WorldWideScience

Sample records for aircraft flight control

  1. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  2. Building A Flight Control System For A Modelled Aircraft

    OpenAIRE

    Garratt, Paul William; Rushton, Andrew; Yilmaz, Esat

    2004-01-01

    Abstract. We modelled an aircraft based on the Airbus A320 and constructed a synthesisable flight control system. The novel feature was the use of C and VHDL, Very High Speed Inte-grated Circuit Design Language, to allow the flight control system to reside in a Field Pro-grammable Gate Array in a model aircraft or an Uninhabited Aerial Vehicle. The simulator models axial, normal, transverse, pitch, roll and yaw movements. The flight control system has automatic manoeuvre envelope protection a...

  3. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    Science.gov (United States)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  4. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  5. System identification methods for aircraft flight control development and validation

    Science.gov (United States)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  6. Aircraft automatic flight control system with model inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, George

    1990-01-01

    A simulator study was conducted to verify the advantages of a Newton-Raphson model-inversion technique as a design basis for an automatic trajectory control system in an aircraft with highly nonlinear characteristics. The simulation employed a detailed mathematical model of the aerodynamic and propulsion system performance characteristics of a vertical-attitude takeoff and landing tactical aircraft. The results obtained confirm satisfactory control system performance over a large portion of the flight envelope. System response to wind gusts was satisfactory for various plausible combinations of wind magnitude and direction.

  7. Flight control synthesis for flexible aircraft using Eigenspace assignment

    Science.gov (United States)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired

  8. Flight tests of the total automatic flight control system (Tafcos) concept on a DHC-6 Twin Otter aircraft

    Science.gov (United States)

    Wehrend, W. R., Jr.; Meyer, G.

    1980-01-01

    Flight control systems capable of handling the complex operational requirements of the STOL and VTOL aircraft designs as well as designs using active control concepts are considered. Emphasis is placed on the total automatic flight control system (TACOS) (TAFCOS). Flight test results which verified the performance of the system concept are presented.

  9. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions. Cons

  10. Computer program to simulate digital computer based longitudinal flight control laws in a high performance aircraft

    OpenAIRE

    Carter, James Robert

    1983-01-01

    Approved for public release; distribution unlimited The IEH Company's Continuous Systems Modeling Program was used to simulate the longitudinal flight control system of the F/A-18 aircraft. The model is intended for use in investigations cf aircraft response to flight conditions which approach spin or stall and is restricted to the automatic flaps up (AFU) flight mode. Program outputs include stabilator deflection, leading and trailing edge flap positions, and cress-ax...

  11. Flight dynamics and control modelling of damaged asymmetric aircraft

    Science.gov (United States)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  12. An alternative flight control system for an unmanned aircraft whose flight control system fails during a longitudinal flight with constant forward velocity

    OpenAIRE

    Balint, Agneta M.; Ştefan BALINT

    2010-01-01

    In this paper we build up a flight control system for an unmanned aircraft whose flightcontrol system fails during a longitudinal flight with constant forward velocity. This task isaccomplished using only the system of differential equations, which governs the movement of theaircraft around its center of mass. Numerical simulation is given.

  13. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    Science.gov (United States)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  14. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  15. Investigation of Practical Flight Control Systems for Small Aircraft

    NARCIS (Netherlands)

    Falkena, W.

    2012-01-01

    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the near future. However, seventy times more accidents occur in this segment as compared with the commercial aviation sector. The majority of these accidents is related to handling and control

  16. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  17. A knowledge-based system design/information tool for aircraft flight control systems

    Science.gov (United States)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  18. Research on flight stability performance of rotor aircraft based on visual servo control method

    Science.gov (United States)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  19. Analysis of Control Strategies for Aircraft Flight Upset Recovery

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.

    2012-01-01

    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  20. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    Science.gov (United States)

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  1. A self-reorganizing digital flight control system for aircraft

    Science.gov (United States)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  2. H-infinity based integrated flight/propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle; Ouzts, Peter

    1990-01-01

    This paper presents results from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC design with controller partitioning. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H(infinity) control problem such that it reflects the IFPC design objective. The H(infinity) controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance.

  3. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    Science.gov (United States)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  4. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    Science.gov (United States)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  5. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  6. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    Science.gov (United States)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  7. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    Science.gov (United States)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  8. Optimization Based Clearance of Flight Control Laws A Civil Aircraft Application

    CERN Document Server

    Hansson, Anders; Puyou, Guilhem

    2012-01-01

    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.   The overall objective of the COFCLUO project was to develop and apply optimization techniques to the clearance of flight control laws in order to improve efficiency and reliability. In the book, the new techniques are explained and benchmarked against traditional techniques currently used by the industry. The new techniques build on mathematical criteria derived from the certification and qualification requirements together with suitable models...

  9. Digital adaptive model following flight control. [using fighter aircraft mathematical model-following algorithm

    Science.gov (United States)

    Alag, G. S.; Kaufman, H.

    1974-01-01

    Simple mechanical linkages are often unable to cope with the many control problems associated with high performance aircraft maneuvering over a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized equations of motion for a typical fighter aircraft. The system is composed of an online weighted least squares identifier, a Kalman state filter, and a single stage real model following control law. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions for perfect model following are satisfied and stability in the sense of boundedness otherwise.

  10. Planform, aero-structural, and flight control optimization for tailless morphing aircraft

    Science.gov (United States)

    Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo

    2015-04-01

    Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.

  11. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    Science.gov (United States)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  12. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  13. Proportional Plus Integral Control of Aircraft for Automated Maneuvering Formation Flight

    Science.gov (United States)

    1991-12-01

    3-11 3.6 Formation Kinematic Equations Development 3-12 3.7 Aircraft Longitudinal (X) Channel Maneuvering 3-17 3.8 Aircraft Lateral (Y...response of the respective aircraft . Longitudinal position along the flight path vector is a direct function of forward velocity. Velocity is determined by...equation is not needed. 3-16 3.7 Aircraft Longitudinal (X) Channel Maneuvering The longitudinal channel involves the longitudinal separation distance

  14. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    Science.gov (United States)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  15. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  16. Estimation of Stability & Control Derivatives from Flight Test Data of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    L. Saraswathi

    2000-04-01

    Full Text Available Longitudinal stability and tontrol derivatives of a fightlfr aircraft are estimated by output error method for different types of input excitation. The uncertainties in the parameters are computed by cortfcting Cramer-Ra(j bounds using fudge factor. In general, the step input response data is not usedfor estimating the derivatives. Therefore, step response time history trajectories were cross-validated using tIle estimated derivatives for standard inputs like doublet and 3211. This proves that the model parameters are estimated with high confidence. By appropriately choosing the mathematical modeland using the corrected flight data for bias and scale factor errors by compatability check for parameter  estimation proves beyond doubt that such a procedure can be adopted for estimating stability and control derivatives of any aircraft.

  17. Digital flight control research

    Science.gov (United States)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  18. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    Science.gov (United States)

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  19. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  20. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  1. Aircraft automatic digital flight control system with inversion of the model in the feed-forward path

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1984-01-01

    A full-flight-envelope automatic trajectory control system concept is being investigated at Ames Research Center. This concept was developed for advanced aircraft configurations with severe nonlinear characteristics. A feature of the system is an inverse of the complete nonlinear aircraft model as part of the feed-forward control path. Simulation and flight tests have been reported at previous Digital Avionics Systems conferences. A new method for the continuous real-time inversion of the aircraft model using a Newton-Raphson trim algorithm instead of the original inverse table look-up procedure has been developed. The results of a simulation study of a vertical attitude takeoff and landing aircraft using the new inversion technique are presented. Maneuvers were successfully carried out in all directions in the vertical-attitude hover mode. Transition runs from conventional flight through the region of lift-curve-slope reversal at an angle of attack of about 32 deg and to hover at zero speed in the vertical attitude showed satisfactory transient response. Simulations were also conducted in conventional flight at high subsonic speed in steep climb and with turns up to 4 g. Successful flight tests of the system with the new model-inversion technique in a UH-1H helicopter have recently been carried out.

  2. Adaptive control in an aircraft propulsion system and system integration with flight control; Kokukiyo enigne - tekio seigyo gijutsu oyobi hiko seigyo tono togo

    Energy Technology Data Exchange (ETDEWEB)

    Nagatome, S.; Seo, N.; Negoro, T.; Kaneda, S.; Matsushita, T.; Kono, Y.; Kanbe, K.; Fujiwara, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    2000-04-01

    Aircraft engine controllers incorporating computer technology have enabled the highly automated control of the entire engine system, and consequently have been put to practical use as Full-Authority Digital Electronic Control (FADEC). In future such FADEC technology will be evolved and combined into an Integrated Flight and Propulsion Control (IFPC) system which will automatically optimize the whole aircraft propulsion system. In this paper the application of the adaptive control, part of the IFPC technology, is described. (author)

  3. The Analytic Solutions to the Task of Maintaining the Specified Characteristics Stability in Aircraft Flight Control System Reconfiguration

    Directory of Open Access Journals (Sweden)

    Efanov Dmitry

    2017-01-01

    Full Text Available The paper sets out the conceptual issues of methods of analytical solution of the problem of defined aircraft stability characteristics conservation during flight control system reconfiguration under actuating subsystem failure. It is shown that the use of the reconfiguration technique with analytic set of stabilizing control laws synthesized by the decomposition method taking into account the cross-linking between the control channels allows to fully compensate the effects of failures of the actuating subsystem in each of the control channels under the conditions of complete controllability of aircraft as a dynamic system. It thus makes it possible to reconfigure the flight control system that always ensures the stability of the motion of the aircraft with a precisely prescribed poles. During study of failures in the form of a gradual reduction of the effectiveness of control surfaces it found that the synthesized analytical control law is a corresponding automatic increase feedback gain serviceable channel actuating subsystem, as well as the reallocation of control signals between the drives within the existing cross-connections between the control channels. Some of the solutions obtained by reconfiguring the control laws are not satisfactory, because of significantly limited possibility of maneuvering.

  4. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  5. Propulsion Control and Health Management (PCHM) Technology for Flight Test on the C-17 T-1 Aircraft

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay; Venti, Michael

    2004-01-01

    The C-I 7 T-l Globemaster III is an Air Force flight research vehicle located at Edwards Air Force Base. NASA Dryden and the C-17 System Program Office have entered into a Memorandum of Agreement to permit NASA the use of the C-I 7 T-I to conduct flight research on a mutually coordinated schedule. The C-17 Propulsion Control and Health Management (PCHM) Working Group was formed in order to foster discussion and coordinate planning amongst the various government agencies conducting PCHM research with a potential need for flight testing, and to communicate to the PCHM community the capabilities of the C-17 T-l aircraft to support such flight testing. This paper documents the output of this Working Group, including a summary of the candidate PCHM technologies identified and their associated benefits relative to NASA goals and objectives.

  6. Advanced nonlinear control: Robustness and stability with applications to aircraft flight control systems

    Science.gov (United States)

    Frye, Michael Takaichi

    This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship

  7. Modeling, Simulation, and Flight Test for Automatic Flight Control of the Condor Hybrid-Electric Remote Piloted Aircraft

    Science.gov (United States)

    2012-03-01

    Aircraft Longitudinal Definitions (Nelson, 1998 p.123) ................................... 15 Table 4: Aircraft Lateral/Directional Derivatives...plane. Also known as the Roll angle. 15 Table 3: Aircraft Longitudinal Definitions (Nelson, 1998 p.123) Table 4...22 with tuning the longitudinal parameters arise when shifts in the center of gravity due to cargo loading change the aircraft longitudinal moment

  8. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  9. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  10. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  11. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Directory of Open Access Journals (Sweden)

    E. Kretschmer

    2015-02-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA, a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  12. Flight Dynamics Simulation Modeling and Control of a Large Flexible Tiltrotor Aircraft

    Science.gov (United States)

    2014-09-01

    spectrum active control, including flight control systems, rotor load limiting, and vibration and noisetiltion [1]. The development of a high-order...done on tiltrotors to determine the piloted preferred response types. Bare-airframe single main rotor helicopters exhibit a rate command (RC) re...were used to reduce loads in cruise. It was noted that in piloted simulations, load amplification was observed in maneuvers not accounted for during

  13. Development and flight test of a multi-function controller for automated cruise flaps on an aircraft wing

    Science.gov (United States)

    Cox, Craig Allen

    Cruise flaps are trailing-edge flaps which minimize the profile drag of a wing by moving the low-drag-region (or bucket) of a drag polar such that it spans the current coefficient of lift. Previous research has explored the use of a pressure-based technique for automating cruise flaps. Data obtained using this technique can be presented in a number of different formats, and different presentations of the same data tend to lead to the development of different types of automating controllers. The presentation used by previous researchers led to the development of a drag-minimizing controller that required a low-pass filter to prevent instability. This prevented the controller from being used for purposes which required a fast-acting flap. The presentation of pressure data used in this research led to the development of a multi-function controller that includes both slow-acting functionality (drag reduction) and fast-acting functionality (gust alleviation). The pressure-based technique developed by previous researchers using natural-laminar-flow (NLF) airfoils must be modified somewhat for the low Reynolds number SD7037 airfoil used in this research. Drag polars for low Reynolds number airfoils do not behave as predictably as those for NLF airfoils at much higher Reynolds numbers. A series of rigid-aircraft simulations were conducted to show the effectiveness of the multi-function controller, which was able to simultaneously reduce drag and alleviate the effects of vertical gusts. A flight controller was developed using low-cost microcontrollers and pressure transducers. The controller implemented a slow-acting drag-reduction function and a fast-acting function to handle pilot-commanded elevator inputs. Gust alleviation was not implemented due to limitations of the available hardware and flight test conditions. The controller was tested on an radio-controlled sailplane with a wingspan of 100 inches. Although direct measurement of the drag of an aircraft this size is

  14. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  15. DASMAT-Delft University Aircraft Simulation Model and Analysis Tool: A Matlab/Simulink Environment for Flight Dynamics and Control Analysis

    NARCIS (Netherlands)

    Van der Linden, C.A.A.M.

    1998-01-01

    Computer Assisted Design (CAD) environments have become important devices for the design and evaluation of flight control systems. For general use, different aircraft and operational conditions should be easily implemented in such a CAD environment and it should be equipped with a set of simulation

  16. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    Science.gov (United States)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  17. Management of analytical redundancy in digital flight control systems for aircraft

    Science.gov (United States)

    Montgomery, R. C.; Price, D. B.

    1974-01-01

    This paper presents a design method for optimal redundancy management for nonlinear systems with application to highly maneuvering aircraft. The approach taken is based on selecting the failure states to be covered by the system design and constructing a cost function that represents the cost of making an incorrect decision. The decision logic which minimizes the cost requires a bank of extended Kalman filters running in parallel. This produces a severe computational requirement. To reduce this requirement, a suboptimal logic is developed based on using a nonlinear single-stage prediction algorithm in the filters with filter gains and decision logic selected using steady-state results obtained from a linearization of the vehicle and sensor dynamics. The design process is then applied to designing a redundancy management system for the F8-C aircraft. Results indicate that the system is superior in failure detection to a system using the same structure but using a linear single-stage prediction algorithm in the filters.

  18. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Science.gov (United States)

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  19. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls....

  20. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls....

  1. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  2. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    Science.gov (United States)

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.

  3. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero & Propulsion Control (IRAP) system that achieves...

  4. Flight evaluation of highly augmented controls and electronic displays for precision approach and landing of powered-lift aircraft

    Science.gov (United States)

    Franklin, J. A.; Hynes, C. S.

    1985-01-01

    Experiments were conducted on simulators and on the Quiet Short-Haul Research Aircraft to evaluate the effect of highly augmented control modes and electronic displays on the ability of pilots to execute precision approaches and landings on a short runway. It is found that the primary benefits of highly augmented flightpath and airspeed controls and electronic displays are realized when the pilot is required to execute precisely a complex transition and approach under instrument conditions and in the presence of a wide range of wind and turbulence conditions. A flightpath and airspeed command and stabilization system incorporating nonlinear, inverse system concepts produced fully satisfactory flightpath control throughout the aircraft's terminal operating envelope.

  5. Dynamic Flight Simulation of aircraft and its comparison to Flight tests

    Directory of Open Access Journals (Sweden)

    Reza Khaki

    2015-09-01

    Full Text Available Nowadays obtaining data for air vehicles researches and analyses is very expensive and risky through the flight tests. Therefore using flight simulation is usually used for the mentioned researches by aerospace science researchers. In this paper, dynamic flight simulation has been performed by airplane nonlinear equations modelling. In these equations, aerodynamic coefficients and stability derivatives have an important role. Therefore, the stability derivatives for typical aircraft are calculated on various flight conditions by analytical and numerical methods. Flight conditions include of Mach number, altitude, angle of attack, control surfaces and CG position variations. The obtained derivatives are used in the form of look up table for dynamic flight simulation and virtual flight. In order to validate the simulation results, the under investigation maneuvres parameters are recorded during many real flights. The obtained data from flight tests are compared with the outputs of flight simulations. The results indicate that less than 13% differences are found in different parts of the maneuvres.

  6. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    Science.gov (United States)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  7. Video analysis of the flight of a model aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Tarantino, Giovanni; Fazio, Claudio, E-mail: giovanni.tarantino19@unipa.it, E-mail: claudio.fazio@unipa.it [UOP-PERG (University of Palermo Physics Education Research Group), Dipartimento di Fisica, Universita di Palermo, Palermo (Italy)

    2011-11-15

    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the phugoid model for longitudinal flight. A comparison with the parameters and performance of the full-size aircraft has also been outlined.

  8. Aircraft control system

    Science.gov (United States)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  9. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  10. The Study of Large Civil Aircraft Flight Control System Design Philosophy%大型民用飞机飞控系统设计理念研究

    Institute of Scientific and Technical Information of China (English)

    谢殿煌

    2015-01-01

    Design philosophy shall be an idea which will be built before project starts to launch. As the flight control system’s top level input, it will directly affect the design of control handling device, system architecture, control law architecture and so on. Civil aircraft flight control system’s design philosophy was studied from the view of methodology. Lifecycle, philosophy characteristics and strategic essence were erected, the influence factors were analyzed importantly, architecture and evaluation method were set up, and the relative database between aircraft accidents and design philosophy were developed, provided aircraft manufacturers to define the flight control system’s design philosophy for the theoretical method direction and technical basis.%飞控系统设计理念是大型民用飞机飞控系统设计的顶层输入,直接影响着飞控操纵器件、系统架构、控制律架构等设计。该文从方法论角度探索和研究了民用飞机飞控系统设计理念,重点分析了设计理念影响因素,建立了设计理念体系结构,提出了设计理念评估方法,建立了民机事故与设计理念的关系数据库,为民机制造商确立自己的民用飞机飞控系统设计理念提供了理论方法指导和技术基础。

  11. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  12. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  13. Flight mechanics of a tailless articulated wing aircraft.

