Sample records for aircraft flight control

  1. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment


    Clara Nieto-Wire; Kenneth Sobel


    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  2. Actuation technology for flight control system on civil aircraft


    Xue, L.


    This report addresses the author’s Group Design Project (GDP) and Individual Research Project (IRP). The IRP is discussed primarily herein, presenting the actuation technology for the Flight Control System (FCS) on civil aircraft. Actuation technology is one of the key technologies for next generation More Electric Aircraft (MEA) and All Electric Aircraft (AEA); it is also an important input for the preliminary design of the Flying Crane, the aircraft designed in the author’s G...

  3. A practical scheme for adaptive aircraft flight control systems (United States)

    Athans, M.; Willner, D.


    A flight control system design is presented, that can be implemented by analog hardware, to be used to control an aircraft with uncertain parameters. The design is based upon the use of modern control theory. The ideas are illustrated by considering control of STOL longitudinal dynamics.

  4. Neutron radiography of aircraft composite flight control surfaces

    International Nuclear Information System (INIS)

    A small (20 kWth), safe, pool-type nuclear research reactor called the SLOWPOKE-2 is located at the Royal Military College of Canada (RMC). The reactor was originally installed for teaching, training, research and semi-routine analysis, specifically, neutron activation analysis. It was envisioned that the neutrons from the SLOWPOKE-2 could also be used for neutron radiography, and so a research program was initiated to develop this technology. Over a period of approximately 15 years, and through a series of successive modifications, a neutron radiography system (NRS) was developed. Once completed, several applications of the technology have been demonstrated, including the nondestructive examination of the composite flight control surfaces from the Canadian Air Force's primary jet fighter, the CF18 Hornet aircraft. An initial trial was setup to investigate the flight control surfaces of 3 aircraft, to determine the parameters for a final licensed system, and to compare the results to other nondestructive methods. Over 500 neutron radiographs were made for these first 3 aircraft, and moisture and corrosion were discovered in the honeycomb structure and hydration was found in the composite and adhesive layers. In comparison with other NDT methods, neutron radiography was the only method that could detect the small areas of corrosion and moisture entrapment. However, before examining an additional 7 aircraft, the recommended modifications to the NRS were undertaken. These modifications were necessary to accommodate the larger flight control surfaces safely by incorporating flexible conformable shielding. As well, to expedite inspections so that all flight control surfaces from one aircraft could be completed in less than two weeks, there was a need to decrease the exposure time by both faster film/conversion screen combinations and by incorporating the capability of near realtime, digital radioscopy. Finally, as there are no inspection specific image quality

  5. Knowledge-based processing for aircraft flight control (United States)

    Painter, John H.


    The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

  6. System identification methods for aircraft flight control development and validation (United States)

    Tischler, Mark B.


    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  7. Knowledge-based processing for aircraft flight control (United States)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul


    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  8. NDE of Damage in Aircraft Flight Control Surfaces (United States)

    Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay


    Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown.

  9. Design and Testing of a Flight Control System for Unstable Subscale Aircraft


    Sobron, Alejandro


    The primary objective of this thesis was to study, implement, and test low-cost electronic flight control systems (FCS) in remotely piloted subscale research aircraft with relaxed static longitudinal stability. Even though this implementation was carried out in small, simplified test-bed aircraft, it was designed with the aim of being installed later in more complex demonstrator aircraft such as the Generic Future Fighter concept demonstrator project. The recent boom of the unmanned aircraft ...

  10. Development of a simulation tool for flight dynamics and control investigations of articulated vtol unmanned aircraft


    Saghafi, F.


    A simulation tool for flight dynamics and control investigations of three different Vertical Take Off and Landing (VTOL) unmanned aircraft configurations has been developed. A control concept has been proposed in order to take advantage of the fast response characteristics of the ordinary small engine/propeller propulsion systems in such aircraft, as well as replacing the complex rotors used previously in VTOL concepts for small unmanned aircraft. The simulation model has been ...

  11. Robust Flight Control Design to Minimize Aircraft Loss-of-Control Incidents


    Hess, Ronald


    A pseudo-sliding mode control synthesis procedure discussed previously in the literature is applied to the design of a control system for a nonlinear model of the NASA Langley Generic Transport Model. The complete vehicle model is included as an appendix. The goal of the design effort is the synthesis of a robust control system to minimize aircraft loss-of-control by preserving fundamental pilot input—system response characteristics across the flight envelope, here including the possibility o...

  12. Modern digital flight control system design for VTOL aircraft (United States)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.


    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  13. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions (United States)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.


    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  14. Flying qualities and flight control system design for a fly-by-wire transport aircraft


    Gautrey, Jim


    Fly-by-wire flight control systems are becoming more common in both civil and military aircraft. These systems give many benefits, but also present a new set of problems due to their increased complexity compared to conventional systems and the larger choice of options that they provide. The work presented here considers the application of fly-by-wire to a generic regional transport aircraft. The flying qualities criteria used for typical flying qualities evaluations are described...

  15. Fly-by-light flight control system architectures for tactical military aircraft (United States)

    Corrigan, Jack; Jones, Jack E.; Shaw, Brad


    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution of highly centralized, digital, fly-by-wire flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial, digital, fiber optics communication links. These adaptable architectures allow the user to configure the fly-by-light system to meet unique safety requirements, system performance, and design to cost targets.

  16. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft (United States)

    Franklin, James A.; Engelland, Shawn A.


    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  17. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base (United States)

    Mcruer, Duane T.; Myers, Thomas T.


    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  18. Optimization Based Clearance of Flight Control Laws A Civil Aircraft Application

    CERN Document Server

    Hansson, Anders; Puyou, Guilhem


    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.   The overall objective of the COFCLUO project was to develop and apply optimization techniques to the clearance of flight control laws in order to improve efficiency and reliability. In the book, the new techniques are explained and benchmarked against traditional techniques currently used by the industry. The new techniques build on mathematical criteria derived from the certification and qualification requirements together with suitable models...

  19. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus


    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  20. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.


    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  1. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test (United States)

    Whalen, Edward A.


    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  2. Demonstration results of fly-by-light flight control system architectures for tactical military aircraft (United States)

    Corrigan, Jack; Shaw, Brad; Jones, Jack E.


    Requirements for future advanced tactical aircraft identify the need for flight control system architectures that provide a higher degree of performance with regard to electromagnetic interference immunity, communication bus data rate, propulsion/utility subsystem integration, and affordability. Evolution for highly centralized, digital, fly-by-light flight/propulsion/utility control system is achieved as modular functions are implemented and integrated by serial digital fiberoptic communication links. These adaptable architectures allow the user to configure the fly- by-light system to meet unique safety requirements, system performance, and design-to-cost targets. This paper presents results of the open and closed loop system demonstrations of Fly-By-Light Advanced System Hardware architecture building blocks integrated with SAE AS-1773 communication bus at MDA.

  3. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  4. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program (United States)

    Powers, Sheryll Goecke (Compiler)


    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web ( and as a compact disk.

  5. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.


    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  6. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft (United States)


    The flight test of an active load alleviation/extended span for the L-1011 wide-body transport aircraft, and piloted simulation work leading to use of active stability augmentation with a small tail and aft center of gravity are reported. The extended span showed the expected cruise drag reduction of 3%. The small tail is expected to reduce cruise drag by another 3%, and eventual use of more aft center of gravity with active stability augmentation will provide further fuel savings. The active load alleviation functions included maneuver load control (MLC) and elastic mode suppression (EMS), using symmetric motions of the outboard ailerons to reduce wing bending loads in maneuvers or long-term up- or down-drafts (MLC), and to damp wing bending motions in turbulence (EMS). A gust load alleviation function using the active horizontal tail to provide airplane pitch damping in turbulence was found unnecessary. The piloted simulation tests evaluated criteria for augmentation-on and augmentation-off flying qualities. of a simple pitch control law was verified at neutral static margin. The simulation tasks established the basis for follow-on construction and flight testing of a small tail with active stability augmentation.

  7. Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation (United States)

    Shankar, Praveen

    The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network

  8. The use of an aircraft test stand for VTOL handling qualities studies. [pilot evaluation of flight controllability (United States)

    Pauli, F. A.; Corliss, L. D.; Selan, S. D.; Gerdes, R. M.; Gossett, T. D.


    The VTOL flight tests stand for testing control concepts on the X-14B VSS aircraft in hover, is described. This stand permits realistic and safe piloted evaluation and checkout of various control systems and of parameter variations within each system to determine acceptability to the pilot. Pilots can use it as a practical training tool to practice procedures and flying techniques and become familiar with the aircraft characteristics. Some examples of test experience are given. The test stand allows the X14B to maneuver in hover from centered position + or - 9.7 deg in roll and + or - 9.3 deg in pitch, about + or - 6 deg in yaw, and + or - 15 cm in vertical translation. The unique vertical free flight freedom enables study of liftoffs and landings with power conditions duplicated. The response on the stand agrees well with that measured in free hovering flight, and pilot comments confirm this.

  9. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.


    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  10. Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft


    Stewart, P; Gladwin, D.; Parr, M.; Stewart, J.


    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms o...

  11. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John


    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  12. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller (United States)

    Broderick, Ron


    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  13. Lateral and longitudinal aerodynamic stability and control parameters of the basic vortex flap research aircraft as determined from flight test data (United States)

    Suit, W. T.; Batterson, J. G.


    The aerodynamics of the basic F-106B were determined at selected points in the flight envelope. The test aircraft and flight procedures were presented. Aircraft instrumentation and the data system were discussed. The parameter extraction procedure was presented along with a discussion of the test flight results. The results were used to predict the aircraft motions for maneuvers that were not used to determine the vehicle aerodynamics. The control inputs used to maneuver the aircraft to get data for the determination of the aerodynamic parameters were discussed in the flight test procedures. The results from the current flight tests were compared with the results from wind tunnel test of the basic F-106B.

  14. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems (United States)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.


    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  15. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.


    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  16. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Directory of Open Access Journals (Sweden)

    E. Kretschmer


    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA, a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  17. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests (United States)

    Johnston, J. F.


    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  18. Nonlinear Dynamics of Aircraft Controller Characteristics Outside the Standard Flight Envelope


    Gill, Stephen J; Lowenberg, Mark H.; Neild, Simon A.; CRESPO, Luis; Krauskopf, Bernd; Puyou, Guilhem


    In this paper, the influence of the flight control system over the off nominal behavior of a remotely operated air vehicle is evaluated. Of particular interest is the departure/upset characteristics of the closed-loop system near and beyond stall. The study vehicle is the NASA Generic Transport Model, and both fixed-gain and gain-scheduled versions of a linear quadratic regulator controller with proportional and integral components are evaluated. Bifurcation analysis is used to characterize s...

  19. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops (United States)

    Zipf, Mark E.


    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  20. High altitude aircraft flight tests (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David


    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  1. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques (United States)

    Suit, W. T.; Cannaday, R. L.


    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  2. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control (United States)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.


    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  3. Tips for Travel and Aircraft Flight (United States)

    ... Knowledge and support Tips for Travel and Aircraft Flight Category: FAQ's Tags: Risks Archives Breast Cancer Survivors ... limb carefully) and apply pressure as needed. DURING FLIGHT Keep your seat belt loosely fastened so that ...

  4. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller (United States)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.


    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  5. A real-time digital program for estimating aircraft stability and control parameters from flight test data by using the maximum likelihood method (United States)

    Grove, R. D.; Mayhew, S. C.


    A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.

  6. Propulsion controlled aircraft computer (United States)

    Cogan, Bruce R. (Inventor)


    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  7. Aircraft energy efficiency laminar flow control glove flight conceptual design study (United States)

    Wright, A. S.


    A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

  8. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft Project (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero & Propulsion Control (IRAP) system that achieves...

  9. Schlieren Imaging Of An Aircraft In Flight (United States)

    Weinstein, Leonard M.


    Technique for making schlieren images of airplanes and missiles in supersonic flight devised to help understand physics of compressible aerodynamic flows about complicated aircraft shapes. Technique also used to study far-field sonic booms. Data obtained from schlieren images useful in optimizing designs of prototype aircraft. Technique incorporates elements of focusing schlieren photography, astronomical photography, and streak photography. Using sun or moon as source of light, apparatus forms image revealing gradients of density in air flow.

  10. Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications


    Chuanjing Hou; Lisheng Hu; Yingwei Zhang


    An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.

  11. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (United States)


    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or...

  12. 48 CFR 1852.228-71 - Aircraft flight risks. (United States)


    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract...

  13. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (United States)


    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft....

  14. Flight mechanics of a tailless articulated wing aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S, E-mail: [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)


    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  15. Flight mechanics of a tailless articulated wing aircraft

    International Nuclear Information System (INIS)

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  16. ERAST Program Proteus Aircraft in Flight (United States)


    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  17. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform (United States)

    Engblom, W. A.; Decker, R. K.


    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  18. Advanced transport operating system software upgrade: Flight management/flight controls software description (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.


    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  19. Flight Test of an Intelligent Flight-Control System (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.


    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  20. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research Project (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  1. Intelligent control of agile aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Mohler, R.R.; Zakrzewski, R.R. [Dept. of Electrical and Computer Engineering, Corvallis, OR (United States)


    A brief overview of adaptive and computer-aided flight control is presented as background for the evolution of recent research on nonlinear intelligent control. Here, several nonlinear control algorithms are investigated but emphasis is given to nearly time-optimal, neural-net generated feedback control which is trained on ideal minimum-time, open-loop trajectories. The minimum-time policies are computed by a new version of the switching-line-variational method (gradient algorithm). Critical control constraints and a benchmark for performance as well as a basis for training are obtained for the system design. This further demonstrates the need for an integrated controls and aircraft system design for full utilization of nonlinear control capability. Complex nonlinear simulations show the effectiveness of the derived nonlinear feedback controller for the high-angle-of-attack research vehicle (HARV) with stabilator and thrust-vector control. For example, angle of attack is controlled from near zero to sixty degrees in about two seconds with appropriate trim conditions at both ends. Such control greatly enhances maneuverability and general flight envelope admissibility.

  2. H/OZ: PFD and Collaborative Flight Control System Project (United States)

    National Aeronautics and Space Administration — With aircraft automation increasingly able to control flight autonomously, situational awareness and engagement of the crew can suffer. To improve aviation safety...

  3. Backstepping Designs for Aircraft Control - What is there to Gain?


    Härkegård, Ola


    Aircraft flight control design is traditionally based on linear control theory, due to the existing wealth of tools for linear design and analysis. However, in order to achieve tactical advantages, modern fighter aircraft strive towards performing maneuvers outside the region where the dynamics of flight are linear, and the need for nonlinear tools arises. In this paper, backstepping is proposed as a possible framework for nonlinear flight control design. Its capabilities of handling five maj...

  4. Flight simulation - A vital and expanding technology in aircraft development (United States)

    Reynolds, P. A.; Hall, G. W.


    Flight simulation, both ground and in-flight, is experiencing major technological improvement and growth. The increased capabilities are providing new opportunities for support of the aircraft development process. The development of faster digital computers, improved visual displays, better motion systems and increased interest in simulation fidelity has improved the ground simulator to the point where it accomplishes a major portion of the aircraft development before work on the flight article begins. The efficiency of the ground simulator as a forecaster for the flight testing phase is becoming well established. In-flight simulation is properly being used to bridge the gap between the ground simulator and the flight test article. Simulation provides the vital link between analysis, aerodynamic tests, and subsystem tests and the flight test article. This paper describes the latest advances in flight simulation and its increasing role in the aircraft development process.

  5. Artificial Intelligence for Controlling Robotic Aircraft (United States)

    Krishnakumar, Kalmanje


    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  6. Towards Intelligent Control for Next Generation Aircraft (United States)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane


    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  7. Digital adaptive control laws for VTOL aircraft (United States)

    Hartmann, G. L.; Stein, G.


    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  8. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Liu Fan


    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  9. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Institute of Scientific and Technical Information of China (English)

    Liu Fan; Wang Lixin; Tan Xiangsheng


    In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM) is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric tur-bulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness com-pliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  10. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis


    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  11. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft (United States)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  12. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis (United States)

    Gerren, Donna S.


    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  13. Active Noise Control in Propeller Aircraft


    Johansson, Sven; Claesson, Ingvar


    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  14. 75 FR 52591 - Seventh Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight... (United States)


    ... and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight... RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security...

  15. 76 FR 38741 - Tenth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight... (United States)


    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  16. 75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight... (United States)


    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  17. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)


    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  18. Aircraft Accident Prevention: Loss-of-Control Analysis (United States)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.


    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  19. 14 CFR 135.340 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors... (United States)


    ...-student relationship. (d) The transition ground training for flight instructors must include the approved... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and transition training and... and transition training and checking: Flight instructors (aircraft), flight instructors...

  20. Systems and Methods for Collaboratively Controlling at Least One Aircraft (United States)

    Estkowski, Regina I. (Inventor)


    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  1. Control of a swept wing tailless aircraft through wing morphing (United States)

    Guiler, Richard W.

    Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered insight to achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs must incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, capable of changing the twist of wing and that can also provide pitch, roll and yaw control for a tailless swept wing aircraft is the first step to a series of morphing techniques, which will lead to more fluid, bird-like flight. This research focuses on investigating the design of a morphing wing to improve the flight characteristics of swept wing Horten type tailless aircraft. Free flight demonstrators, wind tunnel flow visualization, wind-tunnel force and moment data along with CFD studies have been used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft. A wing morphing mechanism for the control of a swept wing tailless aircraft has been developed. This new control technique was experimentally and numerically compared to an existing elevon equipped tailless aircraft and has shown the potential for significant improvement in efficiency. The feasibility of this mechanism was also validated through flight testing of a flight weight version. In the process of comparing the Horten type elevon equipped aircraft and the morphing model, formal wind tunnel verification of wingtip induced thrust, found in Horten (Bell Shaped Lift distribution) type swept wing tailless aircraft was documented. A more complete physical understanding of the highly complex flow generated in the control region of the morphing tailless aircraft has been developed. CFD models indicate the possibility of the presence of a Leading Edge Vortex (LEV) on the control section morphing wing when the tip is twisted between +3.5 degrees and +7 degrees. The presence of this LEV causes a reduction of drag while lift is increased. Similar LEVs have been

  2. Neural Networks for Flight Control (United States)

    Jorgensen, Charles C.


    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  3. Longitudinal control laws design for a flying wing aircraft


    Zhu, Yan


    This research is concerned with the flight dynamic, pitch flight control and flying qualities assessment for the reference BWB aircraft. It aims to develop the longitudinal control laws which could satisfy the flying and handing qualities over the whole flight envelope with added consideration of centre of gravity (CG) variation. In order to achieve this goal, both the longitudinal stability augmentation system (SAS) and autopilot control laws are studied in this thesis. Usi...

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System (United States)

    Williams-Hayes, Peggy S.


    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  5. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment (United States)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.


    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  6. Aircraft Configured for Flight in an Atmosphere Having Low Density (United States)

    Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Guynn, Mark D. (Inventor); Hunter, Craig A. (Inventor); Paddock, David A. (Inventor); Riddick, Steven E. (Inventor); Teter, Jr., John E. (Inventor)


    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  7. A Risk Management Architecture for Emergency Integrated Aircraft Control (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.


    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  8. Neural networks for aircraft control (United States)

    Linse, Dennis


    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  9. An adaptive learning control system for aircraft (United States)

    Mekel, R.; Nachmias, S.


    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  10. Control of flight safety with the use of preferences functions


    Goncharenko, Andriy V.; National Aviation University


    On the basis of the “Subjective Entropy Extremization Principle”, for a roughly simplified problem setting, of the flight safety control problem (possibly for two aircrafts, or unmanned air vehicles application expediency versus traditional aircraft), it is proposed a mathematical model for the combined technical-economical criterion of the flight safety control (operational effectiveness). The obtained solutions of the formulated variational problems show optimal controlling influence in the...

  11. Aircraft noise footprint for Bucharest – Sophia flights

    Directory of Open Access Journals (Sweden)

    Luis MELIVEO


    Full Text Available Studies of impact noise have traditionally focused on landing and takeoff procedures in the airports vicinity. Beside these studies, en-route noise is considered an issue when we talk about noise in natural reservation or other populated sensitive areas and when it comes to designing a new aircraft engine. In these cases, the studies are focusing on the impact at ground level of the en route noise produced by aircraft at all the flights stages. This paper presents the results of the measurement performed for an A320 aircraft when flying en-route and the impact map for a flight from Bucharest – Sofia – Bucharest (OTP-SOF-OTP.

  12. Computer-aided design of flight control systems (United States)

    Stengel, Robert F.; Sircar, Subrata


    A computer program is presented for facilitating the development and assessment of flight control systems, and application to a control design is discussed. The program is a computer-aided control-system design program based on direct digital synthesis of a proportional-integral-filter controller with scheduled linear-quadratic-Gaussian gains and command generator tracking of pilot inputs. The FlightCAD system concentrates on aircraft dynamics, flight-control systems, stability and performance, and has practical engineering applications.

