WorldWideScience

Sample records for aircraft production

  1. LEAN ORGANIZATION OF ADDITIVE MANUFACTURING OF AIRCRAFT PURPOSE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Smelov V.G

    2014-10-01

    Full Text Available This study considers the question of creation of a modern small aircraft purpose parts manufacturing company which will use additive technologies according to the principles of "smart" production and the concept of «lean» management. In order to reduce time and cost of current production, conform to world technologies and competitive ability optimization of key business processes of the foundry was carried out with adoption of a model of additive manufacturing.

  2. LEAN ORGANIZATION OF ADDITIVE MANUFACTURING OF AIRCRAFT PURPOSE PRODUCTS

    OpenAIRE

    Smelov V.G; Kokareva V.V; Malykhin A.N

    2014-01-01

    This study considers the question of creation of a modern small aircraft purpose parts manufacturing company which will use additive technologies according to the principles of "smart" production and the concept of «lean» management. In order to reduce time and cost of current production, conform to world technologies and competitive ability optimization of key business processes of the foundry was carried out with adoption of a model of additive manufacturing.

  3. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  4. "Supplier Network and Aircraft Production in Japan, 1939-1945: A Case of Mitsubishi Heavy Industries, Ltd."(in Japanese)

    OpenAIRE

    Tetsuji Okazaki

    2007-01-01

    During the Second World War, aircraft production in Japan, which had been negligible before that, increased sharply. The rapid expansion of the aircraft industry involved numerous small and medium-sized machinery factories, which were organized to be parts suppliers by aircraft assemblers. Focusing on the case of Mitsubishi Heavy Industries, Ltd., a major aircraft assembler, this paper explores the expansion of the supplier network and its implication on aircraft production.

  5. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    Science.gov (United States)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  6. Aircraft vulnerability modeling and computation methods based on product structure and CATIA

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Yang Wei; Zhang Yugang; Pei Yang; Ren Yunsong; Wang Wei

    2013-01-01

    Survivability strengthening/vulnerability reduction designs have become one of the most important design disciplines of military aircraft now.Due to progressiveness and complexity of modern combat aircraft,the existing vulnerability modeling and computation methods cannot meet the current engineering application requirements.Therefore,a vulnerability modeling and computation method based on product structure and CATIA is proposed in sufficient consideration of the design characteristics of modern combat aircraft.This method directly constructs the aircraft vulnerability model by CATIA or the digital model database,and manages all the product components of the vulnerability model via aircraft product structure.Using CAA second development,the detailed operations and computation methods of vulnerability analysis are integrated into CATIA software environment.Comprehensive assessment data and visual kill probability Iso-contours can also be presented,which meet the vulnerability analysis requirements of modern combat aircraft effectively.The intact vulnerability model of one hypothetical aircraft is constructed,and the effects of redundant technology to the aircraft vulnerability are assessed,which validate the engineering practicality of the method.

  7. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    Science.gov (United States)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  8. A Case Study of Total Productive Maintenance Implementation in an Aircraft Maintenance Company

    OpenAIRE

    Vayvay, Özalp; Simsit, Zeynep Tuğçe; Mucukoglu, Fatma Müjde

    2013-01-01

    Total productive maintenance was introduced to USA in the late 1980s as a companywide strategy to increase the effectiveness of production environment. In recent years, many companies have attempted to implement this strategy to maximize equipment’s effectiveness and productivity, and minimize machine losses. In this study, main concern is how a aircraft maintenance company can apply TPM, in an efficient way. In case study we determined the steps of the maintenance proscess and then ana...

  9. Products of Ozone-Initiated Chemistry in a Simulated Aircraft Environment

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P.;

    2005-01-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline...

  10. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  11. Production-teaching-research of a Commercial Aircraft Corporation in the Chinese Industry Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; WANG Shuang-yuan; WEI Lin-wan

    2012-01-01

    For the future development of a commercial aircraft corporation, this paper focused on the research and technological innovation model in an industrial chain and explored how to promote the sustainable development of technological innovation on the basis of the Chinese aviation industry. It puts forward several ways to reinforce cooperation, such as strengthening policies and regulations, government's support for research cooperations, accelerating construction of the production-teaching-research oriented public technology platform and service system, and firming the industry awareness of universities and research institutes, and so on.

  12. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  13. Warranty/cannibalization issues, disruptive forces in the production and maintainability of the E-2C aircraft

    OpenAIRE

    Jacobs, Brian K.

    2000-01-01

    Approved for public release; distribution is unlimited This thesis analyzes manufactures' warranties and cannibalization issues as they affect the maintainability on the E-2C aircraft. The analysis includes cannibalization structures, reasons why squadrons cannibalize, alternatives to cannibalization, cannibalization issues that affect maintenance personnel morale, and the disruptive effects of manufacturers' warranties to the fleet. The research identified that introducing production airc...

  14. REVERSE ENGINEERING IN MODELING OF AIRCRAFT PROPELLER BLADE - FIRST STEP TO PRODUCT OPTIMIZATION

    OpenAIRE

    Muhammad Yasir Anwar; Shahid Ikramullah; Farrukh Mazhar

    2014-01-01

    ABSTRACT: Propeller aircrafts have had many ups and downs throughout their use in the aviation history. Due to the current economic recession and price hikes in fuels, propeller aircrafts may yet again be a choice for aerial transport and has thus re-emerged as an active area for research. On modern propeller aircrafts old aluminum propellers are being replaced with fiber reinforced composite propellers. However, owing to their reliability, strength, and integrity, aluminum propellers are sti...

  15. Integration of noise control into the product design process : a case study : the Silent Aircraft Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Faszer, A. [Noise Solutions Inc., Calgary, AB (Canada)

    2007-07-01

    The Silent Aircraft Initiative (SAI) is a study being conducted by the Cambridge-MIT Institute to discover ways to significantly reduce aircraft noise. Part of the study focuses on developing aircraft and engine designs that meet the SAI objectives. This presentation included several illustrations of the favoured configuration of a blended wing design, with 4 engines located on the upper surface of a shallow wing which shields engine noise. This presentation described various engine parts such as the low specific thrust turbofan, the variable area nozzle and the acoustic treatment in the intake and exhaust turbomachinery that minimizes noise. The requirements for market viability of the aircraft were discussed as well as the technical challenges in terms of its propulsion systems; structural analysis; mechanical design; low speed aerodynamic performance; cabin layout; and maintenance considerations. It was concluded that the SAI has achieved a credible conceptual aircraft design given the high risk of the technologies used. The project has met objectives of a functionally silent and fuel efficient aircraft. The new conceptual aircraft has potential for fuel burn of 149 pax-miles per imperial gallon and noise of 63 dBA near the perimeter of airports. 1 tab., 48 figs.

  16. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine.

    Science.gov (United States)

    Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing

    2015-11-17

    Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards. PMID:26495879

  17. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine.

    Science.gov (United States)

    Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing

    2015-11-17

    Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.

  18. REVERSE ENGINEERING IN MODELING OF AIRCRAFT PROPELLER BLADE - FIRST STEP TO PRODUCT OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Muhammad Yasir Anwar

    2014-12-01

    Full Text Available ABSTRACT: Propeller aircrafts have had many ups and downs throughout their use in the aviation history. Due to the current economic recession and price hikes in fuels, propeller aircrafts may yet again be a choice for aerial transport and has thus re-emerged as an active area for research. On modern propeller aircrafts old aluminum propellers are being replaced with fiber reinforced composite propellers. However, owing to their reliability, strength, and integrity, aluminum propellers are still used in military aircrafts. One of the challenges that engineers of these aircraft-type have had to deal with is the non-availability of engineering drawings of these propellers. It is practically impossible to carry out any study, research or modification on such propellers in the absence of correct CAD data. This article proposes a methodology wherein a CAD model of a C-130 aircraft propeller blade can be constructed using reverse engineering techniques. Such a model would help in future aerodynamic as well as structural analyses which includes investigation on structural integrity and the fluid dynamics characteristics of propeller blades. Different steps involved in this process are discussed; starting from laser scanning to obtain the cloud of points data and subsequently generating a CAD model in a commercial CAD software. The model is then imported into an analysis software where quality surface meshes are generated using tetrahedral elements. The purpose is to prepare a meshed model for future computational analysis including CFD (Computational Fluid Dynamics and FE (Finite Element analysis. ABSTRAK: Pesawat bebaling mempunyai tempoh pasang surutnya sepanjang penggunaanya dalam sejarah penerbangan. Kini disebabkan oleh kemelesetan ekonomi dan kenaikan harga minyak, pesawat bebaling mungkin akan merupakan pengangkutan udara pilihan dan seterusnya muncul semula sebagai ruangan aktif penyelidikan. Pada pesawat bebaling moden, bebaling aluminium yang

  19. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.

  20. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and...

  1. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    Science.gov (United States)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-07-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  2. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    Science.gov (United States)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-09-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  3. Aircraft Noise

    Science.gov (United States)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  4. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  5. 14 CFR 21.127 - Tests: aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a)...

  6. Future development programs. [for emission reduction and production of aircraft engines

    Science.gov (United States)

    Waters, L.

    1976-01-01

    A company program was planned which has a main drive to develop those emission reduction concepts that have the promise of earliest success. These programs were proposed in an attempt to enhance existing engine systems, exploiting their potential for emission reduction as far as is compatible with retaining the well established features in them that are well understood and in current production. The intended programs identified in the area of new concepts were: (1) upgrading the TCM fuel system, (2) evaluation of accelerator pump, (3) reduced cooling requirement, and (4) variable spark timing.

  7. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  8. Fiber optic hardware for transport aircraft

    Science.gov (United States)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  9. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi;

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate...

  10. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2003-01-01

    Full Text Available Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H2O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H2O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O4. From sensitivity studies using atmospheric radiative modelling we conclude that our H2O retrieval overestimates the true atmospheric H2O vertical column density (VCD by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly cloud covered ground pixels, however, the true atmospheric H2O VCD might be in general systematically underestimated. We compared the GOME H2O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 (r2 = 0.86 and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This

  11. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  12. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  13. Ground to Cloud Lightning Flash Currents and Electric Fields: Interaction with Aircraft and Production of Ionosphere Sprites

    Directory of Open Access Journals (Sweden)

    P. R. P. Hoole

    2014-01-01

    Full Text Available This paper presents for the first time a case for the importance of ground to cloud (upward leader lightning flash parameters for safety testing of direct aircraft-lightning interaction and protection of wind turbines, as well as the importance of radiated electric fields for indirect lightning-aircraft interaction and generation of electric discharges called sprites and halos in the ionosphere. By using an electric circuit model of the transverse magnetic waves along the return stroke channel, electric currents at ground level as well as cloud level are determined for both the cloud to ground lightning flash and the ground to cloud lightning flash. We show that when an aircraft triggers lightning, the electric currents will be much more severe in current magnitude, rate of rise of currents, and frequency spectrum than otherwise and are more severe than the parameters observed for the usual and well monitored (and measured cloud to ground (downward leader flashes. The rate of rise of currents and the frequency spectrum of the ground to cloud lightning flash are also given here. The electric fields radiated by the lightning flashes that would appear in the ionosphere are presented for both the earth flash and the ground to cloud flash.

  14. APPLICATION FOR AIRCRAFT TRACKING

    OpenAIRE

    Ostroumov, Ivan; Kuz’menko, Natalia

    2011-01-01

    Abstract. In the article the important problems of software development for aircraft tracking have beendiscussed. Position reports of ACARS have been used for aircraft tracking around the world.An algorithm of aircraft coordinates decoding and visualization of aircraft position on the map has beenrepresented.Keywords: ACARS, aircraft, internet, position, software, tracking.

  15. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  16. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Relation between repeatability and speed of robot-based systems for composite aircraft production through multilateration sensor system

    Science.gov (United States)

    Bock, M.; Perner, M.; Krombholz, C.; Beykirch, B.

    2015-03-01

    Fiber composites are becoming increasingly important in different fields of lightweight application. To guarantee the estimated demand of components made of carbon fiber reinforced plastics the use of industrial robots is suggested in production. High velocity of the layup process is addressed to significantly increase the production rate. Today, the layup of the fiber material is performed by gantry systems. They are heavy weight, slow and the variety of possible part shapes is limited. Articulated robots offer a huge operational area in relation to their construction size. Moreover, they are flexible enough to layup fiber material into different shaped molds. Thus, standard articulated robots are less accurate and more susceptible to vibration than gantry systems. Therefore, this paper illustrates an approach to classify volumetric errors to obtain a relation between the achievable speed in production and precision. The prediction of a precision at a defined speed is the result. Based on the measurement results the repeatability of the robotic unit within the workspace is calculated and presented. At the minimum speed that is applicable in production the repeatability is less than 30 mm. Subsequently, an online strategy for path error compensation is presented. The approach uses a multilateration system that consists of four laser tracer units and measures the current absolute position of a reflector mounted at the end-effector of the robot. By calculating the deviation between the planned and the actual position a compensated motion is applied. The paper concludes with a discussion for further investigations.

  18. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Science.gov (United States)

    2010-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...; manned free balloons; special classes of aircraft; aircraft engines; propellers. Link to an amendment..., special class of aircraft, or an aircraft engine or propeller, if— (a) The product qualifies under §...

  19. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    OpenAIRE

    Wagner, T.; J. Heland; Zöger, M.; Platt, U.

    2003-01-01

    Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback) is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 ...

  20. Overcapacity in regional aircraft production

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2005-01-01

    Capacity decisions are among the most important operations decisions for companies. One of the potential outcomes of bad decisions is a resulting overcapacity. Although some textbooks treat overcapacity as an issue for individual companies, there are indications that it may be an industry wide issue

  1. Designing A Conventional Aircraft

    OpenAIRE

    Sonei, Arash

    2014-01-01

    This paper is explaining the important design phases of dimensioning an unmanned conventional aircraft from scratch and will also design one according to a few chosen requirements. The design phases discussed will be all from wing dimensioning to stability and spin recovery, aircraft performance requirements and how to select a motor which overcomes these. As well as the optimal rate of climb for improved efficiency is discussed. In the end an aircraft which manages the set requirements and i...

  2. Lightning effects on aircraft

    Science.gov (United States)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  3. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  4. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  5. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  6. 77 FR 71691 - Type Certification Procedures for Changed Products

    Science.gov (United States)

    2012-12-04

    ... the certification of significant design changes of aircraft, aircraft engines, and propellers. The... ``product'' is defined in Sec. 21.1(b) as ``aircraft, aircraft engine, or propeller.'' II. Background On... of aircraft, aircraft engines, and propellers. Before this final rule, many changes to...

  7. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  8. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  9. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  10. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  12. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  13. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost, operati

  14. Aircraft Data Acquisition

    Directory of Open Access Journals (Sweden)

    Elena BALMUS

    2016-03-01

    Full Text Available The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications of this division in aviation, data optimization and comparison has been quite an important task. The interest in using data acquisition boards is being driven by the technology and design standards in the new generation of aircraft and the ongoing efforts of reducing weight and, in some cases addressing the safety risks. This paper presents a sum of technical report data from post processing and diversification of data acquisition from Arinc 429 interface on a research aircraft platform. Arinc 429 is by far the most common data bus in use on civil transport aircraft, regional jets and executive business jets today. Since its introduction on the Boeing 757/767 and Airbus aircraft in the early 1980s hardly any aircraft has been produced without the use of this data bus. It was used widely by the air transport indu

  15. Improving Aircraft Design Robustness with Scenario Methods

    Directory of Open Access Journals (Sweden)

    A. Strohmayer

    2001-01-01

    Full Text Available Compared to other industries, the aerospace sector is characterized by long product cycles in a very complex environment. The aircraft manufacturer has to base his product strategy on a long-term view of risks and opportunities in the transport industry but he cannot predict the development of relevant factors in this market environment with any certainty. In this situation, scenario methods offer a pragmatic way to limit the uncertainties and to work them up methodically, in order to derive recommendations for cost-intensive strategic decisions like for example the go-ahead for a new aircraft concept. By including scenario methods in the aircraft design cycle, the ‘design robustness’ can be improved, i.e. the design is not optimised for a prognosticated operating environment, but can cope with various possible future developments. The paper will explain the three fundamental aspects in applying scenario planning to the aircraft design process: requirement definition, design evaluation and technology identification. For each aspect, methods will be shown, which connect the rather qualitative results of a scenario process with aircraft design, which typically demands a qualitative input.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 62: The Influence of Knowledge Diffusion on Aeronautics Innovation: The Research, Development, and Production of Large Commercial Aircraft in France, Germany, and the United Kingdom

    Science.gov (United States)

    Golich, Vicki L.; Pinelli, Thomas E.

    1997-01-01

    This paper focuses on how European public policies-individually and collectively - influence the diffusion of knowledge and technology. It begins with an overview of the roles played historically and currently by European governments in the Research, Development and Production (RD&P) of Large Commercial Aircraft (LCA). The analytical framework brings together literature from global political economy, comparative politics, business management, and science and technology policy studies. It distinguishes between the production of knowledge, on the one hand, and the dissemination of knowledge, on the other. France, Germany, and the United Kingdom serve as the analytical cases. The paper concludes with a call for additional research in this area, some tentative lessons learned, and a discussion of the consequences of national strategies and policies for the diffusion of knowledge and technology in an era of globalizaton.

  17. Contributions from the activity analysis to the products development project: case study based on a project of innovation and comfort in aircraft's cabins.

