRE

    Paula Fernanda da Silva Farina; Alexandre Bellegard Farina; Celso Antonio Barbosa; Helio Goldenstein

    2012-01-01

    The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i) time at cryogenic temperatures (3, 10 and 30 hours); ii) cryogenic temperatures (–80°C and –196°C); iii) stress relief heat treatment (130°C) before cryogenic treatments; iv) effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and witho...

  13. Effects of ageing on the ductile fracture of AISI type 316 stainless steel

    International Nuclear Information System (INIS)

    The micromechanisms of ductile fracture have been studied in a commercial AISI type 316 austenitic stainless steel. Tensile, Charpy impact and ductile fracture toughness testing has been performed on unaged material and samples aged at 7000C for times up to 4380 h. Examination of the specimens after testing has demonstrated that the microstructural changes occurring at grain boundaries are reponsible for the observed losses of ductility and crack growth resistance. The relative magnitude of the observed changes in mechanical properties has been accounted for using a simple model to describe the ductile fracture process. (author)

  14. 1020 AISI-SAE steel Austenitic Nitrocarburising with alcohol and triethanolamine

    Directory of Open Access Journals (Sweden)

    Álvaro Castro P

    2010-04-01

    Full Text Available The present work shows AISI-SAE 1020 steel's nitrocarbide layer's microstructure and micro-hardness profile following 4 hours at 700ºC using methanol, isopropanol and triethanolamine. The steel was then hardened by quenching it in water and then tempered at 350ºC for 1 hour. Its surface had been partially oxidised by heating it at 400ºC for 1 hour. An example is given of other researchers analysing microstructure and propierties in steel having 0,5% C, using endothermic gas and different amounts of ammoniac.

  15. Thermo-mechanical and isothermal fatigue behavior of austenitic stainless steel AISI 316L

    Czech Academy of Sciences Publication Activity Database

    Škorík, Viktor; Šulák, Ivo; Obrtlík, Karel; Polák, Jaroslav

    Ostrava: TANGER Ltd, 2015. ISBN 978-80-87294-58-1. [METAL 2015 - International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA15-20991S; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Thermo-mechanical fatigue (TMF) * In-phase cycling (IP) * Isothermal fatigue (IF) * AISI 316L * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  17. Investigation into some tribological properties of plasma nitrided hot-worked tool steel AISI H11

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Sahin, A.Z.; Said, S.A.M.; Nickel, J.; Coban, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    1996-04-01

    Interest in the tribological properties of plasma nitriding has increased substantially over the past years because plasma nitriding provides a high nitride depth and improved hard facing. The present study examines the tribological properties of AISI H11 plasma nitrided, hot-worked steel. Different nitriding temperatures and durations were considered. Characterization of the composite structures was investigated with wear tests, x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and microhardness tests. The depth profile of the nitrided zone was measured using the nuclear reaction analysis (NRA) technique. Plasma nitriding affected the microhardness, wear properties, and morphology considerably. Increase in process temperature increased the nitride zone depth.

  18. Laser welding of butt joints of austenitic stainless steel AISI 321

    OpenAIRE

    A. Klimpel; A. Lisiecki

    2007-01-01

    Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters w...

  19. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    Science.gov (United States)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-07-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  20. The structural characterization of some biomaterials, type AISI 310, used in medicine

    Science.gov (United States)

    Minciuna, M. G.; Vizureanu, P.; Hanganu, C.; Achitei, D. C.; Popescu, D. C.; Focsaneanu, S. C.

    2016-06-01

    Orthopedics biomaterials are intended for implantation in the human body and substituted or help to repair of bones, cartilage or organ transplant, and tendons. At the end of the 20th century, the availability of materials for the manufacture implants used in medicine has been the same as for other industrial applications. The most used metals for manufacturing the orthopedics implants are: stainless steels, cobalt-chrome-molybdenum alloys, titanium and his alloys. The structural researches which are made in this paper, offer a complete analysis of AISI310 stainless steels, using: optical spectrometry, X-ray diffraction and scanning electronic microscopy.

  1. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Rodrigo L.O. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Pastore, Heloise O. [Instituto de Quimica, Universidade Estadual de Campinas, 13084-862 Campinas, SP (Brazil); Schmidt, Vanessa [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Baumvol, Israel J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Abarca, Silvia A.C.; Souza, Fernando S. de; Spinelli, Almir [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Figueroa, Carlos A. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil); Giacomelli, Cristiano, E-mail: cgiacomelli@pq.cnpq.b [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil)

    2010-09-15

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (E{sub pit}) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 {sup o}C and 520 {sup o}C. Under such experimental conditions the E{sub pit}-values shifted up to 1.25 V in the positive direction.

  2. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    International Nuclear Information System (INIS)

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (Epit) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 oC and 520 oC. Under such experimental conditions the Epit-values shifted up to 1.25 V in the positive direction.

  3. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    International Nuclear Information System (INIS)

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na2 SO4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  4. Effects of the stress reduction tests in the creep of AISI-316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Stress Reduction Tests were performed at the temperature of 1006 K (7330C) in AISI-316 stainless steel and the evolution of the microstructure was followed. After the stress reduction a rapid decrease in the dislocation density, a continuous increase in the average carbide size and a decrease in the mean particle spacing are observed. No change in the subgrain size occurs after the stress reduction. An increase in the creep resistance is observed after the stress reductions and is interpreted based on the microstructural modifications. (Author)

  5. Wear Properties of TiN Coating Formed on AISI D2 Surface

    OpenAIRE

    ÇEĞİL, Özkan; KILINÇ, Bülent; Şen, Şaduman

    2014-01-01

    In this work, the wear test of uncoated and titanium nitride coated AISI D2 cold work tool steel against silicon nitride ball was realized at 0.3 m/s sliding speed and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then titanium nitride coating was performed by pack diffusion coating in a powder mixture consisting of ferro-titanium, ammonium chloride and alumina at 1000°C for 2h. Nitro-titanized samples were char...

  6. Effect of Welding Current on Energy Absorption of AISI 304 Resistance Spot Welds

    Directory of Open Access Journals (Sweden)

    M. Pouranvari

    2012-08-01

    Full Text Available In this study, the effect of welding current on the energy absorption capability of austenitic stainless steel AISI304 resistance spot welds during the quasi-static tensile-shear test is investigated. Results showed that there is a direct relationship between the fusion zone size and failure energy in expulsion free samples. However, when expulsion occurred, the energy absorption capability reduced significantly. Failure energy for samples experiencing expulsion is lower compared to expulsion free samples with identical or even smaller weld nugget size.

  7. Estimation of embrittlement during aging of AISI 316 stainless steel TIG welds

    Indian Academy of Sciences (India)

    J Nayak; K R Udupa; K R Hebbar; H V S Nayak

    2004-12-01

    Weldments of AISI grade 316 stainless steel, having a ferrite content of 4–6% and a variety of nitrogen concentrations were prepared using a modified element implant technique. Charpy impact specimens prepared from these weldments were subjected to a variety of aging treatments. Impact toughness decreases with aging time at all aging temperatures. Nitrogen is found to be beneficial to toughness. An empirical relation connecting the aging temperature, aging time and nitrogen content with toughness has been developed which can be used to estimate the time for embrittlement.

  8. Estudio de las fuerzas de corte en el fresado de AISI 316

    OpenAIRE

    González López, Diego

    2015-01-01

    Este trabajo trata sobre el comportamiento que tiene un acero AISI 316-L ASS al ser fresado mediante dos tipos de procedimiento: fresado en concordancia y fresado en oposición. Para realizar este estudio se ha instalado un dinamómetro Kistler en la herramienta, con el objetivo de medir las fuerzas de corte que intervienen en el mecanizado.Estas fuerzas se procesan con el sistema de adquisición de datos " WaveBook-512" y se analizan posteriormente con el software " Dasylab 8.0", un sistema d...

  9. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316

    International Nuclear Information System (INIS)

    This work investigates microbially-influenced corrosion (MIC) of stainless steel AISI 316 by two sulphate-reducing bacteria, Desulfovibrio desulfuricans and a local marine isolate. The biofilm and pit morphology that developed with time were analyzed using atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) results were interpreted with an equivalent circuit to model the physicoelectric characteristics of the electrode/biofilm/solution interface. D. desulfuricans formed one biofilm layer on the metal surface, while the marine isolate formed two layers: a biofilm layer and a ferrous sulfide deposit layer. AFM images corroborated results from the EIS modeling which showed biofilm attachment and subsequent detachment over time

  10. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  11. Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel

    Institute of Scientific and Technical Information of China (English)

    Shahram Kheirandish; Ahmad Noorian

    2008-01-01

    The effect of niobium addition on the microstructure of cast AISI H13 hot work tool steel was evaluated by using EDX analyzer attached to the scanning electron microscope.The volume percent of eutectic area and eutectic cell size and also volume percent of different carbides of new steel,which is heat treated under different conditions,are also determined.The results show that the a niobium addition modifies the cast structure of Nb-alloyed hot work tool steel,and reduces the size and volume of eutectic cells,and increases the maximum hardness of the steel.

  12. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    Science.gov (United States)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-04-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  13. Aspects of plasma arc cutting process in the AISI 321 type stainless steel

    International Nuclear Information System (INIS)

    Some aspects of plasma arc cutting process in the AISI321 stainless steel, used in nuclear industry, are analysed. The maximum values of the velocity of cutting and, the minimum quantity of energy per unit of length necesary for the plasma were determined. The localization of irregularities in the cut surface in function of the velocity of cutting was investigated. The cut surfaces were evaluated by surface roughness, using as measurement parameter, the distance between the sharpest salience and the deepest reentrance of the sample profile. The width of layer from thermal action of the plasma was influenced by the velocity of cutting. (Author)

  14. Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation

    International Nuclear Information System (INIS)

    The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength

  15. Numerical Simulation on Temperature and Microstructure during Quenching Process of Large-sized AISI P20 Steel Die Blocks

    Institute of Scientific and Technical Information of China (English)

    SONGDong-li; GUJian-feng; ZHANGWei-min; LIUYang; PANJian-sheng

    2004-01-01

    In this paper, a model of coupled thermal and phase transformation is described. The temperature and microstructure during the quenching process for large-sized AISI P20 steel die blocks have been simulated using the finite element method (FEM). The optimum quenching technology of large-sized AISI P20 steel die blocks has been proposed based on the simulation results, which not only can effectively avoid quenching cracks and obtain deeper hardened depth, but also can improve the microstructure and properties of the large-sized die blocks.