  13. A New Wireless Architecture for In-Flight Entertainment Systems Inside Aircraft Cabin


    Akl, Ahmed; Gayraud, Thierry; Berthou, Pascal


    International audience A primary difficulty when investigating communication requirements rises when a very specific field as an aircraft cabin is considered. The diverse needs of passengers are often incompatible to the strict constraints inside the cabin. Nowadays In-Flight Entertainment (IFE) systems, for instance, are widely spread in modern flights. An IFE system usually consists of a Seat Electronic Box, the passengers terminal hardware, plus a Passengers Control Unit, the remote con...

  14. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft (United States)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don


    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  15. GPS Based Autonomous Flight Control System for an Unmanned Airship


    Vishnu G Nair,; Dileep M V


    An unmanned airship, also known as a Unmanned aircraft System (UAS) or a remotely piloted aircraft is a machine which functions either by the remote control of a navigator or pilot. The unmanned airship uses the autonomous flight, navigation and guidance based on the telemetry command of ground station. The Autonomous Flight Control System (AFCS) [1] plays a key role in achieving the given requirements and missions. This paper introduces the overall design architecture of the ...

  16. Intelligent modeling and identification of aircraft nonlinear flight

    Institute of Scientific and Technical Information of China (English)

    Alireza Roudbari; Fariborz Saghafi


    In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks (ANNs). In general, air-craft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks (RNNs) and a proposed structure called hybrid combined recurrent neural network have been used and compared. In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.

  17. Intelligent modeling and identification of aircraft nonlinear flight

    Directory of Open Access Journals (Sweden)

    Alireza Roudbari


    Full Text Available In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks (ANNs. In general, aircraft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks (RNNs and a proposed structure called hybrid combined recurrent neural network have been used and compared. In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.

  18. Aircraft noise footprint for Bucharest – Sophia flights


    Luis MELIVEO; Nico van OOSTEN; Luminita DRAGASANU


    Studies of impact noise have traditionally focused on landing and takeoff procedures in the airports vicinity. Beside these studies, en-route noise is considered an issue when we talk about noise in natural reservation or other populated sensitive areas and when it comes to designing a new aircraft engine. In these cases, the studies are focusing on the impact at ground level of the en route noise produced by aircraft at all the flights stages. This paper presents the results of the measureme...

  19. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft (United States)

    Franklin, J. A.; Innis, R. C.


    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  20. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft (United States)

    Denham, Casey; Owens, D. Bruce


    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  1. Application of nonlinear feedback control theory to supermaneuverable aircraft (United States)

    Garrard, William L.; Enns, Dale F.


    Controlled flight at extremely high angles of attack, far exceeding the stall angle, and/or at high angular rates is sometimes referred to as supermaneuvering flight. The objective was to examine methods for design of control laws for aircraft performing supermaneuvers. Since the equations which govern the motion of aircraft during supermaneuvers are nonlinear, this study concentrated on nonlinear control law design procedures. The two nonlinear techniques considered were Nonlinear Quadratic Regulator (NLQR) theory and nonlinear dynamic inversion. A conventional gain scheduled proportional plus integral (P + I) controller was also developed to serve as a baseline design typical of current control laws used in aircraft. A mathematical model of a generic supermaneuverable aircraft was developed from data obtained from the literature. A detailed computer simulation of the aircraft was also developed. This simulation allowed the flying of proposed supermaneuvers and was used to evaluate the performance of the control law designs and to generate linearized models of the aircraft at different flight conditions.

  2. Studies on the Seizure of Rudder on the Flight Safety of an Aircraft

    Institute of Scientific and Technical Information of China (English)

    GENG Jianzhong; WU Huzi; DUAN Zhuoyi


    The demands of aircraft quality design criterion on main control system failure and subsequently instantaneous response were analyzed.According to the simulation,the flight characteristics of an aircraft were studied in different angle of rudder seizure.It demonstrated that when rudder seizure with high angle and pilot could not take action immediately,the flight parameters would change sharply.The yaw angle increased 50 degrees in 5 minutes,side velocity could attain 40 meters per-second,the angle of attack and sideslip would surpass 30 degrees,roll rate would reach-20 degrees per second,side load would arrive 0.6g.Simultaneity the angle of attack exceeded the limited angle,the aircraft would stall.If control wasn' t working,the disaster would happen.These phenomena supply the sufficient information of the rudder malfunction.The validity of correcting yaw moment by asymmetry thrust was testified,the simulation results showed that even rudder seizure in most serious conditions,adopting asymmetry thrust can correct yaw moment caused by the rudder seizure.The judgment standards of flight safety level for the state of malfunction were given.The safety level was assessed caused by the rudder seizure.For an aircraft with two engines on one side,the pilots need to adjust the 4 engines to balance the asymmetric moment,the work load is increased enormously.According the flight safety standards,the safety level is level Ⅲ.

  3. Effect of wing flexibility on aircraft flight dynamics


    Qiao, Yuqing


    The purpose of this thesis is to give a preliminary investigation into the effect of wing deformation on flight dynamics. The candidate vehicle is FW-11 which is a flying wing configuration aircraft with high altitude and long endurance characteristics. The aeroelastic effect may be significant for this type of configuration. Two cases, the effect of flexible wing on lift distribution and on roll effectiveness during the cruise condition with different inertial parameters are investigated. ...


    Institute of Scientific and Technical Information of China (English)


    This paper proposes a method of using multi-controllers to control supermaneuverable aircraft. A nonlinear dynamic-inversion controller is used for supermaneuver. A gain-scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector-thrust for lower velocity maneuver control. Unlike the variation-structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic-inversion to gain-scheduling, while the other is used for switching from gain-scheduling to dynamic-inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.

  5. GPS Based Autonomous Flight Control System for an Unmanned Airship

    Directory of Open Access Journals (Sweden)

    Vishnu G Nair,


    Full Text Available An unmanned airship, also known as a Unmanned aircraft System (UAS or a remotely piloted aircraft is a machine which functions either by the remote control of a navigator or pilot. The unmanned airship uses the autonomous flight, navigation and guidance based on the telemetry command of ground station. The Autonomous Flight Control System (AFCS [1] plays a key role in achieving the given requirements and missions. This paper introduces the overall design architecture of the hardware and software of the flight control systems in a 50m long unmanned airship

  6. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors... (United States)


    ... instructors (simulator). (a) No program manager may use a person nor may any person serve as a flight... observation of an FAA inspector, a program manager check pilot, or an aircrew designated examiner employed by the program manager. The observation check may be accomplished in part or in full in an aircraft, in...

  7. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu


    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  8. 14 CFR Appendix B to Part 417 - Flight Hazard Area Analysis for Aircraft and Ship Protection (United States)


    ... depending on the time of flight. (7) In addition to failure debris, the analysis must account for nominal... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight Hazard Area Analysis for Aircraft... Appendix B to Part 417—Flight Hazard Area Analysis for Aircraft and Ship Protection B417.1Scope...

  9. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming. (United States)

    Christodoulou, Manolis A; Kontogeorgou, Chrysa


    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming. PMID:18991361

  10. Mapping automotive like controls to a general aviation aircraft (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  11. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  12. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System


    Żurek Józef; Grzesik Norbert; Kurpas Jakub


    The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference). The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the sy...

  13. Development of real-time flight control system for low-cost vehicle


    Du, Yongliang


    In recent years, more and more light aircraft enter our daily life, from Agricultural applications, emergency rescue, flight experiment and training to Barriers to entry, light aircraft always have their own advantages. Thus, they have become more and more popular. However, in the process of GDP research about Flight Control System design for the Flying Crane, the author read a lot of literature about Flight Control System design, then noticed that the research in Flight Con...



    Kondrashov, Ya.V.; Національний авіаційний університет; Arutyunyan, A.K.; Національний авіаційний університет; Kravchyshyn, I.O.; Національний авіаційний університет


    For realization of control of gliding aircraft descend from  the  flight path  to  the defined area of  the space  let’s propose its non autonomous control principle. The method of control is shown, a goal, tasks and command con-trol program are defined.

  15. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.


    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  16. Flight assessment of a large supersonic drone aircraft for research use (United States)

    Eckstrom, C. V.; Peele, E. L.


    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  17. Modeling aircraft emmisions by flight [paper in Portuguese

    Directory of Open Access Journals (Sweden)

    Gabriel de Sá Meira de Araújo


    Full Text Available The following paper intends to develop a translog model of the pollutants emission in Brazilian air transportation according to the flight stages characteristics (flight distance, aircraft type, etc. The model will focus on the segment of passenger transportation in civil aviation and the statistical model of fuel consumption will be based in a historical Brazilian database from 1997 to 2004. The assessment is performed in two stages. In the first, the translog consumption model is defined and estiamted; in the second, the pollutants emission coefficients are calculated through FAA’s (Federal Aviation Administration spreadsheets. The developed model can be easily processed by computers and through the creation of an user interface can produce a brand new pollutants emission calculator.

  18. Flight test validation of a frequency-based system identification method on an F-15 aircraft (United States)

    Schkolnik, Gerard S.; Orme, John S.; Hreha, Mark A.


    A frequency-based performance identification approach was evaluated using flight data from the NASA F-15 Highly Integrated Digital Electronic Control aircraft. The approach used frequency separation to identify the effectiveness of multiple controls simultaneously as an alternative to independent control identification methods. Fourier transformations converted measured control and response data into frequency domain representations. Performance gradients were formed using multiterm frequency matching of control and response frequency domain models. An objective function was generated using these performance gradients. This function was formally optimized to produce a coordinated control trim set. This algorithm was applied to longitudinal acceleration and evaluated using two control effectors: nozzle throat area and inlet first ramp. Three criteria were investigated to validate the approach: simultaneous gradient identification, gradient frequency dependency, and repeatability. This report describes the flight test results. These data demonstrate that the approach can accurately identify performance gradients during simultaneous control excitation independent of excitation frequency.

  19. Feedback Linearized Aircraft Control Using Dynamic Cell Structure (United States)

    Jorgensen, C. C.


    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  20. Best-range flight conditions for cruise-climb flight of a jet aircraft (United States)

    Hale, F. J.


    The Breguet range equation was developed for cruise climb flight of a jet aircraft to include the climb angle and is then maximized with respect to the no wind true airspeed. The expression for the best range airspeed is a function of the specific fuel consumption and minimum drag airspeed and indicates that an operational airspeed equal to the fourth root of three times the minimum-drag airspeed introduces range penalties of the order of one percent.

  1. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility (United States)

    Stewart, James F.; Shuck, Thomas L.


    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  2. F-15 837 IFCS Intelligent Flight Control System Project (United States)

    Bosworth, John T.


    This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.

  3. Onboard intelligent flight control in a particular situation

    Directory of Open Access Journals (Sweden)

    В.М. Казак


    Full Text Available  Now new aviation tactics designing presumes development and application of the onboard intellectual control systems working in extra situation appeared in flight in a real-time mode for aircraft controllability provided. The principle of functioning onboard intellectual control systems based on logic–linguistic models and neural networks are considered in the article. The developed mathematical model of the task formation optimum variant flight in extra conditions is presented.

  4. Video Analysis of the Flight of a Model Aircraft (United States)

    Tarantino, Giovanni; Fazio, Claudio


    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the…

  5. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.


    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c

  6. An application of artificial intelligence theory to reconfigurable flight control (United States)

    Handelman, David A.


    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  7. Merging Autopilot/Flight Control and Navigation-Flight Management Systems

    Directory of Open Access Journals (Sweden)

    Khaleel Qutbodin


    Full Text Available In this abstract the following commercial aircraft 3 avionics systems will be merged together: (1 Autopilot Flight Director System (APFDS, (2 Flight Control System (FCS and (3 Flight Management Systems (FMS. Problem statement: These systems perform functions that are dependant and related to each other, also they consists of similar hardware components. Each of these systems consists of at least one computer, control panel and displays that place on view the selection and aircraft response. They receive several similar sensor inputs, or outputs of one system are fed as input to the other system. By combining the three systems, repeated and related functions are reduced. Since these systems perform related functions, designers and programmers verify that conflict between these systems is not present. Combining the three systems will eliminate such possibility. Also used space, weight, wires and connections are decreased, consequently electrical consumption is reduced. To keep redundancy, the new system can be made of multiple channels. Approach: The new system (called Autopilot Navigation Management System, APNMS is more efficient and resolves the above mention drawbacks. Results: The APFDS system functions (as attitude-hold or heading-hold are merged with the FCS system main function which is controlling flight control surfaces as well as other functions as flight protection, Turn coordination and flight stability augmentation. Also the Flight Management system functions (as flight planning, aircraft flight performance/engine thrust management are merged in the new system. All this is done through combining all 3 systems logic software’s. Conclusion/Recommendations: The new APNMS system can be installed and tested on prototype aircraft in order to verify its benefits and fruits to the aviation industry.

  8. Flight testing of a remotely piloted vehicle for aircraft parameter estimation purposes (United States)

    Seanor, Brad A.


    The contribution of this research effort was to show that a reliable RPV could be built, tested, and successfully used for flight testing and parameter estimation purposes, in an academic setting. This was a fundamental step towards the creation of an automated Unmanned Aerial Vehicle (UAV). This research project was divided into four phases. Phase one involved the construction, development, and initial flight of a Remotely Piloted Vehicle (RPV), the West Virginia University (WVU) Boeing 777 (B777) aircraft. This phase included the creation of an onboard instrumentation system to provide aircraft flight data. The objective of the second phase was to estimate the longitudinal and lateral-directional stability and control derivatives from actual flight data for the B777 model. This involved performing and recording flight test maneuvers used for analysis of the longitudinal and lateral-directional estimates. Flight maneuvers included control surface doublets produced by the elevator, aileron, and rudder controls. A parameter estimation program known as pEst, developed at NASA Dryden Flight Research Center (DFRC), was used to compute the off-line estimates of parameters from collected flight data. This estimation software uses the Maximum Likelihood (ML) method with a Newton-Raphson (NR) minimization algorithm. The mathematical model used a traditional static and dynamic derivative buildup. Phase three focused on comparing a linear model obtained from the phase two ML estimates, with linear models obtained from a (i) Batch Least Squares Technique (BLS) and (ii) a technique from the Matlab system identification toolbox. Historically, aircraft parameter estimation has been performed off-line using recorded flight data from specifically designed maneuvers. In recent years, several on-line parameter identification techniques have been evaluated for real-time on-line applications. Along this research line, a novel contribution of this work was to compare the off

  9. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks (United States)

    Jorgensen, Charles C.


    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  10. Optimal Aircraft Control Upset Recovery With and Without Component Failures (United States)

    Sparks, Dean W.; Moerder, Daniel D.


    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  11. Laminar flow control for transport aircraft applications (United States)

    Wagner, R. D.


    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  12. Haptic-Multimodal Flight Control System Update (United States)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.


    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  13. Pollution from Aircraft Emissions in the North Atlantic Flight Corridor: Overview on the POLINAT Projects


    Schumann, U.; H. Schlager; F. Arnold; J. Ovarlez; Kelder, H.; O. Hov; Hayman, G.; I. S. A. Isaksen; Staehelin, J.; Whitefield, P.D.


    The Pollution From Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT) projects were undertaken to investigate the impact of aircraft engine exhaust emissions on the state of the atmosphere in the North Atlantic flight corridor. Changes in the composition of the lower stratosphere and upper troposphere from aircraft emissions are identified from combined measurements and model analyses. Measurements were performed using the Deutsches Zentrum für Luft- und Raumfahrt Falcon resea...

  14. Robust Decentralized Formation Flight Control

    Directory of Open Access Journals (Sweden)

    Zhao Weihua


    Full Text Available Motivated by the idea of multiplexed model predictive control (MMPC, this paper introduces a new framework for unmanned aerial vehicles (UAVs formation flight and coordination. Formulated using MMPC approach, the whole centralized formation flight system is considered as a linear periodic system with control inputs of each UAV subsystem as its periodic inputs. Divided into decentralized subsystems, the whole formation flight system is guaranteed stable if proper terminal cost and terminal constraints are added to each decentralized MPC formulation of the UAV subsystem. The decentralized robust MPC formulation for each UAV subsystem with bounded input disturbances and model uncertainties is also presented. Furthermore, an obstacle avoidance control scheme for any shape and size of obstacles, including the nonapriorily known ones, is integrated under the unified MPC framework. The results from simulations demonstrate that the proposed framework can successfully achieve robust collision-free formation flights.

  15. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating (United States)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann


    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  16. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Jones, C.R. [Sandia National Labs., Albuquerque, NM (United States). FAA Airworthiness Assurance NDI Validation Center; Mihelic, J.E.; Barnes, J.D. [Coast Guard Aircraft Repair and Supply Center, Elizabeth City, NC (United States)


    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft`s right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in-flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft`s right main wheel fairing. Inspection results and techniques developed to verify the aircraft`s structural integrity are discussed.

  17. Noise control mechanisms of inside aircraft (United States)

    Zverev, A. Ya.


    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  18. Recent advances in active control of aircraft cabin noise (United States)

    Mathur, Gopal; Fuller, Christopher


    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  19. Reconfigurable Flight Control Design for Combat Flying Wing with Multiple Control Surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Lixin


    With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures (lock-in-place (LIP),loss-of-effectiveness (LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.

  20. Fault Tolerant Control Design for the Longitudinal Aircraft Dynamics using Quantitative Feedback Theory


    Ossmann, Daniel


    Flight control laws of modern aircraft are scheduled with respect to flight point parameters. The loss of the air data measurement system implies inevitably the loss of relevant scheduling information. A strategy to design a fault tolerant longitudinal flight control system is proposed which can accommodate the total loss of the angle of attack and the calibrated airspeed measurements. In this scenario the described robust longitudinal control law is employed ensuring a control performance ...

  1. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker (United States)


    for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844

  2. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft (United States)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.


    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  3. Neural Networks Based Aircraft Fault Tolerant Control


    Zhong, Lunlong; Mora-Camino, Félix


    The purpose of this communication is to deal with the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The problem considered deals with the reallocation of redundant actuators to perform the required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear Inverse Control technique is used to generate online nominal moment along the three axis of the aircraft. Then, taking into account all material and structu...

  4. Structural Pain Compensating Flight Control (United States)

    Miller, Chris J.


    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  5. Optimized Reconfigurable Control Design for Aircraft using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Arsalan H. Khan


    Full Text Available In this study, we propose a Genetic Algorithm (GA based modular reconfigurable control scheme for an over-actuated non-linear aircraft model. The reconfiguration of the flight controller is achieved for the case of control surface faults/failures using a separate control distribution algorithm without modifying the base-line control law. The baseline Multi-Input Multi-Output (MIMO Linear Quadratic Regulator (LQR is optimized using GA to produce desired moment commands. Then, a GA based weighted pseudo-inverse method is used for effective distribution of commands between redundant control surfaces. Control surface effectiveness levels are used to redistribute the control commands to healthy actuators when a fault or failure occurs. Simulation results using ADMIRE aircraft model show the satisfactory performance in accommodating different faults, which confirm the efficiency of optimized reconfigurable design strategy.

  6. Aircraft Loss-of-Control Accident Analysis (United States)

    Belcastro, Christine M.; Foster, John V.


    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  7. Flight investigation of various control inputs intended for parameter estimation (United States)

    Shafer, M. F.


    NASA's F-8 digital fly-by-wire aircraft has been subjected to stability and control derivative assessments, leading to the proposal of improved control inputs for more efficient control derivative estimation. This will reduce program costs by reducing flight test and data analysis requirements. Inputs were divided into sinusoidal types and cornered types. Those with corners produced the best set of stability and control derivatives for the unaugmented flight control system mode. Small inputs are noted to have provided worse derivatives than larger ones.

  8. Application of wireless sensor networks to aircraft control and health management systems

    Institute of Scientific and Technical Information of China (English)

    Rama; K.; YEDAVALLI; Rohit; K.; BELAPURKAR


    Use of fly-by-wire technology for aircraft flight controls have resulted in an improved performance and reliability along with achieving reduction in control system weight. Implementation of full authority digital engine control has also resulted in more intelligent, reliable, light-weight aircraft engine control systems. Greater reduction in weight can be achieved by replacing the wire harness with a wireless communication network. The first step towards fly-by-wireless control systems is likely to be the ...

  9. The Proteus aircraft and NASA Dryden's T-34 in flight over Las Cruces, New Mexico. (United States)


    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  10. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft (United States)

    Mohammadi, Jamshid; Olkiewicz, Craig


    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  11. A comparison of flight input techniques for parameter estimation of highly-augmented aircraft


    Gates, Russell J.


    Parameter estimation is an inverse process in which stability derivatives are determined from time history flight data by matching the aircraft mathematical model's computed response with the measured response of the aircraft. Accurate parameter estimation depends mainly on instrumentation and input technique. Input technique is the focus of this thesis in which both classical inputs and optimal inputs were applied under the same flight conditions to the High Angle of Attack Research Vehicle ...

