WorldWideScience

Sample records for aircraft engine components

  1. Some failure analyses of South African Air Force aircraft engine and airframe components

    CSIR Research Space (South Africa)

    Benson, JM

    1998-06-01

    Full Text Available Failure analyses of various engine and airframe components from South African Air Force aircraft have been performed by the Division of Materials Science and Technology over several years and these have ranged from crash investigations to minor...

  2. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  3. Measuring compliance during aircraft (Component) redeliveries at KLM engineering & maintenance

    NARCIS (Netherlands)

    Burhani, Shahir; Verhagen, W.J.C.; Curran, Ricky

    2016-01-01

    Aircraft and aircraft components are redelivered to the next operator or owner during the phase-out process. During this process the operator is required by law and contract requirements to show compliance with maintenance procedures. At KLM E&M the phase-out documentation process is under

  4. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  5. Research regarding reverse engineering for aircraft components

    Directory of Open Access Journals (Sweden)

    Udroiu Razvan

    2017-01-01

    Full Text Available Reverse engineering is a useful technique used in manufacturing and design process of new components. In aerospace industry new components can be developed, based on existing components without technical Computer Aided Design (CAD data, in order to reduce the development cycle of new products. This paper proposes a methodology wherein the CAD model of turbine blade can be build using computer aided reverse engineering technique utilising a 5 axis Coordinate Measuring Machine (CMM. The proposed methodology uses a scanning strategy by features, followed by a design methodology for 3D modelling of complex shapes.

  6. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  7. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  8. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  9. Multifuel rotary aircraft engine

    Science.gov (United States)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  10. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  11. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ...: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues to read as follows: Authority: 49 U.S.C..., analysis, and component test. * * * * * Issued in Washington, DC, on June 7, 2012. Lirio Liu, Acting...

  12. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  13. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.

  14. Engine-propeller power plant aircraft community noise reduction key methods

    Science.gov (United States)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  15. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    International Nuclear Information System (INIS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-01-01

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components

  16. Exergetic analysis of an aircraft turbojet engine with an afterburner

    OpenAIRE

    Ehyaei M.A.; Anjiridezfuli A.; Rosen M.A.

    2013-01-01

    An exergy analysis is reported of a J85-GE-21 turbojet engine and its components for two altitudes: sea level and 11,000 meters. The turbojet engine with afterburning operates on the Brayton cycle and includes six main parts: diffuser, compressor, combustion chamber, turbine, afterburner and nozzle. Aircraft data are utilized in the analysis with simulation data. The highest component exergy efficiency at sea level is observed to be for the compressor, at 9...

  17. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  18. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  19. Exergetic analysis of an aircraft turbojet engine with an afterburner

    Directory of Open Access Journals (Sweden)

    Ehyaei M.A.

    2013-01-01

    Full Text Available An exergy analysis is reported of a J85-GE-21 turbojet engine and its components for two altitudes: sea level and 11,000 meters. The turbojet engine with afterburning operates on the Brayton cycle and includes six main parts: diffuser, compressor, combustion chamber, turbine, afterburner and nozzle. Aircraft data are utilized in the analysis with simulation data. The highest component exergy efficiency at sea level is observed to be for the compressor, at 96.7%, followed by the nozzle and turbine with exergy efficiencies of 93.7 and 92.3%, respectively. At both considered heights, reducing of engine intake air speed leads to a reduction in the exergy efficiencies of all engine components and overall engine. The exergy efficiency of the turbojet engine is found to decrease by 0.45% for every 1°C increase in inlet air temperature.

  20. The High Level Mathematical Models in Calculating Aircraft Gas Turbine Engine Parameters

    Directory of Open Access Journals (Sweden)

    Yu. A. Ezrokhi

    2017-01-01

    Full Text Available The article describes high-level mathematical models developed to solve special problems arising at later stages of design with regard to calculation of the aircraft gas turbine engine (GTE under real operating conditions. The use of blade row mathematics models, as well as mathematical models of a higher level, including 2D and 3D description of the working process in the engine units and components, makes it possible to determine parameters and characteristics of the aircraft engine under conditions significantly different from the calculated ones.The paper considers application of mathematical modelling methods (MMM for solving a wide range of practical problems, such as forcing the engine by injection of water into the flowing part, estimate of the thermal instability effect on the GTE characteristics, simulation of engine start-up and windmill starting condition, etc. It shows that the MMM use, when optimizing the laws of the compressor stator control, as well as supplying cooling air to the hot turbine components in the motor system, can significantly improve the integral traction and economic characteristics of the engine in terms of its gas-dynamic stability, reliability and resource.It ought to bear in mind that blade row mathematical models of the engine are designed to solve purely "motor" problems and do not replace the existing models of various complexity levels used in calculation and design of compressors and turbines, because in “quality” a description of the working processes in these units is inevitably inferior to such specialized models.It is shown that the choice of the mathematical modelling level of an aircraft engine for solving a particular problem arising in its designing and computational study is to a large extent a compromise problem. Despite the significantly higher "resolution" and information ability the motor mathematical models containing 2D and 3D approaches to the calculation of flow in blade machine

  1. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  2. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The object of this research is to develop an in-service life-monitor system for the prediction of the remaining component and system life of aircraft engines. The...

  3. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  4. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  5. Research and development of turbofan engine for supersonic aircraft. Choonsokukiyo turbofan engine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1992-01-01

    This paper described the researched results of the demonstrator of a turbofan engine for supersonic aircraft (IHI-17). A turbofan engine with an afterburner was experimentally fabricated and various engine tests have been carried out since 1988. Although the engine size is small, the fighter engine specifications were applied to its design and the prior or simultaneous research on each component was carried out. As a result, the system integration technique by which an engine was assembled by integrating each component could be established. New materials and new manufacturing techniques such as turbine blades of single crystal, turbine disks of powder metallurgy and deep chemical milling for a duct were developed to use for the long term engine test and the prospect to commercialization could be obtained. The following techniques have been established and the results satisfying target specifications could be achieved: the three dimensional aerodynamic design of compressor and turbine, the adoption of air blast fuel atomizer to suppress the smoke generation, an afterburner of spray bar system and the mounting type FADEC (full authority digital electronic control) to control the engine with the afterburner. 4 refs., 15 figs., 4 tabs.

  6. A Novel Modeling Method for Aircraft Engine Using Nonlinear Autoregressive Exogenous (NARX) Models Based on Wavelet Neural Networks

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun; Cao, Can

    2018-05-01

    A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.

  7. Calculation of odour emissions from aircraft engines at Copenhagen Airport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Morten; Kousgaard, Uffe [National Environmental Research Institute, Frederiksborgvej 399, 4000 Roskilde (Denmark); Oxboel, Arne [FORCE Technology, Park Alle 345, 2605 Broendby (Denmark)

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. (author)

  8. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  9. Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    EPA adopted emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  10. Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation

    International Nuclear Information System (INIS)

    Gao, Chunwang; Meeker, William Q.; Mayton, Donna

    2014-01-01

    Inspection is an important part of many maintenance processes, especially for safety-critical system components. This work was motivated by the need to develop more effective methods to detect cracks in rotating components of aircraft engines. This paper describes the analysis of data from vibrothermography inspections on aircraft engine turbine blades. Separate but similar analysis were done for two different purposes. In both analyses, we fit statistical models with random effects to describe the crack-to-crack variability and the effect that the experimental variables have on the responses. In the first analysis, the purpose of the study was to find vibrothermography equipment settings that will provide good crack detection capability over the population of similar cracks in the particular kind of aircraft engine turbine blades that were inspected. Then, the fitted model was used to determine the test conditions where the probability of detection (POD) is expected to be high and probability of alarm is expected to be low. In our second analysis, crack size information was added and a similar model was fit. This model provides an estimate of POD as a function of crack size for specified test conditions. This function is needed as an input to models for planning in-service inspection intervals. - Highlights: • Developed experimental design methods to optimize the inspection parameters for a vibrothermography inspection system. • Used mixed effects modeling to describe crack-to-crack variability. • Fit an extended model to provide estimates of the probability of detection as a function of crack length. • Investigated the coverage probability of confidence intervals for probability of detection

  11. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  12. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  13. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  14. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Impact of future fuel properties on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  17. Multi-Fuel Rotary Engine for General Aviation Aircraft

    Science.gov (United States)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  18. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  19. QCGAT aircraft/engine design for reduced noise and emissions

    Science.gov (United States)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  20. Residual life estimation of cracked aircraft structural components

    OpenAIRE

    Maksimović, Mirko S.; Vasović, Ivana V.; Maksimović, Katarina S.; Trišović, Nataša; Maksimović, Stevan M.

    2018-01-01

    The subject of this investigation is focused on developing computation procedure for strength analysis of damaged aircraft structural components with respect to fatigue and fracture mechanics. For that purpose, here will be defined computation procedures for residual life estimation of aircraft structural components such as wing skin and attachment lugs under cyclic loads of constant amplitude and load spectrum. A special aspect of this investigation is based on using of the Strain Energy Den...

  1. Exergo-Economic Analysis of an Experimental Aircraft Turboprop Engine Under Low Torque Condition

    Science.gov (United States)

    Atilgan, Ramazan; Turan, Onder; Aydin, Hakan

    Exergo-economic analysis is an unique combination of exergy analysis and cost analysis conducted at the component level. In exergo-economic analysis, cost of each exergy stream is determined. Inlet and outlet exergy streams of the each component are associated to a monetary cost. This is essential to detect cost-ineffective processes and identify technical options which could improve the cost effectiveness of the overall energy system. In this study, exergo-economic analysis is applied to an aircraft turboprop engine. Analysis is based on experimental values at low torque condition (240 N m). Main components of investigated turboprop engine are the compressor, the combustor, the gas generator turbine, the free power turbine and the exhaust. Cost balance equations have been formed for all components individually and exergo-economic parameters including cost rates and unit exergy costs have been calculated for each component.

  2. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  3. Aircraft gas turbine engine vibration diagnostics

    OpenAIRE

    Stanislav Fábry; Marek Češkovič

    2017-01-01

    In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...

  4. 77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-11-23

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel... Modification Do not incorporate Cessna Aircraft Company Engine Fuel Return System Modification Kit MK 172-28-01...

  5. Study on afterburner of aircraft engine

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1991-07-01

    Study on the afterburner for aircraft engines was reported which is used as an optimum means to produce the supersonic capability of military aircrafts. The basic principle and types of the afterburner were outlined, and as the major problem concerning turbofan afterburners, a combustion capacity at low temperature in fan air flow was discussed, in particular, flame stabilization and combustion efficiency. Basic studies were conducted by fuel spray test, combustion stability test, sector model combustion test and numerical analysis of afterburner internal flow. As a result, a mixing spray fuel injection system with injection of a small amount of fuel into flameholder wake resulted in broadening of a combustible region, and an original flameholder combined with a scoop and double gutters caused a high combustion efficiency. The prototype afterburner was developed for F3 turbofan engines in association with Japan Defence Agency, and a combustion efficiency of 74% was obtained in on-engine running test. 4 refs., 14 figs.