    Science.gov (United States)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-06-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  14. Flight mechanics of a tailless articulated wing aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S, E-mail: sjchung@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  15. Flight test results for the F-8 digital fly-by-wire aircraft control sensor analytic redundancy management technique

    Science.gov (United States)

    Deckert, J. C.

    1981-01-01

    This paper reviews the formulation and flight test results of an algorithm to detect and isolate the first failure of any one of twelve duplex control sensor signals being monitored. The technique uses like-signal differences for fault detection while relying upon analytic redundancy relationships among unlike quantities to isolate the faulty sensor. The fault isolation logic utilizes the modified sequential probability ratio test, which explicitly accommodates the inevitable irreducible low frequency errors present in the analytic redundancy residuals. In addition, the algorithm uses sensor output selftest, which takes advantage of the duplex sensor structure by immediately removing a highly erratic sensor from control calculations and analytic redundancy relationships while awaiting a definitive fault isolation decision via analytic redundancy. This study represents a proof of concept demonstration of a methodology that can be applied to duplex or higher flight control sensor configurations and, in addition, can monitor the health of one simplex signal per analytic redundancy relationship.

  16. ASDAR (aircraft to satellite data relay) flight test report

    Science.gov (United States)

    Domino, E. J.; Lovell, R. R.; Conroy, M. J.; Culp, D. H.

    1977-01-01

    The aircraft to Satellite Data Relay (ASDAR), an airborne data collection system that gathers meteorological data from existing aircraft instrumentation and relays it to ground user via a geo-synchronous meteorological satellite, is described and the results of the first test flight on a commercial Boeing 747 aircraft are presented. The flight test was successful and verified system performance in the anticipated environment.

  17. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    Science.gov (United States)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  18. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    Science.gov (United States)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  19. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  20. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    Science.gov (United States)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  1. Development of a flight test maneuver autopilot for an F-15 aircraft

    Science.gov (United States)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. This paper presents the development of control laws for a flight test maneuver autopilot for an F-15 aircraft. A linear quadratic regulator approach is used to develop the control laws within the context of flight test maneuver requirements by treating the maneuver as a finite time tracking problem with regulation of state rates. Results are presented to show the effectiveness of the controller in insuring acceptable aircraft performance during a maneuver.

  2. Handling qualities airworthiness verification for electronic flight control aircraft%电子飞控飞机的飞行品质适航验证

    Institute of Scientific and Technical Information of China (English)

    张雅妮; 李岩; 金镭

    2012-01-01

    FAA AC25-7A中的飞行品质评定方法(HQRM)能够对使用电子飞控系统的民用运输机进行飞行品质评估.分析了HQRM评估程序以及相关适航要求,根据某民用飞机飞控系统功能危险分析,针对单侧升降舵卡阻这一典型故障,提出了在该失效状态下的模拟器飞行品质评估试验程序,分别给出了HQRM和相应军用标准评估方法,对军民评估方法的差异性和一致性进行了分析.研究结果对采用电子飞控系统的现代飞机的飞行品质适航验证具有工程参考意义.%Handling quality rating method (HQRM) in FAA AC25-7A provide a means by which one may evaluate flight characteristics for fly-by-wire flight control transport aircraft. This paper explains the HQRM procedure, and analyses airworthiness requirements which are related to HQRM. According to flight control system functional hazard assessment of a commercial airplane, simulator experiment procedure for a elevator jam is proposed, and experiment analysis methods using the FAA method and military standard are offered. The consistency and differences between civil and military standards are analyzed. This study can supply references for flying qualities and airworthiness verification of a modern airplane with electrical flight control system.

  3. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  4. H/OZ: PFD and Collaborative Flight Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With aircraft automation increasingly able to control flight autonomously, situational awareness and engagement of the crew can suffer. To improve aviation safety...

  5. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  6. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  7. 民用飞机设计驾驶舱操纵设备的评估%Evaluation on Flight Cockpit Control Equipments of Civil Aircraft Design

    Institute of Scientific and Technical Information of China (English)

    丰立东; 赵京洲; 田金强

    2013-01-01

    人机工效影响着飞行员操纵飞机的感受,因此在民用飞机设计过程中,对人机工效进行及早考虑是非常重要的。在民用飞机设计的各个阶段,都需要适时邀请具有一定资质的飞行员对驾驶舱的人机工效进行评估。对民用飞机设计中飞控驾驶舱飞行员评估方法进行介绍,对评估的要点进行总结分析,供相关工程设计人员参考。%Human factors affect the feeling of pilots operating airplanes. It is necessary to take human factors into account at the beginning of designing civil aircraft. During each phase of designing civil aircraft, it is necessary to invite qualified pilots to evaluate human factors in cockpit when needed. A method of pilot evaluation related with flight cockpit control system in designing civil airplane is introduced and some important issues are summarized and analyzed so as to refer to other relevant engineers and designers when necessary.

  8. Backstepping Designs for Aircraft Control - What is there to Gain?

    OpenAIRE

    Härkegård, Ola

    2001-01-01

    Aircraft flight control design is traditionally based on linear control theory, due to the existing wealth of tools for linear design and analysis. However, in order to achieve tactical advantages, modern fighter aircraft strive towards performing maneuvers outside the region where the dynamics of flight are linear, and the need for nonlinear tools arises. In this paper, backstepping is proposed as a possible framework for nonlinear flight control design. Its capabilities of handling five maj...

  9. Flying qualities criteria and flight control design

    Science.gov (United States)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  10. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Institute of Scientific and Technical Information of China (English)

    Liu Fan; Wang Lixin; Tan Xiangsheng

    2015-01-01

    In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM) is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric tur-bulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness com-pliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  11. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  12. 小型飞翼布局无人机控制律设计与试飞验证%Flight Control Law Design and Flight Test for Small Flying Wing Aircraft

    Institute of Scientific and Technical Information of China (English)

    马雯; 张宁; 马蓉; 陈小龙; 张奕煊

    2015-01-01

    For a due to the cancellation of the vertical tail and horizontal tail result in decreased stability, especially unstable heading for flying-wing. We design the flight control law for the full process base on the scaled flying-wing aircraft. Taking certain type shrinkage ratio aircraft of flying-wing as the control object, analysis aerodynamic characteristics of the aircraft longitudinal and lateral directional, and using eigenstructure assignment method, respectively, the longitudinal and lateral directional add stability design. The simulation results and actual test data show that, the control law can track a desired trajectory effectively, inhibit the gust disturbance, and has great practical significance.%针对无尾飞翼布局的无人机由于取消了水平尾翼和垂直尾翼,导致纵向、横航向的稳定下降,特别是横航向变为静不安定的问题,设计一种小型飞翼布局无人机全流程飞行控制律。以某型飞翼布局飞机的缩比飞机为控制对象,分析该飞机纵向与横航向的气动特性,采用特征结构配置方式,分别对纵向与横航向进行增稳设计。仿真与实际试飞结果表明:该控制律能够很好地跟踪期望的轨迹,并能有效地抑制侧风扰动,具有良好的工程应用价值。

  13. Dynamics and control of morphing aircraft

    Science.gov (United States)

    Seigler, Thomas Michael

    The following work is directed towards an evaluation of aircraft that undergo structural shape change for the purpose of optimized flight and maneuvering control authority. Dynamical equations are derived for a morphing aircraft based on two primary representations; a general non-rigid model and a multi-rigid-body. A simplified model is then proposed by considering the altering structural portions to be composed of a small number of mass particles. The equations are then extended to consider atmospheric flight representations where the longitudinal and lateral equations are derived. Two aspects of morphing control are considered. The first is a regulation problem in which it is desired to maintain stability in the presence of large changes in both aerodynamic and inertial properties. From a baseline aircraft model various wing planform designs were constructed using Datcom to determine the required aerodynamic contributions. Based on nonlinear numerical evaluations adequate stabilization control was demonstrated using a robust linear control design. In maneuvering, divergent characteristics were observed at high structural transition rates. The second aspect considered is the use of structural changes for improved flight performance. A variable span aircraft is then considered in which asymmetric wing extension is used to effect the rolling moment. An evaluation of the variable span aircraft is performed in the context of bank-to-turn guidance in which an input-output control law is implemented.

  14. Digital adaptive control laws for VTOL aircraft

    Science.gov (United States)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  15. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  16. Analyses on Large Civil Aircraft Flight Control Actuator System%大型民用飞机新型飞控作动系统浅析

    Institute of Scientific and Technical Information of China (English)

    沈磊

    2012-01-01

    通过分析对比当代大型民用飞机典型作动系统的组成、工作原理和相关技术的优缺点,结合实际工作经验和相关工程参数,探讨了目前可用于新一代单通道民用运输机飞控作动系统的功率电传技术和分布式控制技术的应用前景.在此基础上,提出了一种有发展前景的基于电传技术的新型作动系统架构,通过对该新型作动系统在提升安全性、系统减重和提高通用扩展性方面的分析,认为在单通道民用运输机上采用该新型作动系统具有一定的技术优势.该新型作动系统的架构设计具有实际的工程应用价值.%Based on analysis of contemporary large civil aircraft typical actuator system composition, working principle and related technologies, it proposes the application prospect of the power telex technology and distributed control technology in a new generation of single channel civil transport aircraft flight control actuator system. It establishes the new actuator system architecture based on the telex technology, describes the characteristics of the actuator system in improved security, optimization weight and the general scalability aspects. This new type of actuator system architecture has the actual engineering application value.

  17. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    Science.gov (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  18. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    , or about 11.5 inches, with no taper or sweep. Solar arrays that will cover most of the upper wing surface will provide up to 31 kilowatts of power at high noon on a summer day to power the aircraft's 14 electric motors, avionics, communications and other electronic systems. Centurion also has a backup lithium battery system that can provide power for between two and five hours to allow limited-duration flight after dark. Initial low-altitude test flights at Dryden in 1998 were conducted on battery power alone, prior to installation of the solar cell arrays. Centurion flies at an airspeed of only 17 to 21 mph, or about 15 to 18 knots. Although pitch control is maintained by the use of a full-span 60-segment elevator on the trailing edge of the wing, turns and yaw control are accomplished by applying differential power -- slowing down or speeding up the motors -- on the outboard sections of the wing. The video clip depicts the aircraft on the lakebed prior to and during its first low-altitude check flight under battery power on November 10, 1998.

  19. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  20. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Qualifications: Flight instructors (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications:...

  1. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    Science.gov (United States)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  2. A formal structure for advanced automatic flight-control systems

    Science.gov (United States)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  3. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  4. 48 CFR 1852.228-71 - Aircraft flight risks.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852.228-71 Section 1852.228-71 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... the aircraft has returned to the ground and rotors are disengaged. (iv) With respect to vertical...

  5. Aircraft propeller control

    Science.gov (United States)

    Day, Stanley G. (Inventor)

    1990-01-01

    In the invention, the speeds of both propellers in a counterrotating aircraft propeller pair are measured. Each speed is compared, using a feedback loop, with a demanded speed and, if actual speed does not equal demanded speed for either propeller, pitch of the proper propeller is changed in order to attain the demanded speed. A proportional/integral controller is used in the feedback loop. Further, phase of the propellers is measured and, if the phase does not equal a demanded phase, the speed of one propeller is changed, by changing pitch, until the proper phase is attained.

  6. 76 FR 38741 - Tenth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2011-07-01

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  7. 75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2010-02-26

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  8. 75 FR 52591 - Seventh Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2010-08-26

    ... and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight... RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security...

  9. Technology Research of Real Flight Test on Hinge Moment of Aircraft's Control Surface%飞机舵面铰链力矩飞行实测技术研究

    Institute of Scientific and Technical Information of China (English)

    何发东

    2011-01-01

    测量飞机舵面铰链力矩是飞行试验的一项重要任务.提出了通过测量传力关键件的载荷和利用传力关键件安装的空间位置来测量飞行中舵面铰链力矩的方法.以某型飞机为例,详细描述了如何利用该方法测量舵面铰链力矩的过程.这种方法对飞机舵面铰链力矩的飞行实测有重要的参考价值.%Measuring the hinge moment of aircraft's control surface is a important task for the flight test. Through the measurement of the force transmission key component'load and use of power transmission key-module installation space to measure the hinge moment of control surface in flighting method. To a certain type of aircraft, for example, the process in detail how to use the methods to measure hinge moment of control surface is described. This method of real flight test on hinge moment of aircraft's control surface has important reference value.

  10. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    Science.gov (United States)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  11. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Science.gov (United States)

    2010-01-01

    ... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii)...

  12. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-02-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  13. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  14. Aircraft Accident Prevention: Loss-of-Control Analysis

    Science.gov (United States)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  15. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    Science.gov (United States)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  16. A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft

    Science.gov (United States)

    Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle

    2012-01-01

    Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.

  17. Design of energy-based terrain following flight control system

    Science.gov (United States)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  18. NASA develops new digital flight control system

    Science.gov (United States)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  19. Formation Flight Control System for In-Flight Sweet Spot Estimation

    NARCIS (Netherlands)

    Brodecki, M.; Subbarao, K.; Chu, Q.P.

    2013-01-01

    A formation flight control system has been designed that addresses the unique environment encountered by aircraft flying in formation and in the upwash of the leading aircraft. In order to test the control system a simulation environment has been created that adequately represents the aerodynamic co

  20. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  1. Longitudinal control laws design for a flying wing aircraft

    OpenAIRE

    Zhu, Yan

    2012-01-01

    This research is concerned with the flight dynamic, pitch flight control and flying qualities assessment for the reference BWB aircraft. It aims to develop the longitudinal control laws which could satisfy the flying and handing qualities over the whole flight envelope with added consideration of centre of gravity (CG) variation. In order to achieve this goal, both the longitudinal stability augmentation system (SAS) and autopilot control laws are studied in this thesis. Usi...

  2. Estimation of nonlinear aerodynamic derivatives of a variable geometry fighter aircraft from flight data

    Science.gov (United States)

    Ramachandran, S.; Wells, W. R.

    1974-01-01

    This paper is concerned with the estimation of stability and control parameters of a high performance fighter aircraft from data obtained from high angle of attack flight. The estimation process utilizes a maximum likelihood algorithm derived for the case of a nonlinear aerodynamic force and moment model. The aircraft used was a high speed variable sweep heavy weight fighter with twin vertical tails. Comparisons of results from the nonlinear analysis are made with linear theory and wind tunnel results when available.

  3. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  4. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  5. Theory of Aircraft Flight. Aerospace Education II. Instructional Unit I.

    Science.gov (United States)

    Elmer, James D.

    This publication provides guidelines for teachers using the Aerospace Education II series publication entitled "Theory of Aircraft Flight." The organization of the guide for each chapter is according to objectives (traditional and behavioral), suggested outline, orientation, suggested key points, suggestions for teaching, instructional aids,…

  6. Integration of Fire Control, Flight Control and Propulsion Control Systems.

    Science.gov (United States)

    1983-08-01

    system, the answer was by a comprehensive programme of simulation and rig testing. ix In the only paper in the programme deailing with systems for civil ...be used otherwise. At one time there was an explosive growth in the application of automatic flight control to civil transport aircraft, culminating in...nombre at l’ampleur des 6quipesenta de maintenance extgrieurs a lavion, 11 faut s’efforcer I ce qua 1. mayan privil~gif pareattant lea 6changss

  7. F-16XL ship #1 (#849) takes off for first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    The F-16XL #1 (NASA 849) takes off for the first flight of the Digital Flight Control System (DFCS) on December 16, 1997. Like most first flight, the DFCS required months of preparations. During July 1997, crews worked on the engine, cockpit, canopy, seat, and instrumentation. By late August, the aircraft began combined systems tests and a flight readiness review. Although the Air Force Safety Review Board (AFSRB)- a group that provided double checks on all flight operations - approved the program in late November 1997, a problem with the aircraft flight computer delayed the functional check flight until mid-December.

  8. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  9. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  10. Space shuttle digital flight control system

    Science.gov (United States)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  11. Aerodynamic derivatives for an oblique wing aircraft estimated from flight data by using a maximum likelihood technique

    Science.gov (United States)

    Maine, R. E.

    1978-01-01

    There are several practical problems in using current techniques with five degree of freedom equations to estimate the stability and control derivatives of oblique wing aircraft from flight data. A technique was developed to estimate these derivatives by separating the analysis of the longitudinal and lateral directional motion without neglecting cross coupling effects. Although previously applied to symmetrical aircraft, the technique was not expected to be adequate for oblique wing vehicles. The application of the technique to flight data from a remotely piloted oblique wing aircraft is described. The aircraft instrumentation and data processing were reviewed, with particular emphasis on the digital filtering of the data. A complete set of flight determined stability and control derivative estimates is presented and compared with predictions. The results demonstrated that the relatively simple approach developed was adequate to obtain high quality estimates of the aerodynamic derivatives of such aircraft.

  12. Flight Recorders - Alternative Concept for Commercial Aircraft

    Directory of Open Access Journals (Sweden)

    Marek Turiak

    2015-10-01

    Full Text Available This paper deals with the issue of deployable flight data recorders. It gives an insight into pros and cons of this solution based on experience gained in military application. Advantages of such solution are at least worth considering as they may help reduce the number of accidents and save lives in the first place. And should the accident happen the location and extraction of evidence is much easier.

  13. Intelligent modeling and identification of aircraft nonlinear flight

    Institute of Scientific and Technical Information of China (English)

    Alireza Roudbari; Fariborz Saghafi

    2014-01-01

    In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks (ANNs). In general, air-craft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks (RNNs) and a proposed structure called hybrid combined recurrent neural network have been used and compared. In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.

  14. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    Science.gov (United States)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  15. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    Science.gov (United States)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  16. Real-time flight test analysis and display techniques for the X-29A aircraft

    Science.gov (United States)

    Hicks, John W.; Petersen, Kevin L.

    1989-01-01

    The X-29A advanced technology demonstrator flight envelope expansion program and the subsequent flight research phase gave impetus to the development of several innovative real-time analysis and display techniques. These new techniques produced significant improvements in flight test productivity, flight research capabilities, and flight safety. These techniques include real-time measurement and display of in-flight structural loads, dynamic structural mode frequency and damping, flight control system dynamic stability and control response, aeroperformance drag polars, and aircraft specific excess power. Several of these analysis techniques also provided for direct comparisons of flight-measured results with analytical predictions. The aeroperformance technique was made possible by the concurrent development of a new simplified in-flight net thrust computation method. To achieve these levels of on-line flight test analysis, integration of ground and airborne systems was required. The capability of NASA Ames Research Center, Dryden Flight Research Facility's Western Aeronautical Test Range was a key factor to enable implementation of these methods.