  16. Numerical Simulation on Temperature and Microstructure during Quenching Process of Large-sized AISI P20 Steel Die Blocks

    Institute of Scientific and Technical Information of China (English)

    SONG Dong-li; GU Jian-feng; ZHANG Wei-min; LIU Yang; PAN Jian-sheng

    2004-01-01

    In this paper, a model of coupled thermal and phase transformation is described. The temperature and microstructure during the quenching process for large-sized AISI P20 steel die blocks have been simulated using the finite element method (FEM). The optimum quenching technology of large-sized AISI P20 steel die blocks has been proposed based on the simulation results, which not only can effectively avoid quenching cracks and obtain deeper hardened depth,but also can improve the microstructure and properties of the large-sized die blocks.

  17. Optimization of the contact mechanical strength of magnetron-sputtered nitrogen-doped AISI 316L physically vapour deposited coatings

    International Nuclear Information System (INIS)

    The reactive magnetron sputtering technique adopted produces perfectly adhering nitrogen-doped AISI 316L coatings on construction and stainless steel substrates (AISI 316L and 4135). Surface mechanical testing was done by indentation and sclerometric, frictional, low cycle fatigue. The major damage parameters adopted were the critical coating cracking loads, track depression and lateral pile-up volumes. It is shown that the detrimental effect of growth defects on coating brittleness can be controlled to some extent by optimizing substrate surface treatment prior to and bias voltage during deposition. (orig.)

  18. Decomposition kinetics of expanded austenite with high nitrogen contents

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    ) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L......This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2...

  19. Decomposition kinetics of expanded austenite with high nitrogen contents

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2......) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L...

  20. Limiting Similarity Revisited

    OpenAIRE

    Szabo, P; Meszena, G.

    2005-01-01

    We reinvestigate the validity of the limiting similarity principle via numerical simulations of the Lotka-Volterra model. A Gaussian competition kernel is employed to describe decreasing competition with increasing difference in a one-dimensional phenotype variable. The simulations are initiated by a large number of species, evenly distributed along the phenotype axis. Exceptionally, the Gaussian carrying capacity supports coexistence of all species, initially present. In case of any other, d...

  1. Compression-based similarity

    OpenAIRE

    Vitányi, Paul

    2011-01-01

    First we consider pair-wise distances for literal objects consisting of finite binary files. These files are taken to contain all of their meaning, like genomes or books. The distances are based on compression of the objects concerned, normalized, and can be viewed as similarity distances. Second, we consider pair-wise distances between names of objects, like "red" or "christianity." In this case the distances are based on searches of the Internet. Such a search can be performed by any search...

  2. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  3. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  4. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  5. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    International Nuclear Information System (INIS)

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses

  6. OPTIMIZATION OF PROCESSING PARAMETERS IN ELECTROCHEMICAL MACHINING OF AISI 202 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    V. SATHIYAMOORTHY

    2015-06-01

    Full Text Available This paper attempts to optimize the predominated machining parameters in Electro Chemical Machining (ECM of AISI 202 Austenitic stainless steel using Response Surface Methodology (RSM. The chosen material has been used in railway rolling stock. The selected influencing parameters are applied voltage, electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty six experiments were conducted through design of experiments and central composite design in RSM was applied to identify the optimum conditions which turn into the best Material Removal Rate (MRR and Surface roughness (SR. The experimental analyses reveal that applied voltage of 16 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 10 L/min would be the optimum values in ECM of AISI 202 under the selected conditions. For checking the optimality of the developed equation, MRR of 298.276 mm3/min and surface roughness Ra of 2.05 µm were predicted at applied voltage of 12.5 V, tool feed rate of 0.54 mm/min and electrolyte discharge rate of 11.8 L/min with composite desirability of 98.05%. Confirmatory tests showed that the actual performance at the optimum conditions were 291.351 mm3/min and 2.17 µm. The deviation from the predicted performance is less than 6% which proves the composite desirability of the developed models for MRR and surface roughness.

  7. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    International Nuclear Information System (INIS)

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Plasma nitriding and post-aluminizing result in AlN single phase layer on the steel. • PN–Al coated steel had better corrosion resistance than Al–PN one. • Formation of oxide layer provided protection of PN–Al coated steel against corrosion. • Pitting and surface defects was the dominant corrosion mechanism in Al–PN coated steel. - Abstract: Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN–Al), while the others were pack aluminized followed by plasma nitriding (Al–PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (Rp) resistances were obtained in PN–Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al–PN specimens

  8. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    Energy Technology Data Exchange (ETDEWEB)

    Haftlang, Farahnaz, E-mail: f.haftlang@students.semnan.ac.ir [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Habibolahzadeh, Ali [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Sohi, Mahmoud Heydarzadeh [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-02-28

    Highlights: • AlN coating was applied on AISI 1045 steel via plasma nitriding and aluminizing. • Plasma nitriding and post-aluminizing result in AlN single phase layer on the steel. • PN–Al coated steel had better corrosion resistance than Al–PN one. • Formation of oxide layer provided protection of PN–Al coated steel against corrosion. • Pitting and surface defects was the dominant corrosion mechanism in Al–PN coated steel. - Abstract: Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN–Al), while the others were pack aluminized followed by plasma nitriding (Al–PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (R{sub p}) resistances were obtained in PN–Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al–PN specimens.

  9. Characterization of a nitrurated coat in AISI 420 and SAE 1040 steels with different thermal treatments

    International Nuclear Information System (INIS)

    According to the results obtained in tribological tests, they are heavily influenced by the behavior of the tribosurfaces as well as by the substrate of the erosion couple. This work was undertaken in order to better understand these surface layers, by characterizing the layer of ionic nitruration compounds in test pieces of AISI 420 stainless steel with different thermal treatments and under the influence of the alloying elements while they are being formed. Circular test pieces of AISI 420 stainless steel and SAE 1040 steel were used. Samples of both groups were quenched and tempered at 673 K and 943 K. Then they were ionically nitrurated at 25% N2 and 75% H2, for 20 h at a pressure of 0.15 MPa. The qualitative determination of the present phases was carried out by X-ray diffraction (XRD) and with grade line X-ray diffraction. The thicknesses for the nitrurated layers were established by Vickers microhardness variation. The morphology, size, distribution and preferred site of carbide precipitation were analyzed by optic microscopy and scanning electron microscopy (SEM). The results show the influence of the alloying elements and of the prior microstructure, product of the different tempering temperatures, on the morphology of the nitrurated layer (CW)

  10. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    International Nuclear Information System (INIS)

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  11. Sintering, microstructure and properties of WC-AISI304 powder composites

    International Nuclear Information System (INIS)

    Highlights: ► Total replacement of Co binder by stainless steel AISI 304 in WC based composites. ► Processing conditions for WC–stainless steel composites. ► Mechanical behavior and oxidation resistance of WC–stainless steel composites. -- Abstract: Tungsten carbide–stainless steel (AISI 304) based composites were successfully prepared by powder metallurgy routes using vacuum sintering at a maximum temperature of 1500 °C. The effects of the binder amount (between 6 and 15 wt.%) on the phase composition, microstructure and mechanical properties, namely hardness and fracture toughness, were investigated. Appreciable amount of (M,W)6C up to 12 wt.% was detected, especially for the higher SS contents. However, a good compromise between toughness and hardness was observed. Besides that, improved oxidation resistance was noticed in WC–SS based composites compared with WC–Co composites. The results are discussed having in mind the correlation between chemical composition, phase composition, microstructure and mechanical behavior

  12. Microstructure evolution in nano/submicron grained AISI 301LN stainless steel

    International Nuclear Information System (INIS)

    The phase and microstructure evolution of a heavily cold-rolled AISI 301LN stainless steel (SS), before and after annealing is discussed. AISI 301LN SS has been cold-rolled to 63% rolling reduction and subsequently annealed from 600 to 1000 deg. C for short annealing durations (1-100 s). Phase analysis indicates that the cold-rolled sheet comprises almost 100% martensite, while transmission electron microscopy examination reveals its morphology to be of dislocation cell- and heavily deformed lath-type martensite. The martensite → austenite reversion upon annealing at 600 deg. C for 1 and 10 s is negligible, but nanoscale austenite grains are formed in the martensitic matrix. Partial reversion to nano/submicron austenite grains is observed for samples annealed at 600 deg. C for 100 s, and 700 deg. C for 1 s. Samples annealed at higher temperatures exhibit a complete reversion to submicron/nano-austenite grains with a large grain size variation, as well as secondary phase chromium nitride precipitates.

  13. SIMS study on the surface elemental distribution in AISI type 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Chika; Wagner, Stefan; Burlaka, Vladimir; Pundt, Astrid [Institut fuer Materialphysik der Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Martin, Mauro; Weber, Sebastian [Gemeinsame Forschergruppe, Helmholtz-Zentrum Berlin / Ruhr-Universitaet Bochum, Universitaetsstr. 150 - IA 2/44, D-44801 Bochum (Germany); Bourgeon, Anais; Pargeter, Richard [TWI Ltd., Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom); Michler, Thorsten [Adam Opel GmbH, IPC R2-50, GM Alternative Propulsion Center Europe 65423 Ruesselsheim (Germany)

    2011-07-01

    Hydrogen embrittlement of low-Ni austenitic stainless steels is suggested to occur due to strain-induced surface alpha -martensite, since the hydrogen diffusivity in bcc phases is expected to be much higher than in the austenitic phase. But, also the local surface chemistry might be responsible for the steel susceptibility. The surface chemistry on two different surface conditions of AISI 304 was investigated by Secondary Ion Mass Spectrometry: a. directly after the machining process and b. after solution annealing process. For both AISI 304 surfaces a layered stacking of Fe- and Cr-oxide was found. The oxide layer thickness was about 5 nm for sample a., and about 10 nm for sample b. The chemical mapping on sample a. shows relatively homogeneous elemental distributions due to the fine microstructure of martensite. For sample b, Fe, Ni, SiO2, FeO and NiO are segregated at the grain boundaries. In contrast, Cr and CrO are distributed in grains.

  14. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    International Nuclear Information System (INIS)

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000oC for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB2 and Nb3B4 and also iron boride phases such as FeB, Fe2B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV0.005

  15. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Science.gov (United States)

    Hajian, M.; Abdollah-zadeh, A.; Rezaei-Nejad, S. S.; Assadi, H.; Hadavi, S. M. M.; Chung, K.; Shokouhimehr, M.

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3-6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  16. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  17. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Science.gov (United States)

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  18. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    Science.gov (United States)

    Kon, O.; Pazarlioglu, S.; Sen, S.; Sen, U.

    2015-03-01

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000oC for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1-4 h. The presence of the niobium boride layers such as NbB, NbB2 and Nb3B4 and also iron boride phases such as FeB, Fe2B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV0.005.