  12. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment


    Alfredo Catalani; Franco Di Paolo; Marzia Migliorelli; Lino Russo; Giovanni Toso; Piero Angeletti


    The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirem...

  13. Anti-aircraft Missiles and Gun Control


    BLOCK, Walter


    Abstract. Gun control is a highly debatable topic both in the popular and scholarly media. But what about anti-aircraft missiles? Should they be banned? On the one hand, there are fewer of them around, so their challenge is more tractable. On the other hand, they can do far more damage than handguns. The present paper is an attempt to wrestle with this challenge.Keywords. Gun control, Second amendment, Libertarianism, Anti-aircraft missiles.JEL. K15.

  14. Aircraft Turbine Engine Control Research at NASA Glenn Research Center (United States)

    Garg, Sanjay


    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  15. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan


    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  16. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).

  17. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  18. A linear input-varying framework for modeling and control of morphing aircraft (United States)

    Grant, Daniel T.


    a method to relate the flight dynamics of morphing aircraft by interpreting a time-varying eigenvector in terms of flight modes. The time-varying eigenvector is actually defined through a decomposition of the state-transition matrix and thus describes an entire response through a morphing trajectory. A variable-sweep aircraft is analyzed to demonstrate the information that is obtained through this method and how the flight dynamics are altered by the time-varying morphing. Also, morphing vehicles have inherently time-varying dynamics due to the alteration of their configurations; consequently, the numerous techniques for analysis and control of time-invariant systems are inappropriate. Therefore, a control scheme is introduced that directly considers a concept of time-varying pole to command morphing. The resulting trajectory minimizing tracking error for either a state response or a pole response.

  19. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS) (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)


    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  20. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  1. Stability and Performance Metrics for Adaptive Flight Control (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens


    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  2. An informal analysis of flight control tasks (United States)

    Andersen, George J.


    Issues important in rotorcraft flight control are discussed. A perceptual description is suggested of what is believed to be the major issues in flight control. When the task is considered of a pilot controlling a helicopter in flight, the task is decomposed in several subtasks. These subtasks include: (1) the control of altitude, (2) the control of speed, (3) the control of heading, (4) the control of orientation, (5) the control of flight over obstacles, and (6) the control of flight to specified positions in the world. The first four subtasks can be considered to be primary control tasks as they are not dependent on any other subtasks. However, the latter two subtasks can be considered hierarchical tasks as they are dependent on other subtasks. For example, the task of flight control over obstacles can be decomposed as a task requiring the control of speed, altitude, and heading. Thus, incorrect control of altitude should result in poor control of flight over an obstacle.

  3. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)



    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  4. The influence of the wind on the flight of the uncontrollable aircrafts

    Directory of Open Access Journals (Sweden)

    Vasiliy Makeyev


    Full Text Available This article represents research of influence of wind on flight of uncontrollable flying devices. It is offered the method of taking into account influence of permanent wind as well as baffling wind on flight of uncontrollable aircrafts stabilized with rotation and empennage

  5. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control (United States)

    Hubbard, Harvey H. (Editor)


    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  6. Flight simulator experiments to determine human reaction to aircraft motion environments (United States)

    Jacobson, I. D.; Rudrapatna, A. N.


    An analysis of human response to aircraft motion is presented using data obtained on the NASA Flight Research Center's Jetstar aircraft. The purpose of these tests was to explore the relationship of vertical and transverse accelerations to human comfort as well as obtain information on the maximum comfortable bank angle for commercial aircraft operations. A preliminary study was also conducted to establish the importance or lack thereof of the low frequency content of aircraft motion due to natural turbulence. An effort has been made to model these data and comparisons with appropriate sources are made.

  7. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure (United States)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon


    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  8. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu


    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  9. Synthesis of Generalized Vertical-Plane Weather Radar Imagery Along Aircraft Flight Paths


    Mahapatra, Pravas R; Makkapati, Vishnu V


    A method for synthesizing weather pictures in vertical planes along aircraft flight paths is presented. The weather data are derived from a number of Doppler radars covering different parts of the flight path. The flight path consists of straight segments with arbitrary offset and orientation with respect to individual radar locations. The intersection of radar scanning cones with the vertical plane segments are described as families of radial lines or hyperbolas depending on whether the flig...

  10. Effects of aircraft noise on flight and ground structures (United States)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.


    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  11. A system look at electromechanical actuation for primary flight control


    Lomonova, E.A.


    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs) is one of the essential steps in the implementation of the ALL Electric Aircraft. There is a great deal of interest in the application of brushless motors (BM) with rare-earth magnet rotors using e...

  12. Optimal control of a low wing-loading STOL aircraft (United States)

    Cunningham, T. B.


    Linear optimal quadratic control theory is applied to a low wing-loading STOL aircraft for ride quality and flight path following. Design criteria include minimum rms response to wind turbulence and desired transient response characteristics. Design techniques include proper choosing of design versus evaluation models, choosing appropriate performance index responses, and use of classical evaluation techniques. Results are obtained through a combination of frequency response shaping and gust observation. Effects of control rate and authority saturation are examined with a new rapid calculation of random input describing functions. Parameter sensitivity is also evaluated using a Liapunov type matrix equation.

  13. Propulsion/flight control integration technology (PROFIT) software system definition (United States)

    Carlin, C. M.; Hastings, W. J.


    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  14. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.


    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  15. In flight image processing on multi-rotor aircraft for autonomous landing (United States)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  16. Flight Approach to Adaptive Control Research (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils


    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  17. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control (United States)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.


    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  18. Design and initial application of the extended aircraft interrogation and display system: Multiprocessing ground support equipment for digital flight systems (United States)

    Glover, Richard D.


    A pipelined, multiprocessor, general-purpose ground support equipment for digital flight systems has been developed and placed in service at the NASA Ames Research Center's Dryden Flight Research Facility. The design is an outgrowth of the earlier aircraft interrogation and display system (AIDS) used in support of several research projects to provide engineering-units display of internal control system parameters during development and qualification testing activities. The new system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS) and is now supporting the X-29A forward-swept-wing aircraft project. This report describes the design and mechanization of XAIDS and shows the steps whereby a typical user may take advantage of its high throughput and flexible features.

  19. An investigation of two-propeller tilt wing V/STOL aircraft flight characteristics


    Neiusma, William J., Jr.


    Approved for public release, distribution is unlimited The results of a two-propeller tilt wing aircraft static stability and performance simulation utilizing a NASA-Ames computer code, Tilt Wing Application General (TWANG), are presented with comparisons to actual test flight data. The Canadair CL-84 tilt wing aircraft was used as a model for the geometric data utilized by the computer simulation. Aerodynamic data for the simulation were obtained from previous NASA Ames research rela...

  20. Digital flight control design for a tandem-rotor helicopter (United States)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.


    Methods and results in the continuing development of a digital flight control system (DFCS) for the CH-47B helicopter are examined. The helicopter is the research vehicle for the NASA VTOL Approach and Landing Technology (VALT) Program. It is equipped with comprehensive equipment for the investigation of navigation, guidance, and control requirements for future VTOL aircraft. Two control modes (attitude-command and velocity-command) are implemented, and each mode provides 'Type 1' response to guidance commands. DFCS design is based upon optimal estimation and control methods, which are found to provide flexible and efficient means for defining practical digital control systems.

  1. Morphing Flight Control Surface for Advanced Flight Performance Project (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  2. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations (United States)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.


    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  3. Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans (United States)

    Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn


    To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.

  4. Some vortical-flow flight experiments on slender aircraft that impacted the advancement of aeronautics (United States)

    Lamar, John E.


    This paper highlights the three aerodynamic pillars of aeronautics; namely, theory/CFD, wind-tunnel experiments and flight tests, and notes that at any given time these three are not necessarily at the same level of maturity. After an initial history of these three pillars, the focus narrows to a brief history of some vortical-flow flight experiments on slender aircraft that have impacted the advancement of aeronautics in recent decades. They include the F-106, Concorde, SR-71, light-weight fighters (F-16, F/A-18), and F-16XL. These aircraft share in common the utilization of vortical flow and have flown at transonic speeds during a part of the flight envelope. Due to the vast amount of information from flight and CFD that has recently become available for the F-16XL, this aircraft is highlighted and its results detailed. Lastly, it is interesting to note that, though complicated, vortical flows over the F-16XL aircraft at subsonic speeds can be reliably and generally well-predicted with the current CFD flow solvers. However, these solvers still have some problems in matching flight pressure data at transonic speeds. That this problem has been highlighted is both an advancement in aeronautics and a tempting prize to those who would seek its solution.

  5. Dichotomic Structure of DAEs Solutions for the Aircraft Control

    Directory of Open Access Journals (Sweden)

    Sorin Ştefan RADNEF


    Full Text Available The paper has its roots in earlier studies focused on DAEs solutions, for the aircraft flight control and intends to be a synthesis of them. The main goal is to structure the solution for the control laws so as to derive its components, which control any significant mechanical phenomenon for the controlled flight. The basic method used becomes from a unified manner of finding the solution of DAEs using a rigorous guideline stated as “necessary and sufficient condition” in an algebraic equation form that is used in an algorithmic procedure and for statement of the equations, which emphasises the dichotomic structure. The viewpoint considers an extended DAE system, including the differential equations of control variables, that allows to formulate this question as an inverse problem and to regard the algebraic equation, for constraints, as a singular implicit solution of the differential subsystem. Stating the necessary and sufficient condition for an implicit equation be a singular implicit solution of the extended differential system, we use it to approach the solution for flight control and for its dichotomic structure with additive components.

  6. Technology for vertical flight. 5. Flight control and autopilot; Helicopter kogaku no kiso to oyo. 5. soju sochi to jidoka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Y.; Yamada, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)


    The paper explained a flight control of helicopter. Fundamental compositional elements of the flight control of helicopter are a pilot operating device, linkage, centering device/trimming gear, and actuator. The related device is an autopilot which is for controllability and reduction of work loads of pilot. In the fixed wing aircraft, the wing generating lift, engine giving thrust, and aileron/rudder/elevator in charge of control are playing each role. However, in helicopter, a rotor plays 3 roles: lift generation, going ahead, and control of fuselage. As to the control method, the control stick and pedal are operated in the fixed wing aircraft, and the cyclic stick and pedal are operated also in helicopter. In addition, another control stick, collective stick, is also operated. In this operation, lift of rotor increases/decreases to control the vertical movement of fuselage. (NEDO)

  7. Flight Test Evaluation of Mission Computer Algorithms for a Modern Trainer Aircraft

    Directory of Open Access Journals (Sweden)

    Gargi Meharu


    Full Text Available A low cost integrated avionics system has been realized on a modern trainer aircraft. Without using an expensive inertial navigation system onboard, acceptable level of accuracy for navigation, guidance, and weapon aiming is achieved by extensive data fusion within mission computer. The flight test evaluation of mission computer is carried out by assessing the overall performance under various navigation and guidance modes. In flight simulation is carried out for weapon aiming modes. The mission computer interfaces with various subsystems and implements the functional requirements for flight management and mission management. The aim of this paper is to discuss the algorithms of a data fusion intensive mission computer and flight test evaluation of these algorithms, for a typical modern trainer aircraft. The challenges and innovations involved in the work are also discussed.Defence Science Journal, 2013, 63(2, pp.164-173, DOI:

  8. Sensors for in-flight lightning detection on passenger aircrafts

    Czech Academy of Sciences Publication Activity Database

    van Deursen, A.P.J.; Stelmashuk, Vitaliy

    Florence: European Space Agency, 2009, s. 6. (ESA). ISBN N. [2009 ESA Workshop on Aerospace EMC. Florence (IT), 30.03.2009-01.04.2009] Institutional research plan: CEZ:AV0Z20430508 Source of funding: R - rámcový projekt EK Keywords : Sensor * ligtning * aircraft Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Flight Test Approach to Adaptive Control Research (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils


    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  10. NOAA Aircraft Operations Center (AOC) Flight Level Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA AOC WP-3D Research Flight Data is digital data set DSI-6420, archived at the National Climatic Data Center (NCDC). This data set is meteorological data...

  11. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration (United States)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.


    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  12. Design techniques for mutlivariable flight control systems (United States)


    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  13. A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight (United States)

    Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)


    As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in

  14. Short-term variation of cosmic radiation measured by aircraft under constant flight conditions (United States)

    Lee, Jaejin; Nam, Uk-Won; Pyo, Jeonghyun; Kim, Sunghwan; Kwon, Yong-Jun; Lee, Jaewon; Park, Inchun; Kim, Myung-Hee Y.; Dachev, Tsventan P.


    The temporal variations in cosmic radiation on aircraft under constant flight conditions were measured by a Liulin detector. Rather than a commercial long-distance aircraft, we used a military reconnaissance aircraft performing a circular flight at a constant altitude over the Korean Peninsula. At 9144 m (30,000 ft), the mean and standard deviation of the radiation dose rate (among 35 measurements) was 2.3 and 0.17 μSv/h, respectively. The experiment yielded two observational results. First, the dose rate changed over a flight time of 5-7 h; second, no strong correlation was revealed between the cosmic rays observed from the ground-based neutron monitor and the radiation doses at aircraft altitude. These observations can provide insight into the short-term variation of cosmic radiation at aviation altitudes. When discarding various negligible factors, it is postulated that the changes in the geomagnetic field and the air density still could affect the variation of cosmic radiation at aircraft altitude. However, various factors are less known about the dependence on the cosmic radiation. Therefore, investigations of possible factors are also warranted at the monitoring points of space weather.

  15. Flight Dynamics and Controls Discipline Overview (United States)

    Theodore, Colin R.


    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  16. Sensors for In-flight Lightning current measurement on aircrafts

    Czech Academy of Sciences Publication Activity Database

    Van Deursen, A.; Stelmashuk, Vitaliy

    Beijing: IEEExplore, 2010, s. 1277-1280. ISBN 978-1-4244-5621-5. [2010 Asia-Pacific Symposium on Electromagnetic Compatibility & Technical Exhibition on EMC RF/Microwave Measurement & Instrumentation. Beijing (CN), 12.04.2010-16.04.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : In-flight Lightning * sensors Subject RIV: JB - Sensors, Measurment, Regulation

  17. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight (United States)

    Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.


    This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.

  18. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  19. Calibration of 5-hole Probe for Flow Angles from Advanced Technologies Testing Aircraft System Flight Data

    Directory of Open Access Journals (Sweden)

    Y. Parameswaran


    Full Text Available This paper describes the investigations carried out to calibrate the 5-hole probe for flow angles from advanced technologies testing aircraft system flight data. The flight tests were carriedout with gear up and at nominal mid-centre of gravity location for two landing flap positions, Of= IN and 14°. Dynamic manoeuvres were executed to excite the short period and Dutch roll mode of the aircraft. In addition, pull up, push down and steady sideslip manoeuvres were also carried out. The data compatibility check on the recorded flight data has been carried out using maximum likelihood output error algorithm to estimate the bias, scale factor, and time delay in the pressure measurements from the 5-hole probe mounted on a noseboom in front of aircraft nose . Through a way of kinematic consistency checking, flight-validated scale factors, biases, and time delays are determined for the differential pressure measurements for both angle of attack and angle of sideslip. Also, the dynamic pressure measurement is found to have time delays. Based on the earlier investigations, it is once again confirmed that the measurements of attitude angles, obtained from the inertial platform, clearly indicate time delays referred to the other signals like linear accelerations and angular rates which are measured with the dedicated flight instrumentation package.The identified time delays in attitude angles agreed well with the inertial platform specifications. The estimates of sensitivity coefficients and scale factors from the flight data analysis correlates reasonably well with the manufacturer Rosemount calibration curves for the tested Mach range 0.23-0.53 . The flight data analysis at Mach number of about 0.59 indicateMach dependency for the angle of attack.

  20. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft (United States)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  1. Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System

    Directory of Open Access Journals (Sweden)

    Bin Chen


    Full Text Available Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulation is executed on the basis of the mathematical model of aircraft deicing fluids rapid heating system, which is built in this paper, according to a number of data collected by experiments which are operated on the experimental platform of deicing fluids rapid heating system. The simulation results show that the single neuron PID control strategy perform effectively on the temperature turbulence problem of aircraft deicing fluids rapid heating system. Experiments are conducted to vertify the single neuron PID control strategy, the results of which show that the single neuron PID control strategy can achieve the request in practical application of the aircraft deicing fluids rapid heating system.

  2. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato


    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  3. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques (United States)

    Taylor, Brian R.; Yoo, Seung Yeun


    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  4. Design of a control configured tanker aircraft (United States)

    Walker, S. A.


    The benefits that accrue from using control configured vehicle (CCV) concepts were examined along with the techniques for applying these concepts to an advanced tanker aircraft design. Reduced static stability (RSS) and flutter mode control (FMC) were the two primary CCV concepts used in the design. The CCV tanker was designed to the same mission requirements specified for a conventional tanker design. A seven degree of freedom mathematical model of the flexible aircraft was derived and used to synthesize a lateral stability augmentation system (SAS), a longitudinal control augmentation system (CAS), and a FMC system. Fatigue life and cost analyses followed the control system synthesis, after which a comparative evaluation of the CCV and conventional tankers was made. This comparison indicated that the CCV weight and cost were lower but that, for this design iteration, the CCV fatigue life was shorter. Also, the CCV crew station acceleration was lower, but the acceleration at the boom operator station was higher relative to the corresponding conventional tanker. Comparison of the design processes used in the CCV and conventional design studies revealed that they were basically the same.

  5. Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight (United States)

    Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.


    Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.

  6. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics (United States)

    Kobayashi, Takahisa; Simon, Donald L.


    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  7. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities (United States)

    Bauer, Jeff


    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  8. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    Directory of Open Access Journals (Sweden)

    Alfredo Catalani


    Full Text Available The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirements in terms of pattern shape, polarization alignment, EIRP, G/T, and using customized electronic devices. At the same time, the proposed solution should be competitive in terms of cost and complexity.

  9. In-Flight Fault Diagnosis for Autonomous Aircraft Via Low-Rate Telemetry Channel

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren


    An in-flight diagnosis system that is able to detect faults on an unmanned aircraft using real-time telemetry data could provide operator assistance to warn about imminent risks due to faults. However, limited bandwidth of the air-ground radio-link makes diagnosis difficult. Loss of information...... about rapid dynamic changes and high parameter uncertainty are the main difficulties. This paper explores time-domain relations in received telemetry signals and uses knowledge of aircraft dynamics and the mechanics behind physical faults to obtain a set of greybox models for diagnosis. Relating...... actuator fin deflections with angular rates of the aircraft, low order models are derived and parameters are estimated using system identification techniques. Change detection methods are applied to the prediction error of angular rate estimates and properties of the test statistics are determined...

  10. Four Tilting Rotor Convertible MAV: Modeling and Real-Time Hover Flight Control


    Flores Colunga, Gerardo Ramon; Escareño, Juan Antonio; Lozano, Rogelio; Salazar, Sergio


    This paper describes the modeling, control and hardware implementation of an experimental tilt-rotor aircraft. This vehicle combines the high-speed cruise capabilities of a conventional airplane with the hovering capabilities of a helicopter by tilting their four rotors. Changing between cruise and hover flight modes in mid-air is referred to transition. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newtonian approach. Two nonlinear control strate...

  11. Evaluation of Management System Effectiveness in the Preparation of the Aircraft for Flight in Faulty Conditions

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta


    Full Text Available Most flight delays in aviation enterprises are related to air traffic management and technical centers. This can happen for various reasons: untimely removal of defects, lack of spare parts, deficiencies in maintenance scheduling, etc. Another reason may be inefficient management in the system of preparing the aircraft for departure. The article suggests a possible option of such an assessment as well as the results obtained from the use of this methodology applied to a specific airline.

  12. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian


    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  13. Control of Next Generation Aircraft and Wind Turbines (United States)

    Frost, Susan


    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  14. Two-Aircraft Dynamic System on Approach. Flight Path and noise Optimization


    Nahayo, F.; Khardi, S.; Haddou, M.


    The aim of this paper is to present and to solve a mathematical model of two-aircraft optimal control problem reducing noise during the approach. This is a non-convex optimal control problem governed by ordinary non-linear differential equations. A Symplectic Partitioned Runge-Kutta discretization and the Pontryaguin maximum principle are used. Discretization scheme provides a sufficiently high order requiring a computation of the partial derivatives of the aircraft dynamic parameters. The no...

  15. A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft

    Institute of Scientific and Technical Information of China (English)


    The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e. in conversion flight are extraordinarily complicated. The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems in the tilting of rotor. The CFD method based on the vortex theory can get better results, but it consumes a lot of computing resources. In this paper, a wake bending dynamic inflow model of tilting rotor was established firstly based on the Peters-He dynamic inflow model used in helicopter. Then combining with the ONERA unsteady aerodynamic model, a wake bending unsteady dynamic inflow model of tilting rotor in conversion flight of tiltrotor aircraft was established. The wake bending unsteady dynamic inflow model of tilting rotor was verified by using the experimental data of an isolated rotor model in large angle pitching up maneuver and was used to calculate the dynamic responses of tilting rotor in conversion flight of a tiltrotor aircraft model. The calculated results were analyzed to be physically reasonable.