  17. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  18. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  19. Flight-determined benefits of integrated flight-propulsion control systems

    Science.gov (United States)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  20. Flight Controller Design of Transport Airdrop

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; SHIZhongke

    2011-01-01

    During airdrop of heavy load,the flight paramctcrs vary continuously as the load moves in the hold,and change suddenly when the load drops out.This process deteriorates the flight quality and control characteristic as the load becomes heavier.Based on the simplified airdrop flight equations,the backstepping and switch control methods are developed to tackle the flight state holding and disturbance/uncertainty(such as large scale flight condition,pilot manipulation error,system measure delay,etc.)attenuation problem in this paper.Moreover,these methods can be used as a reference for pilot manipulating during airdrop.With the backstepping theory,an adaptive controller is synthesized for the purpose of stabilizing the transport when the load moves in the hold,and then a coordinated switch control method is used to control the aircraft when the condition jumps from the existence of load at the rear of fuselage to no load in the fuselage.Simulation results show that the proposed controllers not only provide effective state holding during airdrop,but also achieve robust performance within wide flight conditions.

  1. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  2. Studies on the Seizure of Rudder on the Flight Safety of an Aircraft

    Institute of Scientific and Technical Information of China (English)

    GENG Jianzhong; WU Huzi; DUAN Zhuoyi

    2013-01-01

    The demands of aircraft quality design criterion on main control system failure and subsequently instantaneous response were analyzed.According to the simulation,the flight characteristics of an aircraft were studied in different angle of rudder seizure.It demonstrated that when rudder seizure with high angle and pilot could not take action immediately,the flight parameters would change sharply.The yaw angle increased 50 degrees in 5 minutes,side velocity could attain 40 meters per-second,the angle of attack and sideslip would surpass 30 degrees,roll rate would reach-20 degrees per second,side load would arrive 0.6g.Simultaneity the angle of attack exceeded the limited angle,the aircraft would stall.If control wasn' t working,the disaster would happen.These phenomena supply the sufficient information of the rudder malfunction.The validity of correcting yaw moment by asymmetry thrust was testified,the simulation results showed that even rudder seizure in most serious conditions,adopting asymmetry thrust can correct yaw moment caused by the rudder seizure.The judgment standards of flight safety level for the state of malfunction were given.The safety level was assessed caused by the rudder seizure.For an aircraft with two engines on one side,the pilots need to adjust the 4 engines to balance the asymmetric moment,the work load is increased enormously.According the flight safety standards,the safety level is level Ⅲ.

  3. Digital electronic engine control fault detection and accommodation flight evaluation

    Science.gov (United States)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  4. Aircraft Integration and Flight Testing of 4STAR

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  5. Flight control electronics reliability/maintenance study

    Science.gov (United States)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  6. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  7. MULTI-CONTROLLER STRUCTURE OF SUPERMANEUVERABLE AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposes a method of using multi-controllers to control supermaneuverable aircraft. A nonlinear dynamic-inversion controller is used for supermaneuver. A gain-scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector-thrust for lower velocity maneuver control. Unlike the variation-structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic-inversion to gain-scheduling, while the other is used for switching from gain-scheduling to dynamic-inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.

  8. Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System

    OpenAIRE

    2013-01-01

    Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulati...

  9. Mechanics and aerodynamics of insect flight control.

    Science.gov (United States)

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments

  10. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  11. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  12. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will ine

  13. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  14. 三轴式无人旋翼飞行器及自适应飞行控制系统设计%A Design of Triaxial Unmanned Rotor Aircraft and Its Adaptive Flight Control System

    Institute of Scientific and Technical Information of China (English)

    夏青元; 徐锦法

    2013-01-01

    A tri-axial unmanned rotor aircraft consisting of three sets of coaxial rotors is designed. The control mechanism of the unmanned rotor aircraft is very much simplified. The rotors are directly driven by DC motors. The speed of each motor is the only regulating variable which could control the attitude and trajectory of the aircraft. In order to verify the design of the flight control system for the triaxial unmanned rotor aircraft, a nonlinear dynamic model of the aircraft is investigated. A computing method of the rotor aerodynamic loads is established by means of the blade element momentum theory. The effect of the rotor inflow characteristics on the rotor aerodynamic load is analyzed. The validity of the rotor aerodynamic load model for the co-axial rotor is tested by experiments. Due to the influence of nonlinearity and un-modeled dynamics, it is quite difficult to establish a very accurate mathematical model, which makes it a challenge to design a flight control system. In this paper, a rotational dynamical model inverse controller and translational dynamical model inverse controller are deduced according to the nonlinear model of the aircraft. The model inverse error is adaptively compensated with an online neural network. The command following error is regulated with a PD/PI controller. A combined maneuver flight mission task element is applied to simulation validation, which included pirouette and vertical maneuvers. A demonstration is conducted to validate the flight control system of the tri-axial unmanned rotor aircraft. Simulation results including an imitation of gust disturbance are provided. The demonstration shows clearly that the designed flight control system has adaptability and robustness, and that it can implement accurate command following control.%设计了一种操控简便的三轴式无人旋翼飞行器,由三组共轴双旋翼组成,各旋翼由直流电机直接驱动,只需调节各电机转速就能控制旋翼飞行器运动姿态

  15. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  16. Mapping automotive like controls to a general aviation aircraft

    Science.gov (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  17. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  18. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c

  19. Merging Autopilot/Flight Control and Navigation-Flight Management Systems

    Directory of Open Access Journals (Sweden)

    Khaleel Qutbodin

    2010-01-01

    Full Text Available In this abstract the following commercial aircraft 3 avionics systems will be merged together: (1 Autopilot Flight Director System (APFDS, (2 Flight Control System (FCS and (3 Flight Management Systems (FMS. Problem statement: These systems perform functions that are dependant and related to each other, also they consists of similar hardware components. Each of these systems consists of at least one computer, control panel and displays that place on view the selection and aircraft response. They receive several similar sensor inputs, or outputs of one system are fed as input to the other system. By combining the three systems, repeated and related functions are reduced. Since these systems perform related functions, designers and programmers verify that conflict between these systems is not present. Combining the three systems will eliminate such possibility. Also used space, weight, wires and connections are decreased, consequently electrical consumption is reduced. To keep redundancy, the new system can be made of multiple channels. Approach: The new system (called Autopilot Navigation Management System, APNMS is more efficient and resolves the above mention drawbacks. Results: The APFDS system functions (as attitude-hold or heading-hold are merged with the FCS system main function which is controlling flight control surfaces as well as other functions as flight protection, Turn coordination and flight stability augmentation. Also the Flight Management system functions (as flight planning, aircraft flight performance/engine thrust management are merged in the new system. All this is done through combining all 3 systems logic software’s. Conclusion/Recommendations: The new APNMS system can be installed and tested on prototype aircraft in order to verify its benefits and fruits to the aviation industry.

  20. Circulation control STOL aircraft design aspects

    Science.gov (United States)

    Loth, John L.

    1987-01-01

    Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.

  1. Emergency Flight Control Using Computer-Controlled Thrust

    Science.gov (United States)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  2. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    Science.gov (United States)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  3. The development and flight test of an electronic integrated propulsion control system

    Science.gov (United States)

    Johnson, H. J.; Painter, W. D.

    1976-01-01

    Advanced technical features of the electronic integrated propulsion control system (IPCS) and flight evaluation tests of IPCS (F-111E with TF30-P-9 engines as test vehicle) are described. Nine baseline flight tests and 15 IPCS flight tests were conducted. Instrumentation, data acquisition and data processing systems, software maintenance procedures, flight test procedures, flight safety criteria, flight test results, and ground and flight testing of the aircraft system are described. Advantages conferred by IPCS include: faster accelerations (both gas generator and afterburner performance), better thrust and flight control, reduced flight idle thrust, reduced engine ground trim, extended service ceiling, automatic stall detection, and stall recovery detection.

  4. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    Science.gov (United States)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  5. An efficient navigation-control system for small unmanned aircraft

    Science.gov (United States)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  6. Video Analysis of the Flight of a Model Aircraft

    Science.gov (United States)

    Tarantino, Giovanni; Fazio, Claudio

    2011-01-01

    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the…

  7. Haptic-Multimodal Flight Control System Update

    Science.gov (United States)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  8. A benchmark for fault tolerant flight control evaluation

    NARCIS (Netherlands)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-01-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return − RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the

  9. Digital control of high performance aircraft using adaptive estimation techniques

    Science.gov (United States)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  10. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    Science.gov (United States)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  11. Development of a flight test maneuver autopilot for a highly maneuverable aircraft

    Science.gov (United States)

    Duke, E. L.; Jones, F. P.; Roncoli, R. B.

    1983-01-01

    This paper details the development of a flight test maneuver autopilot for a highly maneuverable aircraft. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of the NASA Ames Research Center. The flight test maneuver autopilot (FTMAP) is designed to increase the quantity and quality of the data obtained in flight test. The vehicle with which it is being used is the highly maneuverable aircraft technology (HiMAT) vehicle. This paper describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  12. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft ground and flight risk. 1852.228-70 Section 1852.228-70 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  13. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  14. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    Science.gov (United States)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  15. Flight system design for a receiver aircraft to perform autonomous aerial refueling provided with relative position data link

    Science.gov (United States)

    Awni, Kahtan A.

    An automatic aerial refueling system was developed that is capable of controlling the receiving aircraft to rendezvous, dock and station keep the receiver refueling probe in the tanker refueling probe. The automatic refueling system consisted of an active trajectory generator, a guidance system and a control system. The active trajectory generator continuously updated the commanded rendezvous trajectory to be flown by the receiver aircraft. This active trajectory generator concept incorporated design variables that the designer could use to specify the time sequence of the rendezvous and docking maneuver. The output of the trajectory generator was then the command to the flight systems guidance and control systems. To demonstrate this automatic aerial refueling system concept, a detailed design of the flight system algorithms was done for typical aerial refueling mission with a heavy jet tanker aircraft similar to the KC135 and the SIAI-Marchetti S-211 Jet Trainer as a receiver aircraft. The systems gains were selected to minimize the control surface activity while achieving adequate tracking. A simulation was developed that included the flight system algorithms, linear models of the receiver aircraft, atmospheric and tanker wake disturbance models. The performance of the aerial refueling system design was then evaluated in a batch computer simulator. The simulation study demonstrated results showed better disturbance rejection relative to the controller performance while minimizing the utilization of the control surfaces. Results also demonstrated the ability to schedule rendezvous.

  16. Reconfigurable Flight Control Design for Combat Flying Wing with Multiple Control Surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Lixin

    2012-01-01

    With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures (lock-in-place (LIP),loss-of-effectiveness (LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.

  17. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  18. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    Science.gov (United States)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  19. Immersion and Invariance Based Nonlinear Adaptive Flight Control

    NARCIS (Netherlands)

    Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co

  20. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    Science.gov (United States)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  1. Use of feedback control to address flight safety issues

    Science.gov (United States)

    Ganguli, Subhabrata

    This thesis addresses three control problems related to flight safety. The first problem relates to the scope of improvement in performance of conventional flight control laws. In particular, aircraft longitudinal axis control based on the Total Energy Control System (TECS) is studied. The research draws attention to a potentially sluggish and undesirable aircraft response when the engine dynamics is slow (typically the case). The proposed design method uses a theoretically well-developed modern design method based on Hinfinity optimization to improve the aircraft dynamic behavior in spite of slow engine characteristics. At the same time, the proposed design method achieves other desirable performance goals such as insensitivity to sensor noise and wind gust rejection: all addressed in one unified framework. The second problem is based on a system level analysis of control structure hierarchy for aircraft flight control. The objective of the analysis problem is to translate outer-loop stability and performance specifications into a comprehensive inner-loop metric. The prime motivation is to make the flight control design process more systematic and the system-integration reliable and independent of design methodology. The analysis problem is posed within the robust control analysis framework. Structured singular value techniques and free controller parameterization ideas are used to impose a hierarchical structure for flight control architecture. The third problem involves development and demonstration of a new reconfiguration strategy in the flight control architecture that has the potential of improving flight safety while keeping cost and complexity low. This research proposes a fault tolerant feature based on active robust reconfiguration. The fault tolerant control problem is formulated in the Linear Parameter Varying (LPV) design framework. A prime advantage of this approach is that the synthesis results in a single nonlinear controller (as opposed to a bank

  2. Fault Tolerant Control Design for the Longitudinal Aircraft Dynamics using Quantitative Feedback Theory

    OpenAIRE

    Ossmann, Daniel

    2015-01-01

    Flight control laws of modern aircraft are scheduled with respect to flight point parameters. The loss of the air data measurement system implies inevitably the loss of relevant scheduling information. A strategy to design a fault tolerant longitudinal flight control system is proposed which can accommodate the total loss of the angle of attack and the calibrated airspeed measurements. In this scenario the described robust longitudinal control law is employed ensuring a control performance ...

  3. Validation of MIL-F-9490D - General Specification for Flight Control System for Piloted Military Aircraft. Volume II. YF-17 Lightweight Fighter Validation

    Science.gov (United States)

    1977-04-01

    full cervice life of the unit. 3.2.6.2.1.2 Ballscrews. An adequate number of balls and ball circuits shall be provided to keep individual ball loading...nonfriction locking device is used in addition to self-locking device. d. Lockbolts listed in AFSC Handbook DH 1-2, Design Note 4A5, Swaged- Collar -Headed...Straight Pins and Collars , may be used for fastening applications not requiring removal on the aircraft. 3.2.8.3.1.2 Joining with rivets. Rivets for all

  4. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    Science.gov (United States)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  5. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  6. Research on Multi-objective Optimal Parameters Design of Aircraft Flight Control System%飞机飞行控制系统参数多目标优化设计研究

    Institute of Scientific and Technical Information of China (English)

    白俊杰; 张坤; 崔彦勇

    2014-01-01

    In the traditional optimization design of flight control system (FCS),there are some disadvanta-ges such as weak correlation between the single object and the flight quality requirements , ambiguous physical meaning and difficulty of using single object to optimize many objects at the same time .To solve such problem ,an improved particle swarm optimization ( PSO) algorithm was proposed .By simulating the foraging aggregation behavior of birds ,the particles can be divided into several dynamic sub-swarms with respect to the finding and expanding of forage in the improved PSO algorithm .So that ,the diversity of par-ticles can be maintained by this method , thus can restrain local optimum phenomena .Finally , using the improved PSO algorithm for numerical simulation of a certain type of aircraft longitudinal control law ,the results show that the proposed algorithm can effectively improve the efficiency of the FCS parameters tun-ing,and the results can meet the flight qualities requirements .%针对传统飞行控制律参数单目标优化设计不能同时满足多控制指标要求,且与飞行品质要求缺乏相关性,物理意义不明确等缺点,提出了一种基于改进粒子群算法的飞行控制律多目标优化设计方法。算法模拟鸟类捕食过程,使得种群随着“食物”的发现和消耗,聚集为数量和构成动态调整多个子群,且子群粒子速度也随之进行自适应变异,从而有利于维持种群的多样性,有效抑制早熟收敛现象发生。最后,使用改进的粒子群优化算法对某型飞机纵向控制律设计进行数值仿真,结果显示,算法有效提高控制律优化调参效率,结果满足期望的飞行品质要求。

  7. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0002: Power, Thermal and Control Technologies and Processes Experimental Research. Subtask: Laboratory Test Set-up to Evaluate Electromechanical Actuation Systems for Aircraft Flight Control

    Science.gov (United States)

    2015-08-01

    AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, Va, April 2003. [12] McRuer, D., “A Flight Control Century: Triumphs of the...AKM_Selection_Guide_en-US_revA.pdf http://www.kollmorgen.com/en-us/products/motors/servo/akm-series/akm-series- ac - synchronous-motors/ ac -synchronous-servo

  8. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  9. Aircraft Pitch Attitude Control using Backstepping

    OpenAIRE

    Härkegård, Ola; Glad, Torkel

    2000-01-01

    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  10. Integrated lift/drag controller for aircraft

    Science.gov (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  11. Aeroservoelastic model based active control for large civil aircraft

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A modeling and control approach for an advanced configured large civil aircraft with aeroservoelasticity via the LQG method and control allocation is presented.Mathematical models and implementation issues for the multi-input/multi-output(MIMO) aeroservoelastic system simulation developed for a flexible wing with multi control surfaces are described.A fuzzy logic based optimization approach is employed to solve the constrained control allocation problem via intelligently adjusting the components of output vector and find a proper vector in the attainable moment set(AMS) autonomously.The basic idea is to minimize the L2 norm of error between the desired moment and achievable moment using the designing freedom provided by redundantly allocated actuators and control surfaces.Considering the constraints of control surfaces,in order to obtain acceptable performance of aircraft such as stability and maneuverability,the fuzzy weights are updated by the learning algorithm,which makes the closed-loop system self-adaptation.Finally,an application example of flight control designing for the advanced civil aircraft is discussed as a demonstration.The studies we have performed showed that the advanced configured large civil aircraft has good performance with the proper designed control law designed via the proposed approach.The gust alleviation and flutter suppression are applied with the synergetic effects of elevator,ailerons,equivalent rudders and flaps.The results show good closed loop performance and meet the requirement of constraint of control surfaces.

  12. 14 CFR 91.9 - Civil aircraft flight manual, marking, and placard requirements.

    Science.gov (United States)

    2010-01-01

    ... available in the aircraft a current approved Airplane or Rotorcraft Flight Manual, approved manual material... prohibited range takes place over water on which a safe ditching can be accomplished and if the helicopter is... emergency ditching on open water....

  13. Piracetam and fish orientation during parabolic aircraft flight

    Science.gov (United States)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  14. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  15. Application of wireless sensor networks to aircraft control and health management systems

    Institute of Scientific and Technical Information of China (English)

    Rama; K.; YEDAVALLI; Rohit; K.; BELAPURKAR

    2011-01-01

    Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the ...

  16. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Directory of Open Access Journals (Sweden)

    Żurek Józef

    2014-12-01

    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  17. The effects of lightning on digital flight control systems

    Science.gov (United States)

    Plumer, J. A.; Malloy, W. A.; Craft, J. B.

    1976-01-01

    Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.