  19. Using Mather-Type Plasma focus Device for Surface Modification of AISI304 Steel

    International Nuclear Information System (INIS)

    A 8.8 kJ plasma focus device with a nitrogen gas filling and a copper anode capsulated by aluminum was used to modify the surface of AISI304 steel substrate, in order to improve its properties. The treatment was carried out using a various number of nitrogen plasma focus shots at a pressure of 0.5 mbar and at two steel sample distances (20 and 40 mm) from the anode. The plasma diagnostics was made using the voltage and current curves recorded by a voltage divider, Rogowski coil, accompanied with calculations using a five phase radiative Lee model (RADPF5.15a) to determine the temperature and plasma density. The surface hardness of AISI304 steel was increased by 175% after plasma treatment and the thickness of the treated layers was about 1-2 μ. Results show that the surface hardness is increased with increasing shot number and decreased with increasing distance from the anode. Changes in surface morphology and the elemental composition were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). (author)

  20. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Toivonen, A. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland); Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H. [Department of Mechanical Engineering, Helsinki University of Technology Puumiehenkuja 3, P.O. Box 4200, FIN-02015 HUT (Finland)

    2004-07-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  1. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated...

  2. HIGH SPEED END MILLING OF HARDENED AISI D3 COLD WORK TOOL STEEL WITH CBN CUTTING TOOL

    OpenAIRE

    Aslan, E; CAMUŞCU, N.

    2010-01-01

    ABSTRACTIn this work, high speed end milling of AISI D3 cold-work tool steel hardened to 35 HRC and 62 HRC was investigated using CBN cutting tools. Cutting tool performance was studied with respect to tool life and surface finish of the workpiece. The effect of material hardness on the tool wear and surface roughness was also discussed.

  3. X-Ray diffraction application in studying the nitrogen fixing and aging in stainless steel AISI 304

    International Nuclear Information System (INIS)

    Solid solutions of N in AISI-304 stainless steels were aged to different degrees. The aging was monitored through X-Ray difraction measurement of the lattice parameter 'a'. The increases in 'a', due to the increase of N in solid solution were determined experimentally

  4. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  5. The qualitative similarity hypothesis.

    Science.gov (United States)

    Paul, Peter V; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within the purview of two groups of cognitive models: those that emphasize the cognitive development of individuals and those that pertain to disciplinary or knowledge structures. It is argued that the QSH has scientific merit with implications for classroom instruction. Future research should examine the validity of the QSH in other disciplines such as mathematics and science and should include perspectives from social as well as cognitive models. PMID:20415280

  6. Thermal fatigue of austenitic and duplex stainless steels

    OpenAIRE

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  7. Self Similar Optical Fiber

    Science.gov (United States)

    Lai, Zheng-Xuan

    This research proposes Self Similar optical fiber (SSF) as a new type of optical fiber. It has a special core that consists of self similar structure. Such a structure is obtained by following the formula for generating iterated function systems (IFS) in Fractal Theory. The resulted SSF can be viewed as a true fractal object in optical fibers. In addition, the method of fabricating SSF makes it possible to generate desired structures exponentially in numbers, whereas it also allows lower scale units in the structure to be reduced in size exponentially. The invention of SSF is expected to greatly ease the production of optical fiber when a large number of small hollow structures are needed in the core of the optical fiber. This dissertation will analyze the core structure of SSF based on fractal theory. Possible properties from the structural characteristics and the corresponding applications are explained. Four SSF samples were obtained through actual fabrication in a laboratory environment. Different from traditional conductive heating fabrication system, I used an in-house designed furnace that incorporated a radiation heating method, and was equipped with automated temperature control system. The obtained samples were examined through spectrum tests. Results from the tests showed that SSF does have the optical property of delivering light in a certain wavelength range. However, SSF as a new type of optical fiber requires a systematic research to find out the theory that explains its structure and the associated optical properties. The fabrication and quality of SSF also needs to be improved for product deployment. As a start of this extensive research, this dissertation work opens the door to a very promising new area in optical fiber research.

  8. Wear measurements of stainless steel AISI 316 by thin layer activation in cyclotron

    International Nuclear Information System (INIS)

    Nuclear energy techniques have multiple applications in medicine, agriculture and industry. Among the industrial applications, thin layer activation shows as a promising quantitative analytic method for on-line wear measurements in machine components with many advantages when compared with the conventional methods. Some of these advantages are beside the on-line measurements the possibility to carry out these measurements in specific areas where the material is activated and also for a short time required in the wear analysis. The main objective of this work was to study the viability to develop an experimental method using proton irradiation in the thin layer activation technique for wear evaluation of machine metallic components. In this work wear measurements, in stainless steel AISI 316 irradiated with 8 MeV - protons using the CV-28 Cyclotron at IPEN-CNEN/SP, were carried out. The first task of this work was the proton beam characterization in both homogeneity and incident energy using specific nuclear reactions in samples of pure Cu. Two sets of stainless steel AISI 316 samples were used. The first set were formed by 12.5 μm foils which were used to obtain the calibration curves that give the induced activity as a function of thickness. The second set of samples was stainless steel AISI 316 blocks on which consecutive programmed wear processes were performed using an automatic polishing machine. After proton irradiation the foils activated were measured with a high purity Ge detector where 56Co, 57Co, 58Co and 52Mn were determined and selected as a function of the proton energy and the radioactive decay of the radionuclides of short half-life. From these radionuclides, 56Co had shown to be the worse suitable for the calibration curve determination. For on-line wear measurements a Nal(Tl)-detector with a portable probe was used. To simulate real conditions for the wear measurements, metallic capsules were used to separate the activated material and the

  9. Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyección térmica por arco eléctrico

    Directory of Open Access Journals (Sweden)

    López-Covaleda, E. A.

    2013-10-01

    Full Text Available The commercial materials 140MXC (with iron, tungsten, chrome, niobium, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1 homogeneous coatings and (2 coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser confocal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW. We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation.Mediante proyección térmica de arco eléctrico fueron depositados tres materiales comercialmente conocidos como: 140MXC (a base de hierro, wolframio, cromo y niobio, 530AS (acero AISI 1020 y 560AS (acero AISI 420, sobre acero AISI 4340. Con el objetivo de evaluar la mejor estrategia para incrementar la resistencia al desgaste abrasivo, los recubrimientos fueron depositados de dos formas: (1 monocapas homogéneas de cada material y (2 recubrimientos depositando con alambres disimiles de 140MXC + 530AS y 140MXC + 560AS. Los recubrimientos fueron caracterizados microestructuralmente mediante Difracción de rayos X, Microscopía óptica, Microscopía láser confocal y Microscopía electrónica de barrido. La evaluación de la resistencia al desgaste abrasivo se realizó mediante ensayo con arena seca y rueda de caucho (DSRW. Se encontró que la resistencia al desgaste depende entre otras de las

  10. Effects of hydrogen charging methods on ductility and fracture characteristics of AISI 9840 steel

    Energy Technology Data Exchange (ETDEWEB)

    Biggiero, G.; Borruto, A.; Taraschi, I. [Rome Univ. (Italy). Ist. di Metallurgia e Metallografia

    1995-06-01

    Two different methods were used in the tests: the premature fracture method and the tensile test under hydrogen charging method, on AISI 9840 steel corrosion specimens. The aim of this work was to reveal the hydrogen effects on plastic deformation in tensile tests with or without simultaneous hydrogen charging. True stress-true strain curves have clearly shown the material`s different behaviour in the two tests: in the case of premature fracture tests, during plastic deformation, dislocations glide and allow hydrogen to escape and the material to partially regain its properties more rapidly; on the contrary, in the case of tensile tests under hydrogen charging, the interaction between the penetrating hydrogen and the Cottrell clouds (pre-existing hydrogen) slackens dislocation glide, so that plastic deformation is greatly reduced, as is shown both from the diagrams and the SEM analyses. (author)

  11. Applications of the essay at slow deformation velocity in pipes of stainless steel AISI-304

    International Nuclear Information System (INIS)

    Nowadays is carried out research related with the degradation mechanisms of structures, systems and/or components in the nuclear power plants, since many of the involved processes are those responsible for the dependability of these, of the integrity of the components and of the aspects of safety. The purpose of this work, was to determine the grade of susceptibility to the corrosion of a pipe of Austenitic stainless steel AISI 304, in a solution of Na CI (3.5%) to the temperatures of 60 and 90 C, in two different thermal treatments - 1. - Sensitive 650 C by 4 hours and cooled in water. 2. Solubilized to 1050 C by 1 hour and cooled in water

  12. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    Science.gov (United States)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  13. Surface Modification by Nitrogen Plasma Immersion Ion Implantation on Austenitic AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Miguel CASTRO-COLIN; William DURRER; Jorge ALPEZ; Enrique RAMIREZ-HOMS

    2016-01-01

    Surfaces of AISI 304 austenitic stainless steel plates nitrided by plasma immersion ion implantation (PIII) technology were studied by means of Auger electron spectroscopy (AES)and X-ray photoelectron spectroscopy (XPS)to determine the effect of the nitriding process on the surface and subjacent layers.Elemental compositions obtained by AES and XPS at varying depths indicate that the saturation of N is relatively constant as a function of depth,indicating the reliability of PIII technology for subsurface saturation.It is concluded that the concentrations of both Cr and O increase with depth,the subjacent oxide is driven by the Ar+ sputtering process used to access the lower layers,and then N is bound to Cr.

  14. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  15. Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.

    2014-02-01

    Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.

  16. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  17. Vruća prerada AISI A2 alatnog čelika

    OpenAIRE

    Večko Pirtovšek, T.; Peruš, I.; Kugler, G.; Turk, R.; M. Terčelj

    2008-01-01

    Za postizanje više gospodarnosti proizvodnje AISI A2 alatnog čelika potrebni su koraci istraživanja vezani na postizanja tehnološke plastičnosti i uspješno predvidjanje krivulja tečenja. Sa metodom CAE neuralnih mreža bile su predviđene krivulje tečenja i za odgovarajuća temperaturna stanja i brzine deformacija. Pomoću pokusa vrućeg sabijanja utvrđeno je, da ulazna mikrostruktura utječe na donju temperaturnu granicu, a kemijski sastav na gornju temperaturnu granicu radnog područja s obzirom n...