  6. Trends in aircraft engines. Trends in aircraft gas turbines and subsonic engines

    Energy Technology Data Exchange (ETDEWEB)

    Murashima, Kanji

    1988-06-10

    While the emphasis of commercial, large aircraft engines is placed on low fuel consumption at high subsonic flight and the turbofan engines with high bypass ratio are dominating, high speed turboprop (ATP) of Mach 0.85 class with low fuel consumption are emerging. UHB with bypass ratio of 15 - 20 are planned with expection for application to intermediate size commercial planes. The pressure ratio is continuously rizing for improved cycle efficiency, reaching 35 - 40 in highest cases. Trends in design technique include: Use of computational aerodynamics and application of two-dimensional structural analysis and the digital simulation of engine characteristics. In the field of large, high bypass turbofan, serious competition is seen between GE and PNA at the thrust level of 5 - 60,000 pounds. Several engines for fighting planes have been approved in the type test and accepted as candidates for next generation of fighting planes including Japan. (15 figs, 36 refs)

  7. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Science.gov (United States)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  8. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Lasheras

    2015-03-01

    Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  9. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-03-01

    Current developmental activities of aircraft gas turbines in Japan are reviewed. V2500-A5 engine with thrust of 30,000 LBF is scheduled to be used for real aircraft in 1994, and intensive developmental activities are also proceeding in larger engines over 90,000 LBF. Recently, developmental programs of engines for 75-100 seat aircraft have been actively discussed, and Japanese engine makers are having discussions towards international collaboration. Such engines will be high bypass turbofans of 12,000-22,000 LBF. Development of SST/HST engines in a speed range from subsonic to Mach 5 is under the initiative of the Agency of Industrial Science and Technology. The Technical Research and Development Institute of Japan, Defence Agency achieved the target thrust of 3.4 tons in the small turbofan engine program, and the small turboshaft engine for small helicopters is also under development. Both National Aerospace Laboratory (NAL) and Institute of Space and Aeronautical Science (ISAS) are now conducting the research programs on turbo-ramjet engines under a component test phase. 1 fig.

  10. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  11. Study of advanced rotary combustion engines for commuter aircraft

    Science.gov (United States)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  12. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  13. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  14. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is proposing to adopt emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  15. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    Science.gov (United States)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  16. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    Science.gov (United States)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  17. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    Science.gov (United States)

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; Digangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-12-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  18. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport.

    Science.gov (United States)

    Moore, Richard H; Shook, Michael A; Ziemba, Luke D; DiGangi, Joshua P; Winstead, Edward L; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L; Crosbie, Ewan C; Robinson, Claire; Shingler, Taylor J; Anderson, Bruce E

    2017-12-19

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO 2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 10 16 -10 17 kg -1 and 10 14 -10 16 kg -1 , respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg -1 (except for the GE GEnx engines at 46 mg kg -1 ). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  19. Advanced materials for aircraft engine applications. Koku engine yo zairyo no doko

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The thrust/weight ratio which is thrust per unit weight of engine is a parameter of aircraft engine performance. With a mean material density of 6.6g/cm[sup 3], some of the supersonic plane engines are 7.9 in thrust/weight ratio. Its attaining 20 is predicted by some reports. The turbine inlet temperature is a parameter of engine temperature heightening exceeds 1400[degree]C. Its attaining 2000[degree]C in the 21st century is also predicted by some reports. By dividing the aircraft engine materials into both improvement and innovation material systems, the present paper explained the characteristics and present status of materials, and how to put them in practical use. As an improvement material, titanium alloy, nickel base alloy and resinous composite materials were exhibited with examples of having improved the established material system in performance and cost. Used as a turbine vane member, the nickel base alloy contributes, as a unidirectional coagulation alloy, single crystal alloy and oxide dispersion exciting alloy, to the creep resistance strengthening at high temperatures against the fatigue due to thermal strain. It is also explained how to put TiAl and FRM to practical use. 8 refs., 13 figs., 2 tabs.

  20. Structureborne noise investigations of a twin engine aircraft

    Science.gov (United States)

    Garrelick, J. M.; Cole, J. E., III; Martini, K.

    1986-01-01

    The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.

  1. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  2. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  3. Aircraft Piston Engine Exhaust Emission Symposium

    Science.gov (United States)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  4. Military Tactical Aircraft Engine Noise Matching to Infrared Signatures

    Science.gov (United States)

    2016-12-16

    Jet engine exhaust plumes also exhibit emission and absorption of radiation from their emitted chemical species, occurring at discrete spectra...Modulation,” Naval Postgraduate School MS thesis (1990). [8] Sinha, N., Ungewitter, R. J., Kenzakowski, D. C., and Seiner, J. M., “Gas Turbine Engine Jet...FINAL REPORT Military Tactical Aircraft Engine Noise Matching to Infrared Signatures SERDP Project WP-2404 JANUARY 2016 Dr

  5. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  6. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  7. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    Science.gov (United States)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  8. Number and mass analysis of particles emitted by aircraft engine

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  9. Fractographic Analysis of High-Cycle Fatgue in Aircraft Engines

    National Research Council Canada - National Science Library

    Shockey, Donald

    2000-01-01

    .... Fracture surfaces produced under systematically varied cydic load conditions in laboratory specimens of titanium turbine blade alloy were provided to the program by an aircraft engine manufacturer...

  10. Fractographic Analysis of High-Cycle Fatigue in Aircraft Engines

    National Research Council Canada - National Science Library

    Shockey, Donald

    2000-01-01

    .... Fracture surfaces produced under systematically varied cyclic load conditions in laboratory specimens of titanium turbine blade alloy were provided to the program by an aircraft engine manufacturer...

  11. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012, make the following corrections: Sec. 87.2...

  12. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    Science.gov (United States)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  13. Trend of supersonic aircraft engine. Choonsokukiyo engine no doko

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the R and D trend of supersonic aircraft engine in Europe, USA and Japan. Taking the high speed flight resistance into consideration, the engine must be characterized by its high exhaust gas speed and high specific thrust (ratio of thrust to the airflow rate) to secure strong thrust by a low airflow rate. Therefore, the turbojet is appropriate. However to reduce the fuel consumption during the cruising flight, the turbofan is normally used with a low by-pass ratio of 0.2 to 0.9. The thrust-to-weight ratio (thrust per unit weight) of low by-pass ratio turbofan engine equipped with afterburner is 7 to 8 in case of stronger thrust than 70kN. Its target value of development is 10. The specific thrust which is a performance parameter of engine exceeds 120s for the fighter engine and is about 30s for the passenger plane engine. The turbine inlet temperature is 2073K at the stage of element research. The overall pressure ratio ranges from 25 to 30. The reheating turbofan engine experimentally built for the research in Japan is 34kN in thrust and 7 in thrust-to-weight ratio. 8 refs., 9 figs.

  14. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  15. The influence of engine/transmission/governor on tilting proprotor aircraft dynamics

    Science.gov (United States)

    Johnson, W.

    1975-01-01

    An analytical model is developed for the dynamics of a tilting proprotor aircraft engine and drive train, including a rotor speed governor and interconnect shaft. The dynamic stability of a proprotor and cantilever wing is calculated, including the engine-transmission-governor model. It is concluded that the rotor behaves much as if windmilling as far as its dynamic behavior is concerned, with some influence of the turboshaft engine inertia and damping. The interconnect shaft has a significant influence on the antisymmetric dynamics of proprotor aircraft. The proprotor aerodynamics model is extended to include reverse flow, and a refinement on the method used to calculate the kinematic pitch-bending coupling of the blade is developed.

  16. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Riedel, Werner; Noeldgen, Markus; Strassburger, Elmar; Thoma, Klaus; Fehling, Ekkehard

    2010-01-01

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  17. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    Science.gov (United States)

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  18. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  19. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    Science.gov (United States)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  20. REQUIREMENT VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM

    Science.gov (United States)

    2017-09-01

    VERIFICATION AND SYSTEMS ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM by Theresa L. Thomas September... ENGINEERING TECHNICAL REVIEW (SETR) ON A COMMERCIAL DERIVATIVE AIRCRAFT (CDA) PROGRAM 5. FUNDING NUMBERS 6. AUTHOR(S) Theresa L. Thomas 7...CODE 13. ABSTRACT (maximum 200 words) The Naval Air Systems Command (NAVAIR) systems engineering technical review (SETR) process does not

  1. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  2. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine

    Directory of Open Access Journals (Sweden)

    Iker García

    2016-11-01

    Full Text Available In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.

  3. Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A cradle-to-grave life cycle assessment (LCA of structural aircraft materials has been utilised to assess and compare the total emissions produced during manufacturing, use and disposal of aerospace materials and their selected components. First, a comparison of aluminium, GLARE and carbon fibre reinforced polymer (CFRP plates was performed to investigate the potential of lightweight composites in reducing aviation emissions. Subsequently, a case study is presented on a tubular component for which more accurate manufacturing data were directly available. A structural steel tube was replaced with a composite tubular component. The analysis has shown that once the composite material is used as a component in the aircraft, there is a cumulative saving of aircraft fuel and emissions, in particular from CFRP structures. The environmental analysis included the long-term use predictions for CFRPs, involving detailed raw materials production, use and operation, and disposal scenarios.

  4. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora

    2014-01-01

    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  5. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    Science.gov (United States)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  6. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  7. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    Science.gov (United States)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  8. A kernel principal component analysis–based degradation model and remaining useful life estimation for the turbofan engine

    Directory of Open Access Journals (Sweden)

    Delong Feng

    2016-05-01

    Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.

  9. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

    Science.gov (United States)

    Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang

    2018-03-01

    A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.

  10. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  11. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...

  12. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Science.gov (United States)

    2010-04-28

    ... piston-engine aircraft as well as certain high performance engines such as race cars. \\33\\ See http://www... for all remaining uses, including use as fuel in aircraft, racing cars, and nonroad engines such as.... These include the voluntary partnership between EPA and the National Association for Stock Car Auto...

  13. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  14. Leakage Account for Radial Face Contact Seal in Aircraft Engine Support

    Science.gov (United States)

    Vinogradov, A. S.; Sergeeva, T. V.

    2018-01-01

    The article is dedicated to the development of a methodology for the radial face contact seal design taking into consideration the supporting elements deformations in different aircraft engine operating modes. Radial face contact seals are popular in the aircraft engines bearing support. However, there are no published leakage calculation methodologies of these seals. Radial face contact seal leakage is determined by the gap clearance in the carbon seal ring split. In turn, the size gap clearance depends on the deformation of the seal assembly parts and from the engine operation. The article shows the leakage detection sequence in the intershaft radial face contact seal of the compressor support for take-off and cruising modes. Evaluated calculated leakage values (2.4 g/s at takeoff and 0.75 g/s at cruising) go with experience in designing seals.

  15. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    Science.gov (United States)

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased

  16. Aircraft Maintenance Engineering: Factors Impacting Airlines E-Maintenance Technologies, Authoring and Illustrations

    Science.gov (United States)

    Karayianes, Frank

    The purpose of this research was to evaluate factors influencing acceptance and use of technologies in the field of aircraft maintenance authoring, graphics, and documentation. Maintenance engineering authors convert complex engineering used in aircraft production and transform that data using technology (tools) into usable technical publications data. While the current literature includes a large volume of research in technology acceptance in various domains of industry and business, the problem is that no such studies exist with respect to the aircraft maintenance engineering authoring, allowing any number of tools to be used and acceptance to be unsure. The study was based on theoretical approaches of the Technology Acceptance Model and the associated hypothesis related to eight research questions. A survey questionnaire was developed for data collection from a selected population of aircraft maintenance engineering authors. Data collected from 148 responses were exposed to a range of statistical methods and analyses. Analysis of data were performed within the structural equation model using exploratory factor analysis, confirmatory factor analysis, and a range of regression methods. The analyses generally provided results consistent with prior literature. Two survey questions yielded unexpected results contrary to similar studies. The relationship between prior experience and job level did not show a significant relationship with perceived usefulness or perceived ease of use. Other results included the significant relationship between Perceived Usefulness and Perceived Ease of Use with Technology acceptance. Recommendations include understanding how Technology Acceptance can be improved for the industry and the need for further research not covered to refine recommendations for technology acceptance related to the aviation industry.

  17. Final Rule for Control of Air Pollution from Aircraft and Aircraft Engines: Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is amending the existing emission standards for oxides of nitrogen (NOx) for new commercial aircraft engines. These standards are equivalent to the NOx emission standards of the United Nations International Civil Aviation Organization (ICAO).