    Science.gov (United States)

    Greghi, F M; Rossi, N T; Souza, G B J; Menegon, L N

    2012-01-01

    Comfort is an issue that has gained relevance within the aeronautical industry due to the necessity of manufacturers and airline companies of differentiating themselves in a market that has become more and more competitive each day. This study's aim is to analyze the comfort/discomfort of passengers, based on the analysis of the activities performed in the aircrafts' cabin during real flights, in order to create ergonomics requirements and a methodology of comfort analysis. The study has been performed during domestic commercial flights, and the adopted data collection techniques have been: the application of 219 questionnaires to passengers, 44 registrations of postures and actions through filmings and 12 semistructured interviews. The method has made possible the reconstruction of the user's action course in performing activities in real flight situations, and the calculation of the area occupied by the passenger during his or her actions. The integrated analysis of the results corroborates data from previous studies in which both the space made available to each passenger and the activity performed interfere in their perception of comfort. From this study it has been concluded that the method constitutes itself as an innovative tool within the process of aircrafts' cabins project enabling the calculation of the action space based on the reconstructed course. PMID:22316700

  18. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  19. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  20. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  1. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  2. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  3. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  4. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  5. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL DEPAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of point from aircraft wheels. he evaluation was conducted in the Paint Stripping Shop ...

  6. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  7. Research on the Performance Management of the Members of Civil Aircraft Project Integrated Product Team%民机项目产品集成开发团队成员绩效管理研究

    Institute of Scientific and Technical Information of China (English)

    苏庆忠

    2015-01-01

    According to the characteristics of integrated product team of civil aircraft, this paper introduces a method about performance-related pay based on man-hour, counting the performance-related pay through the combination of man-hour and unit price. The validity of this method is demonstrated by an example.%针对民机项目产品集成开发团队的特点,本文介绍了一种基于工时管理的绩效工资兑现方法,通过工时与绩效工资单价相结合,计算团队成员绩效工资,并通过实证测算证明了该方法的有效性。

  8. Auralization of novel aircraft configurations

    OpenAIRE

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly. Hence, an existing process for the aircraft design and system noise prediction at DLR has been upgraded to generate the required input data for an aircraft auralization framework developed by NLR ...

  9. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  10. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    Science.gov (United States)

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  11. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  12. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  13. Bonded structure application for aircraft. Kokuki ni okeru secchaku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, O. (Japan Airlines Co. Ltd., Tokyo (Japan))

    1991-01-05

    Adhesives play an important role in a technology of the aircraft structure for which lightness and strength are required. The paper explains the present situation of bonding technology employed for aircraft, the honeycomb structure, production of composite materials and the related problems. Advantages and purposes of employing adhesives as substitutes for fasteners like screws, rivets, etc. are as follows: decreases in stress concentration, weight reduction, smoothing of surfaces, improvement of acoustic fatigue by adhesives flexibility, prevention of gas-liquid leakage. Epoxide adhesives are mainly used for aircraft. Together with tear straps, which are metal-metal bonded to the rear fuselage plate of aircraft, and waffle doublers, an aluminium honeycomb sandwich structure, whose weight is 1/7 of an aluminium plate same in rigidity, is used in such parts of aircraft as spoilers, outer plates of flaps, etc. The problem of the bonded structure is detachment. Therefore, how to prevent, discover and repair it is most important. 3 figs.

  14. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  15. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  16. Ultrawideband Electromagnetic Interference to Aircraft Radios

    Science.gov (United States)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  17. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  18. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  19. An economic model for evaluating high-speed aircraft designs

    Science.gov (United States)

    Vandervelden, Alexander J. M.

    1989-01-01

    A Class 1 method for determining whether further development of a new aircraft design is desirable from all viewpoints is presented. For the manufacturer the model gives an estimate of the total cost of research and development from the preliminary design to the first production aircraft. Using Wright's law of production, one can derive the average cost per aircraft produced for a given break-even number. The model will also provide the airline with a good estimate of the direct and indirect operating costs. From the viewpoint of the passenger, the model proposes a tradeoff between ticket price and cruise speed. Finally all of these viewpoints are combined in a Comparative Aircraft Seat-kilometer Economic Index.

  20. Computer Aided Visual Inspection of Aircraft Surfaces

    Directory of Open Access Journals (Sweden)

    Rafia Mumtaz

    2012-02-01

    Full Text Available Non Destructive Inspections (NDI plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel method of NDI, the aircraft imagery is analyzed by three methods i.e Neural Networks, Contourlet Transform (CT and Discrete Cosine Transform (DCT. With the help of Contourlet Transform the two dimensional (2-D spectrum is divided into fine slices, using iterated directional filterbanks. Next, directional energy components for each block of the decomposed subband outputs are computed. These energy values are used to distinguish between the crack and scratch images using the Dot Product classifier. In next approach, the aircraft imagery is decomposed into high and low frequency components using DCT and the first order moment is determined to form feature vectors.A correlation based approach is then used for distinction between crack and scratch surfaces. A comparative examination between the two techniques on a database of crack and scratch images revealed that texture analysis using the combined transform based approach gave the best results by giving an accuracy of 96.6% for the identification of crack surfaces and 98.3% for scratch surfaces.

  1. Scrum application in service: analysis on an aircraft manufacturer

    OpenAIRE

    Stefano Petrini de Oliveira; Jorge Muniz Júnior

    2015-01-01

    This article analyzes the application of Scrum approach in a test service area in aircraft. It is a qualitative study conducted at the largest aircraft manufacturer in Brazil. Scrum is widely used for software project management in several segments, but its features allow the use in project management in general applications, both development of products and services. This paper contributes to analyze the application for services and illustrates the Scrum use for managers. It explains the est...

  2. Mission management aircraft operations manual

    Science.gov (United States)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  3. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Science.gov (United States)

    2010-02-23

    ... aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of the... specified products. The MCAI states: An in-flight engine shutdown incident was reported on an aircraft... the following new AD: 2010-04-06 Thielert Aircraft Engines GmbH: Amendment 39-16199. Docket No....

  4. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  5. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  6. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    commonality, but of appropriate fidelity for aircraft conceptual design. The thesis also introduces a new aircraft family concept. Unlike most families, the intent is not necessarily to produce all family members. Rather, the family includes members for immediate production and members that address potential future market conditions and/or environmental regulations. The result is a set of designs that yield a small performance penalty today in return for significant future flexibility to produce family members that respond to new market conditions and environmental regulations.

  7. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  8. Structural integrity in aircraft.

    Science.gov (United States)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  9. Radial cylinder aircraft engines

    OpenAIRE

    Šimíček, Petr

    2015-01-01

    Práce je zaměřena na konstrukční řešení letadlových hvězdicových motorů. Úvod je pojednáním o historii letadlových hvězdicových motorů a jejich vývoji v historickém kontextu. Druhá část je zaměřena na konstrukci letadlových hvězdicových motorů, následně jsou uvedena některá zajímavá konstrukční řešení a porovnání s motorem jiného druhu konstrukce. The bachelor's thesis is focused on design of aircraft radial engines. Home is a treatise on the history of aircraft radial engines and their de...

  10. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  11. Aviation industry-research in aircraft finance

    OpenAIRE

    Ehrenthal, Joachim C.F.

    2010-01-01

    Aircraft values are key to aircraft financing decisions: Aircraft values act as a source of security for providers of debt capital and lessors failing to re-place aircraft, and as a source of upside potential to equity investors. Yet, aircraft values cannot be precisely and continuously monitored. This is because neither actual primary nor secondary aircraft transaction prices are disclosed. Various types of third party valuation estimates exist, but relying solely on third party appraisa...

  12. MISSILES AND AIRCRAFT (PART1

    Directory of Open Access Journals (Sweden)

    C.M. Meyer

    2012-02-01

    Full Text Available Many sources maintain that the role played by air power in the 1973 Yom Kippur War was important. Other interpretations state that control of air space over the battlefield areas, (either by aircraft or anti-aircraft defences, was vital.

  13. Civil Aircraft Product Competition Evaluation Research Based on Value%基于价值的民用飞机产品竞争评估研究

    Institute of Scientific and Technical Information of China (English)

    张伟

    2014-01-01

    将价值营销理念引入民用飞机产品竞争评估,提出基于价值的竞争分析。在民用飞机产品竞争评估中,将产品竞争力影响因素分为主要因素和决策因素,并分别采用德尔菲法和波士顿矩阵予以分析,形成基于价值的民用飞机产品竞争评估方法。最后,以案例验证了该方法的可行性和实用性。%Value-based product competition evaluation was proposed based on value marketing concepts. In the assessment of commercial products competition, this article divided competition to major factors which using expert experience to estimate and decision factors which using BCG matrix to analysis. At last, a case study shows the feasibility and practicability of such method.

  14. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    Science.gov (United States)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  15. Examining the Role of N2O5 Hydrolysis and ClNO2 Production Over the Northeast United States: Results from WINTER 2015 Aircraft Campaign

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Thornton, J. A.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Fibiger, D. L.; McDuffie, E.; Brown, S. S.; Jimenez, J. L.; Weber, R. J.; Dibb, J. E.; Day, D. A.; Holloway, J. S.; Fiddler, M. N.; Campuzano Jost, P.; Schroder, J. C.; Sullivan, A.; Veres, P. R.; Green, J. R.

    2015-12-01

    The heterogeneous uptake of N2O5 on liquid aerosol particles plays a critical role in regulating tropospheric reactive nitrogen (NOx) availability, particle nitrate loadings, and halogen activity, which, in turn, have downwind effects on oxidant availability and ozone production. However, parameterizations of this process in regional and global models remain relatively untested. Measurements taken during the 2015 Wintertime Investigation of Transportation, Emissions, & Reactivity (WINTER) allow both empirical and theoretical calculations of the N2O5 reactive uptake coefficient (γ) and ClNO2 yield (Y) during 13 winter flights over the eastern US. We use observations of gas and particle composition as inputs to the offline thermodynamic equilibrium models, ISORROPIA II and AIM, to generate outputs of particulate aqueous phase concentrations of NO3-(aq), Cl-(aq), and H2O(l) . These outputs are used to theoretically calculate γ (N2O5) and Y(ClNO2), using the parameterizations described in Bertram & Thornton, 2009. The calculated values are then compared to the empirical counterparts to assess the validity of the parameterization's representation of temperature, humidity, and composition dependences. The updated parameterization is then used in the online GEOS-Chem chemical transport model to examine the role of wintertime multiphase chemistry in controlling the regional distribution and export of NOx and Cl-atom source downwind of the northeast United States.

  16. Aircraft radar antennas

    Science.gov (United States)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  17. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  18. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ... from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR 25356... From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures; Proposed Rule #0... and Aircraft Engines; Proposed Emission Standards and Test Procedures AGENCY: Environmental...

  19. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  20. 36 CFR 331.14 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 331.14 Section 331..., KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... prohibited. (c) The provisions of this section shall not be applicable to aircraft engaged on...

  1. 48 CFR 246.408-71 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72...

  2. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  3. 14 CFR 141.39 - Aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  4. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  5. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  6. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft engines... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  7. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  8. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on... provisions of §§ 21.183(c), 21.184(b), or 21.185(c); and (2) New aircraft engines or propellers...

  9. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  10. Aircraft recognition and tracking device

    Science.gov (United States)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  11. VTOL to Transonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The cyclogyro, an aircraft propulsion concept with the potential for VTOL to the lower bounds of transonic flight, is conceptually simple but structurally and...

  12. Electromagnetic Interference In New Aircraft

    Science.gov (United States)

    Larsen, William E.

    1991-01-01

    Report reviews plans to develop tests and standards to ensure that digital avionics systems in new civil aircraft immune to electromagnetic interference (EMI). Updated standards reflect more severe environment and vulnerabilities of modern avionics.

  13. Alloy design for aircraft engines

    Science.gov (United States)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  14. Challenges in Aircraft Noise Prediction

    OpenAIRE

    Filippone A

    2014-01-01

    This contribution addresses the problem of aircraft noise prediction using theoretical methods. The problem is set in context with the needs at several levels to produce noise characterisation from commercial aircraft powered by gas turbine engines. We describe very briefly the computational model (whilst referring the reader to the appropriate literature), and provide examples of noise predictions and comparisons with measured data, where possible. We focus on the issue of stochastic analysi...

  15. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  16. Optimization in fractional aircraft ownership

    Science.gov (United States)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  17. Parabolic aircraft solidification experiments

    Science.gov (United States)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  18. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  19. 78 FR 41285 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Science.gov (United States)

    2013-07-10

    ..., Engine Controls, dated November 30, 2010, found in PILATUS PC-7 Turbo Trainer Aircraft Maintenance Manual... to the specified products. The NPRM was published in the Federal Register on April 26, 2013 (78 FR... participate in developing this AD. We received no comments on the NPRM (78 FR 24689, April 26, 2013) or on...

  20. Ozone-Initiated Chemistry in an Occupied Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Cowlin, Shannon;

    2007-01-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed...

  1. EMI Standards for Wireless Voice and Data on Board Aircraft

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.

    2002-01-01

    The use of portable electronic devices (PEDs) on board aircraft continues to be an increasing source of misunderstanding between passengers and flight-crews, and consequently, an issue of controversy between wireless product manufacturers and air transport regulatory authorities. This conflict arises primarily because of the vastly different regulatory objectives between commercial product and airborne equipment standards for avoiding electromagnetic interference (EMI). This paper summarizes international regulatory limits and test processes for measuring spurious radiated emissions from commercially available PEDs, and compares them to international standards for airborne equipment. The goal is to provide insight for wireless product developers desiring to extend the freedom of their customers to use wireless products on-board aircraft, and to identify future product characteristics, test methods and technologies that may facilitate improved wireless freedom for airline passengers.

  2. 27 CFR 28.41 - Evidence of lading for use on vessels or aircraft: distilled spirits and wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Evidence of lading for use on vessels or aircraft: distilled spirits and wine. 28.41 Section 28.41 Alcohol, Tobacco Products and... vessels or aircraft: distilled spirits and wine. The lading of distilled spirits or wine for use...

  3. Analysis of aircraft maintenance models

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-10-01

    Full Text Available This paper addressed several organizational models of aircraft maintenance. All models presented so far have been in use in Air Forces, so that the advantages and disadvantages of different models are known. First it shows the current model of aircraft maintenance as well as its basic characteristics. Then the paper discusses two organizational models of aircraft maintenance with their advantages and disadvantages. The advantages and disadvantages of different models are analyzed based on the criteria of operational capabilities of military units. In addition to operational capabilities, the paper presents some other criteria which should be taken into account in the evaluation and selection of an optimal model of aircraft maintenance. Performing a qualitative analysis of some models may not be sufficient for evaluating the optimum choice for models of maintenance referring to the selected set of criteria from the scope of operational capabilities. In order to choose the optimum model, it is necessary to conduct a detailed economic and technical analysis of individual tactical model maintenance. A high-quality aircraft maintenance organization requires the highest state and army authorities to be involved. It is necessary to set clear objectives for all the elements of modern air force technical support programs based on the given evaluation criteria.

  4. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.G. [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1997-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  5. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje;

    2002-01-01

    in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...... procedures using the aircraft (a/c) for training the prestart and a desktop computer tool (power plant trainer) for training engine starts. Performance on the pre-start checklist was compared in a formal checkout that took place in the a/c. Performance on the engine start procedure was compared......A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures...

  6. Vision assisted aircraft lateral navigation

    Science.gov (United States)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  7. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  8. Introduction to unmanned aircraft systems

    CERN Document Server

    Marshall, Douglas M; Hottman, Stephen B; Shappee, Eric; Most, Michael Thomas

    2011-01-01

    Introduction to Unmanned Aircraft Systems is the editors' response to their unsuccessful search for suitable university-level textbooks on this subject. A collection of contributions from top experts, this book applies the depth of their expertise to identify and survey the fundamentals of unmanned aircraft system (UAS) operations. Written from a nonengineering civilian operational perspective, the book starts by detailing the history of UASs and then explores current technology and what is expected for the future. Covering all facets of UAS elements and operation-including an examination of s

  9. Composite components on commercial aircraft

    Science.gov (United States)

    Dexter, H. B.

    1980-01-01

    The paper considers the use of composite components in commercial aircraft. NASA has been active in sponsoring flight service programs with advanced composites for the last 10 years, with 2.5 million total composite component hours accumulated since 1970 on commercial transports and helicopters with no significant degradation in residual strength of composite components. Design, inspection, and maintenance procedures have been developed; a major NASA/US industry technology program has been developed to reduce fuel consumption of commercial transport aircraft through the use of advanced composites.

  10. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  11. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-05-21

    ... Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You may obtain further information by examining...

  12. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  13. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  14. Residents' Annoyance Responses to Aircraft Noise Events

    OpenAIRE

    United States, National Aeronautics and Space Administration

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-...

  15. The NASA Aircraft Energy Efficiency program

    Science.gov (United States)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  16. Policy and the evaluation of aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the

  17. 19 CFR 122.37 - Precleared aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Precleared aircraft. 122.37 Section 122.37 Customs... AIR COMMERCE REGULATIONS Landing Requirements § 122.37 Precleared aircraft. (a) Application. This section applies when aircraft carrying crew, passengers and baggage, or merchandise which has...

  18. 14 CFR 252.13 - Small aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  19. 43 CFR 423.41 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Aircraft. 423.41 Section 423.41 Public... Aircraft. (a) You must comply with any applicable Federal, State, and local laws, and with any additional... this part 423, with respect to aircraft landings, takeoffs, and operation on or in the proximity...

  20. 50 CFR 27.34 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Aircraft. 27.34 Section 27.34 Wildlife and... WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Vehicles § 27.34 Aircraft. The unauthorized operation of aircraft, including sail planes, and hang gliders, at altitudes resulting...

  1. 36 CFR 13.1004 - Aircraft use.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft use. 13.1004 Section... § 13.1004 Aircraft use. In extraordinary cases where no reasonable alternative exists, local rural residents who permanently reside in the following exempted community(ies) may use aircraft for access...

  2. 48 CFR 908.7102 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7102 Aircraft. Acquisition of aircraft shall be in accordance with DOE-PMR 41 CFR 109-38.5205. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Aircraft. 908.7102...

  3. 47 CFR 32.2113 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aircraft. 32.2113 Section 32.2113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2113 Aircraft. This account shall include the original cost of aircraft and any associated equipment and furnishings...

  4. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed....