  18. Microstructural characterization of laser surface melted AISI M2 tool steel.

    Science.gov (United States)

    Arias, J; Cabeza, M; Castro, G; Feijoo, I; Merino, P; Pena, G

    2010-09-01

    We describe the microstructure of Nd:YAG continuous wave laser surface melted high-speed steel, namely AISI M2, treated with different laser scanning speeds and beam diameters on its surface. Microstructural characterization of the remelted surface layer was performed using light optical and scanning electron microscopy and X-ray diffraction. The combination of the three techniques provided new insights into the substantial changes induced by laser surface melting of the steel surface layer. The advantage of the method is that it avoids the difficult and tedious work of preparing samples of this hard material for transmission electron microscopy, which is the technique normally used to study these fine microstructures. A melted zone with a dendritic structure and a partially melted zone with a heterogeneous cellular structure were observed. M(2)C carbides with different morphologies were identified in the resolidified surface layer after laser melting. PMID:20701656

  19. Multi-scale modelling of AISI H11 martensitic tool steel surface anisotropic mechanical behaviour

    Directory of Open Access Journals (Sweden)

    Zouaghi Ahmed

    2014-06-01

    Full Text Available In this work, a numerical investigation is carried out on the anisotropic and heterogeneous behaviour of the AISI H11 martensitic tool steel surface using finite element method and a multi-scale approach. An elasto-viscoplastic model that considers nonlinear isotropic and kinematic hardenings is implemented in the finite elements code ABAQUS using small strain assumption. The parameters of the constitutive equations are identified using macroscopic quasi-static and cyclic material responses by the mean of a localization rule. Virtual realistic microstructures, consisting of laths and grains, are generated using particular Voronoï tessellations. These microstructures consider the specific crystallographic orientations α’/γ. Finite element investigation is then performed. The local heterogeneous and anisotropic behaviour of the surface as well as the subsurface is shown under quasi-static and cyclic mechanical loadings. The laths morphology and crystallographic orientation have an important impact on the local mechanical fields.

  20. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc

  1. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  2. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  3. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  4. The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel

    International Nuclear Information System (INIS)

    A statistical analysis of the effect of internal hydrogen on the surface slip morphology of relatively high nickel content AISI 316L type austenitic stainless steel was carried out on high resolution data obtained by atomic force microscopy. Surface plastic strain localisation was studied for different hydrogen contents, two grain sizes, and two plastic strain levels. The height and spacing of approximately 8000 slip bands, observed on 12 specimens, are shown to follow log-normal distributions. Hydrogen increased the mean slip-band height and the mean slip-band spacing for the two macroscopic plastic strain levels considered, and for the two hydrogen concentrations in coarse-grained specimens. The hydrogen effect was also observed for fine-grained specimens, but only for the highest hydrogen concentration. In addition, the emerging dislocation velocity increased by a factor 3 for high hydrogen content.

  5. Effect of constraint on fracture behavior of welded 17mn4 and AISI304 steels

    International Nuclear Information System (INIS)

    In this study, 17Mn4 (P295GH) pressure vessels steel and AISI304 stainless steel were welded with ER309L austenitic consumable. In experimental part of the study, tensile tests were conducted on welded plates and variation of hardness values along specimen was measured. J-integral fracture toughness values were investigated for different crack locations. In order to determine the regions where plastic deformation did not take place due to constraint, uni-axial tensile test was performed on welded tensile specimen after attaching strain gauges. In numerical part of the study, finite element (FE) analyses were conducted by fixing 2-D models precracked on different locations by using ANSYS software. In these models, stress triaxiality and plastic deformation characteristics around crack tip were determined for each crack locations after stress and strain analyses. The limitation on the extension of plastic deformation at diffusion line causes extra increase in stress triaxiality at crack tip

  6. Effect of the Surface Roughness on Galvanic Corrosion of AISI 316 Stainless Steel

    International Nuclear Information System (INIS)

    One of the major problems that can be raised in different mechanical designs in many different applications such as reactors, piping systems and production of hot cells, machine tools, is the galvanic corrosion. Many studies have been carried out concerning the dangerous effect of galvanic corrosion that usually occur between two mating components of dissimilar metals. So far limited attention has been paid to the effect of the surface roughness of two mating parts of two mating parts of same material on their mutual galvanic corrosion. The present work presents a practical study on galvanic corrosion concerning the remarkable effect of the use of two mating parts of same materials (AISI 316 St. St.) but having different values of surface roughness. From this investigation, it is concluded that designers must classify the surface roughness of the mating parts in their design to have the same value, to minimize galvanic corrosion

  7. Analysis of deformation induced martensite in AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  8. Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel

    Indian Academy of Sciences (India)

    M Ghorannevis; A Shokouhy; M M Larijani; S H Haji Hosseini; M Yari; A Anvari; M Gholipur Shahraki; A H Sari; M R Hantehzadeh

    2007-01-01

    This work presents the results of a low-energy nitrogen ion implantation of AISI 304 type stainless steel (SS) at a moderate temperature of about 500° C. The nitrogen ions are extracted from a Kauffman-type ion source at an energy of 30 keV, and ion current density of 100 A cm-2. Nitrogen ion concentration of 6 × 1017, 8 × 1017 and 1018 ions cm-2, were selected for our study. The X-ray diffraction results show the formation of CrN polycrystalline phase after nitrogen bombardment and a change of crystallinity due to the change in nitrogen ion concentration. The secondary ion mass spectrometry (SIMS) results show the formation of CrN phases too. Corrosion test has shown that corrosion resistance is enhanced by increasing nitrogen ion concentration.

  9. Influence Of Surface Roughness On Ultra-High-Cycle Fatigue Of Aisi 4140 Steel.

    Directory of Open Access Journals (Sweden)

    Daniel Januário Cordeiro Gomes

    2015-04-01

    Full Text Available Low and high-cycle fatigue life regimes are well studied and are relatively well understood. However, recent fatigue studies on steels have shown that fatigue failures can occur at low amplitudes even below the conventional fatigue limit in the ultra-high-cycle fatigue range (life higher than 107 cycles. Fatigue life in the regime of 106 to 108 cycles-to-failure in terms of the influence of manufacturing processes on fatigue strength is examined. Specifically, the influence of surface roughness of turned surfaces of AISI 4140 steel specimens on fatigue strength in the giga cycle or ultra-high-cycle fatigue range is evaluated. The fatigue experiments were carried out at room temperature, with zero mean stress, on a rotating-bending fatigue testing machine of the constant bending moment type. The fatigue strength of the specimens were determined using the staircase (or up-and-down method.

  10. An investigation of the aseptic loosening of an AISI 316L stainless steel hip prosthesis

    International Nuclear Information System (INIS)

    The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.

  11. Effect of adhesive geometry on the tensile properties of AISI 1350 steel

    Directory of Open Access Journals (Sweden)

    A. Yasar

    2011-01-01

    Full Text Available It is utilized increasingly to use adhesive bonding in automotive industry to join structural components of metallic materials. The aim of this experimental study is to extend the information available to the automotive design engineer and contribute the better understanding of how the various geometrical shaped of steel parts affect the adhesive bonding. In this study, different types of lap joints, such as butt, step butt, scarf, tubular lap, were used to determine the mechanical strength of SAE/AISI 1350 steel. It has been observed that the cylindrical geometries can be subject to more stress compared to square specimens generally and the geometries with both tensile and shear stress can stand more stress per unit compared with the specimens with only tensile stress.

  12. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  13. Diffusion characteristics of plasma nitrided hard chromium on AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electronic Engineering Dept.; Kocabas, Mustafa; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey)

    2015-06-01

    In order to investigate the different Cr-N formation characteristics of plasma nitrided hard Cr coatings, Cr was electrodeposited on AISI 1010 steel and plasma nitrided at 600, 700 and 800 C for 3 h, 5 h and 7 h, respectively. Phase analyses of resulting Cr-N phases and grain size of Cr layer before and after nitriding process were calculated by X-ray diffraction analysis. Structure of nitride layer and its thickness were analyzed using scanning electron microscopy micrographs. The micrographs indicated that samples consisted of three distinctive layers. In order to distinguish these layers, scanning electron microscopy and energy dispersive spectroscopy (EDX) analysis were used as well as elemental distribution versus depth was plotted. The Cr-N diffusion was investigated by layer thickness measurements, and diffusion coefficient as well as activation energies were calculated.

  14. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  15. Experimental study of dual-beam laser welding of AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.N.; Kannatey-Asibu, E. Jr. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    1997-09-01

    Experiments were conducted to assess the impact of dual-beam laser welding on the cooling rates, and thus microstructure and hardness, of weldments. Temperature measurements were continuously recorded using K-type thermocouples. The results indicate that dual-beam laser welding reduces the hardness of a weldment when compared to the case of single-beam laser welding. For example, the hardness of the hot-rolled AISI 4140 steel used was about 283 HB before laser welding. After laser welding with a power of 800 W and a welding speed of 10 mm/s, the hardness became 552 HB; but with a preheating power of 800 W and an interbeam spacing of 10 mm, the hardness reduced to 477 HB for the same welding speed. The impacts of minor heat source power, welding speed and interbeam spacing on weldment hardness and weld shape for both preheating and postheating cases are discussed.

  16. Stress corrosion cracking of AISI 321 stainless steel in acidic chloride solution

    Indian Academy of Sciences (India)

    Yanliang Huang

    2002-02-01

    The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).

  17. Quantifying Cutting and Wearing Behaviors of TiN- and CrNCoated AISI 1070 Steel

    Directory of Open Access Journals (Sweden)

    Ahmet Cakan

    2008-11-01

    Full Text Available Hard coatings such as titanium nitride (TiN and chromium nitride (CrN are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM, line scan analyses and X-ray diffraction (XRD. The wear properties of TiN- and CrNcoated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples.

  18. Effect of constraint on fracture behavior of welded 17mn4 and AISI304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Uyulgan, Bahadir; Aksoy, Tevfik [Dokuz Eylul University, Izmir (Turkmenistan); Cetinel, Hakan [Celal Bayar University, Manisa (Turkmenistan)

    2011-09-15

    In this study, 17Mn4 (P295GH) pressure vessels steel and AISI304 stainless steel were welded with ER309L austenitic consumable. In experimental part of the study, tensile tests were conducted on welded plates and variation of hardness values along specimen was measured. J-integral fracture toughness values were investigated for different crack locations. In order to determine the regions where plastic deformation did not take place due to constraint, uni-axial tensile test was performed on welded tensile specimen after attaching strain gauges. In numerical part of the study, finite element (FE) analyses were conducted by fixing 2-D models precracked on different locations by using ANSYS software. In these models, stress triaxiality and plastic deformation characteristics around crack tip were determined for each crack locations after stress and strain analyses. The limitation on the extension of plastic deformation at diffusion line causes extra increase in stress triaxiality at crack tip.