  16. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi


    Full Text Available Geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft – a "trailing cone" – in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  17. Trust Control of VTOL Aircraft Part Deux (United States)

    Dugan, Daniel C.


    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  18. Simulating study of the interaction between the propulsion and flight control systems of a subsonic lift fan VTOL (United States)

    Tinling, B. E.; Cole, G. L.


    The possibility of interactions between the propulsion and flight control systems of a three-fan subsonic VTOL aircraft was studied using nonreal time simulation. Time histories of critical internal engine parameters were obtained and possible deleterious effects of engine dynamics on flight control were identified and analyzed. No deleterious effects, with the exception of the effects of the fan actuator deadband, were found. A method of alleviating these effects through feedback of the actuator output to the flight controller was developed.

  19. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 25.865 Section 25.865 Aeronautics and Space FEDERAL AVIATION... other flight structure. Essential flight controls, engine mounts, and other flight structures located...

  20. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team (United States)

    Kelly, Michael J.


    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  1. Distributed Flight Controls for UAVs Project (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  2. Distributed Flight Controls for UAVs Project (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for prototype development, both of which incorporate shape memory alloy (SMA) wires as...

  3. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi


    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  4. On-board fault diagnostics for fly-by-light flight control systems using neural network flight processors (United States)

    Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve


    Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.

  5. Fracture control procedures for aircraft structural integrity (United States)

    Wood, H. A.


    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  6. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California (United States)


    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  7. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics (United States)

    Kobayashi, Takahisa; Simon, Donald L.


    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.


    Directory of Open Access Journals (Sweden)

    Jan Ploeger


    Full Text Available Legislation enabling effect to be given to the International Convention for regulating air navigation, and to make provision for the control, guidance and encouragement of flying within the Union of South Africa and for other purposes incidental thereto, for all purposes known as the Union Aviation Act [No. 16 of 1923], was passed on the 23rd of May 1923 to allow effect to be given to the International Air Navigation Convention of 1919, and to make the provisions referred to above.

  9. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft (United States)

    Bolonkin, Alexander; Gilyard, Glenn B.


    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  10. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability (United States)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.


    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  11. ENFICA-FC: Design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen


    Cestino, Enrico; Borello, Fabio; Romeo, Giulio


    Fuel cells could become the main power source for small general aviation aircraft or could replace APU and internal sub-systems on larger aircraft, to obtain all-electric or more-electric air vehicles. There are several potential advantages of using such a power source, that range from environmental and economic issues to performance and operability aspects. A preliminary design is reported. Also, the paper contains a description of testing activities related to experimental flights of an all...

  12. In-flight dose estimates for military aircraft crew on transport missions

    International Nuclear Information System (INIS)

    Full text: Aircraft fighter pilots may experience risks other than the cosmic radiation exposure due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether the pregnant female pilot could be part of the aircrew. In this work the cosmic radiation dose received in several transport missions was estimated. Typical transport missions carried out in one month by a single air squad were considered. The flights departured from Lisbon to areas such as the Azores, to several countries in central and southern Africa, to the western coast of the USA and to the Balkans and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircrew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic ray dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7th, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this work an estimate of the cosmic radiation dose received by military aircraft crew on realistic typical transport missions is made. (author)

  13. Modelling and simulation of flexible aircraft : handling qualities with active load control


    Andrews, Stuart P.


    The study of the motion of manoeuvring aircraft has traditionally considered the aircraft to be rigid. This simplifying assumption has been shown to give quite accurate results for the flight dynamics of many aircraft types. As modern transport aircraft have developed however, there has been a marked increase in the size and weight of these aircraft. This trend is likely to continue with the development of future blended-wing-body and supersonic transport aircraft. This increas...

  14. ERAST Program Proteus Aircraft in Flight over the Tehachapi Mountains in Southern California (United States)


    The unique shape of the Proteus high-altitude aircraft is clearly visible in this photo of the plane in flight above the rocky slopes of the Tehachapi Mountains near Mojave, California, where the Proteus was designed and built. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the

  15. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft (United States)

    McDonough, Kevin K.

    these sets for aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these sets can be larger in size compared to the more commonly used safe sets. An approach to constrained maneuver planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. To facilitate the application of this maneuver planning approach in aircraft loss of control (LOC) situations when the model is only identified at the current trim condition but when these sets need to be predicted at other flight conditions, the dependence trends of the safe and recoverable sets on aircraft flight conditions are characterized. The scaling procedure to estimate subsets of safe and recoverable sets at one trim condition based on their knowledge at another trim condition is defined. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes on aircraft flight dynamics models and gas turbine engine dynamic models.

  16. Robust Control of an Ill-Conditioned Aircraft

    DEFF Research Database (Denmark)

    Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.;


    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  17. Flight Crew Sleep in Long-Haul Aircraft Bunk Facilities: Survey Results (United States)

    Rosekind, Mark R.; Miller, Donna L.; Gregory, Kevin B.; Dinges, David F.; Shafto, Michael G. (Technical Monitor)


    Modem long-haul aircraft can fly up to 16 continuous hours and provide a 24-hour, global capability. Extra (augmented) flight crew are available on long flights to allow planned rest periods, on a rotating basis, away from the flight deck in onboard crew rest facilities (2 bunks). A NASA/FAA study is under-way to examine the quantity and quality of sleep obtained in long-haul aircraft bunks and the factors that promote or interfere with that sleep. The first phase of the study involved a retrospective survey, followed by a second phase field study to collect standard polysomnographic data during inflight bunk sleep periods. A summary of the Phase I survey results are reported here. A multi-part 54-question retrospective survey was completed by 1,404 flight crew (37% return rate) at three different major US air carriers flying B747-100, 200, 400, and MD- 11 long-haul aircraft. The questions examined demographics, quantity and quality of sleep at home and in onboard bunks, factors that promote or interfere with sleep, and effects on subsequent performance and alertness. Flight crew reported a mean bunk sleep latency of 39.4 mins (SD=28.3 mins) (n=1,276) and a mean total sleep time of 2.2 hrs (SD=1.3 hrs) (n=603). (Different flight lengths could affect overall time available for sleep.) Crew rated 25 factors for their interference or promotion of bunk sleep. Figure I portrays the average ratings for each factor across all three carriers. A principal components analysis of the 25 factors revealed three areas that promoted bunk sleep: physiological (e.g., readiness for sleep), physical environment (e.g., bunk size, privacy), and personal comfort (e.g., blankets, pillows). Five areas were identified that interfered with sleep: environmental disturbance (e.g., background noise, turbulence), luminosity (e.g., lighting), personal disturbances (e.g., bathroom trips, random thoughts), environmental discomfort (e.g., low humidity, cold), and interpersonal disturbances (e

  18. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection (United States)

    Kizer, J. A.


    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  19. Aircraft fault tolerant control based on active set method


    Zhong, Lunlong; Mora-Camino, Félix


    This communication considers the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform a guidance manoeuver. The problem considered deals with the reassignment of the remaining actuators to continue to perform the maneuver while maintaining the structural integrity of the aircraft. A nonlinear inverse control technique is used to generate online nominal moments along the three main axes of the aircraft. Then, taking into account all material and structura...

  20. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements (United States)

    Henriksen, Steve


    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  1. 基于改进的多目标进化算法的飞行控制系统优化%Optimization of aircraft flight control system based on improved multi-objective evolutionary algorithm

    Institute of Scientific and Technical Information of China (English)

    聂瑞; 章卫国; 李广文; 刘小雄


    In the traditional optimization of tuning the flight control system (FCS) parameters, it is difficult to use the single object to optimal the many objects in the same time. To solve such problem, an improved NSGA- Ⅱ algorithm was proposed based on the multi-objective evolutionary optimization algorithm. In the improved NSGA- Ⅱ algorithm, presented a new elitism reserve strategy to enhance the convergence speed. Moreover, adopted a modified adaptive simulated binary crossover ( ASBX) operator to increase the computational efficiency of the algorithm. And utilized the mutating operator based on the chaos sequence to avoid the chromosomes being trapped into local convergence, which could improve the precision in the searching process. Finally, applied the improved algorithm in the designing of the flight control system. The simulation result shows that the algorithm of this paper adopted can tone the parameters of the FCS rapidly.%针对在传统飞行控制系统控制器参数整定问题中单目标优化不能同时满足多个控制指标要求的缺点,提出了一种基于改进的NSGA-Ⅱ算法的多目标进化算法.在改进的NSGA-Ⅱ算法中,提出了改进的精英保留策略增强算法收敛性;同时,使用改进的自适应模拟二进制(ASBX)算子提高算法效率,提出了使用改进的基于混沌序列的变异算子避免算法陷入局部最优解,以提高算法搜索精度.将改进的算法应用于飞机飞行控制系统设计中.仿真结果表明,该进化算法能够快速有效地进行飞行控制系统参数整定.

  2. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure. (United States)


    ... mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight structure located in designated fire zones, or in adjacent areas that would be subjected to the effects...

  3. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d (United States)


    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  4. Aircraft Flight Envelope Identification through On-Board Model Based Estimation Project (United States)

    National Aeronautics and Space Administration — To improve aviation safety with anticipated growth in capacity, it is necessary to develop flight control technologies that enable safe operations as anomalous...

  5. Direct tactile manipulation of the flight plan in a modern aircraft cockpit

    DEFF Research Database (Denmark)

    Alapetite, Alexandre; Fogh, Rune; Zammit-Mangion, David;


    An original experimental approach has been chosen, with an incremental progression from a traditional physical cockpit, to a tactile flight simulator reproducing traditional controls, to a prototype navigation display with direct tactile functionality, first located in the traditional low position...

  6. Flight penetration of wind shear: Control strategies (United States)

    Joshi, Amit S.


    Wind shear is a dangerous condition where there is a sharp change in the direction and magnitude of the wind velocity over a short distance or time. This condition is especially dangerous to aircraft during landing and takeoff and can cause a sudden loss of lift and thereby height at a critical time. A numerical simulation showed the effective performance of the Linear Quadratic Regulator and the Nonlinear Inverse Dynamics controllers. The major conclusions are listed and discussed.

  7. Adaptive and Resilient Flight Control System for a Small Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Gonzalo Garcia


    Full Text Available The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

  8. The longitudinal controls fixed static stability of tailless aircraft


    de Castro, Helena V.


    This paper describes the development of a simple theory of the longitudinal controls fixed static stability of tailless aeroplanes. The classical theory, as developed for the conventional aircraft, is modified to accommodate the particular features of the tailless aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil transport aircraft, BWB-98.

  9. Multi-input multi-output system control for experimental aircraft (United States)

    Schmidt, David K.


    Results from the synthesis of control laws for an advanced short takeoff aircraft in a low-speed approach flight condition are given. Two of four candidate synthesis techniques are reported: direct eigenspace assignment and explicit model following via a linear quadratic regulator (LQR) formulation. A fundamental objective of this work is to obtain low-order feedback compensators, synthesized via the above techniques, and the judicious use of state estimation, thus allowing the use of a reasonable number of sensors for feedback.

  10. [Flight and altitude medicine for anesthetists-part 3: emergencies on board commercial aircraft]. (United States)

    Graf, Jürgen; Stüben, Uwe; Pump, Stefan


    The demographic trend of industrialized societies is also reflected in commercial airlines' passengers: passengers are older nowadays and long-haul flights are routine mode of transport despite considerable chronic and acute medical conditions. Moreover, duration of non-stop flight routes and the number of passengers on board increase. Thus, the probability of a medical incident during a particular flight event increases, too.Due to international regulations minimum standards for medical equipment on board, and first aid training of the crews are set. However, it is often difficult to assess whether a stopover at a nearby airport can improve the medical care of a critically ill passenger. Besides flight operations and technical aspects, the medical infrastructure on the ground has to be considered carefully.Regardless of the amount of experience of a physician medical emergencies on board an aircraft usually represent a particular challenge. This is mainly due to the unfamiliar surroundings, the characteristics of the cabin atmosphere, the often existing cultural and language barriers and legal liability concerns. PMID:23633251

  11. Modal control theory and application to aircraft lateral handling qualities design (United States)

    Srinathkumar, S.


    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  12. Control information in visual flight (United States)

    Naish, J. M.


    The purpose of the inquiry is to determine how precisely a pilot can estimate the movements of his vehicle, and thus exercise control, during an unaided visual approach. The method is to relate changes in the forward view, due to movements along and across the approach path, to human visual thresholds and errors. The scope is restricted to effects of inclination, expansion, size, and rotation in runway features during approaches at small angles of elevation. Quantitative relations are given which provide a basis for ranking the several information mechanisms. Alignment by inclination of a ground line is found to be an accurate lateral mechanism, probably superior to the expansion mechanism. Vertical control mechanisms are complex, of questionable accuracy, and difficult to rank. The results throw some doubt on the usefulness of a runway symbol as a source of displayed information.

  13. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04. (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  14. Management of redundancy in flight control systems using optimal decision theory (United States)


    The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.

  15. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used...

  16. Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments (United States)

    Dixon, Cory

    This dissertation presents a decentralized gradient-based mobility control algorithm for the formation and maintenance of an optimal end-to-end communication chain using a team of unmanned aircraft acting as communication relays. With the use of unmanned aircraft (UA) as communication relays, a common mode of operation is to form a communication relay chain between a lead exploring node (which may be ground based or another UA) and a control station. In this type of operation the lead node is typically deployed to explore (sense) a remote region of interest that is beyond direct radio frequency (RF) communication range, or out of line-of-sight, to the control station. To provide non-line-of-sight service, and extend the communication range of the lead node, unmanned aircraft acting as communication relays are deployed in a convoy fashion behind the lead vehicle to form a cascaded relay chain. The focus of this work is the use of the mobility of a fixed number of relay aircraft to maximize the capacity of a directed communication chain from a source node to a destination node. Local objective functions are presented that use the signal-to-noise-and-interference ratio (SNIR) of neighbor communication links as inputs to maximize the end-to-end capacity of packet-based and repeater-type network chains. An adaptive gradient-based SNIR controller using the local objective function can show significant improvement in the capacity of the communication chain that is not possible with range-based controllers, or static deployment strategies, in RF environments containing unknown localized noise sources and terrain effects. Since the SNIR field is unknown, an online estimate of the SNIR field gradient is formed using methods of Stochastic Approximation from the orbital motion of the aircraft tracking a control point. Flight demonstrations using the Networked Unmanned Aircraft System Command, Control and Communications testbed were conducted to validate the controller

  17. Digital Fly-By-Wire Flight Control Validation Experience (United States)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.


    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  18. Milestones in the research of risks to aircraft crew due to cosmic radiation in flight altitudes

    International Nuclear Information System (INIS)

    Full text: More than a solar cycle ago the International Commission on Radiological Protection recommended in the publication ICRP60 to consider the radiation exposure to aircraft crew caused by cosmic radiation at flight altitudes. The European Council Directive 96/29/EURATOM of 13 May 1996 provided the legal basis for the radiation dose assessment for Europe. Several international aviation organizations have taken into account these considerations, and formulated recommendations for their members. The paper describes the milestones in health physics research which provide the scientific basis. Long term measurements on board aircraft have been undertaken by several institutes. The characterization of different dosimeter for the operation in mixed radiation field was a challenging undertaking. Intercomparison campaigns were made during instrument calibration and in-flight measurements. The Tissue Equivalent Proportional Counter (TEPC) has been developed to an appropriate, mobile radiation reference instrument for on board measurements. Recently long term measurements during a solar storm provided experimental results of the radiation dose caused by solar particle events. LET spectra of the mixed radiation field in the atmosphere gathered by TEPC have been analyzed and simulated by the high energy transport code FLUKA. To provide efficient dose assessment under low costs, software codes for the calculation of the radiation dose to aircraft crew have been developed and were evaluated by measurements. Epidemiology studies have been undertaken to study the risk caused by cosmic radiation. Those studies have been compared with the radiation exposure to medical occupational workers. The paper summarizes the main results of the research and gives appropriate references. Further it provides an outline of future analysis in simulation and measurements of the radiation exposure due to solar particle events. (author)

  19. Integrated Control with Structural Feedback to Enable Lightweight Aircraft (United States)

    Taylor, Brian R.


    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  20. Implementation of an Adaptive Controller System from Concept to Flight Test (United States)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve


    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  1. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft (United States)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei


    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  2. Flight test investigation of certification issues pertaining to general-aviation-type aircraft with natural laminar flow (United States)

    Doty, Wayne A.


    Development of Natural Laminar Flow (NLF) technology for application to general aviation-type aircraft has raised some question as to the adequacy of FAR Part 23 for certification of aircraft with significant NLF. A series of flight tests were conducted with a modified Cessna T210R to allow quantitative comparison of the aircraft's ability to meet certification requirements with significant NLF and with boundary layer transition fixed near the leading edge. There were no significant differences between the two conditions except an increasing in drag, which resulted in longer takeoff distances and reduced climb performance.

  3. Cost Estimation and Control for Flight Systems (United States)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)


    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  4. Aircraft cybernetics (United States)


    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  5. Rule-based fault-tolerant flight control (United States)

    Handelman, Dave


    Fault tolerance has always been a desirable characteristic of aircraft. The ability to withstand unexpected changes in aircraft configuration has a direct impact on the ability to complete a mission effectively and safely. The possible synergistic effects of combining techniques of modern control theory, statistical hypothesis testing, and artificial intelligence in the attempt to provide failure accommodation for aircraft are investigated. This effort has resulted in the definition of a theory for rule based control and a system for development of such a rule based controller. Although presented here in response to the goal of aircraft fault tolerance, the rule based control technique is applicable to a wide range of complex control problems.

  6. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context (United States)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian


    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  7. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report (United States)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.


    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  8. Application of modern control design methodology to oblique wing research aircraft (United States)

    Vincent, James H.


    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  9. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test... (United States)


    ... Procedures for Aircraft;'' Final Rule, 38 FR 19088, July 17, 1973. \\12\\ U.S. EPA, ``Control of Air Pollution from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR 25356... Engines; Emission Standards and Test Procedures;'' Final Rule, 70 FR 2521, November 17, 2005. E....

  10. Development of a flight data acquisition system for small unmanned aircraft (United States)

    Hood, Scott

    Current developments surrounding the use of unmanned aerial vehicles have produced a need for a high quality data acquisition platform developed specifically a research environment. This work was undertaken to produce such a system that is low cost, extensible, and better supports fixed wing research through the inclusion of a custom vane based air data probe capable of measuring airspeed, angle of attack, and angle of sideslip. This was accomplished by starting with the open source Pixhawk system as the core and then modifying the device firmware and adding sensors to suit the needs of current aerospace research at OSU. An overview of each component of the system is presented, as well as a description of various firmware modifications to the stock Pixhawk system. Tests were then performed on all of the major sensors using bench testing, wind tunnel analysis, and flight maneuvers to determine the final performance of each part of the system. This research shows that all of the critical sensors on the data acquisition platform produce data acceptable for flight research. The accelerometer has been shown to have an overall tolerance of +/-0.0545 m/s², with +/-0.223 deg/s for the gyroscopic sensor, +/-1.32 hPa for the barometric sensor, +/-0.318 m/s for the airspeed sensor, +/-1.65 °C for the outside air temperature sensor, and +/-0.00115 V for the analog to digital converter. The stock calibration curve for the airspeed sensor was determined to be correct to within +/-0.5 in H2O through wind tunnel testing, and an experimental step input analysis on the flow direction vanes showed that worst case steady state error and time to damp are acceptable for the system. Power spectral density and spectral coherence analysis of flight data was used to show that the custom air data probe is capable of following the flight dynamics of a given aircraft to within a 10 percent tolerance across a range of frequencies. Finally, general performance of the system was proven using

  11. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem (United States)

    Troudet, T.; Garg, S.; Merrill, W.


    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  12. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC (United States)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr


    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  13. Aircraft energy efficiency laminar flow control wing design study (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.


    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  14. UAV using the open-source flight-control-system in the application of aerial survey (United States)

    Huang, Ji-chen; Ru, Chen


    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  15. Unfalsified Control; Application to automatic flight control system design

    Directory of Open Access Journals (Sweden)

    Adrian-Mihail STOICA


    Full Text Available Unfalsified Control Theory has been developed to provide a way for avoiding modeling uncertainties in controller design. It belongs to the class of control methods called Adaptive Supervisory Switching Control, which work by introducing in the control scheme a supervisory unit which chooses, from a set of candidate controllers the one most suited for the current plant. Unfalsified Control works by using a switching logic that dispenses with the need for a-priori knowledge of the dynamic model. At discrete moments of time, using the input/output data recorded up to that point, the supervisory calculates for each candidate controller a performance index, and compares it to a given threshold. Controllers surpassing that threshold are removed from the candidate controller set. This process is called falsification. If the controller in the loop is one such falsified controller it is replaced. In this paper we investigate the suitability of this method for aeronautical control applications. We review the theory behind this control scheme and adapt it to the case of controlling a fighter aircraft. We also provide a case study, where we test this control scheme on a simulated fighter aircraft.