  18. Wind tunnel investigation of an STOL aircraft model. STOL zenki mokei-fudo shiken. ; Engine nacelle keijo koka

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The nacelle shape of a mimic engine mounted on the wind tunnel test model for an STOL aircraft developed by the National Aerospace Laboratory has much larger length than in the nacelle of a scale reduced to 8% of an actual engine, and the shape below the nacelle is different. Therefore, in order to estimate the air force in the actual aircraft from the aerodynamic data obtained in a wind tunnel test, the data are corrected by using differences in aerodynamic loads (estimated values) applied on the mimic engine and the actual engine. For the purpose of discussing the reasonability of this correction, an 8%-scale flow through nacelle with the same shape as in the actual aircraft (the actual aircraft type) and a flow through nacelle for a wind tunnel testing model of the experimental STOL aircraft were fabricated and wind tunnel tests were performed. These results were compared with the corrected results of the mimic engine wind tunnel test. As a result, it was made clear that the force data have been corrected excessively, and the moments have been corrected considerably well. 7 refs., 32 figs., 7 tabs.

  19. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  20. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    Science.gov (United States)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  1. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  2. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  3. PVD TBC experience on GE aircraft engines

    Science.gov (United States)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  4. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  5. Industrial approach to piezoelectric damping of large fighter aircraft components

    Science.gov (United States)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  6. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  7. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-11-22

    ...; Special Conditions No. 23-253-SC] Special Conditions: Diamond Aircraft Industries, Model DA-40NG..., Model DA-40NG airplane. This airplane will have a novel or unusual design feature(s) associated with an... include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE). The...

  8. Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course

    Science.gov (United States)

    2016-01-01

    support the required performance specifications (Brandt, 2004) ( Raymer , 1989). There is no specific step to treat a selected design performance...a Design Perspective, 2nd ed.: AIAA Education Series, 2004. Raymer , Daniel P. 1989. Aircraft Design: A Conceptual Approach.: AIAA Educational...Mattingly, Jack D., Heiser, William H., Pratt, David T. 2002. Aircraft Engine Design, 2nd ed.: AIAA Education Series, 2002. Drews, Robert W. 2006. The

  9. Aircraft Gas Turbine Engine Health Monitoring System by Real Flight Data

    Directory of Open Access Journals (Sweden)

    Mustagime Tülin Yildirim

    2018-01-01

    Full Text Available Modern condition monitoring-based methods are used to reduce maintenance costs, increase aircraft safety, and reduce fuel consumption. In the literature, parameters such as engine fan speeds, vibration, oil pressure, oil temperature, exhaust gas temperature (EGT, and fuel flow are used to determine performance deterioration in gas turbine engines. In this study, a new model was developed to get information about the gas turbine engine’s condition. For this model, multiple regression analysis was carried out to determine the effect of the flight parameters on the EGT parameter and the artificial neural network (ANN method was used in the identification of EGT parameter. At the end of the study, a network that predicts the EGT parameter with the smallest margin of error has been developed. An interface for instant monitoring of the status of the aircraft engine has been designed in MATLAB Simulink. Any performance degradation that may occur in the aircraft’s gas turbine engine can be easily detected graphically or by the engine performance deterioration value. Also, it has been indicated that it could be a new indicator that informs the pilots in the event of a fault in the sensor of the EGT parameter that they monitor while flying.

  10. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  11. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    Science.gov (United States)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  12. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Science.gov (United States)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  13. Full-Scale Tests of Lightweight Fragment Barriers on Commercial Aircraft

    National Research Council Canada - National Science Library

    Shockey, Donald

    1999-01-01

    Because fragments from inflight engine failures can damage critical aircraft components and produce catastrophic consequences, the Federal Aviation Administration is sponsoring research to mitigate...

  14. Aircraft and ancillary materials. 2. ; Engine materials. Kokuki to sono shuhen zairyo. 2. ; Engine zairyo

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-05

    This paper summarizes materials for aircraft engines. Jet engines are the mainstream today, which are classified according to their operation process into a turbo jet engine, a turbo prop engine, a turbo shaft engine, and a turbo fan engine. Japan has produced 1543 engines in the past decade, almost all of which are supplied to the Defense Agency. Jet engines use mainly Ni-group heat-resistant alloys, titanium alloys and steels. Improvement of engine efficiency has caused turbine inlet temperatures to rise to 1400[degree]C to 1500[degree]C that give rise to grain boundary cracking. To prevent this, discussions are in progress on monocrystal blades replacing the conventional polycrystal precision casts. Intermetallic compounds including Al/Ti are expected especially of use as jet engine constructing materials from their high melting point and formability. Discussions are preceding on ceramics as to coating them intended of improving heat resistance. Composite materials have a problem of insufficient mechanical strength remaining unsolved. 8 figs., 5 tabs.

  15. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  16. Environmental impact assessment of a turboprop engine with the aid of exergy

    International Nuclear Information System (INIS)

    Atılgan, Ramazan; Turan, Önder; Altuntaş, Önder; Aydın, Hakan; Synylo, Kateryna

    2013-01-01

    To develop approaches that effectively reduce engine environmental effect of aircrafts, it is necessary to understand the mechanisms that have enabled improvements in thermodynamic efficiency of aircraft engines. In the present work, a turboprop engine used in regional aircrafts that produces 1948 shp and 640 N.m torque is examined using exergo-environmental method. The results show compressor, combustion chamber, gas generator turbine, power turbine and exhaust nozzle create 9%, 69%, 13%, 7%, 2% of total environmental impact of the engine, respectively. According to rates, the compressor and gas turbine can be considered first to improve in case of component related environmental impact. Furthermore, total component related environmental impact for the turboprop engine is found to be 2.26 mPts/s for the constructional phase and 2.34 mPts/s for the operation/maintenance phases. Accordingly, it is suggested that, in order to estimate environmental impact metric of aircrafts, the exergo-environmental analysis can be employed for aircraft propulsion systems. - Highlights: • Evaluating the exergo-environmental aspects of the turboprop engine. • According to exergo-environmental results, the biggest candidate for improving is the combustion chamber. • Specific environmental impact dominates at engine exhaust outlet of the turboprop engine. • Greatest total component related environmental impact is found at the gas generator turbine of the turboprop engine

  17. Engine jet entrainment in the near field of an aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, F.; Jacquin, L.; Laverdant, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.

  18. Engine jet entrainment in the near field of an aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, F; Jacquin, L; Laverdant, A [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.

  19. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    Science.gov (United States)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  20. Recent NASA progress in composites. [application to spacecraft and aircraft structures

    Science.gov (United States)

    Heldenfels, R. R.

    1975-01-01

    The application of composites in aerospace vehicle structures is reviewed. Research and technology program results and specific applications to space vehicles, aircraft engines, and aircraft and helicopter structures are discussed in detail. Particular emphasis is given to flight service evaluation programs that are or will be accumulating substantial experience with secondary and primary structural components on military and commercial aircraft to increase confidence in their use.

  1. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... with an electronic engine control (EEC), also known as a Full Authority Digital Engine Control (FADEC... engine design certification, and the certification requirements for engine control systems are driven by... aircraft supplied power and data failures on the engine control system, and the resulting effects on engine...

  2. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  3. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Directory of Open Access Journals (Sweden)

    Saadon S.

    2018-01-01

    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.

  4. Study of LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  5. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946

    Science.gov (United States)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft

  6. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  7. 76 FR 17757 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Science.gov (United States)

    2011-03-31

    ... Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and TAE 125-02-114.... Applicability (c) This AD applies to Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02-99, and TAE...) For TAE 125-02-99 and TAE 125-02-114 engines, Operation & Maintenance Manual OM-02-02, Version 2...

  8. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine

    Directory of Open Access Journals (Sweden)

    Grabowski Łukasz

    2017-01-01

    Full Text Available This paper presents the research results on a 1D model of an opposed-piston two-stroke aircraft Diesel engine. The research aimed at creating a model of the engine in question to investigate how engine performance is affected by the compressor gear ratio. The power was constant at all the operating points. The research results are presented as graphs of power consumed by the compressor, compressor efficiency and brake specific fuel consumption. The optimal range of compressor gear ratio in terms of engine efficiency was defined from the research results.

  9. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  10. Development of composite aircraft components in INCDT COMOTI, Bucharest

    Directory of Open Access Journals (Sweden)

    Raluca VOICU

    2012-12-01

    Full Text Available This paper presents the recent research activities within INCDT COMOTI, in the composite materials field. The author makes a short introduction of this field and presents an example of application developed within the composite materials laboratory from INCDT COMOTI, targeting the aeronautic field. The aircraft component is a stator blade made of CFRP composites, integrating new active noise reduction technologies and manufactured by means of the autoclave technology.

  11. Failure Investigation of WB-57 Aircraft Engine Cowling

    Science.gov (United States)

    Martinez, J. E.; Gafka, T.; Figert, J.

    2014-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas is the home of the NASA WB-57 High Altitude Research Program. Three fully operational WB-57 aircraft are based near JSC at Ellington Field. The aircraft have been flying research missions since the early 1960's, and continue to be an asset to the scientific community with professional, reliable, customer-oriented service designed to meet all scientific objectives. The NASA WB-57 Program provides unique, high-altitude airborne platforms to US Government agencies, academic institutions, and commercial customers in order to support scientific research and advanced technology development and testing at locations around the world. Mission examples include atmospheric and earth science, ground mapping, cosmic dust collection, rocket launch support, and test bed operations for future airborne or spaceborne systems. During the return from a 6 hour flight, at 30,000 feet, in the clean configuration, traveling at 175 knots indicated airspeed, in un-accelerated flight with the auto pilot engaged, in calm air, the 2-man crew heard a mechanical bang and felt a slight shudder followed by a few seconds of high frequency vibration. The crew did not notice any other abnormalities leading up to, or for the remaining 1 hour of flight and made an uneventful landing. Upon taxi into the chocks, the recovery ground crew noticed the high frequency long wire antenna had become disconnected from the vertical stabilizer and was trailing over the left inboard wing, and that the left engine upper center removable cowling panel was missing, with noticeable damage to the left engine inboard cowling fixed structure. The missing cowling panel was never recovered. Each engine cowling panel is attached to the engine nacelle using six bushings made of 17-4 PH steel. The cylinder portions of four of the six bushings were found still attached to the aircraft (Fig 1). The other two bushings were lost with the panel. The other four bushings exhibited

  12. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Laforgia, Domenico; Renna, Alessandro

    2015-01-01

    Highlights: • Different supercharging architectures have been compared for an aircraft 2T engine. • The supercharging architectures are compared to minimize the fuel consumption. • The architecture with the highest conversion efficiency was determined. - Abstract: Different studies on both 2- and 4-stroke engines have shown how the choice of different supercharging architectures can influence engine performance. Among them, architectures coupling one turbocharger with a mechanical compressor or two turbochargers are found to be the most performing in terms of engine output power and efficiency. However, defining the best supercharging architecture for aircraft 2-stroke engines is a quite complex task because the supercharging system as well as the ambient conditions influence the engine performance/efficiency. This is due to the close interaction between supercharging, trapping, scavenging and combustion processes. The aim of the present work is the comparison between different architectures (single turbocharger, double turbocharger, single turbocharger combined with a mechanical compressor, single turbocharger with an electrically-assisted turbocharger, with intercooler or aftercooler) designed to supercharge an aircraft 2-stroke Diesel engine for general aviation and unmanned aerial vehicles characterized by a very high altitude operation and long fuel distance. A 1D model of the engine purposely designed has been used to compare the performance of the different supercharging systems in terms of power, fuel consumption, and their effect on trapping and scavenging efficiency at different altitudes. The analysis shows that the engine target power is reached by a 2 turbochargers architecture; in this way, in fact, the cylinder filling, and consequently the engine performance, are maximized. Moreover, it is shown that the performance of a 2 turbochargers architecture performance can be further improved connecting electrically and not mechanically the low

  13. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  14. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    Science.gov (United States)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  15. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  16. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  17. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    Science.gov (United States)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  18. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  19. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    Science.gov (United States)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  20. Problems of Formation of Diagnostic Features in the Diagnosis of Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Pronyakin V.I.