  18. Investigation and flight tests on control and stability of aircraft with after-mounted propeller and flexible wing%螺旋桨推进式柔性翼飞机操稳特性研究与试飞

    Institute of Scientific and Technical Information of China (English)

    吴大卫; 吴征; 张兰丁; 邓彦敏

    2011-01-01

    Small scale aircraft with flexible wing is relatively popular among utility aircrafts and in some special fields, but there are still confusions in conceptual design which is mainly according to experiences. These aircrafts u sually have the configuration of high wing with flexible fabric skin and after-mounted propeller, therefore the charac ters of aerodynamics, layout and power effect bring about some prominent particularities in flight dynamics. According to aerodynamic prediction, wind tunnel tests and flight tests, this paper shows some conclusions about longitudinal/ lateral contol and stability different from conventional aircrafts and gives the physical explanations for the results, then supplies the suitable methods of modeling these aircrafts for analyzing flight dynamics and recommends a series of range for designing parameters different from other conventional aircrafts.%采用柔性翼面的小型飞行器在通用航空器和特种飞行器领域得到了较广泛的应用.由于此类飞行器往往采用蒙皮为可变形柔性织物的高置上单翼以及推进式螺旋桨,其特殊的升阻特性、总体布局和动力影响使得其飞行动力学具有很大特殊性.结合气动力估算、风洞实验和飞行实验结果,在此类飞机的纵、横航向操纵性与稳定性方面得出了有别于传统飞机的一些结论,并给出了有关物理解释;提供了适合此类飞机的飞行动力学建模方法和一系列有别于传统飞机的设计参数取值范围.

  19. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Science.gov (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  20. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  1. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    Science.gov (United States)

    Lee, D. S.; Gonzalez, L. F.; Walker, R.; Periaux, J.; Onate, E.

    2010-06-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).

  2. A linear input-varying framework for modeling and control of morphing aircraft

    Science.gov (United States)

    Grant, Daniel T.

    2011-12-01

    a method to relate the flight dynamics of morphing aircraft by interpreting a time-varying eigenvector in terms of flight modes. The time-varying eigenvector is actually defined through a decomposition of the state-transition matrix and thus describes an entire response through a morphing trajectory. A variable-sweep aircraft is analyzed to demonstrate the information that is obtained through this method and how the flight dynamics are altered by the time-varying morphing. Also, morphing vehicles have inherently time-varying dynamics due to the alteration of their configurations; consequently, the numerous techniques for analysis and control of time-invariant systems are inappropriate. Therefore, a control scheme is introduced that directly considers a concept of time-varying pole to command morphing. The resulting trajectory minimizing tracking error for either a state response or a pole response.

  3. Electronics plus fluidics for V/STOL flight control

    Science.gov (United States)

    Hendrick, R. C.

    1977-01-01

    The redundant digital fly by wire flight control system coupled with a fluidic system, which uses hydraulic pressure as its signal transmission means to provide pilot and feedback sensor control of airframe forcing functions is considered for application to the V/STOL aircraft. A potential fluidics system is introduced, and anticipated performance, weight, and reliability is discussed. Integration with the redundant electronic channels is explored, with the safety and mission reliability of alternate configurations estimated.

  4. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  5. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    Science.gov (United States)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  6. The influence of the wind on the flight of the uncontrollable aircrafts

    Directory of Open Access Journals (Sweden)

    Vasiliy Makeyev

    2015-01-01

    Full Text Available This article represents research of influence of wind on flight of uncontrollable flying devices. It is offered the method of taking into account influence of permanent wind as well as baffling wind on flight of uncontrollable aircrafts stabilized with rotation and empennage

  7. Design of a flight control architecture using a non-convex bundle method

    OpenAIRE

    Gabarrou, Marion; Alazard, Daniel; Noll, Dominikus

    2013-01-01

    We design a feedback control architecture for longitudinal flight of an aircraft. The multi-level architecture includes the flight control loop to govern the short term dynamics of the aircraft, and the autopilot to control the long term modes. Using H1 performance and robustness criteria, the problem is cast as a non-convex and non-smooth optimization program. We present a non-convex bundle method, prove its convergence, and show that it is apt to solve the longitudinal flight control pro...

  8. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  9. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    Science.gov (United States)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  10. Robust Control Design for Flight Control

    Science.gov (United States)

    1989-07-01

    to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some

  11. F-8C digital CCV flight control laws

    Science.gov (United States)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  12. Digital Flight Control System Validation.

    Science.gov (United States)

    1982-06-01

    Uperioust languages and formal progrmiag Logic (Such was the cae ina the formation of the Radio end design, hag resulted in the accelerated Technical...wee In defined , dM tin Osytm e all as wssLuete Ohe 0esig of these same- Isei to btop ues eM m defined . "UK""t fault coie am ep~es syste prior ft Mo... Softwre Cost etilstift, 131 Computer Society 17. ’Simulator Investigation Plan for Digital 1977, Pages 13-177. Flight Controls Validation Technology

  13. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  14. A Microcomputer Based Aircraft Flight Control System.

    Science.gov (United States)

    1980-04-01

    8217" cos a-va sin a v-vaa v w v sin a - va L v sin a + v& cos a = a + v& v& sin 6 sin(v+a) sinv cosca+ sina cosv sinv+ a cos v I .1 __________ I 5 I I 0 GO...D-T) sina -0. Again, using the above approximations ’I-MV(&-6) + W cosv - L 0 or (L [-W cos v]. (2.2) Summing the moment in the Y-direction I e- M

  15. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  16. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  17. A computer module used to calculate the horizontal control surface size of a conceptual aircraft design

    Science.gov (United States)

    Sandlin, Doral R.; Swanson, Stephen Mark

    1990-01-01

    The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.

  18. Fault Tolerant Flight Control Using Sliding Modes and Subspace Identification-Based Predictive Control

    KAUST Repository

    Siddiqui, Bilal A.

    2016-07-26

    In this work, a cascade structure of a time-scale separated integral sliding mode and model predictive control is proposed as a viable alternative for fault-tolerant control. A multi-variable sliding mode control law is designed as the inner loop of the flight control system. Subspace identification is carried out on the aircraft in closed loop. The identified plant is then used for model predictive controllers in the outer loop. The overall control law demonstrates improved robustness to measurement noise, modeling uncertainties, multiple faults and severe wind turbulence and gusts. In addition, the flight control system employs filters and dead-zone nonlinear elements to reduce chattering and improve handling quality. Simulation results demonstrate the efficiency of the proposed controller using conventional fighter aircraft without control redundancy.

  19. In flight image processing on multi-rotor aircraft for autonomous landing

    Science.gov (United States)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  20. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  1. A mathematical perspective on flight dynamics and control

    CERN Document Server

    L'Afflitto, Andrea

    2017-01-01

    This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples. Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian r...

  2. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  3. Frequency-domain identification of aircraft structural modes from short-duration flight tests

    Science.gov (United States)

    Vayssettes, J.; Mercère, G.; Vacher, P.; De Callafon, R. A.

    2014-07-01

    This article presents identification algorithms dedicated to the modal analysis of civil aircraft structures during in-flight flutter tests. This particular operational framework implies several specifications for the identification procedure. To comply with these requirements, the identification problem is formulated in the frequency domain as an output-error problem. Iterative identification methods based on structured matrix fraction descriptions are used to solve this problem and to identify a continuous-time model. These iterative methods are specifically designed to deal with experiments where short-duration tests with multiple-input excitations are used. These algorithms are first discussed and then evaluated through a simulation example illustrative of the in-flight modal analysis of a civil aircraft. Based on these evaluation results, an efficient iterative algorithm is suggested and applied to real flight-test data measured on board a military aircraft.

  4. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  5. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    Science.gov (United States)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  6. Parabolic Flights with Single-Engine Aerobatic Aircraft: Flight Profile and a Computer Simulator for its Optimization

    Science.gov (United States)

    Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura

    2014-11-01

    We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly

  7. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    Science.gov (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  8. Real-time aircraft structural damage identification with flight condition variations

    Science.gov (United States)

    Lew, Jiann-Shiun; Loh, Chin-Hsiung

    2012-04-01

    This paper presents a real-time structural damage identification method for aircraft with flight condition variations. The proposed approach begins by identifying the dynamic models under various test conditions from time-domain input/output data. A singular value decomposition technique is then used to characterize and quantify the parameter uncertainties from the identified models. The uncertainty coordinates, corresponding to the identified principal directions, of the identified models are computed, and the residual errors between the identified uncertainty coordinates and the estimated uncertainty coordinates of the health structure are used to identify damage status. A correlation approach is applied to identify damage type and intensity, based on the difference between the identified parameters and the estimated parameters of the healthy structure. The proposed approach is demonstrated by application to the Benchmark Active Controls Technology (BACT) wind-tunnel model.

  9. Hot-wire anemometry for in-flight measurement of aircraft wake vortices

    Science.gov (United States)

    Jacobsen, R. A.

    1977-01-01

    A development program has demonstrated that hot-wire anemometry can be used successfully on an aircraft in flight to make measurements of wake vortices produced by another aircraft. The probe, whose wires were made of platinum/rhodium, 10 microns in diameter, provides unambiguous results for inflow angles less than about 35 deg. off the probe axis. The high frequency response capability of the hot-wire system allows detailed measurement of the flow structure, and the study of aircraft hazards associated with wake turbulence.

  10. Nonlinear feedback control of highly manoeuvrable aircraft

    Science.gov (United States)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  11. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    Science.gov (United States)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  12. Flight Test Evaluation of Mission Computer Algorithms for a Modern Trainer Aircraft

    Directory of Open Access Journals (Sweden)

    Gargi Meharu

    2013-03-01

    Full Text Available A low cost integrated avionics system has been realized on a modern trainer aircraft. Without using an expensive inertial navigation system onboard, acceptable level of accuracy for navigation, guidance, and weapon aiming is achieved by extensive data fusion within mission computer. The flight test evaluation of mission computer is carried out by assessing the overall performance under various navigation and guidance modes. In flight simulation is carried out for weapon aiming modes. The mission computer interfaces with various subsystems and implements the functional requirements for flight management and mission management. The aim of this paper is to discuss the algorithms of a data fusion intensive mission computer and flight test evaluation of these algorithms, for a typical modern trainer aircraft. The challenges and innovations involved in the work are also discussed.Defence Science Journal, 2013, 63(2, pp.164-173, DOI:http://dx.doi.org/10.14429/dsj.63.4259

  13. A preliminary investigation of the use of throttles for emergency flight control

    Science.gov (United States)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  14. An Overview of Adaptive Approaches in Flight Control

    Directory of Open Access Journals (Sweden)

    Y. Rajeshwari

    2015-01-01

    Full Text Available Multi-mode switching between controllers corresponding to different modes of operation is needed in those cases when the transition from one mode to another results in substantial flight-critical variations in the aircraft dynamics. To address this problem, a general framework for multi-modal flight control is proposed. The framework is based on the Multiple Models, Switching and Tuning (MMST methodology, combined with Model-Predictive Control (MPC, and the use of different robust mechanisms for switching between the multi-modal controllers. It was shown that many different switching control strategies can be naturally derived from the basic framework, which demonstrates the generality of the proposed approach.

  15. A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight

    Science.gov (United States)

    Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in

  16. Dynamics modeling and control of large transport aircraft in heavy cargo extraction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a novel version of six-degree-of-freedom nonlinear model for transport aircraft motion in cargo extraction is developed and validated by the theoretical mechanics and flight mechanics.In this model constraint force and moment reflecting the flight dynamic effects of inner moving cargo are formulated.A methodology for a control law design in this phase is presented,which linearizes the aircraft dynamics making use of piecewise linearization and utilizes robust control technique for interval sys...

  17. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  18. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    Science.gov (United States)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  19. Dichotomic Structure of DAEs Solutions for the Aircraft Control

    Directory of Open Access Journals (Sweden)

    Sorin Ştefan RADNEF

    2009-09-01

    Full Text Available The paper has its roots in earlier studies focused on DAEs solutions, for the aircraft flight control and intends to be a synthesis of them. The main goal is to structure the solution for the control laws so as to derive its components, which control any significant mechanical phenomenon for the controlled flight. The basic method used becomes from a unified manner of finding the solution of DAEs using a rigorous guideline stated as “necessary and sufficient condition” in an algebraic equation form that is used in an algorithmic procedure and for statement of the equations, which emphasises the dichotomic structure. The viewpoint considers an extended DAE system, including the differential equations of control variables, that allows to formulate this question as an inverse problem and to regard the algebraic equation, for constraints, as a singular implicit solution of the differential subsystem. Stating the necessary and sufficient condition for an implicit equation be a singular implicit solution of the extended differential system, we use it to approach the solution for flight control and for its dichotomic structure with additive components.

  20. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    Science.gov (United States)

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  1. NOAA Aircraft Operations Center (AOC) Flight Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA AOC WP-3D Research Flight Data is digital data set DSI-6420, archived at the National Climatic Data Center (NCDC). This data set is meteorological data gathered...

  2. Maximum likelihood identification of aircraft stability and control derivatives

    Science.gov (United States)

    Mehra, R. K.; Stepner, D. E.; Tyler, J. S.

    1974-01-01

    Application of a generalized identification method to flight test data analysis. The method is based on the maximum likelihood (ML) criterion and includes output error and equation error methods as special cases. Both the linear and nonlinear models with and without process noise are considered. The flight test data from lateral maneuvers of HL-10 and M2/F3 lifting bodies are processed to determine the lateral stability and control derivatives, instrumentation accuracies, and biases. A comparison is made between the results of the output error method and the ML method for M2/F3 data containing gusts. It is shown that better fits to time histories are obtained by using the ML method. The nonlinear model considered corresponds to the longitudinal equations of the X-22 VTOL aircraft. The data are obtained from a computer simulation and contain both process and measurement noise. The applicability of the ML method to nonlinear models with both process and measurement noise is demonstrated.

  3. 14 CFR 61.93 - Solo cross-country flight requirements.

    Science.gov (United States)

    2010-01-01

    ...-country flight training in a weight-shift-control aircraft. A student pilot who is receiving training for cross-country flight in a weight-shift-control aircraft must receive and log flight training for...

  4. Research in digital adaptive flight controllers

    Science.gov (United States)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  5. Flight Dynamics and Controls Discipline Overview

    Science.gov (United States)

    Theodore, Colin R.

    2012-01-01

    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  6. Analysis of Flight Test Technique on Ground Minimum Control Speed for Civil Aircraft%民机地面最小操纵速度试飞分析及技术

    Institute of Scientific and Technical Information of China (English)

    范祝斌

    2013-01-01

    According to the CCAR-25-R4 “Airworthiness Standards of Transport Category Airplanes” and FAA advisory AC25-7C“Flight Test Guide”, drawing on the flight test experiences of other planes, this paper analyses the flight test principle and impact factors of ground minimum control speed ( VMCG ) in theory, and discusses the flight test technique and the risk alleviated method of VMCG . It can provide guidance for the VMCG flight test of the civil airplane.%按照CCAR-25-R4《运输类飞机适航标准》要求,结合FAA咨询通告AC25-7 C《运输类飞机试飞指南》,总结其它机型的试飞经验,通过理论分析民机地面最小操纵速度( VMCG )试飞原理及影响因素,探讨了民机VMCG试飞的试飞方法及风险规避方法,可为民机的VMCG试飞提供参考。

  7. In-Flight Fault Diagnosis for Autonomous Aircraft Via Low-Rate Telemetry Channel

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2012-01-01

    An in-flight diagnosis system that is able to detect faults on an unmanned aircraft using real-time telemetry data could provide operator assistance to warn about imminent risks due to faults. However, limited bandwidth of the air-ground radio-link makes diagnosis difficult. Loss of information...

  8. Optimal PID Controller Tuning for Multivariable Aircraft Longitudinal Autopilot Based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mostafa Lotfi Forushani

    2012-04-01

    Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.

  9. Flight Control Design for an Autonomous Rotorcraft Using Pseudo-Sliding Mode Control and Waypoint Navigation

    Science.gov (United States)

    Mallory, Nicolas Joseph

    The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.

  10. FLEXSTAB: A computer program for the prediction of loads and stability and control of flexible aircraft

    Science.gov (United States)

    Perkin, B. R.; Erickson, L. R.

    1976-01-01

    Capabilities of the FLEXSTAB Computer Program System are described and illustrated. Aeroelastic analysis of a wide variety of aircraft configurations is performed. The aerodynamic theory used in FLEXSTAB is applicable to both steady and unsteady, subsonic and supersonic flow for multiple wing-body tail nacelle configurations with a plane of symmetry. For unsteady flow calculations, an unsteady aerodynamic theory is used which is appropriate for the low reduced frequencies associated with aircraft flight dynamics. The aircraft is modeled as either a rigid or flexible structure. The computer trims the aircraft in steady reference flight and computes both static and dynamic stability and control derivatives and the stability behavior about the trim condition. The airplane lifting pressure distribution, aerodynamic and inertia loads and deflected shape are also computed.

  11. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  12. Extraction from flight data of lateral aerodynamic coefficients for F-8 aircraft with supercritical wing

    Science.gov (United States)

    Williams, J. L.; Suit, W. T.

    1974-01-01

    A parameter-extraction algorithm was used to determine the lateral aerodynamic derivatives from flight data for the F-8 aircraft with supercritical wing. The flight data used were the recorded responses to aileron or rudder pulses for Mach numbers of 0.80, 0.90, and 0.98. Results of this study showed that a set of derivatives were determined which yielded a calculated aircraft response almost identical with the response measured in flight. Derivatives extracted from motion resulting from rudder inputs were somewhat different from those resulting from aileron inputs. It was found that the derivatives obtained from the rudder-input data were highly correlated in some instances. Those from the aileron input had very low correlations and appeared to be the more reliable.

  13. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    Science.gov (United States)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  14. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    Science.gov (United States)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  15. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  16. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. [Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik

    1999-12-01

    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  17. Robust control of an aircraft model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H. (Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik)

    1999-01-01

    A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)

  18. Emergency Control Aircraft System Using Thrust Modulation

    Science.gov (United States)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  19. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL...

  20. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls,...

  1. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    Science.gov (United States)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  2. Unique Aspects of Flight Testing Unmanned Aircraft Systems

    Science.gov (United States)

    2010-04-01

    High Altitude Endurance HCI Human Computer Interface INS Inertial Navigation System IR Infrared JITC Joint Interoperability Testing Command...highlighting some of the unique aspects of flight testing unmanned air vehicle systems. It is intended to provide a practical set of guidelines in support of...of unmanned aviation systems, it is especially important that even minor changes to the baseline code be carefully reviewed, and that regression

  3. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    Science.gov (United States)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  4. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  5. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  6. An Overview of Aircraft Integrated Control Technology

    Science.gov (United States)

    1994-09-01

    and stability augmentation, high hf’ system, steering and brak - ing 22 ’ . An F-15B research aircraft, modified with all-moving canard control...0.2 0.4 0.6 0.8 1.0 1.2 1.4 MACH NUMBER The IFPC system responds to pilot inputs with an automatic blend of aerodynamic control surfaces and thrust...decoupling airframe translation and rotation movements). In general, it was found that a blended combination of direct force and conventional control

  7. Digital system identification and its application to digital flight control

    Science.gov (United States)

    Kotob, S.; Kaufman, H.