  19. Correlation of substructure with time-dependent fatigue properties of aisi304 stainless steel

    Science.gov (United States)

    Ermi, A. M.; Moteff, John

    1982-09-01

    Transmission electron microscopy was employed to study the substructure of AISI 304 stainless steel tested at 482, 593, and 650 °C in low-cycle fatigue with various hold times. Total strains investigated ranged from 0.5 to 2.0 pct, strain rates of 4 E-03 and 4 E-05 s-1. The cell size was found to be inversely related to the relaxed tensile saturation stress, but with different constants of proportionality for the two strain rates. At the lower strain rate, substructures tended to resemble those produced by pure creep. A modified work-hardening theory was used to relate the peak saturation stress to both plastic strain and cell size.

  20. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H2 S O4 solution containing As2 O3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  1. Effect of Starch Binders in Alumina Coatings on Aisi 316 L Stainless Steel for Medical Application

    Science.gov (United States)

    Ghazali, M. J.; Pauzi, A. A.; Azhari, C. H.; Ghani, J. A.; Sulong, A. B.; Mustafa, R.

    A slurry immersion technique of alumina coatings was carried out on several AISI 316 L stainless steels using two types of binding agents; commercial starch and Sarawakian starch (sago), which were also mixed with polyvinylchloride (PVA) for strengthening purposes. The sintering temperatures in this work were varied from 500 to 1000°C. Prior to sintering process, all stainless steels were metallographically ground and polished to approximately 0.6 µm of average roughness. Detailed characterisations on the sintered specimens were carried out with the aid of the secondary electron microscopy (SEM), microhardness and a profilometer. The results revealed that coated steels using sago binder showed improved adhesion and homogenous microstructures with greater hardness of 2642 HV than those found in coated steel with commercial starch after sintering process.

  2. Microstructure and Texture Evolutions in AISI 1050 Steel by Flow Forming

    Energy Technology Data Exchange (ETDEWEB)

    Bedekar, Vikram [Timken Technology Center, Canton, OH; Pauskar, Praveen [Ohio State University, Columbus; Shivpuri, Rajiv [Ohio State University, Columbus; Howe, Jane Y [ORNL

    2014-01-01

    Hot rolled and annealed AISI 1050 steel cylindrical coupons were flow formed at different levels of deformation (66% and 90% wall thickness reduction). TEM studies revealed development of ultra fine (sub) grain cell structure due to severe plastic deformation. The transverse subgrain size changed from 10 m (beginning) to 300nm (66% deformation) to 40nm (90% deformation). EBSD study revealed decreased recrystallization fraction at 90% deformation compared with 66% deformation due to orientation pinning from preferred orientation along {002} planes. No evidence of dislocation pinning or cracking was observed on any samples. The aim of the present work is to study the deformation behaviour and microstructural evolution during conventional flow forming process. The study also sheds light on the strengthening behaviour and structural changes during severe straining.

  3. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  4. Effect of Nitridation Time on the Surface Hardness of Medium Carbon Steels (AISI 1045)

    International Nuclear Information System (INIS)

    It has been investigated the effect of nitridation time on the surface hardness of medium carbon steels (AISI 1045). Parameters determining to the results were flow rate of the nitrogen gas, temperature and time. In this experiments, sample having diameter of 15 mm, thick 2 mm placed in tube of glass with diameter 35 mm heated 550 oC, flow rate and temperature were kept constants, 100 cc/minutes and 550 oC respectively, while the time were varied from 5, 10, 20 and 30 hours. It was found, that for the nitridation time of 5, 10, 20, and 30 hours, the surface hardness increased from 145 VHN to, 23.7, 296.8, 382.4 and 426.1 VHN, respectively. (author)

  5. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Directory of Open Access Journals (Sweden)

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  6. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  7. Application of radionuclide techniques on AISI 316 stainless steel wear measurements

    International Nuclear Information System (INIS)

    In the last years a wide development in the area of surfaces treatment was observed in order to reduce the wear phenomena in machine components, motors, tools. In this work, sheets of stainless AISI 316 with thickness of 12,5 μm, which simulates successive and equal cuts in a block, were irradiated with 9 MeV protons at the CV-28 cyclotron. The induced activity in each foil was measured with a Ge(Li) detector, and the variation of this activity, as function of irradiated depth, was followed. In this activation with protons nominated thin layer activation has some advantages when compared to neutron activation. In the case the activation of foils of stainless steel 316 the peaks related to 52 Mn, 56 Co, 57 Co and 58 Co were clearly discriminated in the spectrum and this fact is used to establish a calibration curve for wear measurements. (author)

  8. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    X. M. ANTHONY

    2015-03-01

    Full Text Available In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA was conducted to understand the influence of all cutting parameters and tool geometry on cutting force.

  10. Stress corrosion cracking of stainless steel AISI 316L HAZ in PWR nuclear reactor environment

    International Nuclear Information System (INIS)

    In pressurized water reactors (PWRs), low alloy carbon steels and stainless steel are widely used in the primary water circuits. In most cases, Ni alloys are used to joint these materials and form dissimilar welds. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. Stress corrosion cracking of metals and alloys is caused by synergistic effects of environment, material condition and stress. Over the last thirty years, CST has been observed in dissimilar metal welds. This study presents a comparative work between the CST in the HAZ (Heat Affected Zone) of the AISI 316L in two different temperatures (303 deg C and 325 deg C). The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that CST is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C). (author)

  11. Corrosion and low-cycle fatigue properties of AISI 316L in flowing Pb-17Li

    International Nuclear Information System (INIS)

    Corrosion and low-cycle fatigue (LCF) tests were performed on AISI 316L steel specimens in a flowing lithium lead environment. The LCF and corrosion tests were conducted simultaneously in the ''LIFUS 2'' forced convection loop, at a temperature of 723 K and a flow velocity of approximately 0.01 m/s. The LCF tests, which had a strain amplitude ranging from 0.008 to 0.016, were compared with reference tests performed in an inert argon atmosphere. The results show that liquid Pb-17Li has no detrimental effect on the LCF behaviour of 316L at the test temperature of 723 K. The corrosion tests extended from 650 to 1600 h with intermediate steps. Metallographic and SEM-EDAX analyses indicated the presence of an irregular porous ferritic layer. The results are discussed in terms of ferrite growth rate and the effect of corrosion phenomena on LCF behaviour. ((orig.))

  12. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  13. Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    M. Olzon-Dionysio

    2013-01-01

    Full Text Available When AISI 316L stainless steels are submitted to the nitriding process at temperatures lower than 450 °C, a high nitrogen content expanded austenite phase is formed, which shows higher hardness and higher pitting corrosion resistance compared to the untreated material. As a result, this material becomes adequate for biomedical application. The conditions of the nitriding technique, such as gas mixture, pressure, time and temperature, play an important role in some properties of the modified layer, including: thickness, hardness and N concentration along the layer. This paper explores a set of six samples of AISI 316L, nitrided at different times and temperatures, whose properties show important differences. The aim of this research is to investigate the correlation between the nitrided layer thickness (in the range of 0.77 to 11 µm with both X-ray patterns characteristics and hardness measurements, which used two distinct loads. The results of this study show that: whereas the 3.6 gf load was suitable to measure the real hardness for four of the nitrided layers showing thickness ≥ 2.9 µm, the 50 gf load measured a substrate contribution, probably even for the highest thickness, 11 µm. Moreover, analyzing different reflections of the X-ray patterns showed evidence of the clear consistency between the X-Ray depths and the nitrided layer thicknesses: if the layer thickness is lower than the penetration depth of X-rays, two phases (austenite and expanded substrate are present. If the layer thickness is higher, only the austenite is observed. Finally, concerning the citotoxicity property, all the samples, nitrided or not, were approved in the test for biocompatibility, indicating their potential use for biomedical applications.

  14. On The Enhancement of Wear Resistance of Hardened Carbon Tool Steel (AISI 1095) With Cryogenic Quenching

    Institute of Scientific and Technical Information of China (English)

    V.Soundararajan; N.Alagurmurthi; K.Palaniradja

    2004-01-01

    Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified(Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -Ⅱ hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)

  15. Wear of plasma nitrided and nitrocarburized AISI 316L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    F.A.P. Fernandes

    2010-06-01

    Full Text Available Purpose: the purpose of the work is to compare the wear resistance, in dry and lubricated conditions, of AISI 316L austenitic stainless steel samples that were plasma nitrided or nitrocarburized at 450°C for 5 and 10 h, respectively.Design/methodology/approach: Hardness and wear resistance of austenitic stainless steel can be increased substantially, without losing corrosion resistance, by plasma nitriding or nitrocarburizing surface treatments. In this work, AISI 316L austenitic stainless steel was plasma nitrided and nitrocarburized at 450°C, for 5 and 10 h respectively.Findings: The obtained layers were characterized by optical microscopy, X-ray diffraction, microhardness and micro-wear tests in dry and lubricated conditions. Optical microscopy and X-ray diffraction analysis demonstrated that the nitrided layer is homogeneous and primarily composed of nitrogen rich expanded austenite with a thickness of about 15 µm. Nitrocarburized samples exhibited an external layer of chromium and iron compounds and a sub-layer of expanded austenite with a total thickness of 45 µm. Microhardness profiles showed that the hardness near to the surface was close to 1100 HV for nitriding and 1300 HV for nitrocarburizing. Plasma nitrided and nitrocarburized layers exhibited substantial wear reduction in dry and lubricated test conditions. The use of a lubricant oil reduces wear by a factor of approximately 200 compared to the dry test results.Research limitations/implications: The plasma nitrided layer yielded the best wear performance in both dry and lubricated conditions.Originality/value: Plasma nitriding resulted in the best wear performance when compared with nitrocarburizing in dry and lubricated sliding which is probably due to reduced layer fragility.