    2017-01-01

    Full Text Available The article is devoted to the evaluation of current technical condition of aircraft engines. Deals with the choice of the detection method of diagnostic features required for degradation assessment, emergency protection and detection of incipient defects on the example of cyclic machines and mechanisms. For the formation of diagnostic features in the diagnosis of aircraft engines use different physical effects (vibration, shock, heat radiation, electrodynamic and thermal processes, wear debris in oil, etc.. Classification of defects and requirements for the development of diagnostics systems is formed based on them. The article describes the requirements for diagnostic signs. The article provides a promising phase method that allows obtaining stable diagnostic characters in exploitation. The result of applying the method is shown. Diagnostic signs are formed. In mathematical modeling it was used the traditional theory of the description of rotary mechanisms. The data obtained are compared with experimental data.

  1. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management

    Science.gov (United States)

    Volponi, Al

    2005-01-01

    Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the integration of data or information from multiple sources for the achievement of improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/ information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center, NASA Dryden Flight Research Center, and Pratt & Whitney have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work accomplished under this research contract.

  2. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  3. Study of a LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942

  4. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  5. Local behavior of reinforced concrete slabs to aircraft engine projectile impact

    International Nuclear Information System (INIS)

    Yoo, Hyeon Kyeong; Choi, Hyun; Chung, Chul Hun; Lee, Jung Whee; Kim, Sang Yun

    2011-01-01

    Structural safety evaluation of nuclear power plant considers two distinct types of structural failure, local failure and global failure. In the local failure evaluation, considered projectiles can be divided as internal and external projectile according to the impact location, and they also can be divided as rigid and soft projectile according to the deformation level after impact. Frequently considered projectiles are aircraft engine, tornado, and turbine projectile. When the speed and weight of the projectiles are considered, the most influential projectile is aircraft engine, which is one of the soft projectiles. Sugano et al. performed impact test using an engine model projectile, which is derived from GE-J79 engine and concentrated mass-spring model idealization. Kojima and Sugano et al. demonstrated from their experiments that steel liner on the rear side of the concrete wall reduces impact induced damage and suppresses debris scattering. Chung et al. performed comparison study of various formulae suggested for local damage evaluation using previously performed numerous local impact test results. Also, they validated a methodology of numerical analysis for impact simulation using LS-DYNA. Previously suggested formulae and research results do not consider the effect of liner plate or curved shape of the containment building walls on the local damage. In this research, flat wall and curved wall are individually modeled using the same curvature of nuclear power plants, and the effects of curvature and liner plates on the local damage are analytically investigated

  6. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  7. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    Science.gov (United States)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  8. Real-time simulation of an F110/STOVL turbofan engine

    Science.gov (United States)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  9. Eddy current testing for blade edge micro cracks of aircraft engine

    Science.gov (United States)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  10. State of Aircraft Turboshaft Engines by Means of Tribotechnical Diagnostic

    Science.gov (United States)

    Mihalčová, Janka

    2018-03-01

    The contribution describes concrete example of application of tribotechnical methods for the determination of the bearing wear state in aircraft turboshaft engines. Tribotechnical methods, which will be mentioned, deal with qualitative and quantitative characterization of particles occurred in oil. Here belong method optical emission spectrometry method with rotating disc electrode for determination of chemical elements concentration in oil. Method of optical particles counting for detection of particles distribution according to their scale, determination of their number and ferrographic analysis. Exploitation of these methods make it possible to determine quickly and correctly the friction regime and wearing of friction pair that is washed by oil in observed engines.

  11. Qualification of engine-mounted components due to operational vibration

    International Nuclear Information System (INIS)

    Lee, B.J.; Bayat, A.

    1994-01-01

    The Emergency Diesel Generator (EDG) in a Nuclear Power Plant is considered to be an essential component of the plant for its safe operation. Failures of auxiliary components directly mounted on the EDG creates costly repairs, and compromises the engine's availability and reliability. Although IEEE-323 and Section III of the ASME code require addressing of safety-related components due to mechanically induced vibration, very few guidelines exist in the nuclear industry to show how this may be accounted for. Most engine vendors rely on the empirical experience data as the basis of their evaluation for vibration. Upgrade of engine controls, addition of monitoring components and other engine modifications require design and installation of new mechanical and electrical components to be mounted directly on the engine. This necessitates the evaluation of such components for engine-induced vibration which is considered to be one of the most severe design parameters. This paper presents a methodology to evaluate three categories of components; structural, mechanical, and electrical under engine vibration. The discussion for the characteristics and manipulation of engine vibration profile to be used for each component evaluation is also given. In addition, the suitability of analytical verses testing approaches is discussed for each category. An example application of the methodology is presented for a typical EDG which is currently undergoing major controls upgrade and monitoring modification

  12. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    Science.gov (United States)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  13. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    Science.gov (United States)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  14. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J; Paszkowski, Maciej; Czarnik-Matusewicz, Boguslawa

    2011-01-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  15. Potential for Fuel Tank Fire and Hydrodynamic Ram from Uncontained Aircraft Engine Debris

    Science.gov (United States)

    1997-01-01

    This report addresses the potential consequences of the impact and penetration of fuel tanks by debris from uncontained engine failures on commercial jet aircraft. The report presents a brief review of accident data and of the pertinent technical lit...

  16. Assessment of engine noise shielding by the wings of current turbofan aircraft

    NARCIS (Netherlands)

    Alves Vieira, A.E.; Snellen, M.; Simons, D.G.; Gibbs, B.

    2017-01-01

    The shielding of engine noise by the aircraft wings and fuselage can lead to a significant reduction on perceived noise on ground. Most research on noise shielding is focused on BlendedWing Body (BWB) configurations because of the large dimension of the fuselage. However, noise shielding is also

  17. Study on afterburner of aircraft engine. Koku engine yo afterburner no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-03-01

    This paper explains concepts of aircraft engine afterburner, and describes history of afterburner study, and describe the result of major research items. An afterburner is located down stream of a fan, compressor, burner, and turbine in a jet engine. Its basic principle is that fuel is injected into turbine exhaust and fan air flows from an fuel injector, ignited by a spark plug using oxygen remaining in the exhaust gas flow, burned and flame-held by a flame stabilizer. The combustion gas of high temperature (1,700 to 1,800 {degree}c) thus generated is jetted out from an exhaust nozzle to increase the thrust. The prototype afterburner is featured by adoption of a mixed type fuel injection system that provides wide stable combustion range, and flame stabilizer with a scoop aimed at improving the ignition performance and combustion efficiency. A confirmation test verified smooth ignition and wide air to fuel ratio for stabilized combustion. 4 refs., 16 figs.

  18. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Design and evaluation of combustors for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  20. Safety engineering with COTS components

    International Nuclear Information System (INIS)

    O'Halloran, Mark; Hall, Jon G.; Rapanotti, Lucia

    2017-01-01

    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper reports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety engineering with (COTS) components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases. - Highlights: • Assurance as effective driver for COTS-based safety-critical system development. • Engages stakeholders, captures requirements and provides rich traceability. • Shares appropriate safety requirements across the supply chain.

  1. Recent technologies for reduction of aircraft propulsion noise. Kokuki engine soon teigenka no saikin no gijutsu shinpo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    Inside the jet engine, the propulsion engine for an aircraft, a high speed air current is flowing, and the rotors such as the fan, compress or, turbine and so forth are rotating with a high speed in its flowing current. The flow itself in which a high speed exhaust jet is discharged in the air from engine exhaust port, and the aerodynamic noise generated by an interaction of the flow with the material bodies are the main noise sources of the aircraft engine. Because the supersonic planes are necessary to fly with mach number 2 - 3 during cruising, the turbojet engine with a large jet exhaust speed or the low bypass ratio turbofan engine is selected. Since a noise reduction by reducing the jet exhaust speed, which was an effective measure for the high subsonic speed passenger plane, can not be applied, a reduction of the supersonic jet noise, which is hard to be reduced, becomes a necessity. In addition, in recent years, a research and development of the advanced turbo prop (ATP) aircraft with a further higher thrust efficiency are advanced as well. The aerodynamical noise reduction technologies of these engines for supersonic airplanes are summarized. 14 refs., 11 figs., 1 tab.

  2. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  3. Strength analysis of an aircraft turbo-compressor engine turbine disc

    Science.gov (United States)

    Klimko, Marek

    2017-09-01

    This article deals with a strength analysis of a gas turbine rotor disc of the concrete type of an aircraft turbo-compressor engine (ATCE). The introductory part is dedicated to a basic description of the given engine, including the main technical parameters entering the calculation. The calculation is carried out by the finite difference method. This method allows to determine the tension of a generally shaped disc, which is affected by centrifugal forces of its weight, external load and heat stress caused by the difference of thermal gradients along the disc radius. The result of calculations are dependencies of the most important parameters, such as the reduced stress, radial stress, or the safety coefficient along the disc radius.

  4. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  5. Study of an advanced General Aviation Turbine Engine (GATE)

    Science.gov (United States)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  6. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    Science.gov (United States)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  7. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  8. Effects of acoustic treatment on the interior noise levels of a twin-engine propeller aircraft - Experimental flight results and theoretical predictions

    Science.gov (United States)

    Beyer, T. B.; Powell, C. A.; Daniels, E. F.; Pope, L. D.

    1984-01-01

    In-flight noise level measurements were made within two cabin configurations of a general aviation business aircraft. The Fairchild Merlin IVC twin-engine aircraft was tested with bare walls and fiberglass insulation and in an executive trim configuration. Narrow-band and octave format data were subjected to analyses which permitted identification of the blade passage harmonics (BPH). Cabin noise level reductions (insertion losses) due to added insulation varied with position in the cabin, the BPH number, cabin pressure, and engine torque. The measurements were closely predicted using the propeller aircraft interior noise (PAIN) mode.

  9. Starting the aircraft engines and gas-turbine drive by means of electric starter

    Directory of Open Access Journals (Sweden)

    І.М. Іщенко

    2004-04-01

    Full Text Available  In the article the questions of the starting the aircraft engines and gas-turbine drive by means of electric starter is considered. In the same way in the article are determined the main requirements to steady-state converter for feeding electric starter.

  10. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  11. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  12. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  13. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  14. Influence of Gasoline Components on Engine Efficiency and Emissions

    Directory of Open Access Journals (Sweden)

    Machado Guilherme B.

    2016-01-01

    Full Text Available For the next few decades, it is expected that fossil fuels and bio-fuels used in internal combustion engines will remain the primary source for vehicular propulsion. This justifies the intense worldwide research and development effort to comply with the challenges of increasing efficiency and reducing internal combustion engine emissions. The modeling of commercial fuels and engine combustion processes presents great challenges. There is also the need to better understand how different fuel components interact and influence engine combustion and performance parameters. In the present work, surrogate fuels were used to implement methodologies to evaluate the influence of fuel components on fuel properties and multiple engine combustion and performance parameters. Special attention is given to engine efficiency and emissions behavior and their correlations to fuel properties and others performance parameters of the engine. The potentials of each component and corresponding chemical group were identified for different engine designs. The results combine information and methodologies that can be used to develop fuels for different applications.

  15. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  16. A fully adaptive hybrid optimization of aircraft engine blades

    Science.gov (United States)

    Dumas, L.; Druez, B.; Lecerf, N.

    2009-10-01

    A new fully adaptive hybrid optimization method (AHM) has been developed and applied to an industrial problem in the field of the aircraft engine industry. The adaptivity of the coupling between a global search by a population-based method (Genetic Algorithms or Evolution Strategies) and the local search by a descent method has been particularly emphasized. On various analytical test cases, the AHM method overperforms the original global search method in terms of computational time and accuracy. The results obtained on the industrial case have also confirmed the interest of AHM for the design of new and original solutions in an affordable time.

  17. Structureborne noise measurements on a small twin-engine aircraft

    Science.gov (United States)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  18. Pratt & Whitney aircraft nuclear J-8 turbojet engine performance variation with radiator diameter

    International Nuclear Information System (INIS)

    Larson, John W.