    1974-01-01

    On-line system identification of linear discrete systems for implementation in a digital adaptive flight controller is considered by the conventional extended Kalman filter and a decoupling process in which the linear state estimation problem and the linear parameter identification problem are each treated separately and alternately. Input requirements for parameter identifiability are established using the standard conditions of observability for a time variant system. Experimental results for simulated linearized lateral aircraft motion are included along with the effect of different initialization and updating procedures for the priming trajectory used by the filter.

  8. Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2013-02-01

    Full Text Available Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulation is executed on the basis of the mathematical model of aircraft deicing fluids rapid heating system, which is built in this paper, according to a number of data collected by experiments which are operated on the experimental platform of deicing fluids rapid heating system. The simulation results show that the single neuron PID control strategy perform effectively on the temperature turbulence problem of aircraft deicing fluids rapid heating system. Experiments are conducted to vertify the single neuron PID control strategy, the results of which show that the single neuron PID control strategy can achieve the request in practical application of the aircraft deicing fluids rapid heating system.

  9. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    Science.gov (United States)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  10. Flight Control Design - Best Practices

    Science.gov (United States)

    2007-11-02

    certains aspects théoriques. Vient d’abord un débat sur les critères de qualités de vol, en particulier sur les spécifications militaires...was designed such that a failure could not result in an unsafe recovery. The system is credited with saving the test aircraft during the evaluation of a...Recherche et développement - Estado Maior da Força Aérea AnalysisCommunications et gestion de SDFA - Centro de Documentação Institute of Military

  11. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for prototype development, both of which incorporate shape memory alloy (SMA) wires as...

  12. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  13. Engines-only flight control system

    Science.gov (United States)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  14. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  15. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  16. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    Directory of Open Access Journals (Sweden)

    Alfredo Catalani

    2009-01-01

    Full Text Available The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirements in terms of pattern shape, polarization alignment, EIRP, G/T, and using customized electronic devices. At the same time, the proposed solution should be competitive in terms of cost and complexity.

  17. Compound control methodology for flight vehicles

    CERN Document Server

    Xia, Yuanqing

    2013-01-01

    “Compound Control Methodology for Flight Vehicles” focuses on new control methods for flight vehicles. In this monograph the concept of compound control is introduced. It is demonstrated that both Sliding Mode Control (SMC) and Active Disturbance Rejection Control (ADRC) have their own advantages and limitations, i.e., chattering of SMC and the observability of extended state observer (ESO), respectively. It is shown that compound control combines their advantages and improves the performance of the closed-loop systems. The book is self-contained, providing sufficient mathematical foundations for understanding the contents of each chapter. It will be of significant interest to scientists and engineers engaged in the field of flight vehicle control.

  18. Aircraft flight data processing and parameter identification with iterative extended Kalman filter/smoother and two-step estimator

    Science.gov (United States)

    Yu, Qiuli

    2001-12-01

    Aircraft flight test data are processed by optimal estimation programs to estimate the aircraft state trajectory (3 DOF) and to identify the unknown parameters, including constant biases and scale factor of the measurement instrumentation system. The methods applied in processing aircraft flight test data are the iterative extended Kalman filter/smoother and fixed-point smoother (IEKFSFPS) method and the two-step estimator (TSE) method. The models of an aircraft flight dynamic system and measurement instrumentation system are established. The principles of IEKFSFPS and TSE methods are derived and summarized, and their algorithms are programmed with MATLAB codes. Several numerical experiments of flight data processing and parameter identification are carried out by using IEKFSFPS and TSE algorithm programs. Comparison and discussion of the simulation results with the two methods are made. The TSE+IEKFSFPS combination method is presented and proven to be effective and practical. Figures and tables of the results are presented.

  19. Evaluation of Management System Effectiveness in the Preparation of the Aircraft for Flight in Faulty Conditions

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2015-11-01

    Full Text Available Most flight delays in aviation enterprises are related to air traffic management and technical centers. This can happen for various reasons: untimely removal of defects, lack of spare parts, deficiencies in maintenance scheduling, etc. Another reason may be inefficient management in the system of preparing the aircraft for departure. The article suggests a possible option of such an assessment as well as the results obtained from the use of this methodology applied to a specific airline.

  20. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  1. Life-Extending Control for Aircraft Engines Studied

    Science.gov (United States)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine

  2. Information distribution in distributed microprocessor based flight control systems

    Science.gov (United States)

    Montgomery, R. C.; Lee, P. S.

    1977-01-01

    This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.

  3. Application of the concept of dynamic trim control to automatic landing of carrier aircraft. [utilizing digital feedforeward control

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1980-01-01

    The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.

  4. A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft

    Institute of Scientific and Technical Information of China (English)

    YUE HaiLong; XIA PinQi

    2009-01-01

    The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e.In conversion flight are extraordinarily complicated.The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems in the tilting of rotor.The CFD method based on the vortex theory can get better results, but it consumes a lot of computing resources.In this paper, a wake bending dynamic inflow model of tilting rotor was established firstly based on the Peters-He dynamic inflow model used in helicopter.Then combining with the ONERA unsteady aerodynamic model, a wake bending unsteady dynamic inflow model of tilting rotor in conversion flight of tiltrotor aircraft was es-tablished.The wake bending unsteady dynamic inflow model of tilting rotor was verified by using the experimental data of an isolated rotor model in large angle pitching up maneuver and was used to calculate the dynamic responses of tilting rotor in conversion flight of a tiltrotor aircraft model.The calculated results were analyzed to be physically reasonable.

  5. A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e. in conversion flight are extraordinarily complicated. The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems in the tilting of rotor. The CFD method based on the vortex theory can get better results, but it consumes a lot of computing resources. In this paper, a wake bending dynamic inflow model of tilting rotor was established firstly based on the Peters-He dynamic inflow model used in helicopter. Then combining with the ONERA unsteady aerodynamic model, a wake bending unsteady dynamic inflow model of tilting rotor in conversion flight of tiltrotor aircraft was established. The wake bending unsteady dynamic inflow model of tilting rotor was verified by using the experimental data of an isolated rotor model in large angle pitching up maneuver and was used to calculate the dynamic responses of tilting rotor in conversion flight of a tiltrotor aircraft model. The calculated results were analyzed to be physically reasonable.

  6. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-05-01

    Full Text Available Geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft – a "trailing cone" – in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  7. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  8. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  9. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Institute of Scientific and Technical Information of China (English)

    Wang Xingjian; Wang Shaoping; Yang Zhongwei; Zhang Chao

    2015-01-01

    Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC) strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trim-mable horizontal stabilizer (THS) is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  10. Adaptive output feedback control of aircraft flexible modes

    OpenAIRE

    Ponnusamy, Sangeeth Saagar; Bordeneuve-Guibé, Joël

    2012-01-01

    The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. Th...

  11. Flight Control System Design by Quadratic Stabilization with Partial Pole Placement

    Science.gov (United States)

    Satoh, Atsushi; Sugimoto, Kenji

    The most fundamental requirements for flight control system are ensuring robust stability and improving flying quality. Quadratic stabilization is a powerful technique ensuring robust stability against parameter change of aircraft due to flight condition. Furthermore, flying quality requirements are regarded as eigenstructure assignment specifications. This paper proposes a new design method of feedback gain which simultaneously achieves quadratic stabilization and partial pole placement. This design method is reduced to a numerical optimization problem including linear matrix inequality (LMI) constraints.

  12. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  13. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  14. Flight Control System Design with Rate Saturating Actuators

    Science.gov (United States)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  15. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  16. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  17. Theoretical modeling and computational simulation of robust control for Mars aircraft

    Science.gov (United States)

    Oh, Seyool

    The focus of this dissertation is the development of control system design algorithms for autonomous operation of an aircraft in the Martian atmosphere. This research will show theoretical modeling and computational simulation of robust control and gain scheduling for a prototype Mars aircraft. A few hundred meters above the surface of Mars, the air density is less than 1% of the density of the Earth's atmosphere at sea level. However, at about 33 km (110,000 ft) above the Earth, the air density is similar to that near the surface of Mars. Marsflyer II was designed to investigate these flight regimes: 33 km above the Earth and the actual Mars environment. The fuselage for the preliminary design was cylindrical with a length of 2.59 m (8.49 ft), the wing span was 3.98 m (13.09 ft). The total weight of the demonstrator aircraft was around 4.54 kg (10.02 lb). Aircraft design tools have been developed based on successful aircraft for the Earth`s atmosphere. However, above Mars an airborne robotic explorer would encounter low Reynolds Number flow phenomena combined with high Mach numbers, a region that is unknown for normal Earth aerodynamic applications. These flows are more complex than those occurring at high Reynolds numbers. The performance of airfoils at low Reynolds numbers is poorly understood and generally results in unfavorable aerodynamic characteristics. Design and simulation tools for the low Reynolds number Martian environment could be used to develop Unmanned Aerial Vehicles (UAV). In this study, a robust control method is used to analyze a prototype Mars aircraft. The purpose of this aircraft is to demonstrate stability, control, and performance within a simulated Mars environment. Due to uncertainty regarding the actual Martian environment, flexibility in the operation of the aircraft`s control system is important for successful performance. The stability and control derivatives of Marsflyer II were obtained by using the Advanced Aircraft Analysis (AAA

  18. Semi-automatic aircraft control system

    Science.gov (United States)

    Gilson, Richard D. (Inventor)

    1978-01-01

    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  19. 14 CFR 61.58 - Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Pilot-in-command proficiency check: Operation of aircraft requiring more than one pilot flight crewmember. 61.58 Section 61.58 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.58 Pilot-in-command proficiency...

  20. FLIGHTS BY FOREIGN CIVIL AIRCRAFT TO SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    Jan Ploeger

    2012-02-01

    Full Text Available Legislation enabling effect to be given to the International Convention for regulating air navigation, and to make provision for the control, guidance and encouragement of flying within the Union of South Africa and for other purposes incidental thereto, for all purposes known as the Union Aviation Act [No. 16 of 1923], was passed on the 23rd of May 1923 to allow effect to be given to the International Air Navigation Convention of 1919, and to make the provisions referred to above.

  1. Next Generation Flight Controller Trainer System

    Science.gov (United States)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  2. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  3. JURISDICTION OVER CRIMES COMMITTED ON BOARD AIRCRAFT IN FLIGHT UNDER THE TOKYO CONVENTION 1963

    Directory of Open Access Journals (Sweden)

    Iryna Sopilko

    2016-12-01

    Full Text Available Purpose: the main aim of this paper is to clarify several issues of conflicting jurisdiction over crimes committed on board aircraft in flight. The study will examine the way in which the Tokyo Convention attempts to provide justice in the event of aviation security violations, and discuss its effectiveness in preventing such offences in the future. Methods: formal legal and case-study methods together with inductive reasoning, and comparison were used to analyse the legislation in the area of jurisdiction over crimes and other offences committed on board aircraft in flight. Results: it follows from the study that although the Tokyo Convention has contributed considerably to the establishing of clearer rules of jurisdiction over offences committed on board aircraft, considerable deficiencies of this treaty remain. The results have important implications for international policy-making. Discussion: the results of the study reveal several weaknesses of the Tokyo Convention. Firstly, it does not provide any definition or list of offences to which it applies, instead it relies on national penal laws to do so. In addition, the ‘freedom fighter exception’ and the lack of a strong enforcement mechanism may prove to impede the effective attainment of the Tokyo Convention’s main objectives – that is, to provide justice in the event of aviation security violations, and prevent such offences in the future. Therefore, further improvement in aviation security legislation is necessary to ensure that it is effective and adequate in the challenges faced today.

  4. Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility

    Science.gov (United States)

    Stewart, James F.

    1992-01-01

    Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

  5. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  6. Pilot control through the TAFCOS automatic flight control system

    Science.gov (United States)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  7. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    Science.gov (United States)

    McDonough, Kevin K.

    these sets for aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these sets can be larger in size compared to the more commonly used safe sets. An approach to constrained maneuver planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. To facilitate the application of this maneuver planning approach in aircraft loss of control (LOC) situations when the model is only identified at the current trim condition but when these sets need to be predicted at other flight conditions, the dependence trends of the safe and recoverable sets on aircraft flight conditions are characterized. The scaling procedure to estimate subsets of safe and recoverable sets at one trim condition based on their knowledge at another trim condition is defined. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes on aircraft flight dynamics models and gas turbine engine dynamic models.

  8. Flight mechanics experiment onboard nasa’s zero gravity aircraft

    Directory of Open Access Journals (Sweden)

    Kyle R. Matthews

    2012-03-01

    Full Text Available This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration. Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and creative solutions through hands-on experimental design and testing in reduced gravity conditions. A group of undergraduate students from California State Polytechnic University, Pomona, participated in the NASA’s SEED (Systems Engineering Educational Discovery Reduced Gravity Program, which focuses on addressing systems engineering challenges in microgravity. The team worked with a NASA Principal Investigator on a project to build and fly a prototype test article to demonstrate emergency atmospheric reentry with single-axis control. Through this experience, the team was able to gain hands-on experience with spacecraft instrumentation and learn valuable lessons in teamwork and systems engineering that can be applied to real-world situations. As part of the SEED program, the team shared its experience with local high schools in order to spark interest in STEM-related fields in the next generation of scientists and engineers.

  9. Structural Aspects of Flexible Aircraft Control (les Aspects structuraux du controle actif et flexible des aeronefs)

    Science.gov (United States)

    2000-05-01

    bodies of longitudinal accelerations must be included in the water and many other problems. In our application, if flexibility equations. the radial...energy due to gravity will come from our MW [0+1 - f q 1+V -wp PQ -(P’ + R) gravitational model. In the case of a "flat earth ": [V -S 0 R VP -UQ] 1 QR...electronic flight control system apparition [GAF (M, m/V)] ,z [gaf (M, p)] p = j.m The first historical model of the flexible aircraft consists Where in

  10. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  11. Flight Control Requirements for Weapon Delivery. Volume 1. Development of the Terminal Aerial Weapon Delivery Simulation (TAWDS) Programs and Their Use in Formulating Flying Qualities Guidelines for Manually Coupled Aircraft Weapon Delivery Systems

    Science.gov (United States)

    1976-03-01

    sensor errors are usually biases over time intervals of several seconds. They are treated as stationary errors because TAWDS(AA) simulates a fighter...acting upon the aircraft. Stationary source errors associated with sensor measurements were not implemented. In the TAWDS programs the same dynamic...Error Traverse Tracking Error oro-oaM-u Figurt 64. CCIP Air-to-Ground Gunnory Tracking Error and Aircraft Command Tima Historias for F-4 TWaaD

  12. 14 CFR 61.411 - What aeronautical experience must I have to apply for a flight instructor certificate with a...

    Science.gov (United States)

    2010-01-01

    ...-shift-control aircraft category privileges, (1) 150 hours of flight time as a pilot, (i) 100 hours of...-control aircraft, (iii) 25 hours of cross-country flight time, (iv) 10 hours of cross-country flight time in a weight-shift-control aircraft, and (v) 15 hours of flight time as pilot in command in a...

  13. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Gonzalo Garcia

    2013-01-01

    Full Text Available The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

  14. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  15. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathemat

  16. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  17. Robust Control of an Ill-Conditioned Aircraft

    DEFF Research Database (Denmark)

    Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.;

    1996-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  18. Method and System for Active Noise Control of Tiltrotor Aircraft

    Science.gov (United States)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  19. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Science.gov (United States)

    2011-06-01

    ...; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration... design features include an electronic flight control system. The applicable airworthiness regulations do... an electronic flight control system and no direct coupling from the cockpit controller to the...

  20. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    Science.gov (United States)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  1. Aircraft Flight Envelope Identification through On-Board Model Based Estimation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To improve aviation safety with anticipated growth in capacity, it is necessary to develop flight control technologies that enable safe operations as anomalous...

  2. Direct tactile manipulation of the flight plan in a modern aircraft cockpit

    DEFF Research Database (Denmark)

    Alapetite, Alexandre; Fogh, Rune; Zammit-Mangion, David

    2012-01-01

    An original experimental approach has been chosen, with an incremental progression from a traditional physical cockpit, to a tactile flight simulator reproducing traditional controls, to a prototype navigation display with direct tactile functionality, first located in the traditional low positio...

  3. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    Science.gov (United States)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  4. Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions

    Science.gov (United States)

    Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo

    2009-01-01

    Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.

  5. Trajectory Control for Very Flexible Aircraft

    Science.gov (United States)

    2006-10-30

    total airspeed and the classic aircraft longitudinal , lateral, and vertical velocity components are u positive out the nose, v positive out the right...wing flexibility is a secondary and minimal contribution to aircraft longitudinal motion. Using this assumption and the previous assumptions of

  6. Noise Control in Propeller-Driven Aircraft

    Science.gov (United States)

    Rennison, D. C.; Wilby, J. F.

    1983-01-01

    Analytical model predicts noise levels inside propeller-driven aircraft during cruise at mach 0.8. Double wall sidewalls minimize interior noise and weight. Model applied to three aircraft with fuselages of different size (wide-body, narrow-body, and small-diameter) to determine noise reductions required to achieve A-weighted sound level not to exceed 80 dB.

  7. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    Science.gov (United States)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  8. Flight testing the digital electronic engine control in the F-15 airplane

    Science.gov (United States)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  9. Active fault tolerant control for vertical tail damaged aircraft with dissimilar redundant actuation system

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Shaoping; Wang Xingjian; Shi Cun; Mileta M. Tomovic

    2016-01-01

    This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.

  10. Modal control theory and application to aircraft lateral handling qualities design

    Science.gov (United States)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  11. Flight Dynamics and Control of Elastic Hypersonic Vehicles Uncertainty Modeling

    Science.gov (United States)

    Chavez, Frank R.; Schmidt, David K.

    1994-01-01

    It has been shown previously that hypersonic air-breathing aircraft exhibit strong aeroelastic/aeropropulsive dynamic interactions. To investigate these, especially from the perspective of the vehicle dynamics and control, analytical expressions for key stability derivatives were derived, and an analysis of the dynamics was performed. In this paper, the important issue of model uncertainty, and the appropriate forms for representing this uncertainty, is addressed. It is shown that the methods suggested in the literature for analyzing the robustness of multivariable feedback systems, which as a prerequisite to their application assume particular forms of model uncertainty, can be difficult to apply on real atmospheric flight vehicles. Also, the extent to which available methods are conservative is demonstrated for this class of vehicle dynamics.