  16. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Highlights: • FSP can be used to produce bulk ultrafine grained structures in AISI 316L SS. • The main mechanism for grain structure refinement of FSP 316L SS is DDRX. • However, some evidences of CDRX and SRX were also observed. • The material flow was found to be near simple shear deformation (A/A‾ and C). • FSP samples have an enhanced hardness and strength compared with the base metal. - Abstract: Friction stir processing was used to refine the grain structure in 2 mm thick AISI 316L stainless steel sheets, with a pinless tool, at a constant traverse speed of 63 mm/min and relatively low rotational speeds of 200 and 315 rpm. Depending on the processing conditions, the initial grain size of 14.8 μm in the base metal was subsequently decreased to 0.8–2.2 μm in the processed areas. The microstructural characterizations by orientation imaging and transmission electron microscopy revealed that the grain structure evolution in the stir zone is primarily dominated by discontinuous dynamic recrystallization. The material flow was found to be near simple shear deformation and the developed textures were composed of a mixture of A/A‾ and C components of ideal simple shear textures. The mechanical properties were also evaluated by the longitudinal tensile tests and microhardness measurements. The obtained results showed that, despite a 50% decrease in ductility, the highest yield and ultimate tensile strength of the friction stir processed samples are respectively about 1.6 and 1.2 times higher than those of the base metal. In good agreement with the tensile properties, the increased hardness of the stir zone was attributed to the grain structure refinement

  17. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → The cyclic deformation response of AISI 316L steel is investigated at 20 deg. C. → The corresponding microstructure evolution is characterised by electron microscopy. → A 3D representation of dislocation evolution is proposed based on the observation. → The 3D representation gives a good explanation of the microstructure complexity. → The cyclic deformation response is discussed based on the microstructure evolution. - Abstract: The cyclic deformation response of an austenitic stainless steel is characterised in terms of its cyclic peak tensile stress properties by three stages of behaviour: a hardening stage followed by a softening stage, and finally a stable stress response stage. A series of tests have been performed and interrupted at selected numbers of cycles in the different stages of mechanical response. At each interruption point, specimens have been examined by transmission electron microscopy (TEM) with different beam directions by means of the tilting function in order to investigate the formation and the development of dislocation structures from the as-received condition until the end of fatigue life. A new 3D representation of dislocation structure evolution during cyclic loading is proposed on the basis of the microstructural observations. The 3D representation provides a deeper insight into the development of dislocation structures in AISI 316L during low cycle fatigue loading at room temperature. By investigating the dislocation evolution, the study shows that the hardening response is mainly associated with an increase of total dislocation density, whereas the softening stage is a result of the formation of dislocation-free regions. Further development of the dislocation structure into a cellular structure is responsible for the stable stress response stage.

  18. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    Directory of Open Access Journals (Sweden)

    E. Marin

    2013-09-01

    Full Text Available Atomic Layer Deposition ( ALD is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations

  19. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    OpenAIRE

    Mahmoud Hassan R. S.; Yusoff Syafiq A.; Zainuddin Azman; Hussain Patthi; Ismail Mokhtar; Abidin Kamal

    2014-01-01

    High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The incr...

  20. Determinación de tensiones por rayos x del acero AISI 1045 deformado por rodillo // Determination of stress for x‐ray of the steel AISI 1045 deformed for roller

    Directory of Open Access Journals (Sweden)

    Tomás Fernández‐Columbié

    2012-01-01

    Full Text Available El objetivo del trabajo es realizar el análisis de las tensiones a muestras de acero AISI 1045 endurecidasen frío por rodillo. Con empleo del método de Willianson–Hall se determinó las macro ymicrodeformaciones; la deformación reticular del parámetro de red; el tamaño de las cristalitas; losesfuerzos en la red cristalina y la reducción del tamaño promedio de los granos, lo que permitió establecerlos mecanismos de endurecimiento del acero AISI 1045, deformado por rodadura. Fueron medidos yanalizados diferentes puntos teniendo en cuenta los índices de Miller para la fase ferrítica del acero. Losmodelos lineales obtenidos, son estadísticamente significativos, que muestran una tendencia creciente delas propiedades mecánicas y metalúrgicas, según se incrementan las variables independientes delproceso de experimentación.Palabras claves: rodillo, rodadura, deformación plástica.__________________________________________________________________AbstractThe objective of the paper is to carry out the analysis from the tensions to steel samples AISI 1045hardened cold for roller. With employment of the method of Willianson-Hall was determined the macro andmicro deformations; the reticular deformation of the net parameter; the size of the crystallites; the efforts inthe crystalline net and the reduction of the size average of the grains, what allowed to establish themechanisms of hardening of the steel AISI 1045, deformed by rolling. They were measured and analyzeddifferent points keeping in mind the indexes of Miller for the phase ferrite of the steel. The obtained linealmodels, they are statistically significant that they show a growing tendency of the mechanical estates andmetallurgical, as the independent variables of the experimentation process are increased.Key words: roller, rolling, plastic deformation.

  1. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial; Estudo da resistencia a corrosao do aco inoxidavel ferritico AISI 444 para aplicacao como biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rogerio Albuquerque

    2014-09-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  2. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    Directory of Open Access Journals (Sweden)

    Pavel Michel Almaguer‐Zaldivar

    2015-01-01

    Full Text Available Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con un coeficiente de asimetría de 0,1. Se obtuvo que la unión estudiada tiene un límite de resistencia a la fatiga de 178 MPa, a un punto de corte de 2 039 093 ciclos.Palabras claves: unión soldada, fatiga, curva S-N, AISI 1015, electrodo E6013._______________________________________________________________________________AbstractWelded joints are an important component in structures, by this reason is necessary to know the behaviour of these elements under cyclic loads. The objective of this work is to obtain the S-N curve of the butt welded joint of AISI 1015 steel and electrode E6013 as the contribution material. Fatiguetest was realized within the ASTM standard in the MTS810 testing machine. Rectangular cross section specimens was used. Cyclic loads was asymmetric tensile and the asymmetry ratio used was 0,1. In this study was obtained the fatigue limit equal to 178 MPa, at the cut point of 2 039 093 cycles.Key words: welded joint, fatigue, S-N curve, AISI 1015 steel, electrode E6013.

  3. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Hamidzadeh, Mohammad Ali, E-mail: mahamidzadeh@yahoo.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Meratian, Mahmood; Saatchi, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-06-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M{sub 7}C{sub 3} carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy.

  4. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    International Nuclear Information System (INIS)

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M7C3 carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy

  5. EFFECTS OF CARBURIZING AND NITRIDING PROCESSES ON THE COST AND QUALITY OF GEARS PRODUCED WITH AISI 4140 AND 8620 STEELS

    Directory of Open Access Journals (Sweden)

    Claudio José Leitão

    2012-09-01

    Full Text Available This study compares the effects of nitriding and carburizing processes applied to gears subjected to contact stresses below 1300 MPa. The manufacturing cost, as well the depth of hardened layer and the distortion produced by two processes are analyzed. AISI 4140 gears quenched, tempered, liquid and gas nitriding and AISI 8620 gears after liquid carburizing, quenching and tempering are analyzed. The dimensional control of the gears was carried out before and after heat and thermochemical treatments. It is concluded that liquid or gas nitriding processes are about 30% more economical than liquid carburizing an also they reduce the dimensional changes. By the other hand liquid carburizing achieves greater case depth. Liquid nitriding process presents the lowest cost, dimensional changes and case depth.

  6. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  7. Analysis of a premature failure of welded AISI316L stainless steel pipes originated by microbial induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Otero, E.; Bastidas, J.M.; Lopez, V. [Centro Nacional de Investigaciones Metalurgicas, Madrid (Spain)

    1997-07-01

    This paper analyses the causes of the premature failure of welded AISI 316L stainless steel (ss) pipes which formed part of a sea water cooling circuit. The service time of the pipes was 8 months. The laboratory tests carried out consisted of metallography tests, {delta}-ferrite determination, intergranular corrosion susceptibility, cyclic anodic polarization curves, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photo-electron spectroscopy (XPS). The study presents typical forms of microbial induced corrosion (MIC) in AISI 308L and 316L ss in contact with natural sea water. The research is completed with the performance of bacteriological tests which demonstrate that the bacteria which cause the localized corrosion are of the sulphate-reducing genus ``desulfovibrio`` and the sulphide-oxidizing genus ``thiocapsa``. (orig.) 17 refs.

  8. Study the influence of a new ball burnishing technique on the surface roughness of AISI 1018 low carbon steel

    Directory of Open Access Journals (Sweden)

    Abd Alkader Ibrahim

    2015-02-01

    Full Text Available Hard roller burnishing with a ball tool is a surface-finishing where a free-rotating tool rolls over the machined surface under high pressures and flattens the surface roughness peaks by cold work. In the present work, a new burnishing technique has been applied which enables both single and double ball burnishing process in site after turning without releasing the specimen. Sets of experiments are conducted to investigate the influence of burnishing force, feed, speed and number of tool passes on surface roughness of AISI 1018 Low Carbon Steel specimens. Burnishing results showed significant effectiveness of the new burnishing technique in the process. The results revealed that minimum surface roughness are obtained by applying the double ball burnishing process on AISI 1018 Low Carbon Steel specimens. Improvement in surface finish can be achieved in both single and double ball burnishing by increasing the number of burnishing tool passes. The results are presented in this paper.

  9. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    International Nuclear Information System (INIS)

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO2) coated AISI 304 substrates. In HA-SiO2 coatings, 10 wt% SiO2 and 20 wt% SiO2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO2 coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  10. LaCrO3 composite coatings for AISI 444 stainless steel solid oxide fuel cell interconnects

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2012-12-01

    Full Text Available Doped lanthanum chromite-based ceramics are the most widely used interconnector material in solid fuel cells (SOFC since they exhibit significant electrical and thermal conductivity, substantial corrosion resistance and adequate mechanical strength at ambient and high temperatures. The disadvantage of this material is its high cost and poor ductility. The aim of this study is to determine the mechanical and oxidation behavior of a stainless steel (AISI 444 with a LaCrO3 deposition on its surface obtained through spray pyrolisis. Coated and pure AISI 444 materials were characterized by mechanical properties, oxidation behavior, X-ray diffraction and scanning electronic microscopy. Results indicated that the coated material displays better oxidation behavior in comparison to pure stainless steel, but no improvement in mechanical strength. Both materials indicate that deformation behavior depends on testing temperatures.

  11. Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet, E-mail: gurpreetsnabha@yahoo.com [University College of Engineering, Punjabi University, Patiala, Punjab (India); Singh, Hazoor [Yadavindra College of Engineering, Punjabi University G.K. Campus, Talwandi Sabo, Punjab (India); Sidhu, Buta Singh [Punjab Technical University, Jalandhar, Punjab (India)

    2013-11-01

    The objective of this study is to evaluate corrosion resistance of plasma sprayed hydroxyapatite (HA) and HA-silicon oxide (SiO{sub 2}) coated AISI 304 substrates. In HA-SiO{sub 2} coatings, 10 wt% SiO{sub 2} and 20 wt% SiO{sub 2} was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy. The corrosion resistance was determined for the uncoated and coated samples. The corrosion resistance of the AISI 304 was found more after the deposition of the HA-SiO{sub 2} coatings rather than HA coating and uncoated. All the coatings were crack free after 24 h dipping in Ringer's solution for electrochemical corrosion testing.

  12. Kajian Sub – Permukaan Baja Paduan Kekerasan Tinggi AISI 4140 Hasil Pembubutan Laju Tinggi Dan Kering Menggunakan Pahat CBN

    OpenAIRE

    Siahaan, Enzo Wiranta Battra

    2012-01-01

    The integrity of the sub - surface plays an important role in product quality. In this study, the impact of rate cuts, feed motion, depth of cut, cutting tool wear and tear on the sub - surface machining of steel AISI 4140 on the end for high speed machining, hard machining and dry machining studied experimentally using CBN cutting tool material. Four test parameters with three levels of cutting speed is low, medium and high. Conducted the data analysis of quantitative and qualitative. Quanti...