    1960-01-01

    The variation of engine performance with liquid metal radiator diameter and flight altitude has been estimated for both the 1600F NaK and 1800F NaK radiators at Mach 0.6 and hot day atmospheric conditions. The net thrust, air flow and reactor power is presented in 3 figures for the Pratt & Whitney Aircraft J-58 engine with the 1600F NaK radiator. The net thrust, air flow and reactor power for the 1800F NaK radiator are also presented in figures.

  19. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  20. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  1. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  2. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  3. Propulsion Health Monitoring of a Turbine Engine Disk using Spin Test Data

    Data.gov (United States)

    National Aeronautics and Space Administration — On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order...

  4. Need for Robust Sensors for Inherently Fail-Safe Gas Turbine Engine Controls, Monitoring, and Prognostics (Postprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2006-01-01

    Sensor reliability is critical to turbine engine control. Today's aircraft engines demand more sophisticated sensors in the control systems, requiring advanced engine testing for component performance demonstration...

  5. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  6. Applying Best Practices to Military Commercial-Derivative Aircraft Engine Sustainment: Assessment of Using Parts Manufacturer Approval (PMA) Parts and Designated Engineering Representative (DER) Repairs

    Science.gov (United States)

    2016-01-01

    savings through greater use of non-OEM alternate parts and services 5 According to Broderick (2013), the FAA developed regulations governing PMA parts...when operators of surplus military aircraft wanted to keep them operat- ing safely and the OEMs were no longer making new parts ( Broderick , 2013...of the world’s aircraft and engines will be leased by the year 2020 (Sean Broderick , 2014). Categorization of Risks of Greater Use of PMA Parts and

  7. Improved Barriers to Turbine Engine Fragments: Interim Report II

    National Research Council Canada - National Science Library

    Shockey, Donald

    1999-01-01

    Because fragments from in-flight engine failures can damage critical aircraft components and produce catastrophic consequences, the Federal Aviation Administration is sponsoring research to mitigate...

  8. Tracking and Control of Gas Turbine Engine Component Damage/Life

    Science.gov (United States)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  9. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  10. Study of advanced fuel system concepts for commercial aircraft and engines

    Science.gov (United States)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  11. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  12. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  13. Aircraft engine sensor fault diagnostics using an on-line OBEM update method.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI system, in which a Hybrid Kalman Filter (HKF was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.

  14. Structural evaluation of spent nuclear fuel storage facilities under aircraft crash impact (2). Horizontal impact test onto reduced scale metal cask due to aircraft engine missile

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2009-01-01

    In this study, to confirm the sealing performance of a metal cask subjected to impact force due to possible commercial aircraft crash against a spent fuel storage facility, the horizontal impact test was carried out. In the test, an aircraft engine missile with a speed of 57.3 m/s attacked the reduced scale metal cask containing helium gas, which stands vertically. Then the leak rate and sliding displacement of the lid were measured. The leak rate increased rapidly and reached to 4.0 x 10 -6 Pa·m 3 /sec. After that, the leak rate decreased slowly and converged to 1.0x10 -6 Pa·m 3 /sec after 20 hours from the impact test. The leak rate of a full scale cask was evaluated using that of reduced scale cask obtained by the test. Then the leak rate of the full scale cask was 3.5x10 -5 Pa·m 3 /sec. This result showed that the sealing performance of the full scale metal cask would not be affected immediately by the horizontal impact of the aircraft engine with a speed of 57.3 m/s. (author)

  15. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  16. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tad McGeer

    1999-09-29

    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  17. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  18. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  19. Component-based development of software language engineering tools

    NARCIS (Netherlands)

    Ssanyu, J.; Hemerik, C.

    2011-01-01

    In this paper we outline how Software Language Engineering (SLE) could benefit from Component-based Software Development (CBSD) techniques and present an architecture aimed at developing a coherent set of lightweight SLE components, fitting into a general-purpose component framework. In order to

  20. Large eddy simulation of air pollution produced by aircraft engine emissions inside the airport

    Energy Technology Data Exchange (ETDEWEB)

    Synylo, Kateryna [National Aviation University (Ukraine)], email: synylo@nau.edu.ua

    2011-07-01

    With the increase of air traffic movement, air pollution from airport emissions has become an important concern. In the past, various research has been undertaken on the impact of aircraft engines on the upper troposphere and lower stratosphere, however the impact that emissions have on airports themselves is not taken into account by the most frequently used monitoring software programs. The aim of this paper is to present the use of a CFD simulation to determine the dynamic and fluid mechanics characteristics of aircraft emissions near the ground. The CFD simulation was carried out using Fluent 6.3 software and the effects of counter-rotating vortices and wind conditions on fulfilled gases jet. It was found that numerical simulation is able to resolve difficult equations and provide realistic results. This study demonstrated that the use of CFD computation could be used to improve local air quality modeling and assessment of the impact of aircraft emissions at airports.

  1. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  2. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Erwin V. Zaretsky

    2003-01-01

    Full Text Available The NASA Energy-Efficient Engine (E3-Engine is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The predicted engine lives L5 (95% probability of survival of approximately 17,000 and 32,000 hr do correlate with current engine-maintenance practices without and with refurbishment, respectively. The individual high-pressure turbine (HPT blade lives necessary to obtain a blade system life L0.1 (99.9% probability of survival of 9000 hr for Weibull slopes of 3, 6, and 9 are 47,391; 20,652; and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9%, the predicted disk system life L0.1 can vary from 9408 to 24,911 hr.

  3. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Directory of Open Access Journals (Sweden)

    Emmanouil N. Barmpounakis

    2016-10-01

    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  4. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  5. PM EMISSIONS PRODUCED BY AIRCRAFT UNDER THE OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-12-01

    Full Text Available Purpose: The effects of aircraft engine emissions within the planetary boundary layer under the landing/ take-off operations contribute sufficiently to deterioration of air pollution in the vicinity of the airports and nearby residential areas. Currently the primary object of airport air quality are the nitrogen oxides and particle matter (PM10, PM2.5 and ultrafine PM emissions from aircraft engine exhausts as initiators of photochemical smog and regional haze, which may further impact on human health. Analysis of PM emission inventory results at major European airports highlighted on sufficiently high contribution of aircraft engines and APU. The paper aims to summarize the knowledge on particle size distributions, particle effective density, morphology and internal structure of aircraft PM, these properties are critical for understanding of the fate and potential health impact of PM. It also aims to describe the basic methods for calculation of emission and dispersion of PM, produced by aircrafts under the LTO operations. Methods: analytical solution of the atmospheric diffusion equation is used to calculate the maximum PM concentration from point emission source. The PM concentration varies inversely proportional to the wind velocity u1 and directly proportional to the vertical component of the turbulent exchange coefficient k1/u1. The evaluation of non-volatile PM concentration includes the size and shape of PM. PolEmiCa calculates the distributions of PM fractions for aircraft and APU exhausts (height of installation was given H=4,5m like for Tupolev-154. Results: The maximum concentration of PM in exhaust from APU is higher and appropriate distance is less than in case for gas. PM polydispersity leads to the separation of maximums concentration in space for individual fractions on the wind direction and therefore it contributes to the reduction of maximum total concentration. Discussion:But although the APU has contributed significantly to

  6. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  7. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  8. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu (furoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    This paper introduces two out of six theses related to hydrogen fueled aircraft engines presented at the First World Hydrogen Energy Conference held in Miami in March 1976. One thesis mentions several initial prospects related to terrestrial requirements on hydrogen fueled transport aircraft. Liquefied hydrogen is attractive for large long-distance transport aircraft. Its high energy content can reduce the take-off full load weight by more than 30%, enhancing the economic effect of the aircraft. Saving fossil fuels will require national policy decisions in the near future, where introduction of liquefied hydrogen is more advantageous for long-distance aircraft. However, its introduction into wide-body transport aircraft being the major consumer requires transportation companies and airport authorities to carry out joint development with transport aircraft makers and liquefied hydrogen suppliers. The second thesis describes special natures of fuel subsystems for liquefied hydrogen fueled aircraft. Requirements to major fuel system elements and operation characteristics require evaluation as a comprehensive system, rather than as individual component criteria. In addition, hardware, experience and fuel systems as they are now in space development may not necessarily serve for the purpose. (NEDO)

  9. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  10. Radiation protection considerations of the use of thoriated magnesium alloys in aircrafts

    International Nuclear Information System (INIS)

    Schirmer, A.; Kersting, M.; Warnecke, U.

    2016-01-01

    For the improvement of high-temperature properties of Magnesium light-weight alloys for the construction of aircraft engines, research in the US and UK focussed also on Thorium as a constituent. As a result, large components of aircraft jet and shaft engines were made of Thorium-Magnesium alloys. Here the results of dose rate measurements are presented, which were performed by the Bundeswehr over decades. It shows up that type specific maximum values of the dose rate can be specified. In additional measurements the compiled data of the dose H_x (photon-equivalent dose) are related to current dose quantity (H*(10)). Using conservative values for the occupational dwell time near these engines the maximum annual dose for external exposure is estimated below 2 mSv. Dose contributions due to incorporation have not to be considered, since the work does not involve the formation of inhalable dust or smoke.

  11. 76 FR 9963 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114...

    Science.gov (United States)

    2011-02-23

    ... Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114 Reciprocating... TAE 125-02-99 and TAE 125-02-114 reciprocating engines installed in, but not limited to, Cessna 172... occurs later. Repetitive Replacements of Timing Chains for All TAE 125-02-99 and TAE 125-02-114 Engines...

  12. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  13. MD-11 PCA - View of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 is taxiing to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  14. Evaluation of sealing performance of metal cask subjected to vertical impact load due to aircraft engine

    International Nuclear Information System (INIS)

    Namba, Kosuke; Shirai, Koji; Saegusa, Toshiari

    2010-01-01

    To confirm the sealing performance of a metal cask subjected to impact force due to commercial aircraft crash against a spent fuel storage facility, a vertical impact test was carried out. In this test, a simplified deformable missile was used by considering the rigidity of the actual aircraft engine and accelerated to the specified impact velocity (60 m/s) to hit the full-scale lid structure with the primary and secondary lids. Then, the leak rate, the inner pressure between the lids, and the displacement of the lids were measured. The leak rate of the secondary lid exceeded 1.0x10 -3 Pa·m 3 /s upon impact. However, because no residual lid opening displacement occurred after loading, the leak rate recovered to less than 1.0x10 -6 Pa·m 3 /s after 3 h from the impact test. In addition, to clarify the impact behaviour of the lid structure, the impact analysis using the LS-DYNA code was executed. It was found that the lid bolts maintained the good tightening force after impact loading, and the sealing performance of the full-scale metal cask would not be affected immediately by the vertical impact of the aircraft engine with a speed of 60 m/s. (author)

  15. Additive manufacturing of titanium alloy for aircraft components

    OpenAIRE

    Uhlmann, E.; Kersting, R.; Klein, T.B.; Cruz, M.F.; Borille, A.V.

    2015-01-01

    Selective Laser melting (SLM) is an additive manufacturing technology that uses laser as a power source to sinter powdered metals to produce solid structures. The application of SLM permits engineers to develop and implement components with topologically optimized designs and resultant material properties in comparison to conventionally produced casting parts. Current aviation programs as ACARE 2020 (Advisory Council for Aviation Research and Innovation in the EU) and Flightpath 2050 request ...

  16. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  17. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  18. Dynamic Response Analysis of Storage Cask Lid Structure Subjected to Lateral Impact Load of Aircraft Engine Crash

    International Nuclear Information System (INIS)

    Almomania, Belal; Kang, Hyun Gook; Lee, Sanghoon

    2015-01-01

    Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level

  19. Dynamic Response Analysis of Storage Cask Lid Structure Subjected to Lateral Impact Load of Aircraft Engine Crash

    Energy Technology Data Exchange (ETDEWEB)

    Almomania, Belal; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Lee, Sanghoon [Keimyung Univ., Daegu (Korea, Republic of)

    2015-10-15

    Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level.

  20. CAD system of design and engineering provision of die forming of compressor blades for aircraft engines

    Science.gov (United States)

    Khaimovich, I. N.