  16. Research on Flight Test Planning and Management for Civil Aircraft%民用飞机试飞规划与管理技术研究

    Institute of Scientific and Technical Information of China (English)

    袁冲; 修忠信; 田海玲; Ding Zhongtao


    梳理了通用的民机试飞需求类型,讨论了民机试飞任务分工和试飞计划制订原则,分析了民机试飞科目特点和逻辑关系,研究并提出了一种民机试飞任务优化方法,系统地阐述了试飞规划与管理体系,实现了民机试飞的闭环控制,解决了国内试飞规划中未能系统研究的问题,并创建了一套具有国际先进水平的民机试飞规划与管理系统( Flight Test Control System,简称“FTCS冶)。 FTCS已在实际型号试飞工作中得到了验证和应用,起到了减少试飞架次和提高试飞效率的作用,具有实际的工程应用意义。%The article introduces the requirement types of general flight test for civil aircraft. The principles about flight test division and planning is discussed. The characteristics and logical relationship of flight test subjects are analyzed. A optimization method about flight test is researched and presented. The flight test planning and manage-ment system is systematically elaborated. A closed-loop control flight test is achieved. The problem of flight plan-ning is solved , which has not been researched in China. A set of civil aircraft flight test planning and management system ( FTPM) which has the international advanced level is created. The FTPM has been validated and applied in practical flight test, which plays a role of reducing flight test sortie and improving the efficiency. The results show it has a practical significance in engineering application.

  17. Control Design for a Generic Commercial Aircraft Engine (United States)

    Csank, Jeffrey; May, Ryan D.


    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  18. Flight control system design for autonomous UAV carrier landing


    Fitzgerald, Pio


    The challenge of integrating the UAV fleet into the carrier landing operational structure with respect to navigation and control strategies is addressed. A simulation model was developed which includes an aircraft model, an atmosphere model and an aircraft carrier motion model. The six degree of freedom non-linear aircraft model is based on the aerodynamic characteristics of the Mk 4a Jindivik extended to include rudder, spoiler and thrust vectoring controls, and an undercarria...

  19. Active flow control systems architectures for civil transport aircraft


    Jabbal, M; Liddle, SC; Crowther, WJ


    Copyright @ 2010 American Institute of Aeronautics and Astronautics This paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study applicatio...

  20. Aircraft Turbine Engine Control Research at NASA Glenn Research Center (United States)

    Garg, Sanjay


    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  1. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions

    International Nuclear Information System (INIS)

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Inst. of Radiation Protection (Neuherberg (Germany)). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Inst., Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. (authors)

  2. How to fly an aircraft with control theory and splines (United States)

    Karlsson, Anders


    When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.

  3. Aircraft emissions and air quality of the tropopause region - a model study of the North Atlantic flight corridor

    International Nuclear Information System (INIS)

    Aircraft emissions can affect the tropopause region through their impact on chemical and radiative processes. They may thus play a peculiar role for anthropogenically induced modifications of the Earth's climate. The effect of subsonic aircraft emission on the chemical system of the tropopause region is investigated using a special version of the European Air Pollution Dispersion Model (EURAD). Simulations have been carried out for the North Atlantic flight corridor. The role of the composition of the background atmosphere is analysed in particular. The results show a clear dependence of ozone changes as induced by aircraft exhaust on background aerosols. Furthermore, it is argued that mesoscale dynamics, i.e. tropopause foldings, cut-offs lows and streamers causing variations of the background composition at cruise altitudes, may modify the efficiency of ozone formation through aircraft emissions. (Author)

  4. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.


    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  5. Use of ILTV Control Laws for LaNCETS Flight Research (United States)

    Moua, Cheng


    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable

  6. Development of techniques for the neutron radiography of CF188 flight control surfaces (United States)

    Bennett, L. G. I.; Bickerton, M. L.; Lewis, W. J.


    A neutron radiography facility previously installed on the SLOWPOKE-2 research reactor at the Royal Military College of Canada has been used to gain experience with the inspection of flight control surfaces from the CF188 fighter aircraft. Through operating the facility in a temporary manner in terms of handling and shielding for this application, over 500 radiographs were made for more than three aircraft. Moisture and corrosion were discovered in the honeycomb structure and hydration was found in the composite and adhesive layers. The experience also indicated a need to characterize the neutron beam, to decrease the exposure time by finding a faster film and conversion screen combination, and to develop a gauge to evaluate the moisture trapped in the honeycomb cells of flight control surfaces.

  7. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands (United States)

    Irick, S. C. (Inventor)


    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  8. Satellite system performance assessment for in-flight entertainment and air traffic control


    Radzik, José; Pirovano, Alain; Tao, Na; Bousquet, Michel


    International audience Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. Howev...

  9. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation (United States)

    Glende, W. L. B.


    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  10. On-Line Optimization for Fault Tolerant Flight Control


    Zhong, Lunlong; Mora-Camino, Félix


    In this communication the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform some guidance maneuver is considered. This problem is dealt with the reassignment of remaining operational actuators in order to perform the required maneuver while maintaining the structural integrity of the aircraft. Nonlinear Inverse Control technique is used to generate online nominal moments along the three axes of the aircraft. Taking into account all material and struct...

  11. Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model

    Institute of Scientific and Technical Information of China (English)

    Yue Ting; Wang Lixin; Ai Junqiang


    This article investigates gain self-scheduled H∞ robust control system design for a tailless folding-wing morphing aircraft in the wing shape varying process.During the wing morphing phase,the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments.Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach,and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained.A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process.The proposed controller uses a set of inner-loop gains to provide stability using classical techniques,whereas a gain self-scheduled H∞ outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics.The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process,and they converge rapidly after the process ends.This proves that the gain self-scheduled H∞ robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process.Finally,the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.

  12. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft (United States)

    Ouellette, Jeffrey


    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  13. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part 1. Mathematical models (United States)

    Latypov, A. F.


    Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.

  14. The Longitudinal Stability, Control Effectiveness, and Control Hinge Moment Characteristics Obtained from a Flight Investigation of a Canard Missile Configuration at Transonic and Supersonic Speeds (United States)

    Niewald, Roy J; Moul, Martin T


    A 60 degree delta wing canard missile configuration was flight-tested at the Langley pilotless aircraft research station at Wallops Island, Va. The results include the longitudinal stability derivatives, control effectiveness, drag characteristics, and control-surface hinge-moment characteristics for a Mach number range of 0.7 to 1.45.

  15. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985 (United States)

    Few, David D.


    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  16. Optimal and suboptimal control technique for aircraft spin recovery (United States)

    Young, J. W.


    An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.

  17. Fault Tolerant Architecture For A Fly-By-Light Flight Control Computer (United States)

    Thompson, Kevin; Stipanovich, John; Smith, Brian; Reddy, Mahesh C.


    The next generation of flight control computers will utilize fiber optic technology to produce a fly-by-light flight control system. Optical transducers and optical fibers will take the place of electrical position transducers and wires, torsion bars, bell cranks, and cables. Applications for this fly-by-light technology include space launch vehicles, upperstages, space-craft, and commercial/military aircraft. Optical fibers are lighter than mechanical transmission media and unlike conven-tional wire transmissions are not susceptible to electromagnetic interference (EMI) and high energy emission sources. This paper will give an overview of a fault tolerant In-Line Monitored optical flight control system being developed at Boeing Aerospace & Electronics in Seattle, Washington. This system uses passive transducers with fiber optic interconnections which hold promises to virtually eliminate EMI threats to flight control system performance and flight safety and also provide significant weight savings. The main emphasis of this paper will be the In-Line Monitored architecture of the optical transducer system required for use in a fault tolerant flight control system.

  18. Aircraft (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.


    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  19. Imaging Ultrasonic Sensor System SWISS completed 60.000 simulated flight hours to check structural integrity of aircraft subcomponent (United States)

    Kress, Klaus-Peter; Baderschneider, Hans J.; Guse, Guenther


    Many military platforms such as fighter aircraft are nowadays operated for several decades under sometimes varying missions. Additional requirements resulting from more severe fatigue spectra or extended life for these platforms may require additional means of ensuring structural integrity. It is then important to gain the maximum usage (fatigue life) of aircraft components most efficiently still ensuring structural integrity at all times. Conventional structural health monitoring systems are typically based on loads and usage monitoring. Together with modern non destructive damage detection techniques it could be possible to safely operate even aged platforms. This goal is achieved by periodic examinations in order to ensure that a structural item is free of damage. However, the dismantling of structures for the purpose of non destructive testing can be very costly, time intensive and sometimes harmful to the surrounding structure itself. Therefore integrated, reliable and affordable damage detection techniques are needed to avoid disassembly where economically or technically justified. Especially for well known hot spots an integrated damage sensor could provide an alternative solution to conventional procedures. SWISS (Smart Wide area Imaging Sensor System) is an ultrasonic imaging approach. A small sensor is permanently surface mounted on the component that is to be monitored. Typically the sensor is activated on ground and interrogated via cables that are built into the platform. These sensors facilitate the examination of the internal structure of a subcomponent. The ultrasonic beam is electronically controlled in order to scan the most critical areas from a fixed position. Functionality aspects as well as practicability issues of such a technology had to be addressed and solved. As a result of this study, simulated fatigue tests on a real complex fitting structure have proven the reliability of the imaging ultrasonic sensor under laboratory conditions for

  20. Inspection of CF188 composite flight control surfaces with neutron radiography

    International Nuclear Information System (INIS)

    At the Royal Military College of Canada's SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results

  1. Identification of aircraft stability and control parameters using multilevel, hierarchical estimation (United States)

    Fry, C. M.; Sage, A. P.


    Previous attempts to identify aircraft stability and control derivatives from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or lateral-directional perturbation-equations-of-motion models, suffer from the disadvantage that the coupling between the longitudinal and lateral-directional dynamics has been ignored. In this paper the identification of aircraft stability parameters is accomplished using a more accurate 6-DOF model which includes this coupling. Hierarchical system identification theory is used to reduce the computational effort involved. The 6-DOF system of equations is decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and the other for the lateral-directional dynamics. The two subsystem parameter identification processes are then coordinated in such a way that the overall system parameter identification problem is solved.

  2. Flight behaviour of unilaterally blinded blowflies – control of flight speed and saccadic turns


    Martin Egelhaaf


    Several characteristics of blowfly flight have been shown to depend on environmental features and to be controlled by optic flow (OF), the image flow across the eyes induced during self-motion of the animal. For example, both flight speed and the changes in flight direction depend on the clear space available. Most mechanisms proposed to underlie speed and direction control rely on OF information from both eyes of the animal. Then, however, blinding one eye with paint should have consequences...

  3. An advanced control system for a next generation transport aircraft (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.


    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  4. Combined model- and rule-based controller synthesis with application to helicopter flight (United States)

    Jiang, Tian-Yue

    This thesis deals with synthesis of combined (nonlinear) model-based and (fuzzy logic) rule-based controllers, along with their applications to helicopter flight control problem. The synthesis involves superimposing two control techniques in order to meet both stability and performance objectives. One is model-based control technique, which is based on inversion of an approximate model of the real system. The other is rule-based control technique that adaptively cancels the inversion errors caused by the approximate model inversion. There are two major aspects of the research effort in this thesis. The first is the development of the adaptive rule-based (fuzzy logic) controllers. The linguistic rule weights and defuzzification output weights in the controllers are adapted for ultimate boundedness of the tracking errors. Numerical results from a helicopter flight control problem indicate improvement and demonstrate effectiveness of the control technique. The second aspect of this research work is the extension of the synthesis to account for control limits. In this thesis, a control saturation related rule-bank in conjunction with the adaptive fuzzy logic controller is designed to trade-off system performance for closed-loop stability when the tendency towards control amplitude and/or rate saturation is detected. Simulation results from both a fixed-wing aircraft trajectory control problem and a helicopter flight control problem show the effectiveness of the synthesis method and the resulting controller in avoiding control saturations.

  5. Individual and collective climate control in aircraft cabins

    NARCIS (Netherlands)

    Jacobs, P.; Gids, W.F. de


    A new concept for aircraft cabin climatisation has been developed in which the seat is the main Indoor Air Quality (IAQ) and temperature control system for the passengers containing provisions for local supply and local exhaust of air. Direct supply of clean outside air in the breathing zone, throug

  6. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U.; Duerbeck, T.; Feigl, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F.; Droste-Franke, B. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F. [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I.J. [University Coll., London (United Kingdom); Hagen, D.E.; Hopkins, A.R. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G.D. [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); and others


    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  7. Investigating Several Wireless Technologies to Build a Heteregeneous Network for the In-Flight Entertainment System inside an Aircraft Cabin


    Akl, Ahmed; Gayraud, Thierry; Berthou, Pascal


    International audience A primary difficulty when investigating communication requirements in an aircraft cabin is the diverse needs of passengers when compared to the strict constraints inside the cabin. It is recognized that there is an increasing need of passengers to use their electronic devices as well as the need for entertaining during the flight. This paper aims at integrating heterogeneous available communication technologies, showing their pros and cons -within this context while ...

  8. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control (United States)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole


    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  9. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    distributions and change detection methods are employed to reach decisions about not-normal behaviour and it is shown how control surface faults can be diagnosed for a specific UAV without adding additional hardware to the platform. Only telemetry data from the aircraft is used together with a basic model of...... relations between signals within the aircraft. Frequency domain methods are shown to be robust in exploring relevant properties of the signals. The detection is shown to work on data from a real incident where an aileron gets stuck during launch of a UAV....

  10. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures (United States)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.


    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  11. Active structural acoustic control of aircraft interior flow noise via the use of active trim panels


    Mahnken, Brian W.


    Modem jet aircraft interior noise can be categorized into two main types: tonal noise caused by engine imbalance or blade passage, and mid frequency broadband noise resulting from turbulent flow. This project addresses aircraft interior flow noise caused by a flow separation over the crown of the aircraft. The noise control approach is to mount piezoelectric actuators to the aircraft interior cockpit crown trim panel and use them to actively control aircraft interior noise with...

  12. Implementation of a Helicopter Flight Simulator with Individual Blade Control (United States)

    Zinchiak, Andrew G.


    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually

  13. Missile flight control using active flexspar actuators (United States)

    Barrett, Ron; Gross, R. Steven; Brozoski, Fred


    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1 in 0964-1726/5/2/002/img1 2.7 in active flight control surface was powered by a bimorph bender with 5 mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of 0964-1726/5/2/002/img2. A natural frequency of 78.5 rad 0964-1726/5/2/002/img3 with a break frequency of 157 rad 0964-1726/5/2/002/img3 was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at 0964-1726/5/2/002/img5 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g respectively, leading to a greatly reduced turn radius of only 2400 ft.

  14. Full-scale flight tests of aircraft morphing structures using SMA actuators (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.


    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  15. Singular perturbations and time scales in the design of digital flight control systems (United States)

    Naidu, Desineni S.; Price, Douglas B.


    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  16. Design and flight testing of a digital optimal control general aviation autopilot (United States)

    Broussard, J. R.; Downing, D. R.; Bryant, W. H.


    This paper presents the designs of Proportional-Integral-Filter (PIF) autopilots for a General Aviation (NAVION) aircraft. The PIF autopilots use modern control theory to determine heading select and altitude select and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback; command error integration for command tracking; digital complimentary filtering and analog prefiltering for sensor noise suppression; a control filter for computation delay accommodation; and the incremental form to eliminate trim values in implementation. Theoretical developments for the control law are described which combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and simulations. Successful flight test results for the PIF autopilots are presented for different turbulence conditions and quadratic weights.

  17. CV-990 Landing Systems Research Aircraft (LSRA) flight #145 drilling of shuttle tire using Tire Assa (United States)


    Created from a 1/16th model of a German World War II tank, the TAV (Tire Assault Vehicle) was an important safety feature for the Convair 990 Landing System Research Aircraft, which tested space shuttle tires. It was imperative to know the extreme conditions the shuttle tires could tolerate at landing without putting the shuttle and its crew at risk. In addition, the CV990 was able to land repeatedly to test the tires. The TAV was built from a kit and modified into a radio controlled, video-equipped machine to drill holes in aircraft test tires that were in imminent danger of exploding because of one or more conditions: high air pressure, high temperatures, and cord wear. An exploding test tire releases energy equivalent to two and one-half sticks of dynamite and can cause severe injuries to anyone within 50 ft. of the explosion, as well as ear injury - possibly permanent hearing loss - to anyone within 100 ft. The degree of danger is also determined by the temperature pressure and cord wear of a test tire. The TAV was developed by David Carrott, a PRC employee under contract to NASA.

  18. Actively Controlled Landing Gear for Aircraft Vibration Reduction (United States)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.


    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  19. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control (United States)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan


    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  20. Multistrand, Fast Reaction, Shape Memory Alloy System for Uninhabited Aerial Vehicle Flight Control

    Directory of Open Access Journals (Sweden)

    M. Brennison


    Full Text Available This paper details an investigation of shape memory alloy (SMA filaments which are used to drive a flight control system with precision control in a real flight environment. An antagonistic SMA actuator was developed with an integrated demodulator circuit from a JR NES 911 subscale UAV actuator. Most SMA actuator studies concentrate on modeling the open-loop characteristics of such a system with full actuator performance modeling. This paper is a bit different in that it is very practically oriented and centered on development of a flight-capable system which solves the most tricky, practical problems associated with using SMA filaments for aircraft flight control. By using well-tuned feedback loops, it is shown that intermediate SMA performance prediction is not appropriate for flight control system (FCS design. Rather, capturing the peak behavior is far more important, along with appropriate feedback loop design. To prove the system, an SMA actuator was designed and installed in the fuselage of a 2 m uninhabited aerial vehicle (UAV and used to control the rudder through slips and coordinated turns. The actuator was capable of 20 degrees of positive and negative deflection and was capable of 7.5 in-oz (5.29 N cm of torque at a bandwidth of 2.8 Hz.

  1. Advanced flow measurement and active flow control of aircraft with MEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Chengyu; Deng Jinjun; Ma Binghe; Yuan Weizheng


    Advanced flow measurement and active flow control need the development of new type devices and systems. Micro-electro-mechanical systems (MEMS) technologies become the important and feasible approach for micro transducers fabrication. This paper introduces research works of MEMS/NEMS Lab in flow measurement sensors and active flow control actuators. Micro sensors include the flexible thermal sensor array, capacitive shear stress sensor and high sensitivity pressure sensor. Micro actuators are the balloon actuator and synthetic jet actuator respectively. Through wind tunnel test, these micro transducers achieve the goals of shear stress and pressure distribution measurement, boundary layer separation control, lift enhancement, etc. And unmanned aerial vehicle (UAV) flight test verifies the ability of maneuver control of micro actuator. In the future work, micro sensor and actuator can be combined into a closed-loop control system to construct aerodynamic smart skin system for aircraft.

  2. Development of fiber optic sensors for advanced aircraft testing and control (United States)

    Meller, Scott A.; Jones, Mark E.; Wavering, Thomas A.; Kozikowski, Carrie L.; Murphy, Kent A.


    Optical fiber sensors, because of the small size, low weight, extremely high information carrying capability, immunity to electromagnetic interference, and large operational temperature range, provide numerous advantages over conventional electrically based sensors. This paper presents preliminary results from optical fiber sensor design for monitoring acceleration on aircraft. Flight testing of the final accelerometer design will be conducted on the F-18 Systems Research Aircraft at NASA Dryden Flight Research Center in Edwards, CA.

  3. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station (United States)

    Bendrick, Gregg A.; Kamine, Tovy Haber


    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  4. Path-tracking Control of a Tractor-aircraft System

    Institute of Scientific and Technical Information of China (English)

    Nengjian Wang; Hongbo Liu; Wanhui Yang


    An aircraft tractor plays a significant role as a kind of important marine transport and support equipment.It's necessary to study its controlling and manoeuvring stability to improve operation efficiency.A virtual prototyping model of the tractor-aircraft system based on Lagrange's equation of the first kind with Lagrange mutipliers was established in this paper.According to the towing characteristics,a path-tracking controller using fuzzy logic theory was designed.Direction control herein was carried out through a compensatory tracking approach.Interactive co-simulation was performed to validate the path-tracking behavior in closed-loop.Simulation results indicated that the tractor followed the reference courses precisely on a flat ground.

  5. Application of a flight test and data analysis technique to flutter of a drone aircraft (United States)

    Bennett, R. M.


    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  6. UAV Flight Control System Based on an Intelligent BEL Algorithm

    Directory of Open Access Journals (Sweden)

    Huangzhong Pu


    Full Text Available A novel intelligent control strategy based on a brain emotional learning (BEL algorithm is investigated in the application of the attitude control of a small unmanned aerial vehicle (UAV in this study. The BEL model imitates the emotional learning process in the amygdala‐ orbitofrontal (A‐O system of mammalian brains. Here it is used to develop the flight control system of the UAV. The control laws of elevator, aileron and rudder manipulators adopt the forms of traditional flight control laws, and three BEL models are used in above three control loops, to on‐ line regulate the control gains of each controller. Obviously, a BEL intelligent control system is self‐learning and self‐adaptive, which is important for UAVs when flight conditions change, while traditional flight control systems remain unchanged after design. In simulation, the UAV is on a flat flight and suddenly a wind disturbs it making it depart from the equilibrium state. In order to make the UAV recover to the original equilibrium state, the BEL intelligent control system is adopted. The simulation results illustrate that the BEL‐based intelligent flight control system has characteristics of better adaptability and stronger robustness, when compared with the traditional flight control system.