  13. Modifications on the behaviour of AISI 304 stainless steel submitted to creep caused by intermediate treatment of annealing

    International Nuclear Information System (INIS)

    Type AISI 304 austenitic stainless steel samples which have been previously creep deformed at 7500C, were annealed at 11000C. The effects of this heat treatment in the mechanical behavior of this material when retested in creep were investigated. The results were analysed by taking into account the structural modifications observed and the controlling mechanisms which operate during the deformation and fracture occurring in the creep process. (Author)

  14. The silica-titania layer deposited by sol-gel method on the AISI 316L for contact with blood

    Directory of Open Access Journals (Sweden)

    W. Walke

    2013-02-01

    Full Text Available Purpose: The study analyses influence of surface modification of Si:Ti on physical and chemical properties of samples made from AISI 316L steel in solution simulating blood-vascular system.Design/methodology/approach: Sol-gel layer was selected on the ground of data from literature. TEOS and TET made the ground for initial solution. Application of the layer on the surface of samples made of AISI 316L steel was preceded by mechanical working - grinding (Ra = 0.40 µm and mechanical polishing (Ra = 0.12 µm. Corrosion resistance tests were performed on the ground of registered anodic polarisation curves and Stern method. In order to evaluate phenomena that take place on the surface of the tested alloys EIS was also applied. The tests were performed in artificial blood plasma at the temperature of T = 37.0±1°C and pH = 7.0±0.2.Findings: Obtained results on the ground of voltammetric and impedance tests showed differentiated electrochemical properties of AISI 316L steel depending on the type of surface treatment. Practical implications: Suggested subject matter of the article supports development of entrepreneurship sector due to high social demand for this type of technologies and relatively easy way of putting obtained laboratory tests data into inductrial and clinical practice.Originality/value: Suggestion of proper variants of surface treatment with application of sol-gel method is meaningful in future perspective and it shall promote determination of technological conditions with precise parameters of creation of oxide layers on metallic implants made of AISI 316L steel that come into contact with blood.

  15. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...... of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite....

  16. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    OpenAIRE

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen; Somers, Marcel A. J.

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature of the martensitic transformation. The kinetics of the transformation is interpreted in terms of a-thermal nucleation and thermally activated growth of lenticular martensite.

  17. OPTIMIZATION OF SURFACE ROUGHNESS AND TOOL FLANK WEAR IN TURNING OF AISI 304 AUSTENITIC STAINLESS STEEL WITH CVD COATED TOOL

    OpenAIRE

    M. Kaladhar; K. Venkata Subbaiah; CH. SRINIVASA RAO

    2013-01-01

    AISI 304 austenitic stainless steel is a popularly used grade in the various fields of manufacturing because of its high ductility, high durability and excellent corrosion resistance. High work hardening, low heat conductivity and high built up edge (BUE) formation made this as difficult-to- machine material. Poor surface quality and rapid tool wear are the common problems encountered while machining it. In the present work, an attempt has been made to explore the influence of machining para...

  18. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    OpenAIRE

    Triwiyanto A.; Zainuddin A.; Abidin K.A.Z; Billah M.A; Hussain P.

    2014-01-01

    This paper present mathematical model which developed to predict the nitrided layer thickness (case depth) of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with ...

  19. Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells

    OpenAIRE

    Lira-Cantú, Monica; Morales Sabio, Angel; Brustenga, Alex; Gómez-Romero, P.

    2005-01-01

    We report the electrochemical deposition of nanostructured nickel-based solar absorber coatings on stainless steel AISI type 316L. A sol–gel silica-based antireflection coating, from TEOS, was also applied to the solar surface by the dip-coating method. We report our initial results and analyze the influence of the stainless steel substrate on the final total reflectance properties of the solar absorber. The relation between surface morphology, observed by SEM and AFM, the comp...

  20. Quantifying Cutting and Wearing Behaviors of TiN- and CrN-Coated AISI 1070 Steel

    OpenAIRE

    Ahmet Cakan; Yildirim, Mustafa M.; Vedat Ozkaner

    2008-01-01

    Hard coatings such as titanium nitride (TiN) and chromium nitride (CrN) are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP) technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscop...

  1. IMPACT OF QUENCH SEVERITY AND HARDNESS ON AISI 4137 USING ECO-FRIENDLY QUENCHANTS AS INDUSTRIAL HEAT TREATMENT

    OpenAIRE

    Adekunle, A. S.; K. A. Adebiyi; Durowoju, M.O

    2013-01-01

    The rate of heat extraction, hardness, and severity of quenching of both edible and non-edible bioquenchants for industrial heat treatment was investigated using AISI 4137 medium carbon steel. Results showed that both the maximum and minimum cooling rates occurred in the nucleate boiling stage and were strongly dependent on the viscosity and saponification number. The peak cooling rates of Jatropha oil, groundnut oil, melon oil, sheabutter oil, palmkernel oil, and palm oil were greater than t...

  2. Effect of fast neutron irradiation on tensile properties of AISI 304 stainless steel and alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Highlights: → The σy and σUTS of AISI 304 steel increased with fluence and markedly at 4.8 x 1018 n cm-2. → Ductility of the AISI 304 steel is reduced slightly even up to highest fluence. → Marked decrease in σy and relatively less decrease in σUTS occur in the alloy Ti-6Al-4V. → Reduction in ductility occurs in Ti-6Al-4V even at low fluence of 1.2 x 1018 n cm-2. → Both the materials are shown phase instability resulting from neutron irradiation. - Abstract: Effect of fast neutron irradiation at low fluence level of ∼1018 ncm-2, on tensile properties of AISI 304 stainless steel and titanium alloy Ti-6Al-4V, was studied at ambient temperature. Flat tensile specimens, subjected to fast neutron irradiation to three different fluences of 0.6 x 1018, 1.2 x 1018 and 4.8 x 1018 ncm-2, in a reactor, were tested at ambient temperature. It was observed that yield strength and tensile strength of the AISI 304 stainless steel increased marginally, upto the fluence level of 1.2 x 1018 ncm-2, but significantly at the highest fluence of 4.8 x 1018 ncm-2. However there was only nominal decrease in ductility due to neutron irradiation. On the other hand, in the alloy Ti-6Al-4V there was fall both in strength as well as ductility with increase in neutron fluence. Ductility was found to decrease upto the fluence of 1.2 x 1018 ncm-2 and remained constant at higher fluences. Phase instability was revealed by X-ray diffraction in both the neutron irradiated materials.

  3. Study of mechanical features for low cycle fatigue samples of metastable austenitic steel AISI 321 by neutron stress analysis under applied load

    International Nuclear Information System (INIS)

    The elastoplastic properties of the austenitic matrix and martensitic volume areas induced during cyclic tensile-compressive loading of low carbon metastable austenitic stainless steel were studied in an in situ neutron diffraction stress rig experiment on the ENGIN instrument at the ISIS pulsed neutron facility. Samples prepared from the steel AISI 321 annealed at 1050 deg C and quenched in water were subjected to low-cycle fatigue under total-strain control with an amplitude of 1 % at a frequency of 0.5 Hz. Subsequent applied stress-elastic strain responses of the austenitic and martensitic phases were obtained by Rietveld and Le Bail refinements of the neutron diffraction spectra, and were used to determine the elastic constants of the phases as a function of fatigue level. The results of modified refinements accounting for the elastic anisotropy in polycrystalline materials under load are also presented. The residual strains in the austenitic matrix were determined as a function of fatigue cycling, using a noncycled sample as a reference sample. The residual macrostresses and the deviatoric components of the phase residual microstresses were determined assuming that the elastic properties of both phases are similar

  4. Influence of surface position along the working range of conoscopic holography sensors on dimensional verification of AISI 316 wire EDM machined surfaces.

    Science.gov (United States)

    Fernández, Pedro; Blanco, David; Rico, Carlos; Valiño, Gonzalo; Mateos, Sabino

    2014-01-01

    Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM. PMID:24662452

  5. Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces

    Directory of Open Access Journals (Sweden)

    Pedro Fernández

    2014-03-01

    Full Text Available Conoscopic holography (CH is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F and power (P until the quality indicators Signal-to-Noise Ratio (SNR and signal envelope (Total meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR. Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP on a CMM.

  6. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 ± 0.3) × 10−6 m2/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 ± 0.5) × 10−6 m2/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 °C, the thermal diffusivity increases up to (12.0 ± 2) × 10−6 m2/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  7. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-04-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  8. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  9. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    International Nuclear Information System (INIS)

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate

  10. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, F.T.; Lo, K.H.; Man, H.C

    2004-08-25

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate.

  11. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  12. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Science.gov (United States)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K.

    2013-02-01

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 ± 0.3) × 10-6 m2/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 ± 0.5) × 10-6 m2/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 °C, the thermal diffusivity increases up to (12.0 ± 2) × 10-6 m2/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  13. Surface modifications of AISI 1045 steel created by high intensity 1064 and 532 nm picosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.

  14. Multivariate Time Series Similarity Searching

    OpenAIRE

    Jimin Wang; Yuelong Zhu; Shijin Li; Dingsheng Wan; Pengcheng Zhang

    2014-01-01

    Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weighted BORDA voting method. The dimension-combination method could use the existing similarity searchin...

  15. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    Science.gov (United States)

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID

  16. Evaluación del coeficiente de endurecimiento del acero AISI 1045 deformado por rodillo

    Directory of Open Access Journals (Sweden)

    D. Alcántara

    2011-12-01

    Full Text Available El objetivo del trabajo es determinar el comportamiento del coeficiente de endurecimiento n por la ecuación de Hollomon en muestras cilíndricas de acero AISI 1045, las cuales, después de ser deformadas, se sometieron a ensayos de tracción. Se utiliza un diseño de experimento donde se tienen en cuenta las variables número de revolución (n con 27, 54 y 110 rev/min, fuerza de compresión (P de 500, 1 500 y   2 500 N y avance (S de 0,075; 0,125 y 0,25 mm/rev. Finalmente, aplicando el método de regresión se obtuvo un coeficiente de endurecimiento, el cual se aproxima a la linealidad cuando restringimos el cálculo a rangos de deformación elevados. Este coeficiente de endurecimiento se aplica en la ecuación de Hollomon para determinar el nuevo valor de tensión de fluencia y aplicarlo para el cálculo del trabajo mínimo a realizar en un proceso de deformación en frío empleando rodillo simple.   Palabras clave: Deformación Plástica; tensión; deformación; endurecimiento.The objective of the work is to determine the behavior of the hardening coefficient n by the equation of Hollomon, in cylindrical samples of steel AISI 1045, those which, after the deformed, were subjected to traction rehearsals. He used an experiment design where are kept in mind the revolution number (n with 27, 54 and 110 rev/min, it compression forces (P of 500, 1 500 and 2 500 N and feed (S of 0.075; 0.125 and 0.25 mm/rev. Finally, applying the regression method a hardening coefficient was obtained, which approaches to the linearity when restrict the calculation to high ranges of deformation. This hardening coefficient is applied in the equation of Hollomon for determine the new value of flow tension and to apply in the calculation of the minimum work to carry out in a cold process of deformation using simple roller.   Keywords: Plastic deformation; stress; deformation; hardening.