    2017-10-01

    The articles provides the calculation algorithms for blank design and die forming fitting to produce the compressor blades for aircraft engines. The design system proposed in the article allows generating drafts of trimming and reducing dies automatically, leading to significant reduction of work preparation time. The detailed analysis of the blade structural elements features was carried out, the taken limitations and technological solutions allowed forming generalized algorithms of forming parting stamp face over the entire circuit of the engraving for different configurations of die forgings. The author worked out the algorithms and programs to calculate three dimensional point locations describing the configuration of die cavity. As a result the author obtained the generic mathematical model of final die block in the form of three-dimensional array of base points. This model is the base for creation of engineering documentation of technological equipment and means of its control.

  1. Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    Science.gov (United States)

    Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond

    2018-01-01

    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.

  2. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  3. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  4. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    Science.gov (United States)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  5. Concept definition and aerodynamic technology studies for single-engine V/STOL fighter/attack aircraft

    Science.gov (United States)

    Nelms, W. P.; Durston, D. A.

    1981-01-01

    The results obtained in the early stages of a research program to develop aerodynamic technology for single-engine V/STOL fighter/attack aircraft projected for the post-1990 period are summarized. This program includes industry studies jointly sponsored by NASA and the Navy. Four contractors have identified promising concepts featuring a variety of approaches for providing propulsive lift. Vertical takeoff gross weights range from about 10,000 to 13,600 kg (22,000 to 30,000 lb). The aircraft have supersonic capability, are highly maneuverable, and have significant short takeoff overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concepts. Wind-tunnel research programs will be formulated to investigate these uncertainties. A description of the concepts is emphasized.

  6. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  7. Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time

    Science.gov (United States)

    Cole, Jennifer H.; Batteas, Frank; Fullerton, Gordon

    2006-01-01

    A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.

  8. Critical needs for piston engine overhaul centre in Malaysia

    Science.gov (United States)

    Khairuddin, M. H.; Yahya, M. Y.; Johari, M. K.

    2017-12-01

    Piston engine overhaul centre (PEOC) is the branch of aviation Maintenance, Repair and Overhaul (MRO) providers, which plays a pivotal role in maintaining the fleet of business and commercial aircraft in the world. The centre typically offers three main MRO capabilities: airframe, engine and component services. Companies holding a PEOC(s) are all subjected to stringent procedures and conditions regulated and audited by the International Civil Aviation Organization. Currently, piston engine maintenance and repair for Asian countries is conducted only in Singapore. The focus of this study is to establish the needs for a PEOC in Malaysia, which will cater almost all small local aircraft companies such as transport and flying school companies.

  9. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  10. Philosophy of integrity assessment of engineering components

    International Nuclear Information System (INIS)

    Chaudhuri, Satyabrata

    2008-01-01

    Integrity assessment of engineering components in power plants and process industries has attracted global attention from the viewpoint of safety and economy for their optimum utilization. This paper describes some aspects of philosophy of component integrity such as life assessment technology, materials used and the factors limiting the serviceability of the components operating at high temperatures and pressures. Numerous investigations have been carried out all over the world to study changes in microstructure and material property due to prolonged service of the components to decide their further serviceability. This paper includes case studies on integrity assessment of service-exposed components carried out in our laboratory as well

  11. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  12. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    Science.gov (United States)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  13. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  14. MD-11 PCA - Closeup view of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has taxied to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  15. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2016-04-01

    Full Text Available The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load–time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  16. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  17. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  18. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  19. Propulsion Study for Small Transport Aircraft Technology (STAT)

    Science.gov (United States)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  20. Introduction to Advanced Engine Control Concepts

    Science.gov (United States)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  1. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    Science.gov (United States)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the

  2. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  3. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  4. Analysis of the engine fragment threat and the crush environment for small packages carried on U.S. commercial jet aircraft

    International Nuclear Information System (INIS)

    Hartman, W.F.; McClure, J.D.; von Riesemann, W.A.

    1978-01-01

    The results of two separate analyses are reported. The engine fragment analysis determined the probability of a small package being in the path of a fragment from a failure in a gas turbine engine. The calculated values show that, depending on aircraft type, the incidence rate varies by approximately an order of magnitude from a high of about once per 5 million flights to a low of nearly once every 40 million package flights for a flight of five hours' duration. The analysis of the crush environment consisted of an examination of two principal crush modes, i.e., vertical and longitudinal crush. The vertical crush mode was examined by formulating a structural model of the cargo deck beams of the aircraft. The longitudinal crush mode was studied by using dynamic models of the aircraft cargo and the radioactive material package (RAM). The results of the analysis of these crush modes provided the basis for the formulation of a 310 kN/(70,000 lb) crush test to simulate vertical crush. The longitudinal crush analysis indicated that it was possible, under infrequently occurring conditions, to produce extremely large crush forces and hence it was recommended that RAM packages be located in the aft end of aircraft cargo compartments to minimize the effects of longitudinal crush

  5. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  6. Influence Of Aircraft Engine Exhaust Emissions At A Global Level And Preventive Measures

    Directory of Open Access Journals (Sweden)

    Jasna Golubić

    2004-07-01

    Full Text Available The work considers the differences in the aircraft engine exhaustemissions, as well as the impact of the emissions on theenvironment depending on several factors. These include theage of the engine, i. e. technical refinement, engine operating regimesat different thrusts during time periods: takeoff, climb,approach, etc. Also, the exhaust emissions do not have thesame influence on different atmospheric layers. The pollutantsemitted at higher altitudes during cruising have become agreater problem, although the volume of pollutants is smaller,due to the chemical complexity and sensitivity of these layers ascompared to the lower layers of atmosphere. One of the reasonswhy these problems have long remained outside the focus of interestof the environmentalists is that the air transport of goodsand people is performed at high altitudes, so that the pollutionof atmosphere does not present a direct threat to anyone, sincethe environment is being polluted at a global level and thereforeis more difficult to notice at the local level.

  7. Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Trullo, Gianluca

    2016-01-01

    Highlights: • A Two-Stroke diesel engine for aircraft propulsion was modeled with a 0D/1D approach. • The results of the 0D/1D model are compared with those resulting from a 3D model. • The effect of several design and thermodynamic parameters have been analyzed. • Guidelines for the optimization of engine performance are provided. - Abstract: In Two-Stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency; moreover, both of them are influenced by geometric and thermodynamic parameters characterizing the design and operation of both the engine and the related supercharging system. Aim of this work is to provide several guidelines about the definition of design and operation parameters for a Two-Stroke two banks Uniflow diesel engine, supercharged with two sequential turbochargers and an aftercooler per bank, with the goal of either increasing the engine brake power at take-off or decreasing the engine fuel consumption in cruise conditions. The engine has been modeled with a 0D/1D modeling approach. Then, the model capability in describing the effect of several parameters on engine performance has been assessed comparing the results of 3D simulations with those of 0D/1D model. The validated 0D/1D model has been used to simulate the engine behavior varying several design and operation engine parameters (exhaust valves opening and closing angles and maximum valve lift, scavenging ports opening angle, distance between bottom edge of the scavenging ports and bottom dead center, area of the single scavenging port and number of ports, engine volumetric compression ratio, low and high pressure compressor pressure ratios, air/fuel ratio) on a wide range of possible values. The parameters most influencing the engine performance are then recognized and their effect on engine thermodynamic behavior is discussed. Finally, the system configurations leading to best engine power at sea level and lowest fuel consumption in cruise

  8. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  9. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  10. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  11. On Using Ilities of Non-Functional Properties for Subsystems and Components

    Directory of Open Access Journals (Sweden)

    James Y. Lee

    2017-07-01

    Full Text Available The use of ilities for systems engineering of subsystems and components is investigated. Prior work on ilities has emphasized or restricted their application to system level, non-functional properties. The premise of this work is that ilities can be applied with benefit, and in some cases out of necessity, to lower levels of systems as well. The veracity of this premise is established by providing examples that demonstrate how some ilities are passed and used as a non-functional property of electrical and structural subsystems in aircraft. It is further demonstrated that flowing ilities down to the subsystem level is not only a useful practice for systems engineers, it can also be an essential step to ensure that customer needs are actually met by the system under design or service. Systems engineers often lack the detailed knowledge of the subsystems or components required to translate ilities into functional requirements. Thus, the system ilities are passed down and translated from non-functional to functional requirements by subject matter experts. We first discuss the definition, characteristics and scope of ilities. Then, we formulate the application of ilities at a subsystem level. Next, we show aircraft engineering examples for ilities applications. The application process is formalized with diagrams, and ilities’ relation to system architecture engineering is discussed. The work concludes with a summary and suggestions for future work.

  12. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  13. Aircraft crash protection from a military engineering point of view

    International Nuclear Information System (INIS)

    Lynch, J.P.

    1975-01-01

    The general problem is to investigate the situation of an aircraft crash on a reactor building. One aspect of the problem is to determine if the structural conditions required to protect the environment against the results of an impact at the center of a 10 m by 10 m reinforced concrete wall slab are reasonable. This paper discusses the dynamic structural response problem, using the analytical methods developed for military structures designed to resist blast loading. The military protection problem is quite similar to reactor protection in that extensive analysis is required to define the threat or loading conditions. The post-dynamic-loading structural requirements must also be defined, since every possible source of resistance is used to obtain a structure which protects against the stated threat at the lowest cost. Such a structural design contains the lowest possible factor of safety, using reasonable analytical techniques, and is more properly called collapse design. If more protection is provided than required, the cost will be greater than necessary. An aircraft jet engine impact is selected as the loading condition for the protection requirements of the reactor wall panel. Analytical investigation of the impact indicates that the load function can be reasonably well approximated by the half sine wave pressure-time curve. Thus, the maximum pressure and duration of the half sine pressure pulse completely define the load-time history. (orig./HP) [de

  14. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  15. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 2

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Itoh, C.; Shirai, K.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Three sets of impact tests, small-, intermediate-, and full-scale tests, have been executed to determine local damage to reinforced concrete structures caused by the impact of aircraft engine missiles. The results of the test program showed that (1) the use of the similarity law is appropriate, (2) suitable empirical formulas exist for predicting the local damage caused by rigid missiles, (3) reduction factors may be used for evaluating the reduction in local damage due to the deformability of the engines, (4) the reinforcement ratio has no effect on local damage, and (5) the test results could be adequately predicted using nonlinear response analysis. (orig.)

  16. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  17. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    Science.gov (United States)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  18. Analytical modeling of the structureborne noise path on a small twin-engine aircraft

    Science.gov (United States)

    Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.

    1988-01-01

    The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.

  19. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  20. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  1. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S; Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  2. FY 1998 Report on technical results. Part 1 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 1/2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines. For the item (1), the ram combustor for the target engine is designed to evaluate its performance, and the shock-position within the dummy intake is successfully controlled by the variable exhaust nozzle. For the item (2), the R and D efforts are directed to the fans and low-pressure turbines, the former covering the studies on the single-stage elements for the fans of high flow rate, and the elements for the 2-stage, high-efficiency, high-load fans. For the item (3), the R and D efforts are directed to the electronic control systems and electro-optical measurement systems, the latter including development of the improved optical positioning and rotational sensors operating at high temperature of 350 degrees C. For the item (4), the R and D efforts are directed to intake nozzles as the total system component, noise reduction technology, and cooling and new material application technologies. (NEDO)

  3. Development of Advanced Carbon Face Seals for Aircraft Engines

    Science.gov (United States)

    Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu

    2018-01-01

    Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.

  4. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    Science.gov (United States)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  5. Procurement and quality control of components important to safety in nuclear engineering projects

    International Nuclear Information System (INIS)

    Zhang Zhihua; Zhang Yiyun

    2006-01-01

    The procurement and quality control of components is a very important work in the nuclear engineering. This paper introduces the project management techniques, such as how to make a plan of components purchase in nuclear engineering. This paper discussed the classification of components, evaluation of the potential suppliers, invitation of bids, exchange of design details with the suppliers, quality assurance and quality assurance audit, and the equipment checks before acceptance and some engineering experiences. (authors)

  6. The Aircraft Industry

    National Research Council Canada - National Science Library

    Fitzgerald, Tim; Baiche, Noureddine; Brewer, Mike; Collins, Al; Knapp, Kathy; Kott, Marilyn; McGill, Duncan; Mensah, Dunstan; Neighbors, Mark; Reardon, Dee

    2005-01-01

    .... As the airline companies prepare to buy new Boeing and Airbus passenger jets, they remain under intense pressure to cut costs in order to remain profitable, forcing aircraft and engine manufacturers...