  12. Effects of higher order control systems on aircraft approach and landing longitudinal handling qualities

    Science.gov (United States)

    Pasha, M. A.; Dazzo, J. J.; Silverthorn, J. T.

    1982-01-01

    An investigation of approach and landing longitudinal flying qualities, based on data generated using a variable stability NT-33 aircraft combined with significant control system dynamics is described. An optimum pilot lead time for pitch tracking, flight path angle tracking, and combined pitch and flight path angle tracking tasks is determined from a closed loop simulation using integral squared error (ISE) as a performance measure. Pilot gain and lead time were varied in the closed loop simulation of the pilot and aircraft to obtain the best performance for different control system configurations. The results lead to the selection of an optimum lead time using ISE as a performance criterion. Using this value of optimum lead time, a correlation is then found between pilot rating and performance with changes in the control system and in the aircraft dynamics. It is also shown that pilot rating is closely related to pilot workload which, in turn, is related to the amount of lead which the pilot must generate to obtain satisfactory response. The results also indicate that the pilot may use pitch angle tracking for the approach task and then add flight path angle tracking for the flare and touchdown.

  13. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Science.gov (United States)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  14. The longitudinal controls fixed static stability of tailless aircraft

    OpenAIRE

    de Castro, Helena V.

    2000-01-01

    This paper describes the development of a simple theory of the longitudinal controls fixed static stability of tailless aeroplanes. The classical theory, as developed for the conventional aircraft, is modified to accommodate the particular features of the tailless aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil transport aircraft, BWB-98. Cranfield University

  15. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    Science.gov (United States)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  16. 飞机操纵钢索损伤分析%Damage Analysis of Aircraft Control Cable

    Institute of Scientific and Technical Information of China (English)

    史珂

    2015-01-01

    Aircraft control cable damage can affect flight performance and flight safety. The damaged cables are collected and analyzed. Combined with the structure of flight control system ,corrosion and wear theory ,the damage type and damage mechanism of aircraft control cable are generalized according to morphology analysis of the damaged cables. In addition , maintenance experiences are summarized ,and methods to alleviate the damage of flight control cables are provided.%飞机操纵钢索损伤会影响飞机性能和飞行安全,文中对日常飞机维护中收集的损伤钢索进行形貌分析,结合钢索系统结构,参考腐蚀、磨损理论,将常见的飞机操纵钢索损伤形式进行了归纳、分类,并分析了各种损伤形式的机理;另外,通过总结维修实践中的经验,针对性地提出了减缓钢索损伤的措施,为飞机操纵钢索的维护提供了指导。

  17. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  18. Flight telerobotic servicer control from the Orbiter

    Science.gov (United States)

    Ward, Texas M.; Harlan, Don L.

    1989-01-01

    The research and work conducted on the development of a testbed for a display and control panel for the Flight Telerobotic Servicer (FTS) are presented. Research was conducted on both software and hardware needed to control the FTS. A breadboard was constructed and placed into a mockup of the aft station of the Orbiter spacecraft. This breadboard concept was then evaluated using a computer graphics representation of the Tinman FTS. Extensive research was conducted on the software requirements and implementation. The hardware selected for the breadboard was 'flight like' and in some cases fit and function evaluated. The breadboard team studied some of the concepts without pursuing in depth their impact on the Orbiter or other missions. Assumptions are made concerning payload integration.

  19. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.

    2015-01-01

    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  20. Technology research for digital flight control

    Science.gov (United States)

    Carestia, R. A.

    1983-01-01

    The use of advanced digital systems for flight control and guidance for a specific mission is investigated. The research areas include advanced electronic system architectures, tests with the global positioning system (GPS) in a helicopter, and advanced integrated systems concept for rotorcraft. Emphasis is on a search and rescue mission, differential global positioning systems to provide a data base of performance information for navigation, and a study to determine the present usage and trends of microcomputers and microcomputer components in the avionics industries.

  1. Hermes flight control center: Definition status

    Science.gov (United States)

    Letalle, Pierre

    1990-10-01

    The Hermes Flight Control Center (HFCC) located in Toulouse (France) is described. The center is the third in the world after the American center in Houston and the Soviet center in Kaliningrad. All the Hermes elements, both on board and on the ground will be coordinated by the HFCC for all phases of each mission. Aspects of the detailed definition phase still in the requirements analysis subphase are described. Diagrams are used to illustrate the interplay between the different systems.

  2. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  3. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    Science.gov (United States)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  4. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  5. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Science.gov (United States)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  6. Helicopter Flight Control Research - A Demanding Application of Piloted Simulation.

    Science.gov (United States)

    1986-01-01

    Sigma-8 digital computer (used to run the aircraft mathematical model) and an Applied Dynamics AD-4 analogue computer (used principally as a flexible...interface to cockpit instruments, and for motion and visual systems operation) (Fig 4). The first helicopter simulation to use a digital aircraft...34 Control Technology for helicopters. For fixed-wing aircraft, impresive claims were being made for electrically (and later optically) signalled control

  7. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used...... of the disturbance forces and their influence on a precision controlled spacecraft, is used to deduce the requirements for a micropropulsion system compensating for these. Following this an LTCC based resistojet microthruster is developed and fabricated, utilizing water as fuel. Towards the end of the project...

  8. Analyses of Aircraft Responses to Atmospheric Turbulence

    OpenAIRE

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathematical model is required. Two classical models will be discussed in this thesis, that is the Delft University of Technology (DUT) model and the Four Point Aircraft (FPA) model. Although they are well...

  9. Use of ILTV Control Laws for LaNCETS Flight Research

    Science.gov (United States)

    Moua, Cheng

    2010-01-01

    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable

  10. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  11. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    Science.gov (United States)

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  12. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    Science.gov (United States)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  13. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Brian; Lind, Rick [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Chatterjee, Sankar, E-mail: ricklind@ufl.edu [Department of Geology and Paleontology Museum, Texas Tech University, Lubbock, TX 79409 (United States)

    2011-06-15

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  14. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    Science.gov (United States)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  15. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  16. Control optimization, stabilization and computer algorithms for aircraft applications

    Science.gov (United States)

    Athans, M. (Editor); Willsky, A. S. (Editor)

    1982-01-01

    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.

  17. Balancing Training Techniques for Flight Controller Certification

    Science.gov (United States)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  18. Quadrocopter Control Design and Flight Operation

    Science.gov (United States)

    Karwoski, Katherine

    2011-01-01

    A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.

  19. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  1. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    Science.gov (United States)

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made.

  2. A nonlinear trajectory command generator for a digital flight-control system

    Science.gov (United States)

    Cicolani, L. S.; Weissenberger, S.

    1978-01-01

    Operational application of the command generator (CG) was examined in detail in a simulation of a flight control system with the augmentor wing jet STOL research aircraft. The basic repertoire of single axis maneuvers and operational constraints are discussed, and the system behavior is tested on a rigorous STOL approach path and as affected by various approximations in the CG synthesis and types of disturbances found in the operational environment. The simulation results indicate that a satisfactory nonlinear system with general maneuvering capabilities throughout the flight envelope was developed which satisfies the basic design objectives while maintaining a practicable degree of simplicity.

  3. Aircraft energy efficiency laminar flow control wing design study

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  4. Volume-imaging lidar observations of the convective structure surrounding the flight path of a flux-measuring aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E.W.; Forrest, D.K. (Univ. of Wisconsin, Madison (United States))

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. Here the authors report on convective structure measurements in the atmospheric boundary layer (ABL) made from instrumented aircraft flights. To compensate for the limited spatial resolution of the aircraft flight path the data is correlated with simultaneous LIDAR measurements which provide a much larger scale picture of the atmosphere. Together these two diagnostics provide a much more informative picture of the ABL, especially in the vicinity of particular convective eddy structures. It becomes clear from this work that stable results require longer flight paths than the 15km legs in this sample area. Horizontal wind speeds from the two instruments agree very well.

  5. An Investigation of Two-Propeller Tilt Wing V/STOL Aircraft Flight Characteristics

    Science.gov (United States)

    1992-01-01

    aerodynamic input files or using manual input data. The output provides static aircraft longitudinal parameters for determining performance...wing aircraft so configured, the NASA Ames computer code TWANG is used for simulation of aircraft longitudinal stability and performance characteristics

  6. Three-Axis Fluidic/Electronic Automatic Flight Control System Flight Test Report

    Science.gov (United States)

    1974-08-01

    sustained vertical bounce which could be due tc the location of the rate vortex sensor being in the cockpit rather than under the transmission. 3...29,000 lbs vs U7,000 lbs). A very minor reduction in dampening was incorporater"—but the response of the SAS to vertical bounce was critical in a...Sensitivity to vertical bounce in hover flight was increased with SAS on or off over that experience on the previous flight. Aircraft buzz and

  7. Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations

    Directory of Open Access Journals (Sweden)

    Karl Beswick

    2015-10-01

    Full Text Available Measurements of cloud ice crystal size distributions have been made by a backscatter cloud probe (BCP mounted on five commercial airliners flying international routes that cross five continents. Bulk cloud parameters were also derived from the size distributions. As of 31 December 2014, a total of 4399 flights had accumulated data from 665 hours in more than 19 000 cirrus clouds larger than 5 km in length. The BCP measures the equivalent optical diameter (EOD of individual crystals in the 5–90 µm range from which size distributions are derived and recorded every 4 seconds. The cirrus cloud property database, an ongoing development stemming from these measurements, registers the total crystal number and mass concentration, effective and median volume diameters and extinction coefficients derived from the size distribution. This information is accompanied by the environmental temperature, pressure, aircraft position, date and time of each sample. The seasonal variations of the cirrus cloud properties measured from 2012 to 2014 are determined for six geographic regions in the tropics and extratropics. Number concentrations range from a few per litre for thin cirrus to several hundreds of thousands for heavy cirrus. Temperatures range from 205 to 250 K and effective radii from 12 to 20 µm. A comparison of the regional and seasonal number and mass size distributions, and the bulk microphysical properties derived from them, demonstrates that cirrus properties cannot be easily parameterised by temperature or by latitude. The seasonal changes in the size distributions from the extratropical Atlantic and Eurasian air routes are distinctly different, showing shifts from mono-modal to bi-modal spectra out of phase with one another. This phase difference may be linked to the timing of deep convection and cold fronts that lead to the cirrus formation. Likewise, the size spectra of cirrus over the tropical Atlantic and Eastern Brazil differ from each

  8. Adaptive estimation and control with application to vision-based autonomous formation flight

    Science.gov (United States)

    Sattigeri, Ramachandra

    2007-05-01

    Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control. This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach. The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties. The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations. Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this

  9. On the synthesis of sliding mode controller for the autopilot design of free flight system

    Science.gov (United States)

    Devika K., B.; Thomas, Susy

    2017-01-01

    Today's rapid growth in air transportation demand leads to the problem of congestion in air traffic routes. In recent years, free flight concept is widely discussed as the solution to this problem. Free flight is a decentralized method of air traffic management, in which each aircraft has the freedom to self optimize its own route. Conflict detection and its subsequent resolution are the major challenges in the realization of this concept. Today's modern navigation and surveillance equipment can ensure accurate conflict predictions. Once a conflict is detected, it should be avoided through suitable conflict avoidance maneuvers. An autopilot capable of initiating these conflict free maneuvers should be a necessary part of any aircraft in free flight to ensure conflict avoided flight. Controller design based on Sliding Mode Control (SMC) strategy is presented in this paper for the purpose of free flight autopilot implementation. Since SMC has the inherent property of robustness in sliding mode, it can ensure a highly efficient autopilot design. Conventional and reaching law approaches of SMC design are considered here for controller design. Conventional SMC technique usually exhibits an unacceptable phenomenon, viz., chattering. Reaching law approaches for SMC design are being investigated here so as to identify an appropriate strategy that can ensure near chattering free operation. Considering typical free flight conflict avoidance modes of operation, the performance of all the considered SMC strategies are compared through simulation studies. The comparison is based on their ability to reduce chattering and the effectiveness in ensuring quick conflict resolution maneuvers, so that an efficient controller for free flight autopilot system can be recommended.

  10. Aircraft nonlinear optimal control using fuzzy gain scheduling

    Science.gov (United States)

    Nusyirwan, I. F.; Kung, Z. Y.

    2016-10-01

    Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

  11. Fault Tolerant Architecture For A Fly-By-Light Flight Control Computer

    Science.gov (United States)

    Thompson, Kevin; Stipanovich, John; Smith, Brian; Reddy, Mahesh C.

    1990-02-01

    The next generation of flight control computers will utilize fiber optic technology to produce a fly-by-light flight control system. Optical transducers and optical fibers will take the place of electrical position transducers and wires, torsion bars, bell cranks, and cables. Applications for this fly-by-light technology include space launch vehicles, upperstages, space-craft, and commercial/military aircraft. Optical fibers are lighter than mechanical transmission media and unlike conven-tional wire transmissions are not susceptible to electromagnetic interference (EMI) and high energy emission sources. This paper will give an overview of a fault tolerant In-Line Monitored optical flight control system being developed at Boeing Aerospace & Electronics in Seattle, Washington. This system uses passive transducers with fiber optic interconnections which hold promises to virtually eliminate EMI threats to flight control system performance and flight safety and also provide significant weight savings. The main emphasis of this paper will be the In-Line Monitored architecture of the optical transducer system required for use in a fault tolerant flight control system.

  12. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  13. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    Science.gov (United States)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  14. Inspection of CF188 composite flight control surfaces with neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.J.; Bennett, L.G.I. [Royal Military Coll. of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering; Mullin, S.K. [Aerospace and Telecommunications Engineering Support Squadron, Astra, Ontario (Canada). Nondestructive Testing Center Development Section

    1996-12-31

    At the Royal Military College of Canada`s SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results.

  15. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    Science.gov (United States)

    Glende, W. L. B.

    1974-01-01

    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  16. A Robust H∞ Controller for an UAV Flight Control System

    Directory of Open Access Journals (Sweden)

    J. López

    2015-01-01

    Full Text Available The objective of this paper is the implementation and validation of a robust H∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H∞ robust controller in the inner loop, H∞ control methodology is used. The two controllers that conform the outer loop are designed using the H∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  17. A Flight Investigation of Control, Display, and Guidance Requirements for Decelerating Descending VTOL Instrument Transitions using the X-22A Variable Stability Aircraft. Volume 1. Technical Discussion and Results

    Science.gov (United States)

    1975-09-01

    airspeed/ground speed switching logic, configuration change command. 5.0 Selection of control system types , individual system characteristics...all five control system types in combination with the three most sophisticated display presentations is intended to provide some guidance in...deceleration profiles. 2. The required dynamic characteristics of the generic control system types investigated in this experiment should be

  18. Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model

    Institute of Scientific and Technical Information of China (English)

    Yue Ting; Wang Lixin; Ai Junqiang

    2013-01-01

    This article investigates gain self-scheduled H∞ robust control system design for a tailless folding-wing morphing aircraft in the wing shape varying process.During the wing morphing phase,the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments.Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach,and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained.A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process.The proposed controller uses a set of inner-loop gains to provide stability using classical techniques,whereas a gain self-scheduled H∞ outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics.The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process,and they converge rapidly after the process ends.This proves that the gain self-scheduled H∞ robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process.Finally,the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.

  19. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  20. An Analysis of Retaining or Replacing Air Force Command and Control Aircraft

    Science.gov (United States)

    2007-12-01

    control aircraft perform, as well as the importance of maintaining the capability. Current command and control aircraft , as well as potential aircraft that...can replace the existing command and control aircraft , were researched to determine the cost and performance specifications. The current and...completed product identifies if the Air Force should retain or replace command and control aircraft . Additional areas for further research were listed

  1. Modeling and control of an agile tail-sitter aircraft

    OpenAIRE

    WANG, XINHUA; Chen, Zengqiang; Yuan, Zhuzhi

    2015-01-01

    This paper presents a model of an agile tail-sitter aircraft, which can operate as a helicopter as well as capable of transition to fixed-wing flight. Aerodynamics of the co-axial counter-rotating propellers with quad rotors are analysed under the condition that the co-axial is operated at equal rotor torque (power). A finite-time convergent observer based on Lyapunov function is presented to estimate the unknown nonlinear terms in co-axial counter-rotating propellers, the uncertainties and e...

  2. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  3. Human engineering problems in the operation of controls and the design of aircraft instruments

    Directory of Open Access Journals (Sweden)

    W.T.V. Adiseshiah

    1958-07-01

    Full Text Available "Speed and accuracy in performance are major considerations in the design of man-machine systems which involve displays for presenting information to the senses, and controls for human use. Sensory capacity, mobility and muscle strength, mental stamina, and capacity for team work are psychological factors which call for appropriate attention. In the design and selection of control devices, it is important to consider size and shape, location and action of the control devices. These should be compatible with the element to be controlled. four matters call for attention: firstly, control dimensions should take into consideration the normal hand grasp limitations of the operator. Secondly, knob of the controls should be suitably shape coded so as to forestall inadvertent operation of wrong controls. Thirdly, controls which have to be used most often should be placed within convenient reach of the operator. Fourthly, the human operator cannot be expected to perform at maximum capacity for any great length of time. Correctly positioned power controls are being increasingly used in present day aircraft. In the design of aircraft instruments and the layout of flying panels, the limitations of the human operator, emergencies which are likely to arise during flight, and imperfections in the indications of instruments need to be taken into account. The design of aircraft instruments such as the altimeter, the air speed indicator, and the artificial horizon, are being improved from time to time so as to meet the new requirements in flying. Single and multiple instrument combinations have effected a saving of time in locating parts of a total picture, e.g. the composite indication of fuel state in modern aircraft. Many unsolved problems still remain with regard to the use of certain items such as the aiming, photographic and oxygen equipments. "

  4. Singular perturbations and time scales in the design of digital flight control systems

    Science.gov (United States)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  5. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  6. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    Science.gov (United States)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  7. Multistrand, Fast Reaction, Shape Memory Alloy System for Uninhabited Aerial Vehicle Flight Control

    Directory of Open Access Journals (Sweden)

    M. Brennison

    2012-01-01

    Full Text Available This paper details an investigation of shape memory alloy (SMA filaments which are used to drive a flight control system with precision control in a real flight environment. An antagonistic SMA actuator was developed with an integrated demodulator circuit from a JR NES 911 subscale UAV actuator. Most SMA actuator studies concentrate on modeling the open-loop characteristics of such a system with full actuator performance modeling. This paper is a bit different in that it is very practically oriented and centered on development of a flight-capable system which solves the most tricky, practical problems associated with using SMA filaments for aircraft flight control. By using well-tuned feedback loops, it is shown that intermediate SMA performance prediction is not appropriate for flight control system (FCS design. Rather, capturing the peak behavior is far more important, along with appropriate feedback loop design. To prove the system, an SMA actuator was designed and installed in the fuselage of a 2 m uninhabited aerial vehicle (UAV and used to control the rudder through slips and coordinated turns. The actuator was capable of 20 degrees of positive and negative deflection and was capable of 7.5 in-oz (5.29 N cm of torque at a bandwidth of 2.8 Hz.