  5. HUMAN FACTOR IMPACT IN MILITARY AIRCRAFT MAINTENANCE

    OpenAIRE

    MARINKOVIC SRBOLJUB J.; DRENOVAC ALEKSANDAR Z.

    2015-01-01

    Aircraft maintenance, as a specific field of military materiel maintenance, is characterized by high reliability standards, based on regulations and technical standards. A system approach to maintenance represents the key element of maintenance quality, while aircraft maintenance staff has a crucial influence on the final outcome of aircraft maintenance.

  6. Human Response to Aircraft Noise

    NARCIS (Netherlands)

    Kroesen, M.

    2011-01-01

    How can it be that one person is extremely annoyed by the sounds of aircrafts, while his neighbour claims not to be bothered at all? The present thesis attempts to explain this observation by applying a range of quantitative methods to field data gathered among residents living near large airports.

  7. Aircraft Simulators and Pilot Training.

    Science.gov (United States)

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  8. Aircraft Lightning Electromagnetic Environment Measurement

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  9. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  10. Laser Powered Aircraft Takes Flight

    Science.gov (United States)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  11. Mixed Reality-based Interactive Technology for Aircraft Cabin Assembly

    Institute of Scientific and Technical Information of China (English)

    LI Shiqi; PENG Tao; WANG Junfeng; XU Chi

    2009-01-01

    Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.

  12. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  13. Factors influencing aircraft ground handling performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  14. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    Science.gov (United States)

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  15. Improving aircraft energy efficiency

    Science.gov (United States)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  16. Development of aircraft industry in India

    Directory of Open Access Journals (Sweden)

    M. S. Chaturvedi

    1952-09-01

    Full Text Available It is axiomatic that India requires to self sufficient in the design, development and production of aircraft both for civil and military use, and not, as she is at present, remains entirely dependent on foreign sources. This requirement is keenly felt in the field of defence, since it is appreciated .that the growth of the Armed Forces of a country, in fact their very existence in peace and war, is in modern times directly related to the industrial potential of that country to produce weapons of war. If the two are not properly balanced the Armed Forces would be quite ineffective in fulfilling their role of defending their country in time of emergency.

  17. Aircraft noise and birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Knipschild, P.; Meijer, H.; Salle, H.

    1981-05-01

    Data from six infant welfare centres in the vicinity of Amsterdam airport were analysed. Birth weights of 902 infants were related to aircraft noise levels to which the mother was exposed in pregnancy. The analysis was restricted to deliveries in hospital, single births and mothers aged 20-34 years. In high noise areas the mean birth weight was 69 g lower than in low noise areas. Of the infants in high noise areas 24% had a birth weight less than 3000 g, compared with 18% in low noise areas. In the analysis the effect of sex of the infant, birth order and to some extent socio-economic status were taken into account. An effect of smoking seemed unlikely. The results, together with existing knowledge, give some suggestion that aircraft noise can decrease birth weight.

  18. Perception of aircraft Deviation Cues

    Science.gov (United States)

    Martin, Lynne; Azuma, Ronald; Fox, Jason; Verma, Savita; Lozito, Sandra

    2005-01-01

    To begin to address the need for new displays, required by a future airspace concept to support new roles that will be assigned to flight crews, a study of potentially informative display cues was undertaken. Two cues were tested on a simple plan display - aircraft trajectory and flight corridor. Of particular interest was the speed and accuracy with which participants could detect an aircraft deviating outside its flight corridor. Presence of the trajectory cue significantly reduced participant reaction time to a deviation while the flight corridor cue did not. Although non-significant, the flight corridor cue seemed to have a relationship with the accuracy of participants judgments rather than their speed. As this is the second of a series of studies, these issues will be addressed further in future studies.

  19. 27 CFR 28.43 - Evidence of exportation and lading for use on vessels and aircraft: beer.

    Science.gov (United States)

    2010-04-01

    ... and lading for use on vessels and aircraft: beer. 28.43 Section 28.43 Alcohol, Tobacco Products and... lading for use on vessels and aircraft: beer. (a) Exportation. The exportation of beer to a foreign... certificate issued by an official of the country or possession where the beer has actually landed; or (6)...

  20. Aircraft systems design methodology and dispatch reliability prediction

    OpenAIRE

    Bineid, Mansour

    2005-01-01

    Aircraft despatch reliability was the main subject of this research in the wider content of aircraft reliability. The factors effecting dispatch reliability, aircraft delay, causes of aircraft delays, and aircraft delay costs and magnitudes were examined. Delay cost elements and aircraft delay scenarios were also studied. It concluded that aircraft dispatch reliability is affected by technical and non-technical factors, and that the former are under the designer's control. It showed that ...

  1. Challenges of aircraft design integration

    OpenAIRE

    Kafyeke, F.; Abdo, M.; Pepin, F; Piperni, P.; Laurendeau, E.

    2007-01-01

    The design of a modern airplane brings together many disciplines: structures, aerodynamics, controls, systems, propulsion with complex interdependencies and many variables. Recent aircraft programs, such as Bombardier's Continental Jet program use participants located around the world and selected for their cost, quality and delivery capability. These participants share the risk on the program and must therefore be fully implicated in the design. A big challenge is to provide information on c...

  2. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  3. PREDICTION OF AIRCRAFT NOISE LEVELS

    Science.gov (United States)

    Clark, B. J.

    1994-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources have been incorporated into a computer program for predicting aircraft noise levels either in flight or in ground test. The noise sources accounted for include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available in the program for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. The capacity to solve the geometrical relationships between an aircraft in flight and an observer on the ground has been included in the program to make it useful in evaluating noise estimates and footprints for various proposed engine installations. The program contains two main routines for employing the noise prediction routines. The first main routine consists of a procedure to calculate at various observer stations the time history of the noise from an aircraft flying at a specified set of speeds, orientations, and space coordinates. The various components of the noise are computed by the program. For each individual source, the noise levels are free field with no corrections for propagation losses other than spherical divergence. The total spectra may then be corrected for the usual effects of atmospheric attenuation, extra ground attenuation, ground reflection, and aircraft shielding. Next, the corresponding values of overall sound pressure level, perceived noise level, and tone-weighted perceived noise level are calculated. From the time history at each point, true effective perceived noise levels are calculated. Thus, values of effective perceived noise levels, maximum perceived noise levels, and tone-weighted perceived noise levels are found for a grid of specified points on the ground. The second main routine is designed to give the usual format of one-third octave sound pressure level values at a fixed radius for a number of user

  4. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  5. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  6. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Science.gov (United States)

    2013-11-01

    ... Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013... for Subsonic Engines'', in the third column, in the last row, the entry ``rO > 26.7'' is corrected...

  7. 14 CFR 91.111 - Operating near other aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operating near other aircraft. 91.111... § 91.111 Operating near other aircraft. (a) No person may operate an aircraft so close to another aircraft as to create a collision hazard. (b) No person may operate an aircraft in formation flight...

  8. Choice of Aircraft Size - Explanations and Implications

    OpenAIRE

    Givoni, Moshe; Rietveld, Piet

    2006-01-01

    To keep load factors high while offering high frequency service, airlines tend to reduce the size of the aircraft they use. At many of the world’s largest airports there are fewer than 100 passengers per air transport movement, although congestion and delays are growing. Furthermore, demand for air transport is predicted to continue growing but aircraft size is not. This paper aims to investigate and explain this phenomenon, the choice of relatively small aircraft. It seems that this choice i...

  9. Neural Networks Based Aircraft Fault Tolerant Control

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2012-01-01

    The purpose of this communication is to deal with the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The problem considered deals with the reallocation of redundant actuators to perform the required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear Inverse Control technique is used to generate online nominal moment along the three axis of the aircraft. Then, taking into account all material and structu...

  10. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  11. Bioturbosina: Producción de cultivos energéticos para la aviación comercial Jet Biofuel: Production of energy-related crops for commercial aircraft

    Directory of Open Access Journals (Sweden)

    Ibis Sepúlveda González

    2012-06-01

    Full Text Available Las más grandes compañías de fabricación de aviones, entre ellas Boeing y Airbus y la asociación internacional de líneas aéreas International Air Transport Association (IATA, decidieron jugar un doble papel: contribuir en la disminución de emisiones de gases efecto invernadero y asegurar la disponibilidad de combustible barato. Para ello se ha hecho un plan para agregar a la turbosina una fracción creciente de bioturbosina. En México esto se trabajó en el "plan de vuelo para los biocombustibles sustentables", convocado por ASA entre junio de 2010 y marzo de 2011. La bioturbosina debe reducir la emisión de GEI en más 50% en su ciclo de vida, con respecto a la turbosina. También se espera que, gracias a la tecnología, en el tiempo baje el costo de la bioturbosina mientras, por escasez, suba el del petróleo (Herrera y Morgan, 2010; García, 2010. De esta manera, a nivel mundial estas compañías han establecido que para 2015 se debe adicionar 1% de bioturbosina a la turbosina, para 2017; 10%, para 2020; 15% y así sucesivamente hasta cambiar al menos 50% del origen del combustible aéreo para 2050. En México se vende 2% del combustible aéreo del mundo. Esto significa una demanda inicial de 40 millones de litros de bioturbosina para 2015 y de unos 700 millones de litros para 2020. El grupo encargado de la promoción del biocombustible aéreo a nivel mundial (Roundtable on Sustainable Biofuels- RSB, con sede en la École Politechnique Federale de Lausanne estableció 12 principios que deben cumplirse para ser aceptados como proveedores de aceites para bioturbosina. Estos tienen que ver con sustentabilidad ecológica y equidad social. En la ponencia se analizan las condiciones de México para responder a esta primera demanda real de biocombustibles, así como sus probables efectos.The largest aircraft making companies, among them Boeing and Airbus, and International Air Transport Association (IATA, decided to take double role: to

  12. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  13. Policy and the evaluation of aircraft noise

    OpenAIRE

    Kroesen, M.; Molin, E.J.E.; Van Wee, G.P.

    2010-01-01

    In this paper, we hypothesize and test the ideas that (1) people’s subjectivity in relation to aircraft noise is shaped by the policy discourse, (2) this results in a limited number of frames towards aircraft noise, (3) the frames inform people how to think and feel about aircraft noise and (4) the distribution of the frames in the population is dependent on structural variables related to the individual. To reveal subjects’ frames of aircraft noise a latent class model is estimated based on ...

  14. Research on Emerging and Descending Aircraft Noise

    Directory of Open Access Journals (Sweden)

    Monika Bartkevičiūtė

    2013-12-01

    Full Text Available Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.The level of noise and its dispersion was evaluated conducting research on the noise generated by emerging and descending aircrafts in National Vilnius Airport. Investigation was carried out at 2 measuring points located in a residential area. There are different types of aircrafts causing different sound levels. It has been estimated the largest exceedances that occur when an aircraft is approaching. In this case, the noisiest types of aircrafts are B733, B738 and AT72. The sound level varies from 70 to 85 dBA. The quietest aircrafts are RJ1H and F70. When taking off, the equivalent of the maximum sound level value of these aircrafts does not exceed the authorized limits. The paper describes the causes of noise in aircrafts, the sources of origin and the impact of noise on humans and the environment.Article in Lithuanian

  15. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  16. Challenges for the aircraft structural integrity program

    Science.gov (United States)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  17. A Tail Buffet Loads Prediction Method for Aircraft at High Angles of Attack

    Science.gov (United States)

    Pototzky, Anthony S.; Moses, Robert W.

    2005-01-01

    Aircraft designers commit significant resources to the design of aircraft in meeting performance goals. Despite fulfilling traditional design requirements, many fighter aircraft have encountered buffet loads when demonstrating their high angle-of-attack maneuver capabilities. As a result, during test or initial production phases of fighter development programs, many new designs are impacted, usually in a detrimental way, by resulting in reassessing designs or limiting full mission capability. These troublesome experiences usually stem from overlooking or completely ignoring the effects of buffet during the design phase of aircraft. Perhaps additional requirements are necessary that addresses effects of buffet in achieving best aircraft performance in fulfilling mission goals. This paper describes a reliable, fairly simple, but quite general buffet loads analysis method to use in the initial design phases of fighter-aircraft development. The method is very similar to the random gust load analysis that is now commonly available in a commercial code, which this analysis capability is based, with some key modifications. The paper describes the theory and the implementation of the methodology. The method is demonstrated on a JSF prototype example problem. The demonstration also serves as a validation of the method, since, in the paper, the analysis is shown to nearly match the flight data. In addition, the paper demonstrates how the analysis method can be used to assess candidate design concepts in determining a satisfactory final aircraft configuration.

  18. Modelling the impact of aircraft emissions on atmospheric composition

    Science.gov (United States)

    Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.

    2012-12-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.

  19. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  20. 75 FR 70098 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-11-17

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... Aircraft Engines 912 A series engine with a crankcase assembly S/N up to and including S/N 27811, certificated in any category: ] Type certificate holder Aircraft model Engine model Aeromot-Industria...

  1. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  2. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  3. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    Science.gov (United States)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  4. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  5. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  6. Aircraft empennage structural detail design

    Science.gov (United States)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  7. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  8. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Science.gov (United States)

    2012-09-20

    ... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft Engines... technical amendment, the FAA clarified aircraft engine vibration test requirements in the...

  9. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  10. LCC-OPS: Life Cycle Cost Application in Aircraft Operations

    NARCIS (Netherlands)

    Suwondo, E.

    2007-01-01

    Observation of current practices in aircraft operations and maintenance shows limited consideration of cost savings applied by aircraft modifications, maintenance program optimisation and aircraft selection. This is due to hidden (maintenance dependent) costs and difficulties in quantifying the util

  11. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  12. Theory of Economic Life Prediction and Reliability Assessment of Aircraft Structures

    Institute of Scientific and Technical Information of China (English)

    YAN Chuliang; LIU Kege

    2011-01-01

    The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of aircraft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process, the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time, mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore, the economic life model is put forward.The model is of significant scientific value for products to provide longer economic life, higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.

  13. Noise control mechanisms of inside aircraft

    Science.gov (United States)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  14. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  15. Wireless Network Simulation in Aircraft Cabins

    Science.gov (United States)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  16. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  17. Laminar flow control for transport aircraft applications

    Science.gov (United States)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  18. 19 CFR 122.42 - Aircraft entry.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft entry. 122.42 Section 122.42 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  19. 14 CFR 135.125 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section...

  20. 14 CFR 121.538 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section...

  1. Wake-Induced Aerodynamics on a Trailing Aircraft

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.

    2016-01-01

    NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.

  2. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  3. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  4. Aircraft Stand Allocation with Associated Resource Scheduling

    DEFF Research Database (Denmark)

    Justesen, Tor Fog; Larsen, Jesper; Lusby, Richard Martin;

    An aircraft turn-round refers to the set of processes taking place from when an aircraft parks at its arrival stand until the time it departs from its departure stand. When handling a turn-round, the different processes involved (arrival, disembarkation of passengers, cleaning, etc.) require...... different ground handling resources (taxiways, aircraft stands, gates, etc) at different times. Each resource can be claimed by at most one turn-round at a time. The aircraft stand allocation problem with associated resource scheduling is the problem of allocating the required ground handling resources...... to handle a given set of aircraft turn-rounds. We develop a set packing-based model formulation of the problem which is both flexible in the sense that it can encapsulate any type of resource required during the handling of a turn-round and strong in the sense that conflicts that occur when two or more turn...

  5. Development and validation of bonded composite doubler repairs for commercial aircraft.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing

  6. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  7. Aircraft wing structure detail design

    Science.gov (United States)

    Sager, Garrett L.; Roberts, Ron; Mallon, Bob; Alameri, Mohamed; Steinbach, Bill

    1993-01-01

    The provisions of this project call for the design of the structure of the wing and carry-through structure for the Viper primary trainer, which is to be certified as a utility category trainer under FAR part 23. The specific items to be designed in this statement of work were Front Spar, Rear Spar, Aileron Structure, Wing Skin, and Fuselage Carry-through Structure. In the design of these parts, provisions for the fuel system, electrical system, and control routing were required. Also, the total weight of the entire wing planform could not exceed 216 lbs. Since this aircraft is to be used as a primary trainer, and the SOW requires a useful life of 107 cycles, it was decided that all of the principle stresses in the structural members would be kept below 10 ksi. The only drawback to this approach is a weight penalty.

  8. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  9. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    Science.gov (United States)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  10. Aircraft impact on a spherical shell

    International Nuclear Information System (INIS)

    For nuclear power plants located in the immediate vicinity of cities and airports safeguarding against an accidental aircraft strike is important. Because of the complexity of such an aircraft crash the building is ordinarily designed for loading by an idealized dynamical load F(t), which follows from measurements (aircraft striking a rigid wall). The extent to which the elastic displacements of a structure influence the impact load F(t) is investigatd in this paper. The aircraft is idealized by a linear mass-spring-dashpot combination which can easily be treated in computations and which can suffer elastic as well as plastic deformations. This 'aircraft' normally strikes a spherical shell at the apex. The time-dependent reactions of the shell as a function of the unknown impact load F(t) are expanded in terms of the normal modes, which are Legendre functions. The continuity condition at the impact point leads to an integral equation for F(t) which may be solved by Laplace transformation. F(t) is computed for hemispheres with several ratios of thickness to radius, several edge conditions and several 'aircraft' parameters. In all cases F(t) differs very little from that function obtained for the case of the aircraft striking a rigid wall. (Auth.)