  7. Characterization of aircraft deicer and anti-icer components and toxicity in airport snowbanks and snowmelt runoff

    Science.gov (United States)

    Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J. E.; Rice, C.P.; Sheesley, R.J.; Failey, G.G.; Cancilla, Devon A.

    2006-01-01

    Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components. ?? 2006 American Chemical Society.

  8. Component-Based Software Engineering and Runtime Type Definition

    OpenAIRE

    A. R. Shakurov

    2011-01-01

    The component-based approach to software engineering, its current implementations and their limitations are discussed. A new extended architecture for such systems is presented. Its main architectural concepts and principles are considered.

  9. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  10. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  11. Prospects of increasing the engineering level of NPP components

    International Nuclear Information System (INIS)

    Filippov, G.A.

    1987-01-01

    Consideration is being given to main problems related to development and industrial introduction of NPP components corresponding to the perspective world-wide engineering level. The nearest task in this field is to elevate the engineering level of developed and being produced power equipment up to the level of similar equipment, manufactured by leading foreign companies

  12. Performance Engineering Technology for Scientific Component Software

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  13. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  14. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  15. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    Science.gov (United States)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  16. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    OpenAIRE

    I. I. Zavyalik; V. S. Oleshko; V. M. Samoylenko; E. V. Fetisov

    2016-01-01

    The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  17. Aircraft Capability Management

    Science.gov (United States)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  18. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  19. Recent progress in fan and compressor for aeroengine. Koku engine yo fan asshukuki no saikin no gijutsu shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    As the main components of the aeroengine, the fan and compressor reach to extremely high level stage technologically. Also at present when about 50 years passed after the jet engine was applied in practice, however, an effort for a modification is being continued, and furthermore even in the 1990s, the engines that adopted the new technologies are in succession being put in practical application. New engines in the 1990s are being applied in practice by adopting the study results on fan and compressor from the 1970s to the 1980s. Because, which way the future fan and compressor of the aircraft will go to has a relation with an aircraft trend from now on, and even in the 2000s the high subsonic speed aircrafts will be a center of the private air planes. The engine of high subsonic speed aircraft in the next generation will become an ultrahigh bypass ratio engine, the thrust efficiency is raised and noise is lowered, by lowering a fan pressure ratio and by increasing an air flow quantity compared with the current high bypass ratio turbofan engine. 16 figs.

  20. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  1. Components of WWER engineering factors for peaking factors: status and trends

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2010-01-01

    One of the topics for discussion at special working group 'Elaboration of the methodology for calculating the core design engineering factors' is the problem of engineering factor components. The list of components corresponds to the phenomena that are taken into account with the engineering factor. It is supposed the better understanding of the influenced phenomena is important stage for developing unified methodology. This paper presents some brief overview of components of the engineering factor for VVER core peaking factors as they are in the Kurchatov Institute methodology. The evolution of some components to less conservative values is observed. Author makes some assumptions as for the further progress in components assessment. The engineering factors providing observance of design limits at normal operation, should cover, with the set probability, the uncertainty, connected with process of core design. For definition of the value of factors it is necessary to define influence of these uncertainties on the investigated parameter of the reactor. Practice consists in defining all possible sources of uncertainties, to estimate influence of each of them, and on their basis to define total influence of all uncertainties. The important stage of a technique of factor calculation is a definition of the list influencing uncertainties. It is obvious that all characteristics of VVER core are known with some uncertainty-owing to manufacturing tolerances, the measurement errors, etc. However essential influence on the parameters connected with safety, render only a part from them. At list formation those characteristics get out only, whose influence is essential to the corresponding parameter. (Author)

  2. Thermal design of linear induction and synchronous motor for electromagnetic launch of civil aircraft

    OpenAIRE

    Bertola, Luca; Cox, Tom; Wheeler, Patrick; Garvey, Seamus D.; Morvan, Herve

    2017-01-01

    The engine size of modern passenger transport aircraft is principally determined by take-off conditions, since initial acceleration requires maximum engine power. An elec¬tromagnetic launch (EML) system could provide some or all of the energy required at takeoff so that the aircraft engine power requirement and fuel consumption may be significantly reduced. So far, EML for aircraft has been adopted only for military applications to replace steam catapults on the deck of aircraft carriers. Thi...

  3. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ... data approved by the Administrator. (e) The holder of an air carrier operating certificate or an... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an aircraft issued a special airworthiness certificate in light-sport category for return to service, as...

  4. 78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-10-02

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward... Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main...

  5. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  6. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    Directory of Open Access Journals (Sweden)

    I. I. Zavyalik

    2016-01-01

    Full Text Available The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  7. Software Engineering Environment for Component-based Design of Embedded Software

    DEFF Research Database (Denmark)

    Guo, Yu

    2010-01-01

    as well as application models in a computer-aided software engineering environment. Furthermore, component models have been realized following carefully developed design patterns, which provide for an efficient and reusable implementation. The components have been ultimately implemented as prefabricated...... executable objects that can be linked together into an executable application. The development of embedded software using the COMDES framework is supported by the associated integrated engineering environment consisting of a number of tools, which support basic functionalities, such as system modelling......, validation, and executable code generation for specific hardware platforms. Developing such an environment and the associated tools is a highly complex engineering task. Therefore, this thesis has investigated key design issues and analysed existing platforms supporting model-driven software development...

  8. Analysis of Aircraft Crash Accident for WETF

    International Nuclear Information System (INIS)

    Jordan, Hans

    2001-01-01

    This report applies the methodology of DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities'', to the Weapons Engineering Tritium Facility (WETF) at LANL. Straightforward application of that methodology shows that including local helicopter flights with those of all other aircraft with potential to impact the facility poses a facility impact risk slightly in excess of the DOE standard's threshold--10 -6 impacts per year. It is also shown that helicopters can penetrate the facility if their engines impact that facility's roof. However, a refinement of the helicopter impact analysis shows that penetration risk of the facility for all aircraft lies below the DOE standard's threshold. By that standard, therefore, the potential for release of hazardous material from the facility as a result of an aircraft crashing into the facility is negligible and need not be analyzed further

  9. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  10. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  11. Additive Manufacturing Design Considerations for Liquid Engine Components

    Science.gov (United States)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  12. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  13. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 1: Technology flight vehicle definition

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Concept design is presented for two types of lift/cruise fan technology V/STOL aircraft, turbotip fans and the other using mechanically driven fans. The turbotip research technology aircraft reflects maximum usage of existing airframe components. The propulsion system consists of three turbotip fans pneumatically interconnected to three gas generators. Thrust modulation is accomplished by use of energy transfer and control system and thrust reduction modulation. This system can also be operated in the two engine/three fan mode. The mechanical RTA is virtually identical to the turbotip RTA with the exceptions that a different propulsion system and aft fuselage/tail are used. Both aircraft meet or exceed all of the mission performance guidelines and reflect a low cost, low risk approach.

  14. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  15. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  16. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    Science.gov (United States)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  17. Safety analysis of dual purpose metal cask subjected to impulsive loads due to aircraft engine crash

    International Nuclear Information System (INIS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    2009-01-01

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters and seismic tests subjected to strong earthquake motions. Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001. This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine research (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed

  18. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    Science.gov (United States)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  19. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    Science.gov (United States)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  20. FY 1998 Report on technical results. Part 2 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2/2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines, and the intended targets are achieved. This project has ended with preparation of the overall plans of the target engine. Described herein is the R and D of the combined cycle engine, following the results described in Part 1 of 2. This program includes designs and development of (1) the turbojet engine, and (2) combined cycle engine. The item (1) includes studies on cycles, preparation of the overall plans and studies on the systems, and the item (2) includes the designs, ground and altitudes function tests, and ground noise tests. (NEDO)

  1. 14 CFR 33.21 - Engine cooling.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  2. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    Science.gov (United States)

    1982-07-01

    Type of Report end Period Covered Ag Sponsorin ncy Na.e and Address FINAL REPORT U.S. DEPARTMENT OF TRANSPORTATION October, 1980 - June, 1982 FEDERAL...Philadelphia, Pennsylvania Weybridge, Surry England KT130SF Mr. Roy Riseley Mr. William Miles de Havilland Aircraft Cessna Aircraft Company Garratt Blvd. Wallace...Guido F. Pesotti Mr. Frank C. Davis Technical Director Engineering Specialist Empresa Brasileira Aeronautica, S.A. Garrett Turbine Engine Company

  3. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition... Fuel Return System Modification Do not install Cessna Aircraft Company Service Bulletin SB 04- 28-03...

  4. Census U.S. Civil Aircraft Calendar Year 1993

    Science.gov (United States)

    1993-12-31

    Rotorcraft Single-Engine Mufi -Engine Multi-Engine MultI-Engm Region Total 2-Engine Single 2-Engine Single 2-Engine Other 1-3 4+ 3+ Engine 3+ Engine 3...REGION OF AIRCRAFT OWNER AS OF DECEMBER 31, 1993 P4so Turboprop Turbojet Rotoi:raf Sngle-Engie Mult-Engmn Mufi -Engiee Multi-Engine Reinr o• 2-E~nine Sigl

  5. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  6. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  7. Green IT engineering components, networks and systems implementation

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This book presents modern approaches to improving the energy efficiency, safety and environmental performance of industrial processes and products, based on the application of advanced trends in Green Information Technologies (IT) Engineering to components, networks and complex systems (software, programmable and hardware components, communications, Cloud and IoT-based systems, as well as IT infrastructures). The book’s 16 chapters, prepared by authors from Greece, Malaysia, Russia, Slovakia, Ukraine and the United Kingdom, are grouped into four sections: (1) The Green Internet of Things, Cloud Computing and Data Mining, (2) Green Mobile and Embedded Control Systems, (3) Green Logic and FPGA Design, and (4) Green IT for Industry and Smart Grids. The book will motivate researchers and engineers from different IT domains to develop, implement and propagate green values in complex systems. Further, it will benefit all scientists and graduate students pursuing research in computer science with a focus on green ...

  8. Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system

    International Nuclear Information System (INIS)

    Kim, Sangjo; Son, Changmin; Kim, Kuisoon

    2017-01-01

    Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.

  9. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    With an objective to utilize hydrogen fuel in aircraft engines, a conceptual design survey was carried out on medium size transport aircraft. Large size long-distance aircraft and SST loaded with a great amount of fuel have the jet fuel (JP) increase take-off weight, affecting largely the selection of wing area and engine thrust. If the hydrogen fuel can be liquefied, large reduction can be achieved and the economic effect can be increased. However, for short-distance transport aircraft, the fuel weight ratio is small, where no large advantage is anticipated even if hydrogen is liquefied. Nevertheless, considering oil depletion in the future, a conceptual design was performed on the YX2688 short-medium distance aircraft being discussed of development. Even the short-medium distance aircraft that can be developed and commercialized as civilian use aircraft has a number of common points with large aircraft development, such as hydrogen fuel using technologies and safety. Although the advantage of using liquefied hydrogen as fuel may of course be smaller in the short-medium distance aircraft than in larger aircraft, the trend of using hydrogen fuel is historical necessity, whose development plans should be moved forward. (NEDO)

  10. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.G. [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1997-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  11. Environmental compatibility of CRYOPLANE the cryogenic-fuel aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H G [Daimler Benz Aerospace Airbus, Hamburg (Germany)

    1998-12-31

    `CRYOPLANE` is the project name for an aircraft powered by cryogenic fuel, either liquid natural gas (LNG, mainly consisting of methane) or liquid hydrogen (LH{sub 2}). Emission of CO{sub 2}, unburnt hydrocarbons, soot and sulfur will be completely avoided by hydrogen combustion: LH{sub 2} is an extremely pure liquid. Emission of water as a primary combustion product is increased by a factor of 2.6. Exhaust gases behind hydrogen engines contain more water than behind kerosene engines, and hence can form contrails under a wider range of atmospheric conditions. Liquid hydrogen fueled aircraft promise big advantages relative to kerosene aircraft in terms of environmental compatibility. (R.P.)