  8. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  9. Stability of Gain Scheduling Control for Aircraft with Highly Nonlinear Behavior

    Directory of Open Access Journals (Sweden)

    Fany Mendez-Vergara

    2014-01-01

    Full Text Available The main goal of this work is to study the stability properties of an aircraft with nonlinear behavior, controlled using a gain scheduled approach. An output feedback is proposed which is able to guarantee asymptotical stability of the task-coordinates origin and safety of the operation in the entire flight envelope. The results are derived using theory of hybrid and singular perturbed systems. It is demonstrated that both body velocity and orientation asymptotic tracking can be obtained in spite of nonlinearities and uncertainty. The results are illustrated using numerical simulations in F16 jet.

  10. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U.; Duerbeck, T.; Feigl, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F.; Droste-Franke, B. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F. [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I.J. [University Coll., London (United Kingdom); Hagen, D.E.; Hopkins, A.R. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G.D. [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); and others

    1997-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  11. High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar

    Science.gov (United States)

    de Haan, S.

    2011-05-01

    Wind, temperature, and humidity observations from radiosonde and aircraft are the main sources of upper air information for meteorology. For mesoscale meteorology, the horizontal coverage of radiosondes is too sparse. Aircraft observations through Aircraft Meteorological Data Relay (AMDAR) sample an atmospheric profile in the vicinity of airports. However, not all aircraft are equipped with AMDAR or have the system activated. Observations inferred from an enhanced tracking and ranging (TAR) air traffic control radar can fill this gap. These radars follows all aircraft in the airspace visible to the radar for air traffic management. The TAR radar at Schiphol airport in Netherlands has a range of 270 km. This Mode-S radar contacts each aircraft every 4 s on which the transponder in the aircraft responds with a message that contains information on flight level, direction, and speed. Combined with the ground track of an aircraft, meteorological information on temperature and wind can be inferred from this information. Because all aircraft are required to respond to the TAR radar, the data volume is extremely large, being around 1.5 million observations per day. Note that there are no extra costs for this data link. The quality of these observations is assessed by comparison to numerical weather prediction (NWP) model information, AMDAR observations, and radiosonde observations. A preprocessing step is applied to enhance the quality of wind and temperature observations, albeit with a reduced time frequency of one observation of horizontal wind vector and temperature per aircraft per minute. Nevertheless, the number of observations per day is still very large. In this paper it is shown that temperature observations from Mode-S, even after corrections, are not very good; an RMS which is twice as large as AMDAR is observed when compared to NWP. In contrast to the temperature observations, the quality found for wind after correction and calibration is good; it is comparable

  12. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  13. Aircraft

    Science.gov (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  14. Intelligent Life-Extending Controls for Aircraft Engines Studied

    Science.gov (United States)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  15. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    Science.gov (United States)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  16. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    Science.gov (United States)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  17. Individual and collective climate control in aircraft cabins

    NARCIS (Netherlands)

    Jacobs, P.; Gids, W.F. de

    2006-01-01

    A new concept for aircraft cabin climatisation has been developed in which the seat is the main Indoor Air Quality (IAQ) and temperature control system for the passengers containing provisions for local supply and local exhaust of air. Direct supply of clean outside air in the breathing zone, throug

  18. 伸缩翼飞机变形飞行的建模与滑模变增益控制%Modeling and sliding mode gain-scheduled control for telescopic-wing aircraft in flight during morphing

    Institute of Scientific and Technical Information of China (English)

    殷明; 陆宇平; 姚克明; 何真

    2015-01-01

    研究了伸缩翼飞机变形飞行过程的动力学建模与鲁棒控制问题,以分析机翼变形对飞机性能的影响机理,并实现机翼变形时的平稳飞行.首先通过气动仿真分析构建了伸缩翼飞机气动参数与机翼变形的关联函数,进而建立了变形飞行的动力学模型.在此基础上提出了一种新的滑模变增益控制(sliding mode gain-scheduled control,SMGSC)策略,更好地保证闭环系统的全局稳定和鲁棒性能.仿真结果表明,机翼伸缩能直接改变飞机的气动特性和运动模态;SMGSC能更好地保持伸缩翼飞机变形飞行时的状态稳定,并消除复合干扰的影响;伸缩翼飞机通过机翼变形可以减少50%的燃油消耗实现同样的飞行任务,具有重要的性能优势.

  19. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  20. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    Science.gov (United States)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  1. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    Science.gov (United States)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  2. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  3. Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives

    Science.gov (United States)

    Stepner, D. E.; Mehra, R. K.

    1973-01-01

    A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.

  4. Aircraft Loss of Control Causal Factors and Mitigation Challenges

    Science.gov (United States)

    Jacobson, Steven R.

    2010-01-01

    Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistics

  5. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    Science.gov (United States)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  6. An Aid for Mechanisation of Flight Control Systems on Micro-Computers

    Directory of Open Access Journals (Sweden)

    T.V. Rama Murthy

    1994-04-01

    Full Text Available This paper deals with the development of an automated aid to translate the block diagram of flight control system (FCS to assembly level code. By defining a suitable syntax and by building a matrix of inputs and outputs of the blocks, it becomes easy to translate the block diagram. It is also shown how the process of fault detection can be automated. The results obtained through the automated aid have been validated by ORACLE library using the block diagram of Cstar controller of F8 aircraft.

  7. Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models

    Directory of Open Access Journals (Sweden)

    Achim Ionita

    2009-01-01

    Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.

  8. Advanced flow measurement and active flow control of aircraft with MEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Chengyu; Deng Jinjun; Ma Binghe; Yuan Weizheng

    2012-01-01

    Advanced flow measurement and active flow control need the development of new type devices and systems. Micro-electro-mechanical systems (MEMS) technologies become the important and feasible approach for micro transducers fabrication. This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators. Micro sensors include the flexible thermal sensor array, capacitive shear stress sensor and high sensitivity pressure sensor. Micro actuators are the balloon actuator and synthetic jet actuator respectively. Through wind tunnel test, these micro transducers achieve the goals of shear stress and pressure distribution measurement, boundary layer separation control, lift enhancement, etc. And unmanned aerial vehicle (UAV) flight test verifies the ability of maneuver control of micro actuator. In the future work, micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.

  9. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  10. PRINCIPLES OF INDICATION FOR EN-ROUTE FLIGHT PATHS OF THE AIRCRAFT ON THE SCREEN OF ON-BOARD DISPLAY DEVICES

    Directory of Open Access Journals (Sweden)

    V. V. Markelov

    2016-01-01

    Full Text Available Subject of Research.We consider the principles and algorithms for construction of en-route flight paths of an aircraft (airplane in a horizontal plane for their subsequent display on the navigation situation indicators in the cockpit. Navigation situation indicatorsaredisplay devices designed on the basis of flat liquid crystal panel. Methods. Flight trajectory display by on-board multifunction indicators is performed by successive drawing of graphic primitives available in the library and defined in accordance with an array of data to display the route. An array of data is generated by on-board software complex based on the information provided in the flight task and the corresponding «Jeppesen» database or analogous one. Formation of the array is carried out by bringing the set of trajectory paths to the format of three typical trajectories described. In addition, each of the types of trajectories has a standard description of the algorithm for calculating the parameters that make up an array of data to display.Main Results.The algorithms of forming and calculating the amounts of data of routing paths required for their construction and display on the multifunction indicators applied in avionics.Practical Relevance.These novel routing algorithms for constructing trajectory paths unify algorithms of generating information for display on the navigation situation indicators and optimize a set of calculated data for flight control at the trajectory in the horizontal plane.

  11. Application of a flight test and data analysis technique to flutter of a drone aircraft

    Science.gov (United States)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  12. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  13. A Learning Enhanced Flight Control System for High Performance Aircraft

    Science.gov (United States)

    1992-01-01

    weights exists for multi-layer networks as in the single-layer case. Another pioneering connectionist network is the adaptive linear element, or ADALINE ...Widrow & Hoff (1960)). ADALINE networks consist of simple nodes connected in a feedforward architecture. The distinguishing features of an ADALINE ...of the error. When the weights are changed in proportion to the error, an ADALINE network is guaranteed to converge to the minimum of the mean squared

  14. Noise and vibration control in aircraft: A global approach

    Science.gov (United States)

    Berhault, J.-P.; Venet, G.; Fontenot, J.

    This paper proposes an approach to noise and vibration control in new and existing aircraft, employing a global approach; that is, considering all source and effects in development of the control plan. The approach employs acoustic imaging of the engines and the cabin internal space and a vibration analysis model to describe the entire system. Completion of the global analysis leads to the treatment plan, which may include various passive mounts tecnologies and/or an active noise system.

  15. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  16. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    Science.gov (United States)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  17. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    Science.gov (United States)

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  18. Path-tracking Control of a Tractor-aircraft System

    Institute of Scientific and Technical Information of China (English)

    Nengjian Wang; Hongbo Liu; Wanhui Yang

    2012-01-01

    An aircraft tractor plays a significant role as a kind of important marine transport and support equipment.It's necessary to study its controlling and manoeuvring stability to improve operation efficiency.A virtual prototyping model of the tractor-aircraft system based on Lagrange's equation of the first kind with Lagrange mutipliers was established in this paper.According to the towing characteristics,a path-tracking controller using fuzzy logic theory was designed.Direction control herein was carried out through a compensatory tracking approach.Interactive co-simulation was performed to validate the path-tracking behavior in closed-loop.Simulation results indicated that the tractor followed the reference courses precisely on a flat ground.

  19. Selection of sampling rate for digital control of aircrafts

    Science.gov (United States)

    Katz, P.; Powell, J. D.

    1974-01-01

    The considerations in selecting the sample rates for digital control of aircrafts are identified and evaluated using the optimal discrete method. A high performance aircraft model which includes a bending mode and wind gusts was studied. The following factors which influence the selection of the sampling rates were identified: (1) the time and roughness response to control inputs; (2) the response to external disturbances; and (3) the sensitivity to variations of parameters. It was found that the time response to a control input and the response to external disturbances limit the selection of the sampling rate. The optimal discrete regulator, the steady state Kalman filter, and the mean response to external disturbances are calculated.

  20. The integrated manual and automatic control of complex flight systems

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  1. Integrated assurance assessment of a reconfigurable digital flight control system

    Science.gov (United States)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  2. Somatosensory substrates of flight control in bats.

    Science.gov (United States)

    Marshall, Kara L; Chadha, Mohit; deSouza, Laura A; Sterbing-D'Angelo, Susanne J; Moss, Cynthia F; Lumpkin, Ellen A

    2015-05-12

    Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  3. Somatosensory Substrates of Flight Control in Bats

    Directory of Open Access Journals (Sweden)

    Kara L. Marshall

    2015-05-01

    Full Text Available Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  4. Development of SCR Aircraft takeoff and landing procedures for community noise abatement and their impact on flight safety

    Science.gov (United States)

    Grantham, W. D.; Smith, P. M.

    1980-01-01

    Piloted simulator studies to determine takeoff and landing procedures for a supersonic cruise transport concept that result in predicted community noise levels which meet current Federal Aviation Administration (FAA) standards are discussed. The results indicate that with the use of advanced procedures, the subject simulated aircraft meets the FAA traded noise levels during takeoff and landing utilizing average flight crew skills. The advanced takeoff procedures developed involved violating three of the current Federal Aviation Regulations (FAR) noise test conditions. These were: (1) thrust cutbacks at altitudes below 214 meters (700 ft); (2) thrust cutback level below those presently allowed; and (3) configuration change, other than raising the landing gear. It was not necessary to violate any FAR noise test conditions during landing approach. It was determined that the advanced procedures developed do not compromise flight safety. Automation of some of the aircraft functions reduced pilot workload, and the development of a simple head-up display to assist in the takeoff flight mode proved to be adequate.

  5. Crash response data system for the controlled impact demonstration (CID) of a full-scale transport aircraft

    Science.gov (United States)

    Calloway, R. S.; Knight, V. H., Jr.

    1986-01-01

    A study involving the Controlled Impact Demonstration (CID) of a transport category aircraft was conducted with the objective to improve occupant safety during survivable crash scenarios. in connection with this study, the first remotely-piloted Full-Scale Transport aircraft was purposely crashed into the California desert. The program was initated to demonstrate the effectiveness of an imisting kerosene (AMK), a fuel additive emplyed to reduce postcrash fires. The unmanned CID flight carried 73 life-like flight research dummies, multiple experiments, high-speed interior cabin cameras, and the high-environment Crash Response Data System. Attention is given to the design approach, a block diagram of the Crash Response Data System, measurements, the digital data subsystem, signal conditioning, telemetry, on-board recording, the power subsystem, preflight checkout and calibration, and aspects of system qualification.

  6. F-8 digital fly-by-wire aircraft analytic redundancy management flight test experience

    Science.gov (United States)

    Deckert, J. C.

    1981-01-01

    The formulation and flight test results of an algorithm to detect and isolate the first failure of any one of twelve duplex control sensors being monitored are described. The technique uses like sensor output differences for fault detection while relying upon analytic redundancy relationships among unlike quantities to isolate the faulty sensor. The fault isolation logic utilizes the modified sequential probability ratio test, which explicitly accommodates the inevitable irreducible low frequency errors present in the analytic redundancy residuals. In addition, the algorithm uses sensor output selftest, which takes advantage of the duplex sensor structure by immediately removing a highly erratic sensor from control calculations and analytic redundancy relationships while awaiting a definitive fault isolation decision via analytic redundancy.

  7. Dynamics Modeling and L1 Adaptive Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available The longitudinal nonlinear aircraft model with cargo extraction is derived using theoretical mechanics and flight mechanics. Furthermore, the nonlinear model is approximated by a semilinear time-varying system with the cargo disturbances viewed as unknown nonlinearities, both matched and unmatched types. On this basis, a novel autopilot inner-loop based on the LQR and L1 adaptive theory is developed to reject the unknown nonlinear disturbances caused by the cargo and also to accommodate uncertainties. Analysis shows that the controller can guarantee robustness in the presence of fast adaptation, without exciting control signal oscillations and gain scheduling. The overall control system is completed with the outer-loop altitude-hold control based on a PID controller. Simulations are conducted under the condition that one transport aircraft performs maximum load airdrop mission at the height of 82 ft, using single row single platform mode. The results show the good performance of the control scheme, which can meet the airdrop mission performance indexes well, even in the presence of ±20% aerodynamic uncertainties.

  8. Testing For EM Upsets In Aircraft Control Computers

    Science.gov (United States)

    Belcastro, Celeste M.

    1994-01-01

    Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.

  9. Cooperative control theory and integrated flight and propulsion control

    Science.gov (United States)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  10. The Control Anticipation Parameter for Augmented Aircraft.

    Science.gov (United States)

    1981-05-15

    time delay - sec Te2 - Pitch rate numerator time constant - sec-i V - Freestream velocity - ft/sec Z~ eZw - Normal force stability derivative due to...reference (f)) SHORT PERIOD CHARACTERISTICS CONTROL - 18.5 g/RAD "la 50 g/RAD SYSTEM V 1d 250 KT Vind350 KT CHARACTERISTICS t/;ir d - 1.25 SECI 1/t-,p

  11. A Method for Evaluating Aircraft Stability Parameters from Flight Test Data

    Science.gov (United States)

    1952-06-01

    solving for the aircraft longitudinal moment of inertia. The transfer function A2 is directly proportional to the moment of inertia. All the remaining...a method for evaluating aircraft longitudinal stability derivatives from frequency response data pro- vided the linear dependency existing between the

  12. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2009-01-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  13. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  14. Systematic review on tuberculosis transmission on aircraft and update of the European Centre for Disease Prevention and Control risk assessment guidelines for tuberculosis transmitted on aircraft (RAGIDA-TB).

    Science.gov (United States)

    Kotila, Saara M; Payne Hallström, Lara; Jansen, Niesje; Helbling, Peter; Abubakar, Ibrahim

    2016-01-01

    As a setting for potential tuberculosis (TB) transmission and contact tracing, aircraft pose specific challenges. Evidence-based guidelines are needed to support the related-risk assessment and contact-tracing efforts. In this study evidence of TB transmission on aircraft was identified to update the Risk Assessment Guidelines for TB Transmitted on Aircraft (RAGIDA-TB) of the European Centre for Disease Prevention and Control (ECDC). Electronic searches were undertaken from Medline (Pubmed), Embase and Cochrane Library until 19 July 2013. Eligible records were identified by a two-stage screening process and data on flight and index case characteristics as well as contact tracing strategies extracted. The systematic literature review retrieved 21 records. Ten of these records were available only after the previous version of the RAGIDA guidelines (2009) and World Health Organization guidelines on TB and air travel (2008) were published. Seven of the 21 records presented some evidence of possible in-flight transmission, but only one record provided substantial evidence of TB transmission on an aircraft. The data indicate that overall risk of TB transmission on aircraft is very low. The updated ECDC guidelines for TB transmission on aircraft have global implications due to inevitable need for international collaboration in contract tracing and risk assessment.

  15. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    Science.gov (United States)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  16. Robust Nonlinear Control of Tailless Fighter Aircraft

    Science.gov (United States)

    1999-02-01

    also resulted in 1 book chapter and 12 refereed conference papers published, to appear and submitted. These papers are listed below. 1. A.R. Teel and L...Verlag, 1999, to appear. 4 Refereed Conference Publications 11. A.R. Teel. "A nonlinear control viewpoint on anti-windup and related problems", Preprints... Drc . TS"ThCH’WCAL R~PORT HAS qSN REViEWMAND IS APPRoVvOR 0 PLnUcBL EASE’WA APR 190-12, DISTRIBUTION I YONNE MASON S7T]NQ1pROORAJMMANAGE

  17. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research

    Science.gov (United States)

    Braslow, Albert L.

    1999-01-01

    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  18. Closed-loop dynamic control allocation for aircraft with multiple actuators

    Institute of Scientific and Technical Information of China (English)

    Gai Wendong; Wang Honglun

    2013-01-01

    A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators.Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment.And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop,then the error between the desired and actual moment increment is the input of the dynamic control allocation.Subsequently,the stability of the closed-loop dynamic control allocation system is analyzed in detail.Especially,the closedloop system stability is also analyzed in the presence of two types of actuator failures:loss of effectiveness and lock-in-place actuator failures,where a fault detection subsystem to identify the actuator failures is absent.Finally,the proposed method is applied to a canard rotor/wing (CRW)aircraft model in fixed-wing mode,which has multiple actuators for flight control.The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.