  11. Improved portable lighting for visual aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Lab., Albuquerque, NM (United States); Lerner, J.; Shie, R. [Physical Optics Corp., Torrance, CA (United States)

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  12. Improved portable lighting for visual aircraft inspection

    Science.gov (United States)

    Shagam, Richard N.; Lerner, Jeremy M.; Shie, Rick

    1995-07-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  13. Aircraft Loss-of-Control Accident Analysis

    Science.gov (United States)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  14. Aircraft Energy Efficiency (ACEE) status report

    Science.gov (United States)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  15. Processing infrared images of aircraft lapjoints

    Science.gov (United States)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  16. Scrum application in service: analysis on an aircraft manufacturer

    Directory of Open Access Journals (Sweden)

    Stefano Petrini de Oliveira

    2015-02-01

    Full Text Available This article analyzes the application of Scrum approach in a test service area in aircraft. It is a qualitative study conducted at the largest aircraft manufacturer in Brazil. Scrum is widely used for software project management in several segments, but its features allow the use in project management in general applications, both development of products and services. This paper contributes to analyze the application for services and illustrates the Scrum use for managers. It explains the establishment, maturation, obstacles encountered and results achieved with the Scrum. The sector analyzed is the Hydro-Testing Systems and Controls Flight, responsible for performing system testing in laboratories composed of real parts and simulating systems of aircraft parts. Descriptive data were obtained through direct and interactive contact with the target situation. We sought information with the team members of testing using a questionnaire as a research tool. The application of agile approach Scrum in project management has brought good results for this testing area, subsequently for the related divisions and organization goals. It reached a better organization of management and staff, greater processing efficiency and completion targets were achieved close to that predicted. Scrum has brought transparency, since invested in increased visibility of the significant aspects of the process for all those listed. It assisted the inspections and monitoring results, propelling the guiding the process toward the goal and detecting undesirable variations and obstacles during the test campaign.

  17. 32 CFR 855.15 - Detaining an aircraft.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  18. 42 CFR 71.44 - Disinsection of aircraft.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Disinsection of aircraft. 71.44 Section 71.44... Disinsection of aircraft. (a) The Director may require disinsection of an aircraft if it has left a foreign area that is infected with insect-borne communicable disease and the aircraft is suspected of...

  19. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 1280.2 will not be made if such aircraft is damaged to an...

  20. 14 CFR 375.11 - Other foreign civil aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Other foreign civil aircraft. 375.11... PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorization § 375.11 Other foreign civil aircraft. A foreign civil aircraft other than those referred to in §...

  1. 14 CFR 47.51 - Triennial aircraft registration report.

    Science.gov (United States)

    2010-01-01

    ... in the United States; or (iii) A corporation (other than a corporation which is a citizen of the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Triennial aircraft registration report. 47... AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.51 Triennial...

  2. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  3. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    Energy Technology Data Exchange (ETDEWEB)

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler

  4. Directional monitoring terminal for aircraft noise

    Science.gov (United States)

    Genescà, M.

    2016-07-01

    This paper presents a concept of an aircraft noise monitoring terminal (NMT) that reduces background noise and the influence of ground reflection, in comparison with a single microphone. Also, it automatically identifies aircraft sound events based on the direction of arrival of the sound rather than on the sound pressure level (or radar data). And moreover, it provides an indicator of the quality of the sound pressure level measurement, i.e. if it is possibly disturbed by extraneous sources. The performance of this NMT is experimentally tested under real conditions in a measurement site close to Zurich airport. The results show that the NMT unambiguously identifies the noise events generated by the target aircraft, correctly detects those aircraft noise events that may be disturbed by the presence of other sources, and offers a substantial reduction in background and ground reflected sound.

  5. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered...

  6. Smart structure application for the Challenger aircraft

    Science.gov (United States)

    Grenier, L.; Blaha, Franz A.

    1994-09-01

    The Challenger aircraft fleet of the Canadian Forces will fly demanding missions, requiring the implementation of a fatigue management program based on the monitoring of in-flight aircraft load conditions. Conventional sensing techniques experience problems arising from severe electromagnetic interference (EMI). This paper describes the development of an EMI- insensitive smart-structure sensing concept for loads monitoring. Fiber-optic strain sensors, incorporated at critical structural locations, are used to monitor the fatigue life of the aircraft wing, fuselage, and empennage. A fiber-optic accelerometer is also incorporated in the system. A long-term plan is presented for the development of an advanced smart-structure concept which can support the continuous monitoring of fatigue-prone components, and provide the aircraft with near real-time damage location and assessment.

  7. Modular Electric Propulsion Test Bed Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of...

  8. The drive for Aircraft Energy Efficiency

    Science.gov (United States)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  9. Engineering students win NASA aircraft design competition

    OpenAIRE

    Crumbley, Liz

    2004-01-01

    Centuria," a single-engine jet aircraft designed by undergraduate engineering students from Virginia Tech and their counterparts at Loughborough University in the U.K., has won the Best Overall Award in NASA's 2004 Revolutionary Vehicles and Concepts Competition.

  10. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) is proposed. The proposed methodology employs the development of a very thin (135m) hybrid...

  11. Aircraft Nodal Data Acquisition System (ANDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  12. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  13. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.

    1999-07-01

    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  14. Thermal Management System for Superconducting Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  15. Tips for Travel and Aircraft Flight

    Science.gov (United States)

    ... Knowledge and support Tips for Travel and Aircraft Flight Category: FAQ's Tags: Risks Archives Breast Cancer Survivors ... limb carefully) and apply pressure as needed. DURING FLIGHT Keep your seat belt loosely fastened so that ...

  16. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  17. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  18. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-06-18

    ... and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 70 FR 2521, November 17... From Aircraft and Aircraft Engines; Emission Standards and Test Procedures; Final Rule #0;#0;Federal...: Final rule. SUMMARY: EPA is adopting several new aircraft engine emission standards for oxides...

  19. 14 CFR 3.5 - Statements about products, parts, appliances and materials.

    Science.gov (United States)

    2010-01-01

    .... Product means an aircraft, aircraft engine, or aircraft propeller. Record means any writing, drawing, map... product, part, appliance or material. (b) Prohibition against fraudulent and intentionally false statements. When conveying information related to an advertisement or sales transaction, no person may...

  20. Aircraft Noise and Quality of Life around Frankfurt Airport

    OpenAIRE

    Thomas Eikmann; Christin Peschel; Cara Kahl; Dirk Schreckenberg; Markus Meis

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft n...

  1. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  2. Aircraft Noise: Annoyance, House Prices and Valuation

    OpenAIRE

    Brooker, Peter

    2006-01-01

    “Nobody wants to buy your house. It’s the aircraft noise. You’ll have to reduce the price a lot.” Aircraft noise around airports causes annoyance, and tends to reduce the price of affected properties. Can annoyance be ‘costed’ by examining house price reductions? Are there other ways of valuing annoyance in monetary terms? This short paper summarises key research results and poses some questions.

  3. Research on Emerging and Descending Aircraft Noise

    OpenAIRE

    Monika Bartkevičiūtė; Raimondas Grubliauskas

    2013-01-01

    Along with an increase in the aircraft engine power and growth in air traffic, noise level at airports and their surrounding environs significantly increases. Aircraft noise is high level noise spreading within large radius and intensively irritating the human body. Air transport is one of the main sources of noise having a particularly strong negative impact on the environment. The article deals with activities and noises taking place in the largest nationwide Vilnius International Airport.T...

  4. Incidence of Fungal attack on Aircraft Fuselage

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1968-10-01

    Full Text Available Incidence of fungal attack on the fuselage of a few Vampire aircraft has been observed. The fungus isolated from the infected regions has been tentatively indentified as TorulaSp. Laboratory experiments have revealed that within four weeks this fungus causes about 44 percent loss in the tensile strength of the brich plywood used in the manufacture of the fuselage of the aircraft.

  5. An Optimization Model for Aircraft Service Logistics

    Institute of Scientific and Technical Information of China (English)

    Angus; Cheung; W; H; Ip; Angel; Lai; Eva; Cheung

    2002-01-01

    Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with geneti...

  6. Review of Aircraft Engine Fan Noise Reduction

    Science.gov (United States)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  7. Aircraft Wake Vortex Evolution and Prediction

    OpenAIRE

    Holzäpfel, Frank

    2005-01-01

    Aircraft trailing vortices constitute both a kaleidoscope of instructive fluid dynamics phenomena and a challenge for the sustained development of safety and capacity of the air-transportation industry. The current manuscript gives an overview on the wake vortex issue which commences at its historical roots and concludes with the current status of knowledge regarding the nature and characteristics, and the modeling of aircraft wakes. The incentive of today's wake vortex research still re...

  8. Anti-aircraft Missiles and Gun Control

    OpenAIRE

    BLOCK, Walter

    2016-01-01

    Abstract. Gun control is a highly debatable topic both in the popular and scholarly media. But what about anti-aircraft missiles? Should they be banned? On the one hand, there are fewer of them around, so their challenge is more tractable. On the other hand, they can do far more damage than handguns. The present paper is an attempt to wrestle with this challenge.Keywords. Gun control, Second amendment, Libertarianism, Anti-aircraft missiles.JEL. K15.

  9. Computer Aided Visual Inspection of Aircraft Surfaces

    OpenAIRE

    Rafia Mumtaz; Mustafa Mumtaz; Atif Bin Mansoor; Hassan Masood

    2012-01-01

    Non Destructive Inspections (NDI) plays a vital role in aircraft industry as it determines the structural integrity of aircraft surface and material characterization. The existing NDI methods are time consuming, we propose a new NDI approach using Digital Image Processing that has the potential to substantially decrease the inspection time. Automatic Marking of cracks have been achieved through application of Thresholding, Gabor Filter and Non Subsampled Contourlet transform. For a novel meth...

  10. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  11. Smart fastener technology for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Paul, Clare A.

    1995-04-01

    Hidden and inaccessible corrosion in aircraft structures is the number 1 logistics problem for the Air Force, with an estimated maintenance cost of greater than one billion dollars per year. The smart aircraft fastener evaluation (SAFE) system is being developed to detect and characterize corrosion factors in hidden locations of aircraft structures. The SAFE concept is a novel `in-situ' measurement approach that measures and autonomously records several environmental factors (i.e., pH, temperature, chloride) associated with corrosion. The SAFE system integrated an electrochemical-based microsensor array directly into the aircraft structure to measure the evidence of active corrosion as an in-situ measurement without reducing aircraft structural integrity. The long term-payoff for the SAFE system will be in predictive maintenance for fixed and rotary wing aircraft structures, industrial tanks, and fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs.

  12. High altitude aircraft flight tests

    Science.gov (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  13. Beamforming for aircraft noise measurements

    Science.gov (United States)

    Dougherty, Robert P.

    2003-10-01

    Phased array beamforming for aircraft noise source location has a long history, including early work on jet noise, wind tunnel measurements, and flyover testing. In the last 10 years, advancements in sparse 2-D and 3-D arrays, wind tunnel test techniques, and computer power have made phased array measurements almost common. Large aerospace companies and national research institutes have an advantage in access to major facilities and hundreds of measurement microphones, but universities and even consulting companies can perform tests with electret microphones and PC data acquisition systems. The type of testing remains a blend of science and art. A complex noise source is approximated by a mathematical model, and the microphones are deployed to evaluate the parameters of the model. For example, the simplest, but often the best, approach is to assume a distribution of mutually incoherent monopoles. This leads to an imaging process analogous to photography. Other models include coherent distributions of multipoles or duct modes. It is sometimes important to simulate the results that would have been obtained from single microphone measurements of part of the airplane in an ideal environment, had such measurements been feasible.

  14. Intelligent control of agile aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Mohler, R.R.; Zakrzewski, R.R. [Dept. of Electrical and Computer Engineering, Corvallis, OR (United States)

    1994-12-31

    A brief overview of adaptive and computer-aided flight control is presented as background for the evolution of recent research on nonlinear intelligent control. Here, several nonlinear control algorithms are investigated but emphasis is given to nearly time-optimal, neural-net generated feedback control which is trained on ideal minimum-time, open-loop trajectories. The minimum-time policies are computed by a new version of the switching-line-variational method (gradient algorithm). Critical control constraints and a benchmark for performance as well as a basis for training are obtained for the system design. This further demonstrates the need for an integrated controls and aircraft system design for full utilization of nonlinear control capability. Complex nonlinear simulations show the effectiveness of the derived nonlinear feedback controller for the high-angle-of-attack research vehicle (HARV) with stabilator and thrust-vector control. For example, angle of attack is controlled from near zero to sixty degrees in about two seconds with appropriate trim conditions at both ends. Such control greatly enhances maneuverability and general flight envelope admissibility.

  15. / production

    Indian Academy of Sciences (India)

    François Arleo; Pol-Bernard Gossiaux; Thierry Gousset; Jörg Aichelin

    2003-04-01

    For more than 25 years /Ψ production has helped to sharpen our understanding of QCD. In proton induced reaction some observations are rather well understood while others are still unclear. The current status of the theory of /Ψ production will be sketched, paying special attention to the issues of formation time and /Ψ re-interaction in a nuclear medium.

  16. Elevated-temperature Al alloys for aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Rainen, R.A.; Ekvall, J.C.

    1988-05-01

    Elevated-temperature powder metallurgy (P/M) aluminum alloys are being developed to replace titanium aircraft structure materials for operation in the 300-600 F temperature range. Typical mechanical properties of P/M Al-Fe-Ce and Al-Fe-V-Si alloys are superior to those of conventional materials, and cost savings of 50 to 70 percent have been projected for these alloys which can be fabricated and processed using methods similar to those used in the production of conventional aluminum. 5 references.

  17. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    Science.gov (United States)

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  18. Application of parametric weight and cost estimating relationships to future transport aircraft

    Science.gov (United States)

    Beltramo, M. N.; Morris, M. A.; Anderson, J. L.

    1979-01-01

    A model comprised of system level weight and cost estimating relationships for transport aircraft is presented. In order to determine the production cost of future aircraft its weight is first estimated based on performance parameters, and then the cost is estimated as a function of weight. For initial evaluation CERs were applied to actual system weights of six aircraft (3 military and 3 commercial) with mean empty weights ranging from 30,000 to 300,000 lb. The resulting cost estimates were compared with actual costs. The average absolute error was only 4.3%. Then the model was applied to five aircraft still in the design phase (Boeing 757, 767 and 777, and BAC HS146-100 and HS146-200). While the estimates for the 757 and 767 are within 2 to 3 percent of their assumed break-even costs, it is recognized that these are very sensitive to the validity of the estimated weights, inflation factor, the amount assumed for nonrecurring costs, etc., and it is suggested that the model may be used in conjunction with other information such as RDT&E cost estimates and market forecasts. The model will help NASA evaluate new technologies and production costs of future aircraft.

  19. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Hans; Bruijn, de Erik J.; Steenhuis, Harm-Jan

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the in

  20. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  1. Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

    Science.gov (United States)

    Donaldson, Steven; Priest, James; Cunningham, Kevin; Foster, John V.

    2012-01-01

    Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately

  2. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  3. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Science.gov (United States)

    2010-01-01

    ... products and is in good condition free from damage or other signs of excessive wear or abuse; (3) The user...) Specifies the maximum oxygen flow rate corresponding to the pressure in the cabin of the aircraft under... licensed physician that: (i) States whether the user of the device has the physical and cognitive...

  4. 75 FR 32251 - Airworthiness Directives; PILATUS Aircraft Ltd. Model PC-7 Airplanes

    Science.gov (United States)

    2010-06-08

    ... products. That NPRM was published in the Federal Register on March 15, 2010 (75 FR 12150). That NPRM... Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and (3) Will not have a significant...; AD 2010-12-04] RIN 2120-AA64 Airworthiness Directives; PILATUS Aircraft Ltd. Model PC-7...

  5. Pulsed-Magnetic Processing and Its Application in the Aircraft Industry in Russia

    Institute of Scientific and Technical Information of China (English)

    V.A.Glushchenkov

    2007-01-01

      Pulse-magnetic technology occupies one of technological fields in up-to-day aircraft manufacturing.This method of processing belongs to high-speed dynamical methods of processing,which are characterized by parameters providing high quality of finished products and save on material and labour costs.……

  6. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    Science.gov (United States)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  7. Spare Parts Management of Aging Capital Products

    NARCIS (Netherlands)

    M. Hekimoğlu (Mustafa)

    2015-01-01

    textabstractSpare parts are critical for operations of capital products such as aircraft, refineries, trucks, etc/, which require maintenance regularly. Original Equipment Manufacturers (OEMs) bear the responsibility of undisrupted maintenance service and spare parts flow for their capital products.

  8. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  9. Design of a spanloader cargo aircraft

    Science.gov (United States)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  10. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  11. Aircraft Combat Survivability Estimation and Synthetic Tradeoff Methods

    Institute of Scientific and Technical Information of China (English)

    LI Shu-lin; LI Shou-an; LI Wei-ji; LI Dong-xia; FENG Feng

    2005-01-01

    A new concept is proposed that susceptibility, vulnerability, reliability, maintainability and supportability should be essential factors of aircraft combat survivability. A weight coefficient method and a synthetic method are proposed to estimate aircraft combat survivability based on the essential factors. Considering that it takes cost to enhance aircraft combat survivability, a synthetic tradeoff model between aircraft combat survivability and life cycle cost is built. The aircraft combat survivability estimation methods and synthetic tradeoff with a life cycle cost model will be helpful for aircraft combat survivability design and enhancement.

  12. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  13. A study on the utilization of advanced composites in commercial aircraft wing structure

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  14. Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    Ricker, Robert; Hendricks, Stefan; Helm, Veit;

    2012-01-01

    highly accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea Cryosat-2 underpasses were accomplished with two aircraft which carried an airborne laser scanner, a radar altimeter and an electromagnetic induction device for direct sea ice thickness...... retrieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard distribution of laser scanner and radar altimeter measurements with the CryoSat-2 product within the multi-year sea ice region of the Lincoln Sea in spring...

  15. Model analysis of the chemical conversion of exhaust species in the expanding plumes of subsonic aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moellhoff, M.; Hendricks, J.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie; Sausen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A box model and two different one-dimensional models are used to investigate the chemical conversion of exhaust species in the dispersing plume of a subsonic aircraft flying at cruise altitude. The effect of varying daytime of release as well as the impact of changing dispersion time is studied with special respect to the aircraft induced O{sub 3} production. Effective emission amounts for consideration in mesoscale and global models are calculated. Simulations with modified photolysis rates are performed to show the sensitivity of the photochemistry to the occurrence of cirrus clouds. (author) 8 refs.