  12. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    NARCIS (Netherlands)

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions

  13. Origin and type of flaws in heat engine ceramic materials and components

    International Nuclear Information System (INIS)

    Govila, R.K.

    1995-01-01

    A number of ceramic materials such as Silicon Nitrides and Carbides, Sialons, Whisker-Reinforced Ceramic Composites and Partially-Stabilized Zirconias (PSZs) have been developed for use as structural components in heat engine applications. The reliability and durability of a structural engine component is critically dependent on the size, density of distribution and location of flaws. This information is critical for the processing and design engineers in order to design structural components using suitable materials and thus minimize stress intensity. In general, the failure initiating flaws are associated or produced due to material impurity, processing methods and parameters, and fabrication techniques (machining and grinding). Examples of each type of flaws associated with material impurity, processing methods and fabrication techniques are illustrated

  14. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  15. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  16. Radiation protection considerations of the use of thoriated magnesium alloys in aircrafts; Strahlenschutzaspekte der Verwendung thoriumhaltiger Magnesiumlegierungen in Luftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, A.; Kersting, M.; Warnecke, U. [Bundesamt fuer Infrastruktur, Umweltschutz und Dienstleistungen der Bundeswehr, Munster (Germany). Strahlenmessstelle der Bundeswehr; Strobach, L. [Militaerhistorisches Museum Flugplatz Berlin-Gatow, Berlin (Germany)

    2016-07-01

    For the improvement of high-temperature properties of Magnesium light-weight alloys for the construction of aircraft engines, research in the US and UK focussed also on Thorium as a constituent. As a result, large components of aircraft jet and shaft engines were made of Thorium-Magnesium alloys. Here the results of dose rate measurements are presented, which were performed by the Bundeswehr over decades. It shows up that type specific maximum values of the dose rate can be specified. In additional measurements the compiled data of the dose H{sub x} (photon-equivalent dose) are related to current dose quantity (H*(10)). Using conservative values for the occupational dwell time near these engines the maximum annual dose for external exposure is estimated below 2 mSv. Dose contributions due to incorporation have not to be considered, since the work does not involve the formation of inhalable dust or smoke.

  17. Real Time Engineering Analysis Based on a Generative Component Implementation

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Klitgaard, Jens

    2007-01-01

    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses the g...

  18. Advanced rotary engine studies

    Science.gov (United States)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  19. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Advanced rotary engines

    Science.gov (United States)

    Jones, C.

    1983-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  1. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  2. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  3. Noise transmission through sidewall treatments applicable to twin-engine turboprop aircraft

    Science.gov (United States)

    Grosveld, F. W.

    1983-04-01

    The noise transmission loss characteristics of the sidewall treatment in the propeller plane of a twin-engine turboprop aircraft are experimentally investigated in the NASA Langley Research Center Transmission Loss Facility. The sound attenuation properties of the individual elements of this treatment are evaluated showing least noise transmission loss in the low frequencies (below 500 Hz) where the excitation levels at the propeller blade passage frequency and the first few harmonics are highest. It is shown that single and double wall resonances play an important role in the noise transmission loss values of the treatment at these low frequencies suggesting that a limp mass with a very low resonance frequency serves better as a trim panel than a trim panel having a high structural stiffness. It is indicated that the window structures might be a potential noise control problem.

  4. Qualification of Indigenously Developed Special Coatings for Aero-Engine Components

    OpenAIRE

    V. Sambasiva Rao; T. Rangaraju; V. Unnikrishnan

    1999-01-01

    The demand for higher performance and reliability of aero-engiaes necessitates its components to worksatisfactorily under severe operating conditions. The durability of various components in these environmentis often enhanced by applying suitable coatings. The development of new materials/processing methods andalso various coatings to protect the components have been driven by the ever-increasing severity of theaero-engine internal environment. While the selection of a coating is dictated by ...

  5. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Science.gov (United States)

    2010-01-01

    ... section, may have a flight engineer certificate issued to him for the operation of civil aircraft of U.S... engineer certificate issued under this section may act as a flight engineer of a civil aircraft of U.S... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis...

  6. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  7. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  8. Thermo-Mechanical Fatigue of Compacted Graphite Iron in Diesel Engine Components

    NARCIS (Netherlands)

    Ghodrat, S.

    2013-01-01

    Cast iron components in combustion engines, such as cylinder blocks and heads of trucks, are exposed for long periods of time to elevated temperatures. Moreover, the engines are started and stopped frequently during their operational life, constituting a large number of heating and cooling cycles.

  9. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  10. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  11. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  12. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  13. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Directory of Open Access Journals (Sweden)

    Żurek Józef

    2014-12-01

    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  14. Micro- and nano-NDE systems for aircraft: great things in small packages

    Science.gov (United States)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  15. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  16. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    Science.gov (United States)

    Haas, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation is presented to determine the aerodynamic performance deficit of a 13.5 - centimeter-tip-diameter aircraft engine starter turbine. The two-phased evaluation comprised both the stator and the stage performance, and the experimental design is described in detail. Data obtained from the investigation of three honeycomb shrouds clearly showed that the filled honeycomb reached a total efficiency of 0.868, 8.2 points higher than the open honeycomb shroud, at design equivalent conditions of speed and blade-jet speed ratio. It was concluded that the use of an open honeycomb shroud caused the large performance deficit for the starter turbine. Further research is suggested to ascertain stator inlet boundary layer measurements.

  17. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  18. Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept. Design Report

    Science.gov (United States)

    1987-01-01

    The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.

  19. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  20. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  1. Deicing System Protects General Aviation Aircraft

    Science.gov (United States)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  2. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    Science.gov (United States)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  3. An Optimal Augmented Monotonic Tracking Controller for Aircraft Engines with Output Constraints

    Directory of Open Access Journals (Sweden)

    Jiakun Qin

    2017-01-01

    Full Text Available This paper proposes a novel min-max control scheme for aircraft engines, with the aim of transferring a set of regulated outputs between two set-points, while ensuring a set of auxiliary outputs remain within prescribed constraints. In view of this, an optimal augmented monotonic tracking controller (OAMTC is proposed, by considering a linear plant with input integration, to enhance the ability of the control system to reject uncertainty in system parameters and ensure no crossing limits. The key idea is to use the eigenvalue and eigenvector placement method and genetic algorithms to shape the output responses. The approach is validated by numerical simulation. The results show that the designed OAMTC controller can achieve a satisfactory dynamic and steady performance and keep the auxiliary outputs within constraints in the transient regime.

  4. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  5. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Aircraft Depainting Technology

    National Research Council Canada - National Science Library

    Kozol, Joseph

    1999-01-01

    ... of aircraft and component stripping at various levels of maintenance. Under this program, the Navy pursued development of non-HAP chemical paint strippers as alternatives for methylene chloride based strippers...

  7. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  8. Eddy Current Assessment of Engineered Components Containing Nanofibers

    Science.gov (United States)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  9. Induction hardening of tool steel for heavily loaded aircraft engine components

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2017-03-01

    Full Text Available Induction hardening is an innovative process allowing modification of the materials surface with more effective, cheaper and more reproducible way to compare with conventional hardening methods used in the aerospace industry. Unfortunately, high requirements and strict regulation concerning this branch of the industry force deep research allowing to obtain results that would be used for numerical modelling of the process. Only by this way one is able to start the industrial application of the process. The main scope of presented paper are results concerning investigation of microstructure evolution of tool steel after single-frequency induction hardening process. The specimens that aim in representing final industrial products (as heavily loaded gears, were heat- -treated with induction method and subjected to metallographic preparation, after which complex microstructure investigation was performed. The results obtained within the research will be a basis for numerical modelling of the process of induction hardening with potential to be introduced for the aviation industrial components.

  10. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  11. A Risk Assessment Architecture for Enhanced Engine Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sharp. Lauren M.; Guo, Ten-Huei

    2010-01-01

    On very rare occasions, in-flight emergencies have occurred that required the pilot to utilize the aircraft's capabilities to the fullest extent possible, sometimes using actuators in ways for which they were not intended. For instance, when flight control has been lost due to damage to the hydraulic systems, pilots have had to use engine thrust to maneuver the plane to the ground and in for a landing. To assist the pilot in these situations, research is being performed to enhance the engine operation by making it more responsive or able to generate more thrust. Enabled by modification of the propulsion control, enhanced engine operation can increase the probability of a safe landing during an inflight emergency. However, enhanced engine operation introduces risk as the nominal control limits, such as those on shaft speed, temperature, and acceleration, are exceeded. Therefore, an on-line tool for quantifying this risk must be developed to ensure that the use of an enhanced control mode does not actually increase the overall danger to the aircraft. This paper describes an architecture for the implementation of this tool. It describes the type of data and algorithms required and the information flow, and how the risk based on engine component lifing and operability for enhanced operation is determined.

  12. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  13. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    Science.gov (United States)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  14. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  15. A service life extension (SLEP) approach to operating aging aircraft beyond their original design lives

    Science.gov (United States)

    Pentz, Alan Carter

    With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.

  16. Local Impact Simulation of SC Wall Structures using Aircraft Engine Projectile

    International Nuclear Information System (INIS)

    Chung, Chulhun; Lee, Jungwhee; Lee, Hanjoo; Jung, Raeyoung; Hyun, Changhun

    2013-01-01

    SC wall structure developed for nuclear power plant buildings consists of plain concrete and two steel plates on both surface of the concrete, while RC structure consists of re bar and concrete. SC structure has higher scabbing resistance than RC structure due to the action of steel plate on the rear side of impact. Therefore SC structure is known as more effective structure from the viewpoint of aircraft crash than RC structure. However, most of the recent researches and experiments about local impact damage deal with RC structures, and the effect of re bar and steel plate is not considered reasonably. Although Walter et al. and Make-work et al. suggested a formula for evaluating perforation depth of steel plate covered RC walls, most of the previous researches about SC structure are focused on perforation and scabbing due to the impact of hard projectile, rather than soft projectile such as an aircraft. In this research a soft projectile, i. e. aircraft engine, is utilized for impact simulation of RC and SC walls. To evaluate local damage of SC wall structures, parametric study with the variables of wall thickness and steel ratio of the cover plate is performed, and the results are compared with those of RC structures. Since scabbing was prevented by the steel plates, penetration mode of damage was observed in SC walls while scabbing damage was occurred in RC walls. It is confirmed that the rear steel plate not only contains concrete debris, but also reduces the internal damage of the concrete walls. Penetration depth of SC walls did not largely vary due to the increasing steel ratio, and similar results to RC walls were observed when the wall thickness is larger than a certain value since the impact resistance of SC wall is mainly governed by the thickness of concrete part. Therefore, it is expected that similar level of impact resistance to RC structure can be produced with the minimum thickness of steel plates of SC structure. According to these results, SC

  17. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    International Nuclear Information System (INIS)

    Shin, Sang Shup; Hahm, Daegi; Kim, Min Kyu

    2015-01-01

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed

  18. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Hanyang University, Seoul (Korea, Republic of); Hahm, Daegi; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed.

  19. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  20. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  1. Effect of soot on oil properties and wear of engine components

    International Nuclear Information System (INIS)

    Green, D A; Lewis, R

    2007-01-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present

  2. Study of advanced fuel system concepts for commercial aircraft

    Science.gov (United States)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  3. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  4. Reliability analysis of C-130 turboprop engine components using artificial neural network

    Science.gov (United States)

    Qattan, Nizar A.

    turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.

  5. Theseus Engine Being Unloaded

    Science.gov (United States)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  6. Acoustical