  19. Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time

    Science.gov (United States)

    Cole, Jennifer H.

    2006-01-01

    A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.

  20. Control and Non-Payload Communications Generation 1 Prototype Radio Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Young, Daniel P.; Bretmersky, Steven C.; Ishac, Joseph A.; Walker, Steven H.; Griner, James H.; Kachmar, Brian A.

    2014-01-01

    regularity of flight. Only recently has radiofrequency (RF) spectrum been allocated by the International Telecommunications Union specifically for commercial UA C2, LOS communication (L-Band: 960 to 1164 MHz, and C-Band: 5030 to 5091 MHz). The safe and efficient integration of UA into the NAS requires the use of protected RF spectrum allocations and a new data communications system that is both secure and scalable to accommodate the potential growth of these new aircraft. Data communications for UA-referred to as control and non-payload communications (CNPC)-will be used to exchange information between a UA and a ground station (GS) to ensure safe, reliable, and effective UA flight operation. The focus of this effort is on validating and allocating new RF spectrum and data link communications to enable civil UA integration into the NAS. Through a cost-sharing cooperative agreement with Rockwell Collins, Inc., the NASA Glenn Research Center is exploring and performing the necessary development steps to realize a prototype UA CNPC system. These activities include investigating signal waveforms and access techniques, developing representative CNPC radio hardware, and executing relevant testing and validation activities. There is no intent to manufacture the CNPC end product, rather the goals are to study, demonstrate, and validate a typical CNPC system that will allow safe and efficient communications within the L-Band and C-Band spectrum allocations. The system is addressing initial "seed" requirements from RTCA, Inc., Special Committee 203 (SC-203) and is on a path to Federal Aviation Administration certification. This report provides results from the flight testing campaign of the Rockwell Collins Generation 1 prototype radio, referred hereafter as the "radio." The radio sets operate within the 960- to 977-MHz frequency band with both air and ground radios using identical hardware. Flight tests involved one aircraft and one GS. Results include discussion of aircraft flight

  1. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    .... A47CE to include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE... the effects of the aircraft supplied power and data failures on the engine control system, and the... Engine GmbH model E4 aircraft diesel engine. 1. Electronic Engine Control a. For electronic...

  2. Real Time Control Software for Electromagnetic Formation Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  3. Reduction of Flight Control System/Structural Mode Interaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing a...

  4. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  5. An integrated approach to the design of an aircraft gain scheduled controller

    OpenAIRE

    Berglund, Erik

    1995-01-01

    This thesis addresses the problem of integrated design of the aircraft plant parameters and of the corresponding feedback controller. The plant parameters are typically the sizes of the control surfaces or other aerodynamical surfaces of the aircraft. The approach is to rewrite the aircraft dynamic requirements as linear matrix inequalities (LMI's) and to optimize a linear cost function associated with aircraft plant parameters, while meeting the LMI constraints. An algorithm using Matlab and...

  6. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    Science.gov (United States)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  7. Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop

    Directory of Open Access Journals (Sweden)

    Liu Ri

    2015-04-01

    Full Text Available The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input–output feedback linearization method. On this basis, an iterative quasi-sliding mode (SM flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of “smaller errors correspond to bigger gains and bigger errors correspond to saturated gains” is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov-based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.

  8. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  9. Real-Time Noise Prediction of V/STOL Aircraft in Maneuvering Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for enhancing and integrating new breakthrough technologies to provide accurate real-time noise prediction of V/STOL aircraft in...

  10. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: flight service and inspection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kizer, J.A.

    1981-10-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  11. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  12. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    Science.gov (United States)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  13. DYNAMICAL VARIABLE STRUCTURE CONTROL OF A HELICOPTER IN VERTICAL FLIGHT

    OpenAIRE

    Sira-Ramirez, Hebertt; Zribi, Mohamed; Ahmad, Shaheen

    1991-01-01

    In this article, a dynamical multivariable discontinuous feedback control strategy of the sliding nlode type is proposed for the altitude stabilization of a nonlinear helicopter model in vertical flight. Vlrhile retaining the basic robustness features associated to sliding mode control policies, the proposed approach also results in smoothed out (i.e., non-chattering) input trajectories and controlled state variable responses.

  14. Flying qualities - A costly lapse in flight-control design

    Science.gov (United States)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  15. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  16. Design and Analysis of Morpheus Lander Flight Control System

    Science.gov (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  17. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    Science.gov (United States)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos

    2013-01-01

    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  18. The design, development, and flight test results of the Boeing 737 aircraft antennas for the ICAO demonstration of the TRSB microwave landing system

    Science.gov (United States)

    Campbell, T. G.; White, W. E.; Gilreath, M. C.

    1976-01-01

    The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects.

  19. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    Science.gov (United States)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  20. Optimization of operational aircraft parameters Reducing Noise Emission

    CERN Document Server

    Abdallah, Lina; Khardi, Salah

    2008-01-01

    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  1. Novel SiL evaluation of an optimal H∞ controller on the stability of a MAV in flight simulator

    Science.gov (United States)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    This paper introduces a novel methodology to assist the evaluation of control algorithms for MAVs (Micro Aerial Vehicles) using Software-in-the-Loop (SiL) based flight simulation. The originality of this paper is to use © Microsoft Flight Simulator (MSFS) as the environment to embed both the dynamic and graphic models of © Ascending Technologies Pelican MAV flying robot. The resulting is a reliable model of the Pelican quadrotor. The full duplex communication between the virtual aircraft and the control algorithm is achieved by a custom C++/C software named FVMS (Flight Variables Management System), developed by Aerial Robots Team (ART), which is able to reach (read/write) a great number of flight variables from MSFS. To illustrate the effectiveness of such method, we first completely present FVMS architecture and main features. Later, the synthesis and then the application of the optimal H∞ robust control algorithm and its operation into the FVMS SiL context are explained. Regarding MAVs control evaluation, SiL simulation considerably contributes to save battery time, to ease control synthesis and prototyping and to prevent accidents during tests with the real robot. The final goal is to evaluate the stability of the Pelican platform in hovering tasks in flight simulation focusing on the efficiency of FVMS to properly run the optimal H∞ robust control algorithm. The SiL control of the MAV has proven FVMS capabilities, which may be extended to assist the design of other classes of controllers.

  2. Effects of acoustic treatment on the interior noise levels of a twin-engine propeller aircraft - Experimental flight results and theoretical predictions

    Science.gov (United States)

    Beyer, T. B.; Powell, C. A.; Daniels, E. F.; Pope, L. D.

    1984-01-01

    In-flight noise level measurements were made within two cabin configurations of a general aviation business aircraft. The Fairchild Merlin IVC twin-engine aircraft was tested with bare walls and fiberglass insulation and in an executive trim configuration. Narrow-band and octave format data were subjected to analyses which permitted identification of the blade passage harmonics (BPH). Cabin noise level reductions (insertion losses) due to added insulation varied with position in the cabin, the BPH number, cabin pressure, and engine torque. The measurements were closely predicted using the propeller aircraft interior noise (PAIN) mode.

  3. A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight

    OpenAIRE

    2012-01-01

    This paper reviews the flight mechanics and control of birds and bird-size aircraft. It is intended to fill a niche in the current survey literature which focuses primarily on the aerodynamics, flight dynamics and control of insect scale flight. We review the flight mechanics from first principles and summarize some recent results on the stability and control of birds and bird-scale aircraft. Birds spend a considerable portion of their flight in the gliding (i.e., non-flapping) phase. Therefo...

  4. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    , ozone, and thermal effects. The humidity study, examining the optimum balance between fresh air supply and humidity, showed that increasing relative humidity in the aircraft cabin by reducing outside air flow did not reduce the intensity of symptoms typically experienced in the aircraft cabin...... but intensified complaints of headache, dizziness and claustrophobia, suggesting that air pollutants rather than low humidity cause the distress reported by airline passengers. Three investigations studying the efficacy of various air purification technologies showed that a gas phase adsorption purification unit...... performed better than two different photo-catalytic oxidation units, although all three units greatly reduced the concentration of air pollutants in the cabin. Results obtained from the Ozone investigation indicate that the presence of ozone in the aircraft cabin is a principal cause of a number...

  5. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  6. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    Science.gov (United States)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  7. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    Science.gov (United States)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  8. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    Science.gov (United States)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  9. Rotorcraft flight-propulsion control integration: An eclectic design concept

    Science.gov (United States)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  10. Capillary flow in porous media under highly reduced gravity investigated through high altitude parabolic aircraft flights and NASA space shuttle flight

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Wassmuth, F. [Alberta Research Council, Edmonton, AB (Canada); Stasiuk, E.N. [Calgary Univ., AB (Canada); Hart, D. [Centre for Cold Ocean Resources Engineering, St. John' s, NF (Canada); Legros, J.C. [Brussels Univ., Brussels (Belgium); Smirnov, N.N. [Moscow State Univ., Moscow (Russian Federation)

    2003-07-01

    Several enhanced oil recovery methods are being developed to economically recover waterflooded residual oil. The challenge is comparable to understanding the mechanisms involved when liquid contaminants in soil are filtered and mixed with groundwater and then transported by convective flows. Multiphase flow and trapping of fluids in porous media are greatly affected by wettability and capillary forces. However, fluid flow in porous media is also strongly governed by gravity effects. In this study, a series of high altitude aircraft parabolic flights were conducted in which capillary flow experiments were performed in porous media using different fluids. Three capillary flow experiments were conducted on a shuttle flight where gravity was not a factor. This paper presents a newly developed finite-difference numerical model for two-dimensional homogeneous fluid flow in a porous medium confined by a horizontal bottom, two vertical boundaries and a free surface. The model describes movement of fluid flow in response to applied pressure gradients. It also considers capillary flow caused by surface tension. The simulator can be used to predict the effect of changing properties such as gravitational acceleration, permeability, pore radii, surface tension, liquid viscosity and wettability. The study showed that interfacial phenomena in highly reduced gravity conditions can be applied to problems associated with fluid handling in various types of space vehicles. 12 refs., 12 figs.

  11. Design of Advanced Digital Flight Control Systems via Command Generator Tracker (CGT) Synthesis Methods. Volume I.

    Science.gov (United States)

    1981-12-01

    of the CGT controllers. For the aircraft longitudinal dynamics system, three different design models are used. All three design jmodels employ simple... longitudinal dynamics are given below. Reference 30 details * Ithe derivation of the linear perturbation model of aircraft longitudinal dynamics while the...decoupled pitch-pointing control for an aircraft system model representative of modern aircraft longitudinal dynamics. The CGT/PI/KF controller is found

  12. F-16XL ship #1 (#849) with Digital Flight Control System (DFCS) in flight over desert

    Science.gov (United States)

    1997-01-01

    An image of the F-16XL #1 during its functional flight check of the Digital Flight Control System (DFCS) on December 16, 1997. The mission was flown by NASA research pilot Dana Purifoy, and lasted 1 hour and 25 minutes. The tests included pilot familiarly, functional check, and handling qualities evaluation maneuvers to a speed of Mach 0.6 and 300 knots. Purifoy completed all the briefed data points with no problems, and reported that the DFCS handled as well, if not better than the analog computer system that it replaced.

  13. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  14. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao

    2012-01-01

    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  15. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    Science.gov (United States)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  16. Scaled Model Technology for Flight Research of General Aviation Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  17. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    Science.gov (United States)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  18. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

  19. Active control of an aircraft tail subject to harmonic excitation

    Institute of Scientific and Technical Information of China (English)

    M. Eissa; H. S. Bauomy; Y. A. Amer

    2007-01-01

    Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is,active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differ-ential equations having both quadratic and cubic nonlinear-ties. The system describes the vibration of an aircraft tail.The system is subjected to multi-external excitation forces.The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approx-imate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are stud-ied numerically. Various resonance cases are investigated. A comparison is made with the available published work.

  20. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Science.gov (United States)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  1. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  2. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    Science.gov (United States)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  3. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    Science.gov (United States)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  4. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    Science.gov (United States)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  5. Visual control of prey-capture flight in dragonflies.

    Science.gov (United States)

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects.

  6. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    Science.gov (United States)

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  7. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-08-01

    Full Text Available This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larger motion envelope than the conventional hexapods in order to realize the manoeuvrability matching of aircraft dynamics near and beyond the upset flight envelopes. Finally the paper draws a comparative evaluation of motion capabilities between the proposed motion platform and a conventional hexapod based on Stewart configuration in order to emphasize the significance of the design proposed herein.

  8. Requirements for an Aircraft Carrier Flight Deck Fire Fighting Test Facility

    Science.gov (United States)

    2007-11-02

    PEO Carriers 614 Sicard Street SE Stop 7007 11. SPONSOR / MONITOR’S REPORT Washington Navy Yard DC 20376-7007 NUMBER(S) 12. DISTRIBUTION /AVAILABILITY...nozzles are installed every 8 feet (alternately 5 feet and 3 feet apart). > Every point on the flight deck must be reachable by a minimum of two AFFF...nozzle rated at 125 gpm. > AFFF solution flow rates for each flight deck demand point are as follows: AFFF System Nominal Flow Rate Flush Deck/Deck Edge

  9. Vision-based flight control in the hawkmoth Hyles lineata.

    Science.gov (United States)

    Windsor, Shane P; Bomphrey, Richard J; Taylor, Graham K

    2014-02-06

    Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths' responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths' responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight.

  10. FLIGHT PATH CONTROL FOR UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    M. A. Al-Mashhadani

    2014-01-01

    Full Text Available Studying the optimized control law specified criteria on UAV while hovering over a path defined by the reference points in the inertial frame. An illustrative example is the  theoretical efficiency of the proposed provisions. 

  11. Flight test evaluations of the head-up display and the inertial reference unit of the NAL QSTOL experimental aircraft (Aska) by the NAL B-65 Queen Air research aircraft. Teisoon STOL jikkenkiyo HUD (head up display) oyobi IRU (kansei kijun sochi) no hiko hyoka shiken

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A head-up display (HUD) and an inertial reference unit (IRU) were developed by the National Aerospace Laboratory (NAL) for the NAL QSTOL (Quiet Short Take Off and Landing) experimental air craft (Aska). In order to evaluate both the performance of the HUD which provides the pilot with landing aid information, and the accuracy and characteristics of the IRU to be used for flight control and measurements, flight tests were conducted on board the B-65 Queen Air research aircraft. The results indicated that the characteristics of the HUD as an approach and landing aid system were good, and also that the IRU was useful as a sensor for flight control and measurements. Furthermore, it was shown that fundamental methods of evaluating the HUD characteristics and the IRU accuracy in actual flight were established for application of the HUD and the IRU to a new aircraft in the future. In addition, possibility of a new technology with landing aid information by means of the HUD was made clear. 21 refs., 48 figs., 14 tabs.

  12. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic

  13. Characterization of a Recoverable Flight Control Computer System

    Science.gov (United States)

    Malekpour, Mahyar; Torres, Wilfredo

    1999-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  14. Multimodel Predictive Control Approach for UAV Formation Flight

    Directory of Open Access Journals (Sweden)

    Chang-jian Ru

    2014-01-01

    Full Text Available Formation flight problem is the most important and interesting problem of multiple UAVs (unmanned aerial vehicles cooperative control. In this paper, a novel approach for UAV formation flight based on multimodel predictive control is designed. Firstly, the state equation of relative motion is obtained and then discretized. By the geometrical method, the characteristic points of state are determined. Afterwards, based on the linearization technique, the standard linear discrete model is obtained at each characteristic state point. Then, weighted model set is proposed using the idea of T-S (Takagi-Sugeno fuzzy control and the predictive control is carried out based on the multimodel method. Finally, to verify the performance of the proposed method, two different simulation scenarios are performed.

  15. Muscle function in avian flight: achieving power and control

    Science.gov (United States)

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  16. The Application of mu Analysis and Synthesis to the Control of an ASTOVL Aircraft

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Breslin, S.G.;

    1995-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  17. Propulsion and control propellers with thruster nozzles primarily for aircraft applications

    Science.gov (United States)

    Pabst, W.

    1986-01-01

    A propulsion and control propeller with thruster nozzles, primarily for aircraft application is described. Adjustability of rotor blades at the hub and pressurized gas expulsion combined with an air propeller increase power. Both characteristics are combined in one simple device, and, furthermore, incorporate overall aircraft control so that mechanisms which govern lateral and horizontal movement become superfluous.

  18. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    Science.gov (United States)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  19. An experimental and analytical study of the stability of counter-rotating vortex pairs with applications for aircraft wake turbulence control

    Science.gov (United States)

    Babie, Brian Matthew

    Aircraft trailing vortex wakes are commonly referred to as `wake turbulence' and may pose a flight safety hazard to other aircraft that may encounter the wake. This hazard is of critical interest during the take-off and landing stages of flight, where aircraft are in the closest proximity to one another. During these flight stages, it is common for transport aircraft to be in a high-lift, or flaps down, configuration. In an effort to study these wakes a generic four-vortex wake is generated experimentally, such that the results are independent of a specific wing loading condition. Three principle objectives served to focus the research project that is presented in this dissertation. The first two objectives were to develop an improved understanding of the wake configurations that were conducive to large instability growth rates and to subsequently use quantitative methods to identify the instability modes that dominate the far-field wake dynamic. With a clear understanding of the physics of an unstable aircraft wake, the third objective of the research project was to use this newly attained information to recommend methods for a reliable wake control strategy. A compilation of flow visualization results shows a design space of counter-rotating wake configurations, defined by the circulation and span ratios, where rapidly amplifying instabilities are consistently seen to exist. This design space is also seen to encompass rigidly-translating wake systems. A combination of quantitative flow visualization estimates, hot-wire anemometry and an analytical stability analysis was successful in identifying two forms of bending wave instability, namely the long and short-wavelength modes. Having identified two bending instability modes in the experimental wake, it was possible to suggest a strategy by which these modes could be exploited for the control of aircraft wakes.

  20. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Flight Test Report

    Science.gov (United States)

    Ishac, Joseph A.; Iannicca, Dennis C.; Shalkhauser, Kurt A.; Kachmar, Brian A.

    2014-01-01

    NASA Glenn Research Center conducted a series of flight tests for the purpose of evaluating air-to-ground communications links for future unmanned aircraft systems (UAS). The primary objective of the test effort was to evaluate the transition of the aircraft communications from one ground station to the next, and to monitor data flow during the "hand-off" event. To facilitate the testing, ground stations were installed at locations in Cleveland, Ohio and Albany, Ohio that each provides line-of-sight radio communications with an overflying aircraft. This report describes results from the flight tests including flight parameters, received signal strength measurements, data latency times, and performance observations for the air-to-ground channel.