  7. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array

    International Nuclear Information System (INIS)

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. (paper)

  8. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems (United States)

    Yedavalli, R. K.


    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  9. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS) (United States)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.


    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.


    Directory of Open Access Journals (Sweden)

    V. V. Markelov


    Full Text Available Subject of Research.We consider the principles and algorithms for construction of en-route flight paths of an aircraft (airplane in a horizontal plane for their subsequent display on the navigation situation indicators in the cockpit. Navigation situation indicatorsaredisplay devices designed on the basis of flat liquid crystal panel. Methods. Flight trajectory display by on-board multifunction indicators is performed by successive drawing of graphic primitives available in the library and defined in accordance with an array of data to display the route. An array of data is generated by on-board software complex based on the information provided in the flight task and the corresponding «Jeppesen» database or analogous one. Formation of the array is carried out by bringing the set of trajectory paths to the format of three typical trajectories described. In addition, each of the types of trajectories has a standard description of the algorithm for calculating the parameters that make up an array of data to display.Main Results.The algorithms of forming and calculating the amounts of data of routing paths required for their construction and display on the multifunction indicators applied in avionics.Practical Relevance.These novel routing algorithms for constructing trajectory paths unify algorithms of generating information for display on the navigation situation indicators and optimize a set of calculated data for flight control at the trajectory in the horizontal plane.

  11. Space flight experience with the Shuttle Orbiter control system (United States)

    Cox, K. J.; Daly, K. C.; Hattis, P. D.


    Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

  12. Cassini Attitude Control Flight Software: from Development to In-Flight Operation (United States)

    Brown, Jay


    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  13. Framework Based Guidance Navigation and Control Flight Software Development (United States)

    McComas, David


    This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.

  14. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.


    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  15. Inlet, engine, airframe controls integration development for supercruising aircraft (United States)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.


    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  16. PTS performance by flight- and control-group macaques (United States)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.; Gulledge, J. P.; Shlyk, G. G.; Vasilieva, O. N.


    A total of 25 young monkeys (Macaca mulatta) were trained with the Psychomotor Test System, a package of software tasks and computer hardware developed for spaceflight research with nonhuman primates. Two flight monkeys and two control monkeys were selected from this pool and performed a psychomotor task before and after the Bion 11 flight or a ground-control period. Monkeys from both groups showed significant disruption in performance after the 14-day flight or simulation (plus one anesthetized day of biopsies and other tests), and this disruption appeared to be magnified for the flight animal.

  17. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.


    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  18. Development of an advanced pitch active control system for a wide body jet aircraft (United States)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.


    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  19. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems (United States)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen


    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  20. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.


    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  1. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.


    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  2. Insect-Inspired Flight Control for Unmanned Aerial Vehicles (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven


    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  3. Development of SCR Aircraft takeoff and landing procedures for community noise abatement and their impact on flight safety (United States)

    Grantham, W. D.; Smith, P. M.


    Piloted simulator studies to determine takeoff and landing procedures for a supersonic cruise transport concept that result in predicted community noise levels which meet current Federal Aviation Administration (FAA) standards are discussed. The results indicate that with the use of advanced procedures, the subject simulated aircraft meets the FAA traded noise levels during takeoff and landing utilizing average flight crew skills. The advanced takeoff procedures developed involved violating three of the current Federal Aviation Regulations (FAR) noise test conditions. These were: (1) thrust cutbacks at altitudes below 214 meters (700 ft); (2) thrust cutback level below those presently allowed; and (3) configuration change, other than raising the landing gear. It was not necessary to violate any FAR noise test conditions during landing approach. It was determined that the advanced procedures developed do not compromise flight safety. Automation of some of the aircraft functions reduced pilot workload, and the development of a simple head-up display to assist in the takeoff flight mode proved to be adequate.

  4. Multivariable control of VTOL aircraft for shipboard landing (United States)

    Bodson, M.; Athans, M.


    The problem of the automatic landing of VTOL aircraft on small ships is considered. Linear quadratic optimal control theory is used to design a VTOL ship motion tracking controller. Optimal root-loci and step responses are obtained to study the dynamics of the closed-loop system. Standard deviations of the ship motion tracking errors, and of the VTOL control amplitudes are computed, illustrating the tradeoff between accurate tracking, and limited control authority. Multivariable robustness margins are also obtained. The tracking of the vertical motion presents the difficulty of requiring large variations of the VTOL total thrust, a control which is limited both in amplitude and in bandwidth. Lateral controls are less restricted, but the motions are strongly coupled, with some adverse couplings in the ship motions, and in the aircraft dynamics. The advantage of the LQ control theory is demonstrated however, by its ability to account for these couplings in a robust manner, and, when possible, to use them to limit the control amplitudes.

  5. Simulation to Flight Test for a UAV Controls Testbed (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.


    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  6. Systematic review on tuberculosis transmission on aircraft and update of the European Centre for Disease Prevention and Control risk assessment guidelines for tuberculosis transmitted on aircraft (RAGIDA-TB). (United States)

    Kotila, Saara M; Payne Hallström, Lara; Jansen, Niesje; Helbling, Peter; Abubakar, Ibrahim


    As a setting for potential tuberculosis (TB) transmission and contact tracing, aircraft pose specific challenges. Evidence-based guidelines are needed to support the related-risk assessment and contact-tracing efforts. In this study evidence of TB transmission on aircraft was identified to update the Risk Assessment Guidelines for TB Transmitted on Aircraft (RAGIDA-TB) of the European Centre for Disease Prevention and Control (ECDC). Electronic searches were undertaken from Medline (Pubmed), Embase and Cochrane Library until 19 July 2013. Eligible records were identified by a two-stage screening process and data on flight and index case characteristics as well as contact tracing strategies extracted. The systematic literature review retrieved 21 records. Ten of these records were available only after the previous version of the RAGIDA guidelines (2009) and World Health Organization guidelines on TB and air travel (2008) were published. Seven of the 21 records presented some evidence of possible in-flight transmission, but only one record provided substantial evidence of TB transmission on an aircraft. The data indicate that overall risk of TB transmission on aircraft is very low. The updated ECDC guidelines for TB transmission on aircraft have global implications due to inevitable need for international collaboration in contract tracing and risk assessment. PMID:26848520

  7. In-Flight Chemical Composition Observations of Aircraft Emissions using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (United States)

    Ziemba, L. D.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.


    Commercial aircraft are an important source of aerosols to the upper troposphere. The microphysical and chemical properties of these emitted aerosols govern their ability to act as ice nuclei, both in near-field contrails and for cirrus formation downstream. During the ACCESS-II (Alternative Fuel Effects on Contrails and Cruise Emissions) campaign, NASA DC-8 CFM56-2-C1 engine emissions were sampled systematically at a range of cruise-relevant thrust levels and at several altitudes. Sampling was done aboard the NASA HU-25 Falcon aircraft, which was equipped with a suite of aerosol and gas-phase instruments focused on assessing the effects of burning different fuel mixtures on aerosol properties and their associated contrails. Here we present in-flight measurements of particle chemical composition made by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The AMS was able to sufficiently resolve near-field (within 100m) aircraft emissions plumes. Low-sulfur HEFA (hydro-processed esters and fatty-acids) and JetA fuels yielded particles that contained 11 and 8% sulfate, respectively, compared to 30% sulfate contribution for traditional JetA fuel. Each of the fuels produced organic aerosol with similarly low oxygen content. Lubrication oils, which are not a combustion product but result from leaks in the engine, were likely a dominant fraction of the measured organic mass based on mass-spectral marker analysis. These results are compared to similar engine conditions from ground-based testing.

  8. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18 (United States)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.


    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  9. Assembly of an Experimental Quad-Rotor Type UAV for Testing a Novel Autonomous Flight Control Strategy


    Shahida Khatoon; Dhiraj Gupta; Ahmad Saad Khan


    In this research a prototype experimental Quad-rotor type UAV have been assembled using low cost components easily available in the Indian market. The quad-copter is used for testing a novel autonomous flight control strategy developed using embedded system. In order to enable a mini-UAV to perform target acquisition, localization and continuous surveillance in real world environment one must develop a technology which may be a combination of aircraft engineering, control systems, and wireles...

  10. Tracking control for VTOL aircraft with disabled IMUs (United States)

    Wang, Xinhua; Liu, Jinkun; Cai, Kai-Yuan


    This article focuses on the design of an output feedback controller able to achieve the asymptotic tracking of a reference trajectory for vertical take off and landing aircraft with disabled inertial measurement units (IMUs). Roll angle and roll rate cannot be measured directly when IMUs are disabled. A dynamic linear observer is designed to estimate the tracking errors of the roll angle and equivalent roll angular velocity with respect to their desired states. Moreover, based on the centre manifold theory and on the equivalent control, the closed-loop system is asymptotically convergent. The theoretical results are confirmed by computer simulations.

  11. Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop

    Directory of Open Access Journals (Sweden)

    Liu Ri


    Full Text Available The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input–output feedback linearization method. On this basis, an iterative quasi-sliding mode (SM flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of “smaller errors correspond to bigger gains and bigger errors correspond to saturated gains” is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov-based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.

  12. Somatosensory Substrates of Flight Control in Bats

    Directory of Open Access Journals (Sweden)

    Kara L. Marshall


    Full Text Available Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  13. Cooperative control theory and integrated flight and propulsion control (United States)

    Schmidt, David K.; Schierman, John D.


    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  14. Reduction of aircraft noise in civil air transport by optimization of flight tracks and takeoff and approach procedures (United States)

    Rottmann, Uwe


    Noise optimized design of operational flight procedures for effective noise pollution reduction is analyzed. Power cutback during certain stages of approach and takeoff, extension of distance between sound source and sound receiver, as well as diminution of sound impact time are optimized for specific flight procedures and routings. Five takeoff and three landing procedures are analyzed in acoustic effects. Sound immission is computed by NOISIMSIS (NOISe IMpact SImulation System), a simulation system especially created for this task, under consideration of aircraft type specified sound emission characteristics and performance data as well as different meteorological conditions. The investigations for the example of Frankfurt airport result in formulating a planning guideline with notes and impulses for activities in operational noise abatement.

  15. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Aircraft During Wake Vortex Encounters (United States)

    Roberts, Christopher L.; Smith, Sonya T.; Vicroy, Dan D.


    Several of our major airports are operating at or near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity and safety. As more and more airplanes are placed into the terminal area the probability of encountering wake turbulence is increased. The NASA Langley Research Center conducted a series of flight tests from 1995 through 1997 to develop a wake encounter and wake-measurement data set with the accompanying atmospheric state information. The purpose of this research is to use the data from those flights to compute the wake-induced forced and moments exerted on the aircraft The calculated forces and moments will then be compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results.

  16. The 747 primary flight control systems reliability and maintenance study (United States)


    The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.

  17. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment Project (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  18. Real-Time Noise Prediction of V/STOL Aircraft in Maneuvering Flight Project (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for enhancing and integrating new breakthrough technologies to provide accurate real-time noise prediction of V/STOL aircraft in...

  19. Economic modeling of fault tolerant flight control systems in commercial applications (United States)

    Finelli, G. B.


    This paper describes the current development of a comprehensive model which will supply the assessment and analysis capability to investigate the economic viability of Fault Tolerant Flight Control Systems (FTFCS) for commercial aircraft of the 1990's and beyond. An introduction to the unique attributes of fault tolerance and how they will influence aircraft operations and consequent airline costs and benefits is presented. Specific modeling issues and elements necessary for accurate assessment of all costs affected by ownership and operation of FTFCS are delineated. Trade-off factors are presented, aimed at exposing economically optimal realizations of system implementations, resource allocation, and operating policies. A trade-off example is furnished to graphically display some of the analysis capabilities of the comprehensive simulation model now being developed.

  20. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18 (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.


    (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic

  1. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun


    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  2. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T


    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  3. A new aircraft architecture based on the ACHEON Coanda effect nozzle: flight model and energy evaluation


    Trancossi, Michele; Madonia, Mauro; Dumas, Antonio; Angeli, Diego; Bingham, Chris; Das, Shyam Sumanta; Grimaccia, Francesco; Pascoa, Jose; Porreca, Eliana; Smith, Tim; Stewart, Paul; Subhash, Maharshi; Sunol, Anna; Vucinic, Dean


    Purpose Aeronautic transport has an effective necessity of reducing fuel consumption and emissions to deliver efficiency and competitiveness driven by today commercial and legislative requirements. Actual aircraft configurations scenario allows envisaging the signs of a diffused technological maturity and they seem very near their limits. This scenario clearly shows the necessity of radical innovations with particular reference to propulsion systems and to aircraft architecture consequent...

  4. The effects of angle-of-attack indication on aircraft control in the event of an airspeed indicator malfunction (United States)

    Boesser, Claas Tido

    Analysis of accident data by the Federal Aviation Administration, the National Transportation Safety Board, and other sources show that loss of control is the leading cause of aircraft accidents. Further evaluation of the data indicates that the majority of loss of control accidents are caused by the aircraft stalling. In response to these data, the Federal Aviation Administration and the General Aviation Joint Steering Committee emphasize the importance of stall and angle-of-attack awareness during flight. The high-profile crash of Air France Flight 447, in which pilots failed to recover from a self-induced stall, reinforced concerns over the need for improved stall and angle-of-attack awareness and reinvigorated interest in the debate over the effectiveness of angle-of-attack information displays. Further support for aerodynamic information in the form of an angle-of-attack indicator comes from core cognitive engineering principles. These principles argue for the provision of information about system functioning and dynamics as a means to ensure a human is always in position to recover a system when technology is unable. The purpose of this research was to empirically evaluate the importance of providing pilots with feedback about fundamental aircraft aerodynamics, especially during non-standard situations and unexpected disturbances. An experiment was conducted using a flight simulator to test the effects of in-cockpit angle-of-attack indication on aircraft control following an airspeed indicator malfunction on final approach. Participants flew a final approach with a target airspeed range of 60 to 65 knots. Once participants slowed the aircraft for final approach, the airspeed indicator needle would be stuck at an indication of 70 knots. One group of participants flew the final approach with an angle-of-attack indicator while the other group lacked such an instrument. Examination of aircraft performance data along the final approach showed that, when confronted

  5. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research (United States)

    Braslow, Albert L.


    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  6. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design (United States)

    Hueschen, R. M.


    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  7. Control and Non-Payload Communications Generation 1 Prototype Radio Flight Test Report (United States)

    Shalkhauser, Kurt A.; Young, Daniel P.; Bretmersky, Steven C.; Ishac, Joseph A.; Walker, Steven H.; Griner, James H.; Kachmar, Brian A.


    regularity of flight. Only recently has radiofrequency (RF) spectrum been allocated by the International Telecommunications Union specifically for commercial UA C2, LOS communication (L-Band: 960 to 1164 MHz, and C-Band: 5030 to 5091 MHz). The safe and efficient integration of UA into the NAS requires the use of protected RF spectrum allocations and a new data communications system that is both secure and scalable to accommodate the potential growth of these new aircraft. Data communications for UA-referred to as control and non-payload communications (CNPC)-will be used to exchange information between a UA and a ground station (GS) to ensure safe, reliable, and effective UA flight operation. The focus of this effort is on validating and allocating new RF spectrum and data link communications to enable civil UA integration into the NAS. Through a cost-sharing cooperative agreement with Rockwell Collins, Inc., the NASA Glenn Research Center is exploring and performing the necessary development steps to realize a prototype UA CNPC system. These activities include investigating signal waveforms and access techniques, developing representative CNPC radio hardware, and executing relevant testing and validation activities. There is no intent to manufacture the CNPC end product, rather the goals are to study, demonstrate, and validate a typical CNPC system that will allow safe and efficient communications within the L-Band and C-Band spectrum allocations. The system is addressing initial "seed" requirements from RTCA, Inc., Special Committee 203 (SC-203) and is on a path to Federal Aviation Administration certification. This report provides results from the flight testing campaign of the Rockwell Collins Generation 1 prototype radio, referred hereafter as the "radio." The radio sets operate within the 960- to 977-MHz frequency band with both air and ground radios using identical hardware. Flight tests involved one aircraft and one GS. Results include discussion of aircraft flight

  8. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin


    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  9. A variable structure approach to robust control of VTOL aircraft (United States)

    Calise, A. J.; Kramer, F. S.


    This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the state trajectories to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector-valued velocity command. For comparison, a proportional controller was designed using optimal linear regulator theory. Both controllers were evaluated for their transient response performance using a linear model; then a nonlinear simulation study of a hovering approach to landing was conducted. The variable structure controller outperformed its linear counterpart in the presence of wind disturbances and plant parameter uncertainties afforded by the simulation.

  10. Reduction of Flight Control System/Structural Mode Interaction Project (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing...

  11. Real Time Control Software for Electromagnetic Formation Flight Project (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  12. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance (United States)


    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  13. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data (United States)

    White, Molly E.; Hyatt, Andrew J.


    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  14. Hummingbirds control hovering flight by stabilizing visual motion


    Goller, Benjamin; Altshuler, Douglas L.


    The avian brain has numerous specializations for navigation and processing visual information, but relatively little is known about how flying birds control their position in space. To study the role of vision in controlling hovering flight, we developed a virtual reality environment where visual patterns could be displayed to a freely flying hummingbird. Normal flight could only be performed if the visual background was completely stationary. In contrast, any motion in the background image c...

  15. Flight Vehicle Control and Aerobiological Sampling Applications


    Techy, Laszlo


    Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements ...

  16. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope


    Umar Asif


    This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larg...

  17. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design) (United States)

    Biezad, Daniel


    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  18. An advanced media interface for control of modern transport aircraft navigational systems (United States)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.


    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  19. Flight Test Maneuvers for Efficient Aerodynamic Modeling (United States)

    Morelli, Eugene A.


    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  20. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines (United States)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos


    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  1. Multivariable flight control synthesis and literal robustness analysis for an aeroelastic vehicle (United States)

    Schmidt, David K.; Newman, Brett


    An integrated flight/aeroelastic control law is developed analytically for a hypothetical large supersonic transport aircraft in which the first aeroelastic mode frequency of the fuselage (6 rad/sec) is near the short-period mode (2 rad/sec). The approach employed is based on a linear-quadratic-regulator (LQR) formulation (yielding model-following state-feedback gains), followed by asymptotic loop-transfer recovery of LQR robustness (to produce an output-feedback control law). The derivation is outlined, and numerical results comparing the performance and multivariate stability robustness of the present controller with those of a classical controller are presented in graphs. The two controllers are shown to have similar characteristics, even with respect to the sources of limitations on robustness.

  2. Active control of an aircraft tail subject to harmonic excitation

    Institute of Scientific and Technical Information of China (English)

    M. Eissa; H. S. Bauomy; Y. A. Amer


    Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is,active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differ-ential equations having both quadratic and cubic nonlinear-ties. The system describes the vibration of an aircraft tail.The system is subjected to multi-external excitation forces.The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approx-imate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are stud-ied numerically. Various resonance cases are investigated. A comparison is made with the available published work.

  3. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices (United States)

    Kelly, Michael J.


    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  4. Development and Evaluation of Fault-Tolerant Flight Control Systems (United States)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)


    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  5. The Flight Control of SHEFEX II


    Scheuerpflug, Frank; Kallenbach, Alexander


    SHEFEX II (Sharp Edge Flight Experiment) was a twostage sounding rocket mission to investigate advanced reentry technology. The successful launch was conducted from Andøya Rocket Range, Norway in June 2012. Comprising a suppressed trajectory, initiated by a cold-gas pointing maneuver prior to 2nd stage ignition, and spanning 800 km over the Norwegian sea, it was the most complex sounding rocket mission ever carried out by the German Aerospace Center DLR. To maximize the chances of a mission s...

  6. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace (United States)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new

  7. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents (United States)

    Belcastro, Christine M.; Jacobson, Steven r.


    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  8. Optimization of operational aircraft parameters reducing noise emission


    Abdallah, Lina; Khardi, Salah; Haddou, Mounir


    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  9. Optimization of operational aircraft parameters Reducing Noise Emission

    CERN Document Server

    Abdallah, Lina; Khardi, Salah


    The objective of this paper is to develop a model and a minimization method to provide flight path optimums reducing aircraft noise in the vicinity of airports. Optimization algorithm has solved a complex optimal control problem, and generates flight paths minimizing aircraft noise levels. Operational and safety constraints have been considered and their limits satisfied. Results are here presented and discussed.

  10. New experimental approaches to the biology of flight control systems. (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R


    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them. PMID:18165253

  11. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft (United States)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.


    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  12. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures (United States)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste


    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  13. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter


    A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation...

  14. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis (United States)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.


    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  15. Scaled Model Technology for Flight Research of General Aviation Aircraft Project (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  16. Coordination control of quadrotor VTOL aircraft in three-dimensional space (United States)

    Do, K. D.


    This paper presents a constructive design of distributed coordination controllers for a group of N quadrotor vertical take-off and landing (VTOL) aircraft in three-dimensional space. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to result in an effective control design, and to reduce singularities in the aircraft's dynamics. The coordination control design is based on a new bounded control design technique for second-order systems and new pairwise collision avoidance functions. The pairwise collision functions are functions of both relative positions and relative velocities between the aircraft instead of only their relative positions as in the literature. To overcome the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls. Simulations illustrate the results.

  17. Controlled flight of a biologically inspired, insect-scale robot. (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J


    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  18. Recent Developments in the Remote Radio Control of Insect Flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato


    Full Text Available The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  19. Trajectory Correction Flight Control System using Pulsejeton an Artillery Rocket


    S. K. Gupta; Saxena, S; Ankur Singhal; Ghosh, A. K.


    A trajectory correction flight control system is small and durable, and consists of a lateralpulsejet ring mounted on the rocket body. The pulsejet ring consists of a finite number of individualpulsejets. Each pulsejet on the ring imparts a single, short-duration, large force to the rocket inthe plane normal to the rocket axis of symmetry. Lateral pulsejets are used by flight controlsystem to assist the rocket to follow a pre-specified (command) trajectory. The trajectory-trackingflight contr...

  20. Flutter prediction, suppression and control in aircraft composite wings as a design prerequisite: a survey


    Njuguna, James A. K.


    Emergence of flutter compromises not only the long-term durability of the wing structure, but also the operational safety, flight performance and energy efficiency of the aircraft. Effectual means of flutter prevention are, therefore, mandatory in the certification of new flight vehicles. This work intends to address the flutter phenomenon highlighting the above issues, and reviews some of the most recent theoretical and experimental developments in flutter analyses. In the ...

  1. Towards MAV Autonomous Flight: A Modeling and Control Approach


    Colorado Montaño, Julián


    This thesis is about modeling and control of miniature rotary-wing flying vehicles, with a special emphasis on quadrotor and coaxial systems. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircrafts: the DraganFlyer and the Hummingbird quadrotors, which have been hardware-modified in order to perform experimental autonomous flying. Furthermore, a first-ever approach for modeling commercial micro coaxial mechanism is pr...

  2. The optimal control frequency response problem in manual control. [of manned aircraft systems (United States)

    Harrington, W. W.


    An optimal control frequency response problem is defined within the context of the optimal pilot model. The problem is designed to specify pilot model control frequencies reflective of important aircraft system properties, such as control feel system dynamics, airframe dynamics, and gust environment, as well as man machine properties, such as task and attention allocation. This is accomplished by determining a bounded set of control frequencies which minimize the total control cost. The bounds are given by zero and the neuromuscular control frequency response for each control actuator. This approach is fully adaptive, i.e., does not depend upon user entered estimates. An algorithm is developed to solve this optimal control frequency response problem. The algorithm is then applied to an attitude hold task for a bare airframe fighter aircraft case with interesting dynamic properties.

  3. Evaluation of UWB communication for in-flight entertainment system in the aircraft cabin


    Albu, Roxana; Lecointre, Aubin; Dragomirescu, Daniela; Gayraud, Thierry; Berthou, Pascal


    International audience This paper deals with the embedded network dedicated to the entertainment system of passenger cabin in an aircraft. The work described in this paper focuses on a wireless solution to interconnect the main components of this system. The selected solution is UWB with smart antennas. This solution is proved to be able to provide the system with the needed bandwidth. The self-configuration capability of the system is also demonstrated.

  4. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time (United States)

    Knox, C. E.; Cannon, D. G.


    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  5. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H) (United States)

    Wade, Robert L.; Walker, Gregory W.


    The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

  6. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory (United States)

    Gorder, Peter James


    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  7. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao


    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  8. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity (United States)

    Newman, Brett A.


    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth

  9. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis (United States)

    Schmidt, David K.


    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  10. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    Directory of Open Access Journals (Sweden)

    Umar Asif


    Full Text Available This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larger motion envelope than the conventional hexapods in order to realize the manoeuvrability matching of aircraft dynamics near and beyond the upset flight envelopes. Finally the paper draws a comparative evaluation of motion capabilities between the proposed motion platform and a conventional hexapod based on Stewart configuration in order to emphasize the significance of the design proposed herein.

  11. Adaptive integral dynamic surface control of a hypersonic flight vehicle (United States)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick


    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  12. Interaction of feel system and flight control system dynamics on lateral flying qualities (United States)

    Bailey, R. E.; Knotts, L. H.


    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  13. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control... (United States)


    ... Federal Register on February 17, 2011 (76 FR 9265). One supportive comment was received and these special...; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration... design features include an electronic flight control system. The applicable airworthiness regulations...

  14. Nonlinear stability and control study of highly maneuverable high performance aircraft (United States)

    Mohler, R. R.


    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  15. The aerodynamics and control of free flight manoeuvres in Drosophila. (United States)

    Dickinson, Michael H; Muijres, Florian T


    A firm understanding of how fruit flies hover has emerged over the past two decades, and recent work has focused on the aerodynamic, biomechanical and neurobiological mechanisms that enable them to manoeuvre and resist perturbations. In this review, we describe how flies manipulate wing movement to control their body motion during active manoeuvres, and how these actions are regulated by sensory feedback. We also discuss how the application of control theory is providing new insight into the logic and structure of the circuitry that underlies flight stability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528778

  16. The Application of mu Analysis and Synthesis to the Control of an ASTOVL Aircraft

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Breslin, S.G.;


    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  17. Evaluation of active control technology for short haul aircraft. [cost effectiveness (United States)

    Renshaw, J. H.; Bennett, J. A.; Harris, O. C.; Honrath, J. F.; Patterson, R. W.


    An evaluation of the economics of short-haul aircraft designed with active controls technology and low wing-loading to achieve short field performance with good ride quality is presented. Results indicate that for such a system incorporating gust load alleviation and augmented stability the direct operating cost is better than for aircraft without active controls.

  18. Electromechanical flight control actuator, volume 1 (United States)


    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  19. Impact of space flight on cardiovascular autonomic control (United States)

    Beckers, F.; Verheyden, B.; Morukov, B.; Aubert, Ae

    Introduction: Space flight alters the distribution of blood in the human body, leading to altered cardiovascular neurohumoral regulation with a blunted carotid-cardiac baroreflex. These changes contribute to the occurrence of orthostatic intolerance after space flight. Heart rate variability (HRV) and blood pressure variability (BPV) provide non-invasive means to study the autonomic modulation of the heart. Low frequency (LF) oscillations provide information about sympathetic modulation and baroreflex, while high frequency (HF) modulation is an index of vagal heart rate modulation. Methods: ECG and continuous blood pressure were measured for at least 10 minutes in supine, sitting and standing position 45 days and 10 days (L-45, L-10) before launch; and at 1, 2, 4, 9, 15, 19 and 25 days after return to earth (R+x). In space, ECG and continuous blood pressure were measured at day 5 (FD5) and day 8 (FD8). These measurements were performed in 3. HRV and BPV indices were calculated in time and frequency domain. Results: Measurements in supine position and sitting position did not show as high differences as the measurements in standing position. During space flight heart rate was significantly lower compared to the pre- and post-flight measurements in standing position (RR-values: L-45: 837± 42 ms; FD5: 1004± 40 ms; FD8: 1038± 53 ms; R+1: 587± 21 ms; pblood pressure did not differ significantly before during and after space flight. In space both LF and HF were decreased compared the standing measurements pre- and post-flight. No evolution was present in BPV after return to Earth. Conclusion: During space flight autonomic modulation is characterised by a vagal predominance. Immediately after return to Earth overall autonomic modulation is extremely depressed. Vasomotor autonomic control is restored rather quickly after space flight, while the restoration of autonomic modulation of heart rate is very slow.

  20. Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Duc Khac Do


    Full Text Available This paper presents a method to design controllers that force a quadrotor vertical take-off and landing (VTOL aircraft to globally asymptotically track a reference trajectory in three-dimensional space. Motivated by the vehicle's steering practice, the roll and pitch angles are considered as immediate controls plus the total thrust force  provided by the aircraft's four rotors to control the position and yaw angle of the aircraft. The control design is based on the newly introduced one-step ahead backstepping, the standard backstepping and Lyapunov's direct methods. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to obtain global tracking control results. The paper also includes a design of observers that exponentially estimate the aircraft's linear velocity vector and disturbances. Simulations illustrate the results.

  1. Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator (United States)

    Mayer, Jann; Cox, Timothy H.


    A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.

  2. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations (United States)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.


    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  3. A Decentralized Adaptive Approach to Fault Tolerant Flight Control (United States)

    Wu, N. Eva; Nikulin, Vladimir; Heimes, Felix; Shormin, Victor


    This paper briefly reports some results of our study on the application of a decentralized adaptive control approach to a 6 DOF nonlinear aircraft model. The simulation results showed the potential of using this approach to achieve fault tolerant control. Based on this observation and some analysis, the paper proposes a multiple channel adaptive control scheme that makes use of the functionally redundant actuating and sensing capabilities in the model, and explains how to implement the scheme to tolerate actuator and sensor failures. The conditions, under which the scheme is applicable, are stated in the paper.


    Directory of Open Access Journals (Sweden)

    M. A. Al-Mashhadani


    Full Text Available Studying the optimized control law specified criteria on UAV while hovering over a path defined by the reference points in the inertial frame. An illustrative example is the  theoretical efficiency of the proposed provisions. 

  5. Considering Competition to Solve a Flight Schedule and Aircraft Routing Problem for Small Airlines

    Directory of Open Access Journals (Sweden)

    J. Díaz-Ramírez


    Full Text Available For the case of low-cost airlines, which are characterized by having a single fleet with a small number of airplanes, ina previous work, a heuristic algorithm (AFS-MRA was developed to simultaneously find the flight schedule and theaircraft routes subject to maintenance constraints. This work advances this algorithm by incorporating competition inthe planning process (MAFS-MRA.Within a time frame with a given demand data, competition is seen as a game with two players (one airline and all itscompetitors, where the strategies are all the potential origin-destinations that could be included in the flight schedule,and the payment matrix contains the objective function coefficients that depend on the market share and the routespreviously selected.Numerical experimentation was undertaken using real data for the case of two airlines that operate at TolucaInternational Airport in Mexico. It was found that, by considering competition, the occupation improves to 3% and thatthe number of flights required to satisfy the demand was reduced to 21%. Besides, the updating process reduces theprofit computation error in almost 80%, as compared to the real market behavior for the period under study.

  6. Assessing and controlling the effect of aircraft on the environment: Pollution (United States)

    Poppoff, I. G.; Grobman, J. S.


    The air pollution created by aircraft engines around airports and the global atmospheric problem of supersonic aircraft operating in the stratosphere are discussed. Methods for assessing the air pollution impact are proposed. The use of atmospheric models to determine the air pollution extent is described. Methods for controlling the emissions of aircraft engines are examined. Diagrams of the atmospheric composition resulting from exhaust gas emissions are developed.

  7. The passive and active noise control strategy in the aircraft interior noise


    Paonessa, A.


    The stringent comfort requirements that the airliners are providing to the aircraft manufacturers, also for the small regional commuter are increasing the attention of the aircraft designer to the aircraft interior noise performance. The research on the design methodologies is very much improved in the last years providing new materials and new system like the active noise control usefull to get a more comfortable interior and achieve a large competition on the market. In this paper a general...

  8. Design of flight control systems via robust decoupled servomechanism theory (United States)

    Wang, S.-H.; Davison, E. J.


    Decoupling theory and robust servomechanism theory are applied to the design of linear multivariable systems with large parameter variations. In addition to being approximately decoupled in the transient period, the over-all system achieves tracking and disturbance rejection robustly in the steady state. An example in flight control system is given.

  9. Characterization of a Recoverable Flight Control Computer System (United States)

    Malekpour, Mahyar; Torres, Wilfredo


    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  10. X-2 in flight (United States)


    This inflight photograph of the X-2 (46-674) shows the twin set of shock-diamonds, characteristic of supersonic conditions in the exhaust plume from the two-chamber rocket engine. The Curtiss-Wright XLR-25 rocket engine caused one of several problems that delayed flight of the X-2. At one point, people in the project suggested its replacement. It was the first 'man-rated' (in the terminology of the day) rocket engine that was throttleable, and the technology was not yet mature. Other problems included the X-2's landing gear and the replacement of the planned electronic flight controls with a conventional hydromechanical system like that used in the F-86. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was

  11. Multimodel Predictive Control Approach for UAV Formation Flight

    Directory of Open Access Journals (Sweden)

    Chang-jian Ru


    Full Text Available Formation flight problem is the most important and interesting problem of multiple UAVs (unmanned aerial vehicles cooperative control. In this paper, a novel approach for UAV formation flight based on multimodel predictive control is designed. Firstly, the state equation of relative motion is obtained and then discretized. By the geometrical method, the characteristic points of state are determined. Afterwards, based on the linearization technique, the standard linear discrete model is obtained at each characteristic state point. Then, weighted model set is proposed using the idea of T-S (Takagi-Sugeno fuzzy control and the predictive control is carried out based on the multimodel method. Finally, to verify the performance of the proposed method, two different simulation scenarios are performed.

  12. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies (United States)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.


    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  13. Evaluation of V/STOL research aircraft design. [landing approaches, propulsion/control, piloted moving base simulator (United States)

    Deckert, W. H.; Holzhauser, C. A.


    The evaluation and evolution of direct jet lift V/STOL transport aircraft designs are discussed. The V/STOL transport design selected as an example is a lift-fan design that was evaluated as a candidate configuration for a possible future V/STOL research transport. The paper includes discussion of potential advanced V/STOL landing approach profiles as key design requirements for V/STOL aircraft, description and experimental results of an integrated propulsion/control system designed to achieve desired advanced V/STOL near-terminal operating capabilities, and results from evaluating V/STOL designs on piloted moving-base simulators. This paper discusses use of the piloted moving-base simulator as a design tool for evolving satisfactory V/STOL stabilization and propulsion/control systems. Included are problems and solutions identified during simulation of simultaneous decelerating/descent steep curved landing approaches under instrument flight conditions. Simulation results are also compared to flight results obtained with the DO-31 V/STOL research transport.

  14. Mitigating crack propagation in a highly maneuverable flight vehicle using life extending control logic (United States)

    Elshabasy, Mohamed Mostafa Yousef Bassyouny

    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft's service life, without incurring significant loss of vehicle

  15. The Impact of Airline Flight Schedules on Flight Delays


    Vinayak Deshpande; Mazhar Arıkan


    Airline flight delays have come under increased scrutiny lately in the popular press, with the Federal Aviation Administration data revealing that airline on-time performance was at its worst level in 13 years in 2007. Flight delays have been attributed to several causes such as weather conditions, airport congestion, airspace congestion, use of smaller aircraft by airlines, etc. In this paper, we examine the impact of the scheduled block time allocated for a flight, a factor controlled by ai...

  16. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1 (United States)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian


    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  17. Minimum power requirement for environmental control of aircraft

    International Nuclear Information System (INIS)

    This paper addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Four models are proposed and optimized. In the first, the ECS operates reversibly, the air stream in the cabin is mixed to one temperature, and the cabin experiences heat transfer with the ambient, across its insulation. The cabin temperature is fixed. In the second model, the fixed cabin temperature is assigned to the internal solid surfaces of the cabin, and a thermal resistance separates these surfaces from the air mixed in the cabin. In the third model, the ECS operates irreversibly, based on the bootstrap air cycle. The fourth model combines the ECS features of the third model with the cabin-environment interaction features of the second model. It is shown that in all models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. The effect of other design parameters and flying conditions is documented. The optimized air delivery temperature is relatively insensitive to the complexity of the model; for example, it is insensitive to the size of the heat exchanger used in the bootstrap air cycle. This study adds to the view that robustness is a characteristic of optimized complex flow systems, and that thermodynamic optimization results can be used for orientation in the pursuit of more complex and realistic designs

  18. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Flight Test Report (United States)

    Ishac, Joseph A.; Iannicca, Dennis C.; Shalkhauser, Kurt A.; Kachmar, Brian A.


    NASA Glenn Research Center conducted a series of flight tests for the purpose of evaluating air-to-ground communications links for future unmanned aircraft systems (UAS). The primary objective of the test effort was to evaluate the transition of the aircraft communications from one ground station to the next, and to monitor data flow during the "hand-off" event. To facilitate the testing, ground stations were installed at locations in Cleveland, Ohio and Albany, Ohio that each provides line-of-sight radio communications with an overflying aircraft. This report describes results from the flight tests including flight parameters, received signal strength measurements, data latency times, and performance observations for the air-to-ground channel.

  19. Noise Control and Noise Evaluation in Aircraft Engines


    石井, 達哉; Ishii, Tatsuya


    Aircraft engine noise emitted for example by the jet exhaust, fan, compressor, turbine and combustor is the predominant factor in total aircraft noise during take-off and landing. As a result of enormous efforts to alleviate engine noise, noise levels have been improved by more than 20 dB compared to the first generation of airliners. However, the growing volume of air transport means that further noise reduction is still required. With this background, we decided to concentrate on two techni...

  20. Stability and control of VTOL capable airships in hovering flight (United States)

    Curtiss, H. C., Jr.; Sumantran, V.


    The stability and control characteristics of an airship equipped with lifting rotors to provide a modest VTOL capability are discussed. The rotors are used for control and maneuvering in near-hovering flight. Configurations with two, three, and four lifting rotors are examined and compared with respect to control capabilities and dynamic response characteristics. Linearized models of the dynamics are employed for this study. A new approach to the prediction of rotor derivatives for operation near zero thrust in hover is presented. It is found that all three configurations have similar control and response characteristics. The responses are characterized by long time constants and low levels of angular damping.

  1. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms (United States)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  2. First controlled vertical flight of a biologically inspired microrobot

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Galloway, Kevin C, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 (United States)


    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  3. Application of modern control theory to the design of optimum aircraft controllers (United States)

    Power, L. J.


    A procedure is described for synthesis of optimal aircraft control systems by application of the concepts of optimal control theory to time-invariant linear systems with quadratic performance criteria. Essential in this synthesis procedure is the solution of the Riccati matrix equation which results in a constant linear feedback control law for an output regulator which maintains a plant in an equilibrium in the presence of impulse disturbances. An algorithm is derived for designing maneuverable output regulators with selected state variables for feedback.

  4. Optimizing Flight Control Software With an Application Platform (United States)

    Smith, Irene Skupniewicz; Shi, Nija; Webster, Christopher


    Flight controllers in NASA s mission control centers work day and night to ensure that missions succeed and crews are safe. The IT goals of NASA mission control centers are similar to those of most businesses: to evolve IT infrastructure from basic to dynamic. This paper describes Mission Control Technologies (MCT), an application platform that is powering mission control today and is designed to meet the needs of future NASA control centers. MCT is an extensible platform that provides GUI components and a runtime environment. The platform enables NASA s IT goals through its use of lightweight interfaces and configurable components, which promote standardization and incorporate useful solution patterns. The MCT architecture positions mission control centers to reach the goal of dynamic IT, leading to lower cost of ownership, and treating software as a strategic investment.

  5. Cluster flight control for fractionated spacecraft on an elliptic orbit (United States)

    Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin


    This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.

  6. Redundant hydraulic secondary flight control systems behavior in failure conditions


    Borello, Lorenzo; Villero, Giuseppe; Dalla Vedova, Matteo Davide Lorenzo


    The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system be...

  7. Shape-Memory-Alloy Actuator For Flight Controls (United States)

    Barret, Chris


    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  8. Adaptive flight control surfaces, wings, rotors, and active aerodynamics (United States)

    Barrett, Ronald M.; Brozoski, Fred


    This study outlines active flight control materials, structural arrangements, and several new active flight control methods for rotorcraft, airplanes and missiles. A system-level comparison shows that flight control actuator systems using materials like piezoceramics have approximately double the mass-specific energy and 4 to 6 times the volume specific energy of conventional actuators. New fabrication techniques centered on the principal of directional attachment allow wings and rotor blades to become twist active. Using these new methods, directionally attached piezoelectric (DAP) actuator elements were built into graphite-epoxy sandwich structures. When compared to conventionally attached piezoelectric (CAP) elements, twist deflections (important for flight control) of DAP plates were an order of magnitude greater. By using such twist-active elements in a torque-plate configuration, an active helicopter rotor was built. This Froude-scaled solid state rotor was whirl-stand tested and showed steady blade pitch deflections in excess of plus or minus 8 degrees with good correlation between theory and experiment rates up to 42 Hz (which corresponded to 2.5/rev) and no degradation in deflection as RPM was increased. DAP elements were also used in high aspect ratio subsonic and supersonic wings, demonstrating static twist deflections of plus or minus 2 degrees and plus or minus 6 degrees respectively, with good correlation between experiment and finite element results. The final section compares all-moving active stabilator structural arrangements and pitch deflections, which range up to plus or minus 12 degrees, generating lift coefficient changes in excess of plus or minus 0.8.

  9. Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Petzar, Paul J.


    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center.

  10. Long Range Aircraft Trajectory Prediction


    Magister, Tone


    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  11. Active Flow Control with Adaptive Design Techniques for Improved Aircraft Safety Project (United States)

    National Aeronautics and Space Administration — The increased aircraft safety potential of active flow control using synthetic jets - specifically, using synthetic jets on the leading edge of the wing to delay...

  12. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.


    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  13. Utilization of simple and double control subsonic aircraft for advanced combat training of the military pilots

    Directory of Open Access Journals (Sweden)



    Full Text Available The use of subsonic single control aircraft and especially of double–control ones, instead of supersonic combat aircraft in the military pilot training programs in the operational units, has be-come a necessity due to the economic and financial world-wide crisis which began during the 70’s-80’s, with the advent of the oil crisis, affecting many countries, which have their own Military Air Forces.

  14. Control of Aircraft Pushbacks at an Airport using a Dynamic Programming Formulation


    Khadilkar, Harshad Dilip; Balakrishnan, Hamsa


    This paper describes a dynamic programming formulation of the airport surface traffic management problem. Movement of aircraft is modeled as the flow of traffic on a network, with stochastic link travel times. This is followed by an algorithm for controlling entry of aircraft into the taxiway system at an airport. Finally, two realistic variations of the formulation are presented - variation of parameters and nite bu er capacity. Optimal control policies for all cases are calculated using po...

  15. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft (United States)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy


    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  16. Implementation of an Adaptive Controller System from Concept to Flight Test (United States)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve


    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a "floating limiter" (FL) concept that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly "floating" and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually "hit" the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  17. Wind-tunnel tests of the XV-15 tilt rotor aircraft (United States)

    Weiberg, J. A.; Maisel, M. D.


    The XV-15 aircraft was tested in the Ames 40 by 80 Foot Wind Tunnel for preliminary evaluation of aerodynamic and aeroelastic characteristics prior to flight. The tests were undertaken to investigate the aircraft performance, stability, control and structural loads for flight modes from helicopter through transition and airplane mode up to the tunnel capability of 170 knots. Results from these tests are presented.

  18. Cosmic rays exposure during aircraft flight (3). Guideline and dose evaluation

    International Nuclear Information System (INIS)

    Radiation Council of MEXT drew up the Guideline of Cosmic Ray Exposure Control for Air Crew in 2006. The content of the Guideline and evaluation methods of dose are explained. The Guideline stated five items for Airline Company. It consists of 1) exposure dose control for air crew, 2) evaluation methods of cosmic rays exposure dose of air crew, 3) explanation and education of cosmic rays exposure for air crew, 4) reading, record and store of cosmic rays exposure dose of air crew, and 5) health control of air crew. The doses of four airlines were calculated by the Civil Aeromedical Research Institute (CARI) code and the European Program package for the Calculation of Aviation Route Doses (EPCARD) code. The difference of two codes was about 15 to 25%. Japanese Internet System for Calculation of Aviation Route Doses (JISCAED) has been developed by Japan. (S.Y.)

  19. Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms (United States)

    Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan


    Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance

  20. Flight management concepts compatible with air traffic control (United States)

    Morello, S. A.


    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  1. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results (United States)

    Latypov, A. F.


    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  2. Autonomous formation flight of helicopters: Model predictive control approach (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  3. Application of robust control in unmanned vehicle flight control system design


    Al Swailem, Salah I.


    The robust loop-shaping control methodology is applied in the flight control system design of the Cranfield A3 Observer unmanned, unstable, catapult launched air vehicle. Detailed linear models for the full operational flight envelope of the air vehicle are developed. The nominal and worst-case models are determined using the v-gap metric. The effect of neglecting subsystems such as actuators and/or computation delays on modelling uncertainty is determined using the v-gap metri...

  4. Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths (United States)

    Rajan, N.; Ardema, M. D.


    A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.


    Institute of Scientific and Technical Information of China (English)


    Based on linear matrix inequalities (LMI), the design method of reduced-order controllers of mixed sensitivity problem is studied for flight control systems. It is shown that there exists a controller with order not greater than the difference between the generalized plant order and the number of independent control variables, if the mixed sensitivity problem is solvable for strict regular flight control plants. The proof is constructive, and an approach to design such a controller can be obtained in terms of a pair of feasible solution to the well-known 3 LMI. Finally, an example of mixed sensitivity problem for a flight control system is given to demonstrate practice of the approach.

  6. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene


    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  7. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems (United States)

    Caines, P. E.


    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  8. A Stewart Platform as a FBW Flight Control Unit (United States)

    Ömürlü, Vasfi; Yildiz, İbrahim


    A variety of flight control units have been put into realization for navigational purposes of spatially moving vehicles (SMV), which is mostly manipulated by 2 or 3 degrees-of-freedom (DOF) joysticks. Since motion in space consists of three translational motions in forward, side and vertical directions and three rotational motions about these axis; with present joystick interfaces, spatial vehicles has to employ more than one navigational control unit to be able to navigate on all required directions. In this study, a 3 × 3 Stewart-Platform-based FBW (Fly-By-Wire) flight control unit with force feedback is presented which will provide single point manipulation of any SMVs along three translational and about three rotational axis. Within the frame of this paper, design, capability and the advantages of the novel system is mentioned. Kinematics of a Stewart Platform (SP) mechanism employed and its motion potentials is presented by simulations and workspace of the system is evaluated. Dynamic analysis by Bond-Graph approach will be mentioned. Mechatronic design of the complete structure is discussed and force reflection capability of the system with simulations is pointed out using stiffness control. Finally, the possible future work of the subject is discussed which may include the feasible solutions of the SP in terms of size and safety when implementing inside a cockpit.

  9. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise (United States)

    Fuller, C. R.


    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  10. A flight simulator control system using electric torque motors (United States)

    Musick, R. O.; Wagner, C. A.


    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  11. Effects of an in-flight thrust reverser on the stability and control characteristics of a single-engine fighter airplane model (United States)

    Mercer, C. E.; Maiden, D. L.


    The changes in thrust minus drag performance as well as longitudinal and directional stability and control characteristics of a single-engine jet aircraft attributable to an in-flight thrust reverser of the blocker-deflector door type were investigated in a 16-foot transonic wind tunnel. The longitudinal and directional stability data are presented. Test conditions simulated landing approach conditions as well as high speed maneuvering such as may be required for combat or steep descent from high altitude.

  12. Commander Brand and Pilot Overmyer operate controls on forward flight deck (United States)


    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  13. Designing a Biomimetic Ornithopter Capable of Sustained and Controlled Flight

    Institute of Scientific and Technical Information of China (English)

    Joon Hyuk Park; Kwang-Joon Yoon


    We describe the design of four ornithopters ranging in wing span from 10 cm to 40 cm, and in weight from 5 g to 45 g. The controllability and power supply are two major considerations, so we compare the efficiency and characteristics between different types of subsystems such as gearbox and tail shape. Our current ornithopter is radio-controlled with inbuilt visual sensing and capable of takeoff and landing. We also concentrate on its wing efficiency based on design inspired by a real insect wing and consider that aspects of insect flight such as delayed stall and wake capture are essential at such small size. Most importantly, the advance ratio, controlled either by enlarging the wing beat amplitude or raising the wing beat frequency, is the most significant factor in an ornithopter which mimics an insect.

  14. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj


    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  15. Active vibration control of a full scale aircraft wing using a reconfigurable controller (United States)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.


    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  16. Stability-Augmentation Devices for Miniature Aircraft (United States)

    Wood, RIchard M.


    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  17. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens


    hardware or are analytical, and formulates residuals from which faults can be prognosed or diagnosed. An approach is suggested where detailed modelling is not needed but normal behaviour is learned from short segments of flight data using adaptive methods for learning. Statistical characterisation of...

  18. Output tracking control for a velocity-sensorless VTOL aircraft with measurement delays (United States)

    Su, Shanwei; Lin, Yan


    In this paper, we develop a non-linear controller to achieve output tracking for a velocity-sensorless vertical take-off and landing (VTOL) aircraft in the presence of measurement delays. By applying the Pade approximation technique, the original controlled system is transformed into an augmented dimension system without any time delay. After constructing full-order observers, error coordinate transformation, and system decomposition, the tracking problem of the newly transformed system is changed into the stabilisation problem of two non-minimum phase subsystems and one minimum phase subsystem. The resulting controller not only forces the VTOL aircraft to asymptotically track the desired trajectories, but also drives the unstable internal dynamics, which stands for the non-minimum property of VTOL aircraft, to follow the causal ideal internal dynamics (IID) solved via the stable system centre (SSC) method. Numerical simulation results illustrate the effectiveness of the proposed controller.

  19. A two-stage approach for managing actuators redundancy and its application to fault tolerant flight control

    Directory of Open Access Journals (Sweden)

    Zhong Lunlong


    Full Text Available In safety-critical systems such as transportation aircraft, redundancy of actuators is introduced to improve fault tolerance. How to make the best use of remaining actuators to allow the system to continue achieving a desired operation in the presence of some actuators failures is the main subject of this paper. Considering that many dynamical systems, including flight dynamics of a transportation aircraft, can be expressed as an input affine nonlinear system, a new state representation is adopted here where the output dynamics are related with virtual inputs associated with the intended operation. This representation, as well as the distribution matrix associated with the effectiveness of the remaining operational actuators, allows us to define different levels of fault tolerant governability with respect to actuators’ failures. Then, a two-stage control approach is developed, leading first to the inversion of the output dynamics to get nominal values for the virtual inputs and then to the solution of a linear quadratic (LQ problem to compute the solicitation of each operational actuator. The proposed approach is applied to the control of a transportation aircraft which performs a stabilized roll maneuver while a partial failure appears. Two fault scenarios are considered and the resulting performance of the proposed approach is displayed and discussed.

  20. Altus aircraft on runway (United States)


    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  1. Optimal Flight for Ground Noise Reduction in Helicopter Landing Approach: Optimal Altitude and Velocity Control (United States)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise during landing approach with an optimization technique, and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of Japan Aerospace Exploration Agency (JAXA) show that the noise of a helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model for a helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. Using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates large noise and decrease the flight time, which are different from conventional flight. Finally, we verify the validity of the optimal flight patterns through flight experiments. The actual flights following the optimal paths resulted in noise reduction, which shows the effectiveness of the optimization.

  2. Control Power Optimization using Artificial Intelligence for Hybrid Wing Body Aircraft


    Chhabra, Rupanshi


    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling a large array of control surfaces. This research investigates the potential of employing artificial intelligence methods like neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts for minimizing control power, hinge moments, and actuator forces, while keeping the system weights within acceptable limits. The main obje...

  3. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines (United States)

    Bansal, Indar


    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  4. An evaluation of piezoelectric spoilers for missile flight control (United States)

    August, James A.

    Advances in aerodynamic flight controls can increase performance and lower the cost of guided weapons. Research at The University of Texas at Arlington has focused on using active materials to produce a lightweight, low-cost, missile fin that can be used on subsonic and supersonic weapons. This dissertation describes the design, construction, and testing of one such aerodynamic control device, consisting of a circular arc spoiler integrated with a piezoelectric bimorph actuator. As part of this dissertation, an examination of state-of-the-art active materials technology was conducted to select an actuator material compatible with guided weapon operating conditions. An examination of state-of-the-art aerodynamic "active structures" research was also conducted to identify aerodynamic control schemes suitable for integration with guided weapon control fins. The aerodynamic controls schemes examined include: the all-moving wing, wing twist, discrete flaps, continuous flaps, jet spoilers, and mechanical spoilers. After determining the advantages and disadvantages of each control device the combination of a mechanical spoiler and piezoelectric bimorph was selected for further research. A missile fin model using an integrated piezoelectric circular-arc spoiler was designed, built, and tested in a subsonic wind tunnel at speeds up to 210 ft/s (64 m/s). Aerodynamic quantities presented include CL, CL/CD, and C M as functions of spoiler displacement. Actuator related quantities presented include displacement vs. input voltage, force vs. input voltage, and spoiler bandwidth.

  5. Smart Adaptive Flight Effective Cue (SAFE-Cue) Project (United States)

    National Aeronautics and Space Administration — As a means to enhance aviation safety, numerous adaptive control techniques have been developed to maintain aircraft stability and safety of flight in the presence...

  6. Distributed, Passivity-Based, Aeroservoelastic Control (DPASC) of Structurally Efficient Aircraft in the Presence of Gusts Project (United States)

    National Aeronautics and Space Administration — Control of extremely lightweight, long endurance aircraft poses a challenging aeroservoelastic (ASE) problem due to significantly increased flexibility, and...

  7. Flight Control System Simulation Platform for UAV Based on Integrating Simulink With Stateflow


    Xiao Qiangui; Ju Xiao; Hu Shousong; Gao Yanhui


    Aiming at rapidly analyzing and validating control strategy, control law and flight mode of the Unmanned Aerial Vehicle (UAV), a digital simulation test platform for flight control system (FCS) of UAV is presented in this paper. The platform is built on principles of hierarchy and modularity, its core is composed of flight mode management and control module, and the two components are implemented by using Matlab/Stateflow and embedded Simulink Function respectively. Simulation test for a cert...

  8. The B-747 flight control system maintenance and reliability data base for cost effectiveness tradeoff studies (United States)


    Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.

  9. Enhancements in Uav Flight Control and Sensor Orientation (United States)

    Bäumker, M.; Przybilla, H.-J.; Zurhorst, A.


    The acquisition of photogrammetric image data by means of Unmanned Aerial Vehicles (UAV) has developed in recent years to an interesting new measurement method especially for small to medium sizes of objects. In addition the latest developments in the field of navigation systems (GNSS), of inertial sensors and other sensors in combination with powerful and easy to program microcontrollers have made a major contribution to this. In particular, the development of MEMS sensors has triggered the boom of the UAV and has given decisively influence and it is still going on. The integration of sensors on a single board not only enables a cost-effective manufacturing and mass production, but also the use in accordance with small, lightweight UAV. The latest developments on a 50 mm × 50 mm-sized circuit board combine the sensors and the microcontroller for the flight control and flight navigation. Both the board and the microcontroller are easy to program and maintain several interfaces for connecting additional sensors, such as GNSS, ultrasonic sensors and telemetry. This article presents the UAV system of the Bochum University of Applied Sciences, the used sensors and the obtained results for accurate georeferencing.

  10. Data Mining of NASA Boeing 737 Flight Data: Frequency Analysis of In-Flight Recorded Data (United States)

    Butterfield, Ansel J.


    Data recorded during flights of the NASA Trailblazer Boeing 737 have been analyzed to ascertain the presence of aircraft structural responses from various excitations such as the engine, aerodynamic effects, wind gusts, and control system operations. The NASA Trailblazer Boeing 737 was chosen as a focus of the study because of a large quantity of its flight data records. The goal of this study was to determine if any aircraft structural characteristics could be identified from flight data collected for measuring non-structural phenomena. A number of such data were examined for spatial and frequency correlation as a means of discovering hidden knowledge of the dynamic behavior of the aircraft. Data recorded from on-board dynamic sensors over a range of flight conditions showed consistently appearing frequencies. Those frequencies were attributed to aircraft structural vibrations.

  11. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design (United States)

    Cotting, M. Christopher; Cox, Timothy H.


    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  12. The Analysis of the Contribution of Human Factors to the In-Flight Loss of Control Accidents (United States)

    Ancel, Ersin; Shih, Ann T.


    In-flight loss of control (LOC) is currently the leading cause of fatal accidents based on various commercial aircraft accident statistics. As the Next Generation Air Transportation System (NextGen) emerges, new contributing factors leading to LOC are anticipated. The NASA Aviation Safety Program (AvSP), along with other aviation agencies and communities are actively developing safety products to mitigate the LOC risk. This paper discusses the approach used to construct a generic integrated LOC accident framework (LOCAF) model based on a detailed review of LOC accidents over the past two decades. The LOCAF model is comprised of causal factors from the domain of human factors, aircraft system component failures, and atmospheric environment. The multiple interdependent causal factors are expressed in an Object-Oriented Bayesian belief network. In addition to predicting the likelihood of LOC accident occurrence, the system-level integrated LOCAF model is able to evaluate the impact of new safety technology products developed in AvSP. This provides valuable information to decision makers in strategizing NASA's aviation safety technology portfolio. The focus of this paper is on the analysis of human causal factors in the model, including the contributions from flight crew and maintenance workers. The Human Factors Analysis and Classification System (HFACS) taxonomy was used to develop human related causal factors. The preliminary results from the baseline LOCAF model are also presented.

  13. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05) (United States)

    Barret, C.


    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  14. Redundant integrated flight control/navigation inertial sensor complex (United States)

    Ebner, R. E.; Mark, J. G.


    A redundant strapdown inertial navigation system for integrated flight control/navigation use is described. Design of the system, which consists of four tuned-gimbal gyros, eight accelerometers, and four processors, is discussed, with emphasis on its compact configuration (13 by 13 by 14 in.), based on symmetry properties of an octahedron. A matrix operator for least-squares combination of data from an arbitrary number of two-degree-of-freedom gyros is derived, and general parity equations for error analysis are given. Self-contained detection and isolation of a two-axis gyro failure is considered; system failure probability, which depends on component failure rates and self-correction capacities, is analyzed. Test data, including typical parity equation responses during motion and simulated gyro and accelerometer failures, are also presented.

  15. Markov reliability models for digital flight control systems (United States)

    Mcgough, John; Reibman, Andrew; Trivedi, Kishor


    The reliability of digital flight control systems can often be accurately predicted using Markov chain models. The cost of numerical solution depends on a model's size and stiffness. Acyclic Markov models, a useful special case, are particularly amenable to efficient numerical solution. Even in the general case, instantaneous coverage approximation allows the reduction of some cyclic models to more readily solvable acyclic models. After considering the solution of single-phase models, the discussion is extended to phased-mission models. Phased-mission reliability models are classified based on the state restoration behavior that occurs between mission phases. As an economical approach for the solution of such models, the mean failure rate solution method is introduced. A numerical example is used to show the influence of fault-model parameters and interphase behavior on system unreliability.

  16. Flexibility and control of thorax deformation during hawkmoth flight. (United States)

    Ando, Noriyasu; Kanzaki, Ryohei


    The interaction between neuromuscular systems and body mechanics plays an important role in the production of coordinated movements in animals. Lepidopteran insects move their wings by distortion of the thorax structure via the indirect flight muscles (IFMs), which are activated by neural signals at every stroke. However, how the action of these muscles affects thorax deformation and wing kinematics is poorly understood. We measured the deformation of the dorsal thorax (mesonotum) of tethered flying hawkmoths, Agrius convolvuli, using a high-speed laser profilometer combined with simultaneous recordings of electromyograms and wing kinematics. We observed that locally amplified mesonotum deformation near the wing hinges ensures sufficient wing movement. Furthermore, phase asymmetry in IFM activity leads to phase asymmetry in mesonotum oscillations and wingbeats. Our results revealed the flexibility and controllability of the single structure of the mesonotum by neurogenic action of the IFMs. PMID:26740560

  17. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.


    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  18. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors (United States)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.


    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  19. Aircraft-on-ground path following control by dynamical adaptive backstepping

    Institute of Scientific and Technical Information of China (English)

    Chen Bihua; Jiao Zongxia; Shuzhi Sam Ge


    The necessity of improving the air traffic and reducing the aviation emissions drives to investigate automatic steering for aircraft to effectively roll on the ground.This paper addresses the path following control problem of aircraft-on-ground and focuses on the task that the aircraft is required to follow the desired path on the runway by nose wheel automatic steering.The proposed approach is based on dynamical adaptive backstepping so that the system model does not have to be transformed into a canonical triangular form which is necessary in conventional backstepping design.This adaptive controller performs well despite the lack of information on the aerodynamic load and the tire cornering stiffness parameters.Simulation results clearly demonstrate the advantages and effectiveness of the proposed approach.

  20. Determination of the stability and control derivatives of the NASA F/A-18 HARV using flight data (United States)

    Napolitano, Marcello R.; Spagnuolo, Joelle M.


    This report documents the research conducted for the NASA-Ames Cooperative Agreement No. NCC 2-759 with West Virginia University. A complete set of the stability and control derivatives for varying angles of attack from 10 deg to 60 deg were estimated from flight data of the NASA F/A-18 HARV. The data were analyzed with the use of the pEst software which implements the output-error method of parameter estimation. Discussions of the aircraft equations of motion, parameter estimation process, design of flight test maneuvers, and formulation of the mathematical model are presented. The added effects of the thrust vectoring and single surface excitation systems are also addressed. The results of the longitudinal and lateral directional derivative estimates at varying angles of attack are presented and compared to results from previous analyses. The results indicate a significant improvement due to the independent control surface deflections induced by the single surface excitation system, and at the same time, a need for additional flight data especially at higher angles of attack.