  16. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    Science.gov (United States)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  17. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    Science.gov (United States)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  18. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  19. Aircraft induced contrail cirrus over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Mannstein, H.; Schumann, U. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany)

    2005-08-01

    Condensation trails (contrails) and aircraft induced cirrus are nowadays a common feature at the mid latitude skies. Previously the impact of aircraft induced cirrus changes has been roughly estimated from observed decadal trends in cirrus cover but the direct attribution of observed cirrus changes to changes in aviation activity remains uncertain. In this paper the amount of additional cirrus induced from spreading contrails in humid air is estimated from the direct correlation between observed cirrus cover derived with suitable methods from METEOSAT data and aviation flight density reported by EUROCONTROL at high spatial and temporal resolution from June 22 to July 27, 1998 and September 27 to October 21, 2000. The results indicate that the aircraft induced cirrus cover over Europe is about ten times larger than that of linear contrails in the same region. Radiative forcing from the additional cirrus may be more than 10 times higher than that of linear contrails and aviation induced CO{sub 2} increases. (orig.)

  20. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  1. ANASE: measuring aircraft noise annoyance very unreliably.

    OpenAIRE

    Brooker, Peter

    2008-01-01

    Does anyone who lives under a flight-path like aircraft noise? It is a political hot potato as well as a peace-destroyer. Tens of thousands of people will hear the noise from any third runway at Heathrow. So, when a study commissioned by the government claimed that people are becoming less tolerant of aircraft noise, it made highly unpleasant reading for supporters of a third runway. But the Department for Transport rejected the report as unreliable. Peter Brooker senses the vibrations.

  2. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  3. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  4. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  5. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  6. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  7. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  8. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turbo-electric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  9. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft Flight Operations Quality Assurance (FOQA) programs are implemented by most of the aircraft operators. Vast amounts of FOQA data are distributed between...

  10. Aircraft detection based on probability model of structural elements

    Science.gov (United States)

    Chen, Long; Jiang, Zhiguo

    2014-11-01

    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  11. Practical Voice Recognition for the Aircraft Cockpit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  12. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  13. On the safety of aircraft systems: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1997-05-14

    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  14. CAD SIMULATION & FEM ANALYSIS OF AIRCRAFT LANDING GEAR MECHANISM

    OpenAIRE

    Nilesh W. Nirwan; Dilip G. Gangwani,

    2015-01-01

    Aircraft landing gear supports the entire weight of an aircraft during landing and ground operations. They are attached to primary structural members of the aircraft. The type of gear depends on the aircraft design and its intended use. Most landing gear has wheels to facilitate operation to and from hard surfaces, such as airport runways. Other gear feature skids for this purpose, such as those found on helicopters, balloon gondolas, and in the tail area of some tail dragger airc...

  15. A measurement method to discriminate aircraft fly-over noise

    OpenAIRE

    Genesca Francitorra, Meritxell; Romeu Garbí, Jordi; Pàmies Gómez, Teresa

    2010-01-01

    Currently aircraft noise monitoring systems use a mesh of single microphones distributed around an airport to continuously sample the noise level. This fact requires a manual process of aircraft noise event detection and classification in order to distinguish aircraft events from the rest of noise events in the recording. In the present paper a 3-meter-long 12-microphone linear array is used to automatically obtain a background noise free aircraft noise recording. The beamforming process sepa...

  16. Light shaping diffusers{trademark} improve aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Labs., Albuquerque, NM (United States); Shie, R.; Lerner, J. [Physical Optics Corp., Torrance, CA (United States)

    1994-11-01

    Physical Optical Corporation has introduced a Light Shaping Diffuser{trademark} (LSD) for the specialized illumination requirements of aircraft inspection. Attached to a handheld, battery-powered flashlight, this light-weight, holographic diffuser element provides bright, even illumination as aircraft inspectors perform the important task of visually examining aircraft for possible structural defects. Field trials conducted by the Aging Aircraft Program at Sandia National Laboratories confirm that the LSD-equipped flashlights are preferred by visual inspectors over stock flashlights.

  17. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of the Act and § 280.2 will not be made if such aircraft is damaged to an extent that its value is...

  18. 49 CFR 172.448 - CARGO AIRCRAFT ONLY label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false CARGO AIRCRAFT ONLY label. 172.448 Section 172.448... SECURITY PLANS Labeling § 172.448 CARGO AIRCRAFT ONLY label. (a) Except for size and color, the CARGO AIRCRAFT ONLY label must be as follows: ER14JA09.001 (b) The CARGO AIRCRAFT ONLY label must be black on...

  19. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  20. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    OpenAIRE

    Gino Rinaldi; Trisha Huber; Heather McIntosh; Les Lebrun; Heping Ding; John Weber

    2012-01-01

    Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be p...

  1. Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration

    Science.gov (United States)

    Koshak, William

    2003-01-01

    It is by no means a simple task to retrieve storm electric fields from an aircraft instrumented with electric field mill sensors. The presence of the aircraft distorts the ambient field in a complicated way. Before retrievals of the storm field can be made, the field mill measurement system must be "calibrated". In other words, a relationship between impressed (i.e., ambient) electric field and mill output must be established. If this relationship can be determined, it is mathematically inverted so that ambient field can be inferred from the mill outputs. Previous studies have primarily focused on linear theories where the relationship between ambient field and mill output is described by a "calibration matrix" M. Each element of the matrix describes how a particular component of the ambient field is enhanced by the aircraft. For example the product M(sub ix), E(sub x), is the contribution of the E(sub x) field to the i(th) mill output. Similarly, net aircraft charge (described by a "charge field component" E(sub q)) contributes an amount M(sub iq)E(sub q) to the output of the i(th) sensor. The central difficulty in obtaining M stems from the fact that the impressed field (E(sub x), E(sub y), E(sub z), E(sub q) is not known but is instead estimated. Typically, the aircraft is flown through a series of roll and pitch maneuvers in fair weather, and the values of the fair weather field and aircraft charge are estimated at each point along the aircraft trajectory. These initial estimates are often highly inadequate, but several investigators have improved the estimates by implementing various (ad hoc) iterative methods. Unfortunately, none of the iterative methods guarantee absolute convergence to correct values (i.e., absolute convergence to correct values has not been rigorously proven). In this work, the mathematical problem is solved directly by analytic means. For m mills installed on an arbitrary aircraft, it is shown that it is possible to solve for a single 2m

  2. Greenhouse effects of aircraft emissions as calculated by a radiative transfer model

    OpenAIRE

    Fortuin, J.P.F.; Dorland, R.; Wauben, W. M. F.; Kelder, H.

    1995-01-01

    With a radiative transfer model, assessments are made of the radiative forcing in northern mid-latitudes due to aircraft emissions up to 1990. Considered are the direct climate effects from the major combustion products carbon dioxide, nitrogen dioxide, water vapor and sulphur dioxide, as well as the indirect effect of ozone production from NOx emissions. Our study indicates a local radiative forcing at the tropopause which should be negative in summe...

  3. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Science.gov (United States)

    2010-03-02

    ... Administration 14 CFR Part 91 RIN 2120-AJ31 Aircraft Noise Certification Documents for International Operations... operating rules to require U.S. operators flying outside the United States to carry aircraft noise..., Subpart III, Section 44715, Controlling aircraft noise and sonic boom. Under that section, the FAA...

  4. 10 CFR 70.14 - Foreign military aircraft.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Foreign military aircraft. 70.14 Section 70.14 Energy....14 Foreign military aircraft. The regulations in this part do not apply to persons who carry special nuclear material (other than plutonium) in aircraft of the armed forces of foreign nations subject to 49...

  5. 47 CFR 90.423 - Operation on board aircraft.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation on board aircraft. 90.423 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.423 Operation on board aircraft. (a) Except... after September 14, 1973, under this part may be operated aboard aircraft for air-to-mobile,...

  6. 19 CFR 122.86 - Substitution of aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Substitution of aircraft. 122.86 Section 122.86... Substitution of aircraft. (a) Application. The residue cargo procedure applies when an airline must substitute aircraft to reach a destination due to weather conditions or operational factors which prevent an...

  7. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  8. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... revision process. Background: Under the provisions of the Sport Pilot and Light-Sport Aircraft rule, 69 FR... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004,...

  9. 14 CFR 45.31 - Marking of export aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft....

  10. 14 CFR 135.145 - Aircraft proving and validation tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 135... Aircraft and Equipment § 135.145 Aircraft proving and validation tests. (a) No certificate holder may... safely and in compliance with applicable regulatory standards. Validation tests are required for...

  11. Licencing and Training Reform in the Australian Aircraft Maintenance Industry

    Science.gov (United States)

    Hampson, Ian; Fraser, Doug

    2016-01-01

    The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…

  12. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  13. 14 CFR 91.325 - Primary category aircraft: Operating limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Primary category aircraft: Operating... Flight Operations § 91.325 Primary category aircraft: Operating limitations. (a) No person may operate a primary category aircraft carrying persons or property for compensation or hire. (b) No person may...

  14. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis;

    2002-01-01

    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through a...

  15. Using heuristics to solve the dedicated aircraft recovery problem

    DEFF Research Database (Denmark)

    Løve, Michael; Sørensen, Kim Riis; Larsen, Jesper;

    2001-01-01

    The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flig...

  16. Northwest to Accelerate Retirement of Dc10 Aircraft

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Northwest Airlines announced that it will accelerate the retirement of its remaining 12DC10-30 aircraft in service. The airline said that during the next seven months,it will replace DC10 aircraft with new Airbus A330s and Boeing 747-400aircraft being returned to service.Currently, seven routes are served with the DC10.

  17. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    Science.gov (United States)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  18. Recognition of aircraft using HRR features

    NARCIS (Netherlands)

    Kossen, A.S.

    2008-01-01

    Automated target recognition (ATR) based on high resolution radar (HRR) features can be used to increase the confidence in aircraft class. Standard radar systems are not designed for performing classification and uses additional identification systems. It is shown that with the use of features the a

  19. 78 FR 67309 - Earth Stations Aboard Aircraft

    Science.gov (United States)

    2013-11-12

    ...), and (d) published at 78 FR 14920 on March 8, 2013, are effective on November 12, 2013. FOR FURTHER...-161, published at 78 FR 14920, March 8, 2013. The OMB Control Number is 3060-1187. The Commission... COMMISSION 47 CFR Part 25 Earth Stations Aboard Aircraft AGENCY: Federal Communications Commission....

  20. Tactical aircraft optical cable plant program plan

    Science.gov (United States)

    Weaver, Thomas L.; Murdock, John K.; Ide, James R.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to tactical aircraft. The technology offers many potential benefits, including increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability from redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. The application of fiber optics to tactical aircraft presents challenges to physical components which can only be met by a methodical attention to what is required, what are the conditions of use, and how will the components be produced in the broad context of a fiber optics using economy. For this purpose, the FLASH program has outlined a plan, and developed a team to evaluate requirements, delineate environmental and use conditions, and design practical, low cost components for tactical aircraft fiber optic cable plants including cables, connectors, splices, backplanes, manufacturing and installation methods, and test and maintenance methods.

  1. Perspectives of civil aircraft avionics development

    OpenAIRE

    Наумов, А. В.

    1999-01-01

    Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  2. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  3. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  4. 14 CFR 34.6 - Aircraft safety.

    Science.gov (United States)

    2010-01-01

    ...) Consistent with 40 CFR 87.6, if the FAA Administrator determines that any emission control regulation in this... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aircraft safety. 34.6 Section 34.6... safety. (a) The provisions of this part will be revised if at any time the Administrator determines...

  5. Towards Intelligent Control for Next Generation Aircraft

    Science.gov (United States)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  6. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João;

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial comm...

  7. Emergency Landing Planning for Damaged Aircraft

    Science.gov (United States)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  8. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine ef

  9. Incident response monitoring technologies for aircraft cabin

    NARCIS (Netherlands)

    Havermans, J.B.G.A.; Houtzager, M.M.G.; Jacobs, P.

    2015-01-01

    The Netherlands Organization for Applied Scientific Research (TNO) was granted by ASHRAE (1306-RP) to conduct scientfic review and feasibility analysis of technologies and methods for measuring aircraft power system contaminants in the cabin air during unanticipated adverse incidents. In particular,

  10. Advances in aircraft design: Multiobjective optimization and a markup language

    Science.gov (United States)

    Deshpande, Shubhangi

    Today's modern aerospace systems exhibit strong interdisciplinary coupling and require a multidisciplinary, collaborative approach. Analysis methods that were once considered feasible only for advanced and detailed design are now available and even practical at the conceptual design stage. This changing philosophy for conducting conceptual design poses additional challenges beyond those encountered in a low fidelity design of aircraft. This thesis takes some steps towards bridging the gaps in existing technologies and advancing the state-of-the-art in aircraft design. The first part of the thesis proposes a new Pareto front approximation method for multiobjective optimization problems. The method employs a hybrid optimization approach using two derivative free direct search techniques, and is intended for solving blackbox simulation based multiobjective optimization problems with possibly nonsmooth functions where the analytical formof the objectives is not known and/or the evaluation of the objective function(s) is very expensive (very common in multidisciplinary design optimization). A new adaptive weighting scheme is proposed to convert a multiobjective optimization problem to a single objective optimization problem. Results show that the method achieves an arbitrarily close approximation to the Pareto front with a good collection of well-distributed nondominated points. The second part deals with the interdisciplinary data communication issues involved in a collaborative mutidisciplinary aircraft design environment. Efficient transfer, sharing, and manipulation of design and analysis data in a collaborative environment demands a formal structured representation of data. XML, a W3C recommendation, is one such standard concomitant with a number of powerful capabilities that alleviate interoperability issues. A compact, generic, and comprehensive XML schema for an aircraft design markup language (ADML) is proposed here to provide a common language for data

  11. Aircraft engine performance and integration in a flying wing aircraft conceptual design

    OpenAIRE

    Miao, Zhisong.

    2012-01-01

    The increasing demand of more economical and environmentally friendly aero engines leads to the proposal of a new concept – geared turbofan. In this thesis, the characteristics of this kind of engine and relevant considerations of integration on a flying wing aircraft were studied. The studies can be divided into four levels: GTF-11 engine modelling and performance simulation; aircraft performance calculation; nacelle design and aerodynamic performance evaluation; preliminar...

  12. Optical wireless networked-systems: applications to aircrafts

    Science.gov (United States)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  13. Scaling Trajectories in Civil Aircraft (1913-1997)

    CERN Document Server

    Frenken, Koen

    2010-01-01

    Using entropy statistics we analyse scaling patterns in terms of changes in the ratios among product characteristics of 143 designs in civil aircraft. Two allegedly dominant designs, the piston propeller DC3 and the turbofan Boeing 707, are shown to have triggered a scaling trajectory at the level of the respective firms. Along these trajectories different variables have been scaled at different moments in time: this points to the versatility of a dominant design which allows a firm to react to a variety of user needs. Scaling at the level of the industry took off only after subsequently reengineered models were introduced, like the piston propeller Douglas DC4 and the turbofan Boeing 767. The two scaling trajectories in civil aircraft corresponding to the piston propeller and the turbofan paradigm can be compared with a single, less pronounced scaling trajectory in helicopter technology for which we have data during the period 1940-1996. Management and policy implications can be specified in terms of the pha...

  14. Aircraft Design Analysis, CFD And Manufacturing

    Directory of Open Access Journals (Sweden)

    Haifa El-Sadi

    2016-09-01

    Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.

  15. Review of factors affecting aircraft wet runway performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  16. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  17. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  18. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde

    2009-07-01

    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  19. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  20. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  1. D-558-2 Aircraft on lakebed

    Science.gov (United States)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  2. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2009-02-01

    Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k−5/3 (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero

  3. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  4. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  5. Optimization of fire blocking layers for aircraft seating

    Science.gov (United States)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    Ablative materials are used to provide thermal protection for heat sensitive substrates against large jet fuel fires. The present investigation is concerned with the possibility to increase the available egress time for passengers, from a transport aircraft, in which the flexible polyurethane seating is exposed to the action of a large pool fire. Suitable approaches for providing sufficient ablative protection for polyurethane cushioning are considered. The efficiency of any fire blocking layer is defined as the ratio of the incident radiant heating rate, to the rate of production of combustible gas produced per unit area per second, generated by the pyrolysis of the substrate polyurethane foam. It is found that adequate fire blocking protection can be achieved through replacement of cotton batting slip covers with a wide variety of fire blocking layers. Metallized high temperature resistant char forming ablatives appear to provide optimum protection.

  6. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  7. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  8. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  9. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  10. Trajectory management for aircraft noise mitigation

    OpenAIRE

    Prats Menéndez, Xavier; Quevedo Casín, Joseba Jokin; Puig Cayuela, Vicenç

    2009-01-01

    Comunicació convidada This paper gives an overview of aircraft trajectory management aimed at producing noise abatementprocedures. Area Navigation (RNAV) concepts play an important role in the design of flexible and, therefore, noise friendly depart or approach procedures. In addition, the lowest dispersion of RNAV tracks help to contain noise footprints in a smaller area if compared with footprints that are produced when conventional procedures are flown. However, RNAV turns still produce...

  11. Review Article: Influenza Transmission on Aircraft

    Science.gov (United States)

    Adlhoch, Cornelia

    2016-01-01

    Background: Air travel is associated with the spread of influenza through infected passengers and potentially through in-flight transmission. Contact tracing after exposure to influenza is not performed systematically. We performed a systematic literature review to evaluate the evidence for influenza transmission aboard aircraft. Methods: Using PubMed and EMBASE databases, we identified and critically appraised identified records to assess the evidence of such transmission to passengers seated in close proximity to the index cases. We also developed a bias assessment tool to evaluate the quality of evidence provided in the retrieved studies. Results: We identified 14 peer-reviewed publications describing contact tracing of passengers after possible exposure to influenza virus aboard an aircraft. Contact tracing during the initial phase of the influenza A(H1N1)pdm09 pandemic was described in 11 publications. The studies describe the follow-up of 2,165 (51%) of 4,252 traceable passengers. Altogether, 163 secondary cases were identified resulting in an overall secondary attack rate among traced passengers of 7.5%. Of these secondary cases, 68 (42%) were seated within two rows of the index case. Conclusion: We found an overall moderate quality of evidence for transmission of influenza virus aboard an aircraft. The major limiting factor was the comparability of the studies. A majority of secondary cases was identified at a greater distance than two rows from the index case. A standardized approach for initiating, conducting, and reporting contact tracing could help to increase the evidence base for better assessing influenza transmission aboard aircraft. PMID:27253070

  12. Project ADIOS: Aircraft Deployable Ice Observation System

    Science.gov (United States)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  13. Study of hydrogen as an aircraft fuel

    OpenAIRE

    Ciaravino, John S.

    2003-01-01

    Approved for public release; distribution is unlimited The conversion to hydrogen as a naval aviation fuel would allow for independence on fuel cost and supply, as hydrogen is globally accessible. The biggest obstacle to using hydrogen is its very low density, a property that even combined with hydrogen's high heat of combustion still results in very large fuel tanks. Liquid hydrogen (LH2) with its higher density would still require a larger volume than kerosene for the aircraft to achieve...

  14. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  15. Speed stress and the aircraft pilot

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available When the human component in a man-machine system of pushed beyond the limits of human capacity in grasping information presented to senses or in executing a series of actions correctly, a condition of "speed stress" may be said to occur. Conditions encountered by aircraft at high speeds, make a consideration of the forms of speed stress, and of the measures to alleviate them, extremely important.

  16. Route optimization model for strike aircraft

    OpenAIRE

    Lee, Steve H. K.

    1995-01-01

    A model is designed and implemented to construct a 'flyable,' least- risk route for strike aircraft from takeoff to target, through enemy radars, in a defined area of operations. A network is fust constructed by discretizing the airspace into a three-dimensional grid of nodes and then connecting adjacent nodes with arcs. A shortest-path model in this network is then constructed with arc lengths that are a function of the probability of detection by radars monitoring t...

  17. Digital adaptive control laws for VTOL aircraft

    Science.gov (United States)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  18. Structural ballistic armour for transport aircraft

    OpenAIRE

    Horsfall, I; Austin, S J; Bishop, W.

    2000-01-01

    This paper describes the structural response of a current ceramic-faced composite armour system and a proposed structural armour system for aircraft use. The proposed structural ballistic armour system is shown to be capable of providing significant structural integrity even after ballistic impact whilst providing ballistic protection equivalent to an existing applique system. The addition of a carbon fibre reinforced plastic front panel to the existing ceramic faced composite armour system i...

  19. Active Noise Control in Propeller Aircraft

    OpenAIRE

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  20. Assessment of NASA's Aircraft Noise Prediction Capability

    Science.gov (United States)

    Dahl, Milo D. (Editor)

    2012-01-01

    A goal of NASA s Fundamental Aeronautics Program is the improvement of aircraft noise prediction. This document provides an assessment, conducted from 2006 to 2009, on the current state of the art for aircraft noise prediction by carefully analyzing the results from prediction tools and from the experimental databases to determine errors and uncertainties and compare results to validate the predictions. The error analysis is included for both the predictions and the experimental data and helps identify where improvements are required. This study is restricted to prediction methods and databases developed or sponsored by NASA, although in many cases they represent the current state of the art for industry. The present document begins with an introduction giving a general background for and a discussion on the process of this assessment followed by eight chapters covering topics at both the system and the component levels. The topic areas, each with multiple contributors, are aircraft system noise, engine system noise, airframe noise, fan noise, liner physics, duct acoustics, jet noise, and propulsion airframe aeroacoustics.

  1. Aircraft noise and its nearfield propagation computations

    Science.gov (United States)

    Zhang, Xin

    2012-08-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.

  2. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  3. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  4. Aircraft noise and its nearfield propagation computations

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang

    2012-01-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem.The aircraft noise problem is firstly reviewed in this article.The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise.Of the three main areas of the noise problem,i.e.generation,propagation,and radiation,propagation provides a vital link between near-field noise generation and far-field radiation.Its accurate assessment ensures the overall validity of a prediction model.Of the various classes of propagation equations,linearised Euler equations are often casted in either time domain or frequency domain.The equations are often solved numerically by computational aeroacoustics techniques,bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations,e.g.acoustic perturbation equations have been proposed,with differing degrees of success.

  5. Multi-level systems modeling and optimization for novel aircraft

    Science.gov (United States)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission

  6. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  7. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  8. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  9. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  10. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  11. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  12. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  13. UNOLS now oversees research aircraft facilities for ocean science

    OpenAIRE

    Bane, John M.; Bluth, Robert; Flagg, Charles; Jonsson, Haflidi; Melville, W. Kendall; Prince, Mike; Riemer, Daniel

    2004-01-01

    In recognition of the increasing importance and value of aircraft as observational platforms in oceanographic research, the University National Oceanographic Laboratory System (UNOLS) has established the Scientific Committee for Oceanographic Aircraft Research (SCOAR).SCOAR aims to establish procedures for research aircraft that follow the present UNOLS practices for research vessel use, with the goal of making it understandable, and easy, and thus desirable, for...

  14. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  15. Dedicated Solutions for Structural Health Monitoring of Aircraft Components

    OpenAIRE

    Pitropakis, Ioannis

    2015-01-01

    Aircraft structures, like any other mechanical structure, are subjected to various external factors that influence their lifetime. Mechanicalnbsp;and the environment are only some of the factors that can degrade the structure of aircraft components. Monitoring of these degradations by regular inspections or automated data recording is vital for the structural health of the critical components of an aircraft. This research proposes a number of dedicated solutions for structural health monitori...

  16. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  17. Review of Aircraft Electric Power Systems and Architectures

    OpenAIRE

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and adva...

  18. Investigation of cross flow fan propulsion for lightweight VTOL aircraft.

    OpenAIRE

    Gossett, Dean H.

    2000-01-01

    As world population increases, road and airport congestion will become increasingly prevalent. A small, cheap vTOL aircraft which can be flown from a driveway to the workplace parking lot would reduce traffic congestion and travel time. A lightweight, single seat commuter type VTOL aircraft is envisioned as the solution to this problem. To achieve a goal of minimum weight, the aircraft aerodynamic design should be optimized for forward flight. Vertical thrust augmentation from a propulsion un...

  19. Structural resource of the aircraft IAR-99 SOIM

    OpenAIRE

    Radu BISCA; Dorin LOZICI-BRINZEI

    2012-01-01

    Aircraft structure fatigue monitoring has been developed over decades presently reaching the stage where it became mandatory for all combat aircraft to be equipped with an airborne fatigue monitoring system. These systems usually collect operational data for calculating the safe fatigue life or inspection interval for the aircraft structure. This paper presents an analysis of the current state of fatigue monitoring systems on the IAR-99 SOIM based on the experience of international fatigue mo...

  20. Aircraft fault tolerant control based on active set method

    OpenAIRE

    Zhong, Lunlong; Mora-Camino, Félix

    2013-01-01

    This communication considers the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform a guidance manoeuver. The problem considered deals with the reassignment of the remaining actuators to continue to perform the maneuver while maintaining the structural integrity of the aircraft. A nonlinear inverse control technique is used to generate online nominal moments along the three main axes of the aircraft. Then, taking into account all material and structura...

  1. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  2. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  3. Escorting commercial aircraft to reduce the MANPAD threat

    Science.gov (United States)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  4. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  5. Integrated Network of Optimizations for Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue,...

  6. Model Updating in Online Aircraft Prognosis Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies...

  7. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  8. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  9. The Effects of Aircraft Wake Dynamics on Contrail Development

    Science.gov (United States)

    Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)

    2001-01-01

    Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.

  10. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  11. The ARCTAS aircraft mission: design and execution

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2009-08-01

    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. The goal of ARCTAS was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 transport of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. ARCTAS involved three aircraft: a DC-8 with detailed chemical payload, a P-3 with extensive aerosol payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train, by (1 validating the data, (2 improving constraints on retrievals, (3 making correlated observations, and (4 characterizing chemical and aerosol processes. The April flights (ARCTAS-A sampled pollution plumes from all three mid-latitude continents, fire plumes from Siberia and Southeast Asia, and halogen radical events. The June-July flights (ARCTAS-B focused on boreal forest fire influences and sampled fresh fire plumes from northern Saskatchewan as well as older fire plumes from Canada, Siberia, and California. The June–July deployment was preceded by one week of flights over California sponsored by the California Air Resources Board (ARCTAS-CARB. The ARCTAS-CARB goals were to (1 improve state emission inventories for greenhouse gases and aerosols, (2 provide observations to test and improve models of ozone and aerosol pollution. Extensive sampling across southern California and the Central Valley characterized emissions from urban centers, offshore shipping lanes, agricultural crops, feedlots, industrial sources, and wildfires.

  12. Forecasting for a Lagrangian aircraft campaign

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2004-01-01

    Full Text Available A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields and Lagrangian-type (i.e. trajectories model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO and ozone (O3 decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.

  13. Radiant Energy Power Source for Jet Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  14. Recent Progress in Aircraft Noise Research

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  15. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  16. Sensor Technology and Futuristic Of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Emmanuel Rugambage Ndayishimiye

    2016-08-01

    Full Text Available The Next Generation fighter Aircraft seeks a fighter with higher abilities in areas such as reach, persistence, survivability, net-centricity, situation awareness, human system integration and weapons effects. The future system will have to counter foe armed with next generation advanced electronic attack, sophisticated integrated air defense systems, directed energy weapons, passive detection, integrated self-protection and cyber-attack capabilities. It must be capable to operate in the anti-access area-denial (A2/AD environment that will exist in the next coming years.

  17. Squeeze Film Damping for Aircraft Gas Turbines

    Directory of Open Access Journals (Sweden)

    R. W. Shende

    1988-10-01

    Full Text Available Modern aircraft gas turbine engines depend heavily on squeeze film damper supports at the bearings for abatement of vibrations caused by a number of probable excitation sources. This design ultimately results in light-weight construction together with higher efficiency and reliability of engines. Many investigations have been reported during past two decades concerning the functioning of the squeeze film damper, which is simple in construction yet complex in behaviour with its non-linearity and multiplicity of variables. These are reviewed in this article to throw light on the considerations involved in the design of rotor-bearing-casing systems incorporating squeeze film dampers.

  18. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar

    2013-01-01

    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  19. Swarms of UAVs and fighter aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, M.W.; Wagner, J.S.; Stantz, K.M.; Gray, P.C.; Robinett, R.

    1998-11-01

    This paper describes a method of modeling swarms of UAVs and/or fighter aircraft using particle simulation concepts. Recent investigations into the use of genetic algorithms to design neural networks for the control of autonomous vehicles (i.e., robots) led to the examination of methods of simulating large collections of robots. This paper describes the successful implementation of a model of swarm dynamics using particle simulation concepts. Several examples of the complex behaviors achieved in a target/interceptor scenario are presented.

  20. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...... Hopf bifurcations. Even when the equilibrium state is stable, weakly damped oscillations occur with a period of 1 min. If, in an attempt to compensate for these oscillations, the thrust deflection is periodically adjusted, a complicated structure of overlapping torus, saddle-node and period......-doubling bifurcations arises. This structure is investigated by combining brute force bifurcation diagrams with one- and two-dimensional continuation analyses....

  1. Aircraft gas turbine materials and processes.

    Science.gov (United States)

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  2. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  3. 77 FR 20012 - Federal Acquisition Regulation; Information Collection; Corporate Aircraft Costs

    Science.gov (United States)

    2012-04-03

    ... Regulation; Information Collection; Corporate Aircraft Costs AGENCY: Department of Defense (DOD), General... collection requirement concerning corporate aircraft costs. Public comments are particularly invited on..., Corporate Aircraft Costs, by any of the following methods: Regulations.gov :...

  4. A NASA study of the impact of technology on future multimission aircraft

    Science.gov (United States)

    Samuels, Jeffrey J.

    1992-01-01

    A conceptual aircraft design study was recently completed which compared three supersonic multimission tactical aircraft. The aircraft were evaluated in two technology timeframes and were sized with consistent methods and technology assumptions so that the aircraft could be compared in operational utility or cost analysis trends. The three aircraft are a carrier-based Fighter/Attack aircraft, a land-based Multirole Fighter, and a Short Takeoff/Vertical Landing (STOVL) aircraft. This paper describes the design study ground rules used and the aircraft designed. The aircraft descriptions include weights, dimensions and layout, design mission and maneuver performance, and fallout mission performance. The effect of changing technology and mission requirements on the STOVL aircraft and the impact of aircraft navalization are discussed. Also discussed are the effects on the STOVL aircraft of both Thrust/Weight required in hover and design mission radius.

  5. Data management in an object-oriented distributed aircraft conceptual design environment

    Science.gov (United States)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  6. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  7. A Generic Nonlinear Aerodynamic Model for Aircraft

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  8. Signal processing of aircraft flyover noise

    Science.gov (United States)

    Kelly, J. J.

    1993-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a level uniform flyover is considered in the study, but the code can accept more general flight profiles. The effects of spectral smearing and its removal are discussed. Using test data acquired from an XV-15 tilt-rotor flyover, comparisons are made between the measured and corrected spectra. Frequency shifts are accurately accounted for by the de-Dopplerization procedure. It is shown that by correcting for spherical spreading and Doppler amplitude, along with frequency, can give some idea about noise source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  9. Overview of Aircraft Noise Prediction Tools Assessment

    Science.gov (United States)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  10. Damage Propagation Modeling for Aircraft Engine Prognostics

    Science.gov (United States)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  11. MULTI-CONTROLLER STRUCTURE OF SUPERMANEUVERABLE AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposes a method of using multi-controllers to control supermaneuverable aircraft. A nonlinear dynamic-inversion controller is used for supermaneuver. A gain-scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector-thrust for lower velocity maneuver control. Unlike the variation-structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic-inversion to gain-scheduling, while the other is used for switching from gain-scheduling to dynamic-inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.

  12. Radiation exposure monitoring in civil aircraft

    Science.gov (United States)

    Schrewe, Ulrich J.

    1999-02-01

    Based on the 1990 Recommendation of the ICRP (ICRP Publication 60, Pergamon Press, Oxford, 1991) a European Directive [Official J. Eur. Communities 19 (1996) L159, 1-114] commits the European Union (EU) member states to revise their national radiation protection laws by the year 2000 such that the exposure of aircrews to the increased cosmic radiation prevailing at aviation flight altitudes will be treated as occupational risks. A consequence will be that employers must assess the aircrew exposure. The ACREM (Air Crew Radiation Exposure Monitoring) research project intends to investigate practically methods for aircraft dose equivalent determination. The in-flight measurements were carried out on cargo aircraft. Field calibrations were performed using Tissue-Equivalent Proportional Counters (TEPC) as the reference instrument. Various monitors were used to investigate the spatial doserate distribution. The measured data were collated according to the different altitudes and geomagnetic latitudes. The results obtained from various in-flight measurements are reported and a concept for a future routine dose assessment for aircrew is proposed.

  13. Monitoring Aircraft Motion at Airports by LIDAR

    Science.gov (United States)

    Toth, C.; Jozkow, G.; Koppanyi, Z.; Young, S.; Grejner-Brzezinska, D.

    2016-06-01

    Improving sensor performance, combined with better affordability, provides better object space observability, resulting in new applications. Remote sensing systems are primarily concerned with acquiring data of the static components of our environment, such as the topographic surface of the earth, transportation infrastructure, city models, etc. Observing the dynamic component of the object space is still rather rare in the geospatial application field; vehicle extraction and traffic flow monitoring are a few examples of using remote sensing to detect and model moving objects. Deploying a network of inexpensive LiDAR sensors along taxiways and runways can provide both geometrically and temporally rich geospatial data that aircraft body can be extracted from the point cloud, and then, based on consecutive point clouds motion parameters can be estimated. Acquiring accurate aircraft trajectory data is essential to improve aviation safety at airports. This paper reports about the initial experiences obtained by using a network of four Velodyne VLP- 16 sensors to acquire data along a runway segment.

  14. Human Factors of Remotely Piloted Aircraft

    Science.gov (United States)

    Hobbs, Alan Neville

    2014-01-01

    The civilian use of remotely piloted, or unmanned aircraft is expected to increase rapidly in the years ahead. Despite being referred to as unmanned some of the major challenges confronting this emerging sector relate to human factors. As unmanned aircraft systems (UAS) are introduced into civil airspace, a failure to adequately consider human factors could result in preventable accidents that may not only result in loss of life, but may also undermine public confidence in remotely piloted operations. Key issues include pilot situational awareness, collision avoidance in the absence of an out-the-window view, the effects of time delays in communication and control systems, control handovers, the challenges of very long duration flights, and the design of the control station. Problems have included poor physical layout of controls, non-intuitive automation interfaces, an over-reliance on text displays, and complicated sequences of menu selection to perform routine tasks. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material.

  15. An Immunized Aircraft Maneuver Selection System

    Science.gov (United States)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  16. ANALYSES ON SYSTEMATIC CONFRONTATION OF FIGHTER AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    HuaiJinpeng; WuZhe; HuangJun

    2002-01-01

    Analyses of the systematic confrontation between two military forcfes are the highest hierarchy on opera-tional effectiveness study of weapon systema.The physi-cal model for tactical many-on-many engagements of an aerial warfare with heterogeneous figher aircraft is estab-lished.On the basis of Lanchester multivariate equations of square law,a mathematical model corresponding to the established physical model is given.A superiorityh parame-ter is then derived directly from the mathematical model.With view to the high -tech condition of modern war-fare,the concept of superiority parameter which more well and truly reflects the essential of an air-to-air en-gagement is further formulated.The attrition coeffi-cients,which are key to the differential equations,are de-termined by using tactics of random target assignment and air-to-air capability index of the fighter aircraft.Hereby,taking the mathematical model and superiority parameter as cores,calculations amd analyses of complicate systemic problems such as evaluation of battle superiority,prog-mostication of combat process and optimization of colloca-tions have been accomplished.Results indicate that a clas-sical combat theory with its certain recent development has received newer applications in the military operation research for complicated confrontation analysis issues.

  17. Investigation of damping liquids for aircraft instruments

    Science.gov (United States)

    Keulegan, G H

    1929-01-01

    This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

  18. Damage tolerance analysis of aircraft reinforced panels

    Directory of Open Access Journals (Sweden)

    A. Pirondi

    2011-04-01

    Full Text Available This work is aimed at reproducing numerically a campaign of experimental tests performed for the development of reinforced panels, typically found in aircraft fuselage. The bonded reinforcements can significantly reduce the rate of fatigue crack growth and increase the residual strength of the skin. The reinforcements are of two types: stringers and doublers. The former provides stiffening to the panel while the latter controls the crack growth between the stringers. The purpose of the study is to validate a numerical method of analysis that can predict the damage tolerance of these reinforced panels. Therefore, using a fracture mechanics approach, several models (different by the geometry and the types of reinforcement constraints were simulated with the finite element solver ABAQUS. The bonding between skin and stiffener was taken either rigid or flexible due to the presence of adhesive. The possible rupture of the reinforcements was also considered. The stress intensity factor trend obtained numerically as a function of crack growth was used to determine the fatigue crack growth rate, obtaining a good approximation of the experimental crack propagation rate in the skin. Therefore, different solutions for improving the damage tolerance of aircraft reinforced panels can be virtually tested in this way before performing experiments.

  19. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  20. Modelling and simulation of flexible aircraft : handling qualities with active load control

    OpenAIRE

    Andrews, Stuart P.

    2011-01-01

    The study of the motion of manoeuvring aircraft has traditionally considered the aircraft to be rigid. This simplifying assumption has been shown to give quite accurate results for the flight dynamics of many aircraft types. As modern transport aircraft have developed however, there has been a marked increase in the size and weight of these aircraft. This trend is likely to continue with the development of future blended-wing-body and supersonic transport aircraft. This increas...

  1. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    International Nuclear Information System (INIS)

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  2. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  3. 48 CFR 1852.228-71 - Aircraft flight risks.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852.228-71 Section 1852.228-71 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... the aircraft has returned to the ground and rotors are disengaged. (iv) With respect to vertical...

  4. A DSS for capacity planning of aircraft maintenance personnel

    NARCIS (Netherlands)

    M.C. Dijkstra (Matthijs); L.G. Kroon (Leo); J.A.E.E. van Nunen (Jo); M. Salomon (Marc)

    1991-01-01

    textabstractIn this paper we describe a Decision Support System (DSS) that has been developed for the aircraft maintenance department of the Dutch national airline company at the main airport in the Netherlands. The aircraft maintenance department is responsible for carrying out the regular short in

  5. Optimization of operational aircraft parameters reducing noise emission

    OpenAIRE

    Abdallah, Lina; Khardi, Salah; Haddou, Mounir

    2010-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  6. Optimization of operational aircraft parameters Reducing Noise Emission

    CERN Document Server

    Abdallah, Lina; Khardi, Salah

    2008-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  7. 14 CFR 13.17 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Seizure of aircraft. 13.17 Section 13.17... INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.17 Seizure of aircraft. (a) Under... by the Regional Administrator of the region, or by the Chief Counsel, may summarily seize an...

  8. 77 FR 24251 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2012-04-23

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... availability of three new and three revised consensus standards relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004....

  9. 78 FR 35085 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2013-06-11

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... availability of one new and seven revised consensus standards relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM...

  10. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a.m., Wednesday, November 30, 2011. NTSB Chairman Deborah A.P. Hersman will chair the two-day forum and all five Board Members...

  11. 14 CFR 135.419 - Approved aircraft inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approved aircraft inspection program. 135.419 Section 135.419 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  12. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation...

  13. How Effective Is Communication Training For Aircraft Crews

    Science.gov (United States)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  14. Vulnerability of fighter–aircraft for new threats

    NARCIS (Netherlands)

    Meerten, E. van

    2002-01-01

    Technical developments in modern fighter aircraft design will contribute to aircraft survivability by influencing either the aircraft’s susceptibility or its vulnerability. On the other hand, technical developments in missile warhead and ammunition design will result in a lethality increase against

  15. 77 FR 64442 - Airworthiness Directives; PILATUS AIRCRAFT LTD. Airplanes

    Science.gov (United States)

    2012-10-22

    ... the same type design. Certain changes described above expand the scope of the original NPRM (77 FR..., PILATUS AIRCRAFT LTD. has issued updated revisions to the Structural and Component Airworthiness...). Johan Kruger of PILATUS AIRCRAFT LTD. requested the FAA to incorporate new revisions of the...

  16. 47 CFR 87.51 - Aircraft earth station commissioning.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Aircraft earth station commissioning. 87.51... SERVICES AVIATION SERVICES Applications and Licenses § 87.51 Aircraft earth station commissioning. (a) (b... license together with the commissioning certificate issued by Inmarsat. Notwithstanding the...

  17. Assessment of aircraft noise sources variability using an acoustic camera

    NARCIS (Netherlands)

    Snellen, M.; Merino Martinez, R.; Simons, D.G.

    2015-01-01

    Noise assessment around airports is hampered due to the observed large variability in noise levels for fly-overs of the same aircraft type, which is not considered by the current models. This paper assumes that the noise variability is due to variations in the aircraft emitted noise, neglecting the

  18. 22 CFR 121.3 - Aircraft and related articles.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Aircraft and related articles. 121.3 Section 121.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS THE UNITED STATES MUNITIONS LIST Enumeration of Articles § 121.3 Aircraft and related articles. In Category...

  19. External interaction of the nuclear EMP with aircraft and missiles

    International Nuclear Information System (INIS)

    The general problem of external coupling of the nuclear EMP to metal structures is discussed with attention directed toward aircraft and missiles. Theoretical and experimental data are presented fo the skin current and charge densities induced on aircraft. Recommendations for future studies are also given

  20. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Science.gov (United States)

    2012-04-13

    .... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine...: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues to read as follows: Authority: 49 U.S.C... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness...

  1. Aircraft-skin Infrared Radiation Characteristics Modeling and Analysis

    Institute of Scientific and Technical Information of China (English)

    Lu Jianwei; Wang Qiang

    2009-01-01

    One of the most important problems of stealth technology is to evaluate the infrared radiation (IR) level received by IR sensors from fighters to be detected. This article presents a synthetic method for calculating the IR emitted from aircraft-skin. By reckoning the aerodynamic heating and hot engine casing to be the main heat sources of the exposed aircraft-skin, a numerical model of skin temperature distribution is established through computational fluid dynamics (CFD) technique. Based on it, an infrared signature model for solving the complex geometry and structure of a fighter is proposed with the reverse Monte Carlo (RMC) method. Finally, by way of determining the IR intensity from aircraft-skin, the aircraft components that emit the most IR can be identified; and the cooling effects of the main aircraft components on IR intensity are investigated. It is found that reduction by 10 K in the skin temperature of head, vertical stabilizers and wings could lead to decline of more than 8% of the IR intensity on the aircraft-skin in front view while at the broadside of the aircraft, the drops in IR intensity could attain under 8%. The results provide useful reference in designing stealthy aircraft.

  2. Robust Control of an Ill-Conditioned Aircraft

    DEFF Research Database (Denmark)

    Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.;

    1996-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  3. A Study on Simulation of Aircraft Maintenance and Support System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Maintenance and support are basic elements to realize the effectiveness of aircraft. For basic analysis of the characteristics of an aircraft maintenance and support system, a simulation method is presented in this paper, and the structure and realization ofthe simulation system is discussed.

  4. Mixing Ventilation System in a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Zhang, Chen; Wojcik, Kamil;

    2014-01-01

    Traditionally, air is supplied to the aircraft cabin either by individual nozzles or by supply slots. The air is expected to be fully mixed in the cabin, and the system is considered to be a mixing ventilation system. This paper will provide measurements on the mixing flow in an aircraft cabin...

  5. 19 CFR 122.41 - Aircraft required to enter.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft required to enter. 122.41 Section 122.41 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  6. 78 FR 23329 - Aircraft Access to SWIM Working Group Meeting

    Science.gov (United States)

    2013-04-18

    ... Federal Aviation Administration Aircraft Access to SWIM Working Group Meeting Meeting Announcement... attend and participate in an Aircraft Access to SWIM Working Group Meeting scheduled for Thursday, May 16... to SWIM The FAA's Next Generation Air Transportation System (NextGen) program is a...

  7. Aircraft noise exposure from Schiphol airport: A relation with complainants

    NARCIS (Netherlands)

    Jong, R.G. de; Wiechen, C.M.A.G. van; Franssen, E.A.M.; Lebret, E.

    2002-01-01

    The possible relation between aircraft noise exposure and the prevalence of complainants around Schiphol airport was studied. The home address of people who complain about aircraft noise at the Environment Advisory Committee Schiphol was combined with annual average noise levels, using a Geographic

  8. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; Heijst, van G.J.F.; Kuczaj, A.K.; Geurts, B.J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during tak

  9. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  10. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Cessna Aircraft Company Models 172R and 172S airplanes. This proposed AD was prompted by reports... tube assembly and the airplane structure; and adjustment as necessary. We are proposing this AD...

  11. 78 FR 35110 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-06-12

    ... airplane exhaust system. This AD was prompted by reports of exhaust system failures upstream of aircraft... comment. Discuss Exhaust System Misalignment, Its Effect on Exhaust System Failures, and Pertinent Company... Condition This AD was prompted by the forced landings of aircraft due to exhaust system failures...

  12. 19 CFR 10.62b - Aircraft turbine fuel.

    Science.gov (United States)

    2010-04-01

    ... section. Withdrawals under this paragraph shall be annotated with the term “Withdrawal under 19 CFR 10.62b... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise...

  13. New opportunities for aircraft noise policy in the Netherlands

    NARCIS (Netherlands)

    Kroesen, M.

    2010-01-01

    This papers aims (1) to provide a review of the (non-acoustic) social-psychological determinants of aircraft noise annoyance, (2) evaluate Schiphol’s noise policy from a social-psychological perspective and (3) review a governance model that can effectively address non-acoustic factors in aircraft n

  14. A comparison of lightning and aircraft sources of NO{sub x} in the upper troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Physics; Bergmann, D.J.; Kinnison, D.; Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.; Price, C. [Tel Aviv Univ. (Israel). Dept. of Geophysics and Planetary Sciences; Prather, M.J. [California Univ., Irvine, CA (United States). Dept. of Earth System Science; Pickering, K.E. [Maryland Univ., College Park, MD (United States). Dept. of Meteorology; Baughcum, S.L. [Boeing Commerial Airplane Group, Seatlle, WA (United States)

    1997-12-31

    Uncertainties in the assessment of the contribution of aircraft to upper tropospheric NO{sub x} arise from uncertainties in model treatment of transport, uncertainties in source strengths, and uncertainties in chemical rates and reactions determining the partitioning between NO{sub x} and NO{sub y}. Two different chemical transport models are used to examine the range of uncertainty in the contribution of aircraft to upper tropospheric NO{sub x} from model representations of transport. Uncertainties caused by uncertainties in the rate of production of NO{sub x} from lightning and uncertainties from the range of background concentrations of HNO{sub 3} are also examined. Uncertainties in the treatment of vertical transport and uncertainties in the source strength from lightning contribute to a large range in model results for background NO{sub x}. (author) 18 refs.

  15. Precise Aircraft Guidance Techniques for NASA's Operation IceBridge

    Science.gov (United States)

    Sonntag, J. G.; Russell, R.

    2013-12-01

    We present a suite of novel aircraft guidance techniques we designed, developed and now operationally utilize to precisely guide large NASA aircraft and their sensor suites over polar science targets. Our techniques are based on real-time, non-differential Global Positioning System (GPS) data. They interact with the flight crew and the aircraft using a combination of yoke-mounted computer displays and an electronic interface to the aircraft's autopilot via the aircraft's Instrument Landing System (ILS). This ILS interface allows the crew to 'couple' the autopilot to our systems, which then guide the aircraft over science targets with considerably better accuracy than it can using its internal guidance. We regularly demonstrate errors in cross-track aircraft positioning of better than 4 m standard deviation and better than 2 m in mean offset over lengthy great-circle routes across the ice sheets. Our system also has a mode allowing for manual aircraft guidance down a predetermined path of arbitrary curvature, such as a sinuous glacier centerline. This mode is in general not as accurate as the coupled technique but is more versatile. We employ both techniques interchangeably and seamlessly during a typical Operation IceBridge science flight. Flight crews find the system sufficiently intuitive so that little or no familiarization is required prior to their accurately flying science lines. We regularly employ the system on NASA's P-3B and DC-8 aircraft, and since the interface to the aircraft's autopilot operates through the ILS, it should work well on any ILS-equipped aircraft. Finally, we recently extended the system to provide precise, three-dimensional landing approach guidance to the aircraft, thus transforming any approach into a precise ILS approach, even to a primitive runway. This was intended to provide a backup to the aircraft's internal landing systems in the event of a zero-visibility landing to a non-ILS equipped runway, such as the McMurdo sea ice runway

  16. Carrier Analysis Lab (CAL) – Aircraft/Weapons/Ship Compatibility Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Carrier Analysis Lab (CAL) - Aircraft/Weapons/Ship Compatibility Lab located at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides...

  17. DYNAMIC RESPONSE ANALYSIS OF CARRIER-BASED AIRCRAFT DURING LANDING

    Institute of Scientific and Technical Information of China (English)

    段萍萍; 聂宏; 魏小辉

    2013-01-01

    In view of the complexity of landing on the deck of aircraft carrier ,a systematic model ,composed of six-degree-of-freedom mathematic model of carrier-based aircraft ,four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier , is established in the Matlab-Simulink environment , with damping function of landing gears and dynamic characteristics of tires being considered .The model ,where the car-rier movement is introduced ,is applicable for any abnormal landing condition .Moreover ,the equations of motion and relevant parameter are also derived .The dynamic response of aircraft is calculated via the variable step-size Runge-Kuta algorithm .The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details .The analytical results can provide some reference for carrier-based aircraft design and main-tenance .

  18. Aircraft noise and speech intelligibility in an outdoor living space.

    Science.gov (United States)

    Alvarsson, Jesper J; Nordström, Henrik; Lundén, Peter; Nilsson, Mats E

    2014-06-01

    Studies of effects on speech intelligibility from aircraft noise in outdoor places are currently lacking. To explore these effects, first-order ambisonic recordings of aircraft noise were reproduced outdoors in a pergola. The average background level was 47 dB LA eq. Lists of phonetically balanced words (LAS max,word = 54 dB) were reproduced simultaneously with aircraft passage noise (LAS max,noise = 72-84 dB). Twenty individually tested listeners wrote down each presented word while seated in the pergola. The main results were (i) aircraft noise negatively affects speech intelligibility at sound pressure levels that exceed those of the speech sound (signal-to-noise ratio, S/N aircraft noise on speech intelligibility outdoors. PMID:24907809

  19. The rotor systems research aircraft - A flying wind tunnel

    Science.gov (United States)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  20. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  1. Discussion on the dispersion & agglomeration of aircraft industry

    Institute of Scientific and Technical Information of China (English)

    Bo Chu

    2009-01-01

    The aircraft industry is crucial to the economy and security of a nation. In this paper, the spatial characteristics and patterns of the aircraft industry are analyzed on different spatial scales. It is found that there is a 'Matthew effect' in the global aircraft industry and the spatial evolution of the industry is consistent with the industrialization process of the whole country. It is also revealed that the spatial evolution of the country is driven by both the centripetal forces including capital, talents, technology and agglomeration economies and the centrifugal forces including the comparative advantage, cost &risk sharing, emerging markets, development policy for less-developed regions and the military imperative. These forces have both market-stabilizing and market-disrupting effects on the spatial evolution of the aircraft industry. The study suggests that lessons drawn from the experiences in the United States and France are expected to be conducive to the rise of China's aircraft industry in the future.

  2. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... unable to solve. The primary cause that UAVs has reached the current level of development is their military potential. Both for surveillance operations and direct strikes, UAVs has many benefits compared to manned aircraft, and the biggest of those are that no pilots are put in direct contact with enemy...... a specific UAV, used by the Danish military, it is investigated how a number of critical faults can be detected and handled. One of the challenges using telemetry data for the fault diagnosis is the limited bandwidth in the radio link between the aircraft and the base-station on ground. This combined...

  3. The community response to aircraft noise around six Spanish airports

    Science.gov (United States)

    Garcia, A.; Faus, L. J.; Garcia, A. M.

    1993-06-01

    The community response to aircraft noise has been studied through a social survey. A total of 1800 persons living in the vicinity of six major Spanish airports have been interviewed at their homes concerning the environmental quality of the area, dissatisfaction with road traffic noise and aircraft noise, activities interfered with by noise, most disturbing aircraft types, and subjective evaluation of airport impact. All the responses obtained in this survey have been compared with aircraft noise levels corresponding to the residence locations of the people interviewed (values of NEF levels were calculated with the INM model). The results obtained in this work allow one to evaluate the impact of aircraft noise under a wide range of different situations.

  4. Aircraft Accident Prevention: Loss-of-Control Analysis

    Science.gov (United States)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  5. Aircraft stress sequence development: A complex engineering process made simple

    Science.gov (United States)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  6. Nonlinear Gust Response Analysis of Free Flexible Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Shilu

    2013-01-01

    Full Text Available Gust response analysis plays a very important role in large aircraft design. This paper presents a methodology for calculating the flight dynamic characteristics and gust response of free flexible aircraft. A multidisciplinary coupled numerical tool is developed to simulate detailed aircraft models undergoing arbitrary free flight motion in the time domain, by Computational Fluid Dynamics (CFD, Computational Structure Dynamics (CSD and Computational Flight Mechanics (CFM coupling. To achieve this objective, a structured, time-accurate flow-solver is coupled with a computational module solving the flight mechanics equations of motion and a structural mechanics code determining the structural deformations. A novel method to determine the trim state of flexible aircraft is also stated. First, the field velocity approach is validated, after the trim state is attained, gust responses for the one-minus-cosine gust profile are analyzed for the longitudinal motion of a slender-wing aircraft configuration with and without the consideration of structural deformation.

  7. Method and System for Active Noise Control of Tiltrotor Aircraft

    Science.gov (United States)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  8. A Knowledge-based and Extensible Aircraft Conceptual Design Environment

    Institute of Scientific and Technical Information of China (English)

    FENG Haocheng; LUO Mingqiang; LIU Hu; WU Zhe

    2011-01-01

    Design knowledge and experience are the bases to carry out aircraft conceptual design tasks due to the high complexity and integration of the tasks during this phase.When carrying out the same task,different designers may need individual strategies to fulfill their own demands.A knowledge-based and extensible method in building aircraft conceptual design systems is studied considering the above requirements.Based on the theory,a knowledge-based aircraft conceptual design environment,called knowledge-based and extensible aircraft conceptual design environment (KEACDE) with open architecture,is built as to enable designers to wrap add-on extensions and make their own aircraft conceptual design systems.The architecture,characteristics and other design and development aspects of KEACDE are discussed.A civil airplane conceptual design system (CACDS) is achieved using KEACDE.Finally,a civil airplane design case is presented to demonstrate the usability and effectiveness of this environment.

  9. Facilities of determination of socio-economic efficiency of aircrafts and ways of their increase

    Directory of Open Access Journals (Sweden)

    Mahir Halid Naif Hilyal

    2015-06-01

    Full Text Available Determination of efficiency of facilities of labour, including aircrafts that have wide distribution, is an important task. Level of appropriate methodological base largely influences on the creation of optimal product design and saving all kinds of resources. In this regard, the analysis of domestic and foreign sources to assess the effectiveness of innovations is conducted. It is shown that mainly four well-known indexes of calculation of effect of innovations are examined such, as a net present value, internal rate of return, internal rate of return, pay-back period. For today the index of profitability, which is very important for the estimation of both development and introduction of separate innovations and estimation of activity of business entities, absents in vast majority of official methodical materials. The impossibility of identifying of indexes of profit and net present value is shown. It is exposed, that in existent methodical materials is given insufficient attention to the calculation of effect in the field of consumption of innovations, where their actual final effect is defined. Methods of an assessment of social and economic efficiency of application of innovations in different types of productions, determination of efficiency from decrease in size of risk at realization of means of labor are demanded further development. The analysis of theoretical and methodological bases of determination of effect of aircrafts is executed also. The necessity of further development of socio-economic estimation of increase of major consumer properties of airplanes is set such, as their reliability and longevity. Paid attention to requirement of improvement of methods of calculation of expenses in exploitation of aircrafts, of establishment their numeral, including normative values. Similar recommendations are also belonged to the estimation of efficiency of small aircrafts.

  10. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  11. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines... Turbofan or Turbojet Engines with Rated Output Above 26.7 kN'' should read as set forth below: Table 3 to Sec. 87.23--Tier 6 NOX Standards for New Subsonic Turbofan or Turbojet Engines With Rated Output...

  12. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  13. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  14. Acoustic boundary control for quieter aircraft

    Science.gov (United States)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  15. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  16. Empirical Prediction of Aircraft Landing Gear Noise

    Science.gov (United States)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  17. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  18. Aeroacoustics of advanced STOVL aircraft plumes

    Science.gov (United States)

    Ahuja, K. K.; Spencer, D. A.

    1988-01-01

    This paper summarizes a basic and well-controlled experimental study involving flow visualization and noise measurements to define the acoustic and flow fields of single plumes impinging on a simulated ground plane. The flow visualization was made by strobing a laser light source at the discrete frequencies generated by the impingement of the jets and measured by a nearfield microphone. This enabled visualization of instability waves generated by the interaction between the plumes and the sound generated during impingement, and also by dynamic coupling between the two plumes. These data were acquired as a function of distance between the ground and the nozzle exit. Nearfield acoustic data were acquired simultaneously. Data for nozzle diameters of 0.265 in. and 0.4 in. are described. For selected nozzles, effects of exit boundary layer characteristics and nozzle protrusion through a simulated aircraft body are also presented.

  19. Wavelet-based acoustic recognition of aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.; Kercel, S.W.

    1994-09-01

    We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.

  20. Locating industrial VOC sources with aircraft observations.

    Science.gov (United States)

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.

  1. Structural design of supersonic cruise aircraft

    Science.gov (United States)

    Fischler, J. E.

    1976-01-01

    The major efforts leading to an efficient structural design include: (1) the analysis methods used to improve the structural model optimization and compare the structural concepts, (2) the analysis and description of the fail-safe, crack growth, and residual strength studies and tests, (3) baseline structural trade studies to determine optimum structural weights including effects of geometry changes, strength, fail-safety, aeroelastics and flutter, 6AL-4V annealed titanium in structural efficiency after 70,000 hours at temperature, (5) the study of three structural models for aircraft at 2.0 Mach, 2.2 Mach, and 2.4 Mach cruise speeds, (6) the study of many structural concepts to determine their weight efficiencies; and (7) the determination of the requirements for large-scale structural development testing.

  2. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  3. Circulation control STOL aircraft design aspects

    Science.gov (United States)

    Loth, John L.

    1987-01-01

    Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.

  4. Stroke Symbol Generation Software for Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    G.K. Tripathi

    2013-03-01

    Full Text Available This paper gives an overview of the stroke symbol generation software developed by Hindustan Aeronautics Limited for fighter aircraft. This paper covers the working principle of head-up-display, overview of target hardware on which the developed software has been integrated and tested, software architecture, hardware software interfaces and design details of stroke symbol generation software. The paper also covers the issues related to stroke symbol quality which were encountered by the design team and the details about how the issues were resolved during integration and test phase.Defence Science Journal, 2013, 63(2, pp.153-156, DOI:http://dx.doi.org/10.14429/dsj.63.4257

  5. Space Weather Effects on Aircraft Navigation

    Science.gov (United States)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  6. Maneuver and buffet characteristics of fighter aircraft

    Science.gov (United States)

    Ray, E. J.; Mckinney, L. W.; Carmichael, J. G.

    1973-01-01

    Recent research efforts in the improvement of the maneuverability of fighter aircraft in the high-subsonic and transonic speed range are reviewed with emphasis on the factors affecting aerodynamic boundaries, such as maximum obtainable lift, buffet onset, pitchup, wing rock, and nose slice. The investigations were made using a general research configuration which encompassed a systematic matrix of wing-design parameters. These results illustrated the sensitivity of section and planform geometry to a selected design point. The incorporation of variable-geometry wing devices in the form of flaps or leading-edge slats was shown to provide controlled flow over a wide range of flight conditions and substantial improvements in maneuver capabilities. Additional studies indicated that the blending of a highly swept maneuver strake with an efficient, moderately swept wing offers a promising approach for improving maneuver characteristics at high angles of attack without excessive penalties in structural weight.

  7. Fracture control procedures for aircraft structural integrity

    Science.gov (United States)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  8. Visualizing interior and exterior jet aircraft noise

    Science.gov (United States)

    Moondra, Manmohan S.

    In today's competitive aerospace industry, the quest for quiet has drawn significant attention to both the interior and exterior design of an airplane. Understanding the noise generation mechanisms of a jet aircraft is a crucial first step toward developing the most cost-effective noise and vibrations abatement methods. In this investigation, the Helmholtz Equation Least Squares (HELS) based nearfield acoustic holography will be used to understand noise transmission caused by jet engine and turbulence into the fuselage of a jet aircraft cruising at 30,000 ft. Modern propulsive jet engines produce exterior noise sources with a high amplitude noise field and complicated characteristics, which makes them very difficult to characterize. In particular, there are turbulent eddies that are moving through the jet at high speeds along the jet boundary. These turbulent eddies in the shear layer produce a directional and frequency dependent noise. The original HELS approach assumes a spherical source at the origin and computes the acoustic field based on spherical emission from this source. This assumption of one source at the origin is not sufficient to characterize a complex source like a jet. As such, a modified HELS approach is introduced that will help improve the source characterization as it is not dependent on a single source at the origin but a number of virtual sources throughout the space. Custom microphones are created to take acoustic pressure measurements around the jet engine. These measured acoustic pressures are then taken as input to the modified HELS algorithm to visualize the noise pattern of a subsonic jet engine.

  9. Aircraft Conceptual Design Using Vehicle Sketch Pad

    Science.gov (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  10. Automatic detection of aircraft emergency landing sites

    Science.gov (United States)

    Shen, Yu-Fei; Rahman, Zia-ur; Krusienski, Dean; Li, Jiang

    2011-06-01

    An automatic landing site detection algorithm is proposed for aircraft emergency landing. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot's flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient algorithm that is expected to alleviate the negative impact of these factors. We present only the detection mechanism of the proposed algorithm and assume that the image enhancement for increased visibility, and image stitching for a larger field-of-view have already been performed on the images acquired by aircraftmounted cameras. Specifically, we describe an elastic bound detection method which is designed to position the horizon. The terrain image is divided into non-overlapping blocks which are then clustered according to a "roughness" measure. Adjacent smooth blocks are merged to form potential landing sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of the candidate region exceed the minimum requirement for safe landing, the potential landing site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc. Preliminary results show the feasibility of the proposed algorithm.

  11. The IAGOS Information System: From the aircraft measurements to the users.

    Science.gov (United States)

    Boulanger, Damien; Thouret, Valérie; Cammas, Jean-Pierre; Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Brenninkmeijer, Carl A. M.

    2013-04-01

    IAGOS (In-service Aircraft for a Global Observing System, http://www.iagos.org) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of atmospheric chemical composition throughout the troposphere and in the UTLS. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation industry. IAGOS consists of two complementary building blocks proving a unique global observation system: IAGOS-CORE deploys newly developed instrumentation for regular in-situ measurements of atmospheric chemical species both reactive and greenhouse gases (O3, CO, NOx, NOy, H2O, CO2, CH4), aerosols and cloud particles. In IAGOS-CARIBIC a cargo container is deployed monthly as a flying laboratory aboard one aircraft. Involved airlines ensure global operation of the network. Today, 5 aircraft are flying with the MOZAIC (3) or IAGOS-CORE (2) instrumentation namely 3 aircraft from Lufthansa, 1 from Air Namibia, and 1 from China Airlines Taiwan. A main improvement and new aspect of the IAGOS-CORE instrumentation compared to MOZAIC is to deliver the raw data in near real time (i.e. as soon as the aircraft lands data are transmitted). After a first and quick validation of the O3 and CO measurements, preliminary data are made available in the central database for both the MACC project (Monitoring Atmospheric Composition and Climate) and scientific research groups. In addition to recorded measurements, the database also contains added-value products such as meteorological information (tropopause height, air mass backtrajectories) and lagrangian model outputs (FLEXPART). Data access is handled by open

  12. Review of evolving trends in blended wing body aircraft design

    Science.gov (United States)

    Okonkwo, Paul; Smith, Howard

    2016-04-01

    The desire to produce environmentally friendly aircraft that is aerodynamically efficient and capable of conveying large number of passengers over long ranges at reduced direct operating cost led aircraft designers to develop the Blended Wing Body (BWB) aircraft concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The design provides aerodynamics and environmental benefits and is suitable for the integration of advanced systems and concepts like laminar flow technology, jet flaps and distributed propulsion. However, despite these benefits, the BWB is yet to be developed for commercial air transport due to several challenges. This paper reviews emerging trends in BWB aircraft design highlighting design challenges that have hindered the development of a BWB passenger transport aircraft. The study finds that in order to harness the advantages and reduce the deficiencies of a tightly coupled configuration like the BWB, a multidisciplinary design synthesis optimisation should be conducted with good handling and ride quality as objective functions within acceptable direct operating cost and noise bounds.

  13. Control of a swept wing tailless aircraft through wing morphing

    Science.gov (United States)

    Guiler, Richard W.

    Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered insight to achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs must incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, capable of changing the twist of wing and that can also provide pitch, roll and yaw control for a tailless swept wing aircraft is the first step to a series of morphing techniques, which will lead to more fluid, bird-like flight. This research focuses on investigating the design of a morphing wing to improve the flight characteristics of swept wing Horten type tailless aircraft. Free flight demonstrators, wind tunnel flow visualization, wind-tunnel force and moment data along with CFD studies have been used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft. A wing morphing mechanism for the control of a swept wing tailless aircraft has been developed. This new control technique was experimentally and numerically compared to an existing elevon equipped tailless aircraft and has shown the potential for significant improvement in efficiency. The feasibility of this mechanism was also validated through flight testing of a flight weight version. In the process of comparing the Horten type elevon equipped aircraft and the morphing model, formal wind tunnel verification of wingtip induced thrust, found in Horten (Bell Shaped Lift distribution) type swept wing tailless aircraft was documented. A more complete physical understanding of the highly complex flow generated in the control region of the morphing tailless aircraft has been developed. CFD models indicate the possibility of the presence of a Leading Edge Vortex (LEV) on the control section morphing wing when the tip is twisted between +3.5 degrees and +7 degrees. The presence of this LEV causes a reduction of drag while lift is increased. Similar LEVs have been

  14. Hull loss accident model for narrow body commercial aircraft

    Directory of Open Access Journals (Sweden)

    Somchanok Tiabtiamrat

    2010-10-01

    Full Text Available Accidents with narrow body aircraft were statistically evaluated covering six families of commercial aircraft includingBoeing B737, Airbus A320, McDonnell Douglas MD80, Tupolev TU134/TU154 and Antonov AN124. A risk indicator for eachflight phase was developed based on motion characteristics, duration time, and the presence of adverse weather conditions.The estimated risk levels based on these risk indicators then developed from the risk indicator. Regression analysis indicatedvery good agreement between the estimated risk level and the accident ratio of hull loss cases per number of delivered aircraft.The effect of time on the hull loss accident ratio per delivered aircraft was assessed for B737, A320 and MD80. Equationsrepresenting the effect of time on hull loss accident ratio per delivered aircraft were proposed for B737, A320, and MD80,while average values of hull loss accident ratio per delivered aircraft were found for TU134, TU154, and AN 124. Accidentprobability equations were then developed for each family of aircraft that the probability of an aircraft in a hull loss accidentcould be estimated for any aircraft family, flight phase, presence of adverse weather factor, hour of day, day of week, monthof year, pilot age, and pilot flight hour experience. A simplified relationship between estimated hull loss accident probabilityand unsafe acts by human was proposed. Numerical investigation of the relationship between unsafe acts by human andfatality ratio suggested that the fatality ratio in hull loss accident was dominated primarily by the flight phase media.

  15. Assessment of aircraft noise sources variability using an acoustic camera

    OpenAIRE

    Snellen, M.; Merino Martinez, R.; Simons, D.G.

    2015-01-01

    Noise assessment around airports is hampered due to the observed large variability in noise levels for fly-overs of the same aircraft type, which is not considered by the current models. This paper assumes that the noise variability is due to variations in the aircraft emitted noise, neglecting the effect of the variable atmosphere, as previous work showed that its contribution is maximally 2 dB. In order to quantify and investigate the variability of noise levels during aircraft fly-overs, 1...

  16. Conceptual Design of New Low-Noise Aircraft

    OpenAIRE

    Bertsch, Lothar

    2015-01-01

    Noise levels generated by aircraft (and rotorcraft) can be assigned to the loudest noise sources of our times. Sound pressure levels close to a jet aircraft engine under take‐off conditions can reach the human threshold of pain with respect to noise. Aircraft ground noise levels comparable to a heavy truck passing by, i.e. maximum levels in the order of 70 to 80 dBA, can still be measured at large distances up to 20 kilometers away from the actual airport premises (FUSSNOTE: website http:/...

  17. Parameter estimation of an aeroelastic aircraft using neural networks

    Indian Academy of Sciences (India)

    S C Raisinghani; A K Ghosh

    2000-04-01

    Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of predicting generalized force and moment coefficients using measured motion and control variables only, without any need for conventional normal elastic variables ortheirtime derivatives, is proposed. Furthermore, it is shown that such a neural model can be used to extract equivalent stability and control derivatives of a flexible aircraft. Results are presented for aircraft with different levels of flexibility to demonstrate the utility ofthe neural approach for both modelling and estimation of parameters.

  18. Improvements in antenna coupling path algorithms for aircraft EMC analysis

    Science.gov (United States)

    Bogusz, Michael; Kibina, Stanley J.

    The algorithms to calculate and display the path of maximum electromagnetic interference coupling along the perfectly conducting surface of a frustrum cone model of an aircraft nose are developed and revised for the Aircraft Inter-Antenna Propagation with Graphics (AAPG) electromagnetic compatibility analysis code. Analysis of the coupling problem geometry on the frustrum cone model and representative numerical test cases reveal how the revised algorithms are more accurate than their predecessors. These improvements in accuracy and their impact on realistic aircraft electromagnetic compatibility problems are outlined.

  19. Discussion on the dispersion & agglomeration of aircraft industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The aircraft industry is crucial to the economy and security of a nation. In this paper,the spatial characteristics and patterns of the aircraft industry are analyzed on different spatial scales. It is found that there is a 'Matthew effect' in the global aircraft industry and the spatial evolution of the industry is consistent with the industrialization process of the whole country. It is also revealed that the spatial evolution of the country is driven by both the centripetal forces including capital,talen...

  20. A robust optimization methodology for preliminary aircraft design

    Science.gov (United States)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.