  17. Effect of neutron irradiation on creep, fatigue and tensile properties of stainless steel type DIN 1.4948 (similar to AISI 304)

    International Nuclear Information System (INIS)

    As a contribution to the German-Belgian-Dutch fast breeder project SNR-300 a mechanical testing programme is being performed at ECN to determine the effects of neutron irradiation on the mechanical properties of the DIN 1.4948 construction steel of the SNR-300 reactor vessel and internal components. Irradiations of plate and weld samples were performed at 723 K and 823 K to thermal neutron fluences of 6 x 1018 n.cm-2 and 2 x 1020 n.cm-2 in core positions of the High Flux Reactor at Petten at thermal to fast flux density ratios of about 0.6. Postirradiation testing comprises tensile testing at strain rates from 6 x 10-6 s-1 to 6 s-1, creep measurements up to 10.000 h rupture time and low cycle fatigue at strain ranges from 0.6% to 2% and a strain rate of 3 x 10-3 s-1. The major effect observed is high temperature embrittlement due to helium produced by the 10B (n,α) 7Li reaction in the 14 ppm boron containing steel used for the experiments. The creep rupture time of plate material at 823 K is reduced to 10% of its original value by irradiation to the lower fluence and the creep strength is decreased by 60 MN.m-2. The total creep strain of weld samples is reduced to values of 0.3% to 1.5%

  18. Evaluación del comportamiento estructural y de resistencia a la corrosión de armaduras de acero inoxidable austenítico AISI 304 y dúplex AISI 2304 embebidas en morteros de cemento Pórtland

    OpenAIRE

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-01-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the ...

  19. Functional Similarity and Interpersonal Attraction.

    Science.gov (United States)

    Neimeyer, Greg J.; Neimeyer, Robert A.

    1981-01-01

    Students participated in dyadic disclosure exercises over a five-week period. Results indicated members of high functional similarity dyads evidenced greater attraction to one another than did members of low functional similarity dyads. "Friendship" pairs of male undergraduates displayed greater functional similarity than did "nominal" pairs from…

  20. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  1. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangying@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Busby, J.T. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-05-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors.

  2. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization

    International Nuclear Information System (INIS)

    Joining of dissimilar materials is of increasing interest for a wide range of industrial applications. The automotive industry, in particular, views dissimilar materials joining as a gateway for the implementation of lightweight materials. Specifically, the introduction of aluminum alloy parts into a steel car body requires the development of reliable, efficient and economic joining processes. Since aluminum and steel demonstrate different physical, mechanical and metallurgical properties, identification of proper welding processes and practices can be problematic. In this work, inertia friction welding has been used to create joints between a 6061-T6 aluminum alloy and a AISI 1018 steel using various parameters. The joints were evaluated by mechanical testing and metallurgical analysis. Microstructural analyses were done using metallography, microhardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray elemental mapping, focused ion beam (FIB) with ultra high resolution SEM and transmission electron microscopy (TEM) in TEM and STEM modes. Results of these analysis first suggested that joint strengths on the order of 250 MPa could be achieved. In addition, failures were seen in the plasticized layer on the aluminum side of the joint. Further, bond lines were characterized by a thin layer of formed Al-Fe intermetallic. This intermetallic layer averaged roughly 250 nm thick and compositionally appears related to the FeAl and Fe2Al5 phases.

  3. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    International Nuclear Information System (INIS)

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M23C6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  4. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    Paula Fernanda da Silva Farina

    2012-06-01

    Full Text Available The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i time at cryogenic temperatures (3, 10 and 30 hours; ii cryogenic temperatures (–80°C and –196°C; iii stress relief heat treatment (130°C before cryogenic treatments; iv effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.

  5. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    International Nuclear Information System (INIS)

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values

  6. Surface characterization of stainless steel AISI 316 L in contact with simulated body fluid

    International Nuclear Information System (INIS)

    Titanium and cobalt alloys, as well as some stainless steels, are often used in orthopedic surgery. In the more developed countries, stainless steel is used only for temporary implants since it does not hold up as well as other alloys to corrosion in a physiological medium. Nevertheless, stainless steel alloys are frequently used for permanent implants in developing countries. Therefore, more knowledge about its reaction to corrosion is needed as well as the characteristics of the surface layer generated in a physiological medium in order to control potential toxicity from the release of metallic ions into the organism. The surface films usually have a different composition and chemical state from the base material. The surface characterization of alloys used in orthopedic surgery should not be underestimated, since it heavily influences the behavior of the implant through the relationship of the surface film-tissue and the possible migration of metallic ions from the base metal to the surrounding tissue. This work presents a study of the surface composition and resistance to the corrosion of stainless steel AISI 316L in simulated body fluid (SBF) aired at pH 7.25 and 37oC. The resistance to the corrosion was studied with an electrochemical impedance spectroscopy (EIS) and anodic polarization curves (CW)

  7. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  8. Effects of heat treatment on mechanical properties of modified cast AISI D3 tool steel

    International Nuclear Information System (INIS)

    Highlights: • Secondary hardening occurred when tempered at 500 °C and austenitized at 1050 °C. • Hardness of new steel is about 1 HRC higher than D3 steel, when tempered at 300 °C. • New steel has less bending strength and strain compared with D3 steel. • With increasing hardness wear resistance is improved about 56%. • Linear relationship observed between weight loss and hardness of modified steel. - Abstract: In this research new modified as-cast cold work AISI D3 tool steel was produced by increasing Ti and Nb and decreasing Cr. At first, Cast samples were homogenized at optimized cycle and then austenitized and tempered within the specified temperature ranges. Mechanical properties and wear behavior were determined by performing hardness test, three point bending test and pin on disc wear test. Also, scanning electron microscope was employed to characterize the new modified steel. For the specimens austenitized and tempered at 1050 °C and 500 °C respectively, the secondary hardening effect was observed which was consistent with lower weight loss of pin on disc wear test results. The results show that, the new modified as-cast steel represents hardness and wear resistance equal to or better than that of standard wrought D3 steel, while its strength and toughness are lower than those of wrought steel

  9. Problems in laser repair-cladding a surface AISI D2 heat treated tool steel

    International Nuclear Information System (INIS)

    The aim of the present work is to establish the relationship between laser cladding process parameters (Power, Process Speed and Powder feed rate) and AISI D2 tool steel metallurgical transformations, with the objective of optimizing the processing conditions during real reparation. It has been deposited H13 tool steel powder on some steel substrates with different initial metallurgical status (annealed or tempered) using a coaxial laser cladding system. The microstructure of the laser clad layer and substrate heat affected zone (HAZ) was characterized by Optical microscopy, Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Results show that the process parameters (power, process speed, feed rate) determine the dimensions of the clad layer and are related to the microstructure formation. Although it is simple to obtain geometrically acceptable clads (with the right shape and dimensions) in many cases occur some harmful effects as carbide dilution and non-equilibrium phases formation which modify the mechanical properties of the coating. Specifically, the presence of retained austenite in the substrate-coating interface is directly related to the cooling rate and implies a hardness diminution that must be avoided. It has been checked that initial metallurgical state of the substrate has a big influence in the final result of the deposition. Tempered substrates imply higher laser absorption and heat accumulation than the ones in annealed condition. This produces a bigger HAZ. For this reason, it is necessary to optimize process conditions for each reparation in order to improve the working behaviour of the component. (Author)

  10. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: saeed.kahrobaee@yahoo.com; Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir

    2015-05-15

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe{sub 3}C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated.

  11. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    International Nuclear Information System (INIS)

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe3C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated

  12. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  13. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    International Nuclear Information System (INIS)

    Conventional fusion welding of stainless steel foils (<100 μm thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 μm thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of δ-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding

  14. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Science.gov (United States)

    Sudha, C.; Sivai Bharasi, N.; Anand, R.; Shaikh, H.; Dayal, R. K.; Vijayalakshmi, M.

    2010-07-01

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M 23C 6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  15. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, C. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Sivai Bharasi, N. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Anand, R. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Shaikh, H., E-mail: hasan@igcar.gov.i [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Dayal, R.K. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Vijayalakshmi, M. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2010-07-31

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 {mu}m width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 {mu}m width was identified which was found to consist of M{sub 23}C{sub 6} carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  16. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  17. Effect of V Notch Shape on Fatigue Life in Steel Beam Made of AISI 1037

    Directory of Open Access Journals (Sweden)

    Qasim Bader

    2014-04-01

    Full Text Available The present work encompasses effect of V notch shape with various geometries and dimensions on fatigue life behavior in steel beam made of Medium Carbon Steel AISI 1037 which has a wide application in industry. Fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for smooth specimens (reference and by use Numerical method (FEA.The fatigue experiments were carried out at room temperature, applying a fully reversed cyclic load with the frequency of (50Hz and mean stress equal to zero (R= -1, on a cantilever rotating-bending fatigue testing machine. The stress ratio was kept constant throughout the experiment. Different instruments have been used in this investigation like Chemical composition analyzer type (Spectromax ,Tensile universal testing machine type (WDW-100E ,Hardness tester type (HSV- 1000 , Fatigue testing machine model Gunt WP 140, Optical Light Microscope (OLM and Scanning Electron Microscope (SEM were employed to examine the fracture features . The results show that there is acceptable error between experimental and numerical works .

  18. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel

    Institute of Scientific and Technical Information of China (English)

    Byeong-Don JOO; Jeong-Hwan JANG; Jae-Ho LEE; Young-Myung SON; Young-Hoon MOON

    2009-01-01

    An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting. Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar. Coating layer was fabricated with various process parameters such as laser power, scan rate and fill spacing. Surface quality and coating thickness were measured and analyzed. Three different surface patterns, such as typeⅠ, typeⅡand type Ⅲ, are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing, 50-350 mm/s of scan rate and 40 μm of fill spacing, 10-150 mm/s of scan rate. The maximum coating thickness is increased with power elevation or scan rate drop, and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.

  19. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  20. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    International Nuclear Information System (INIS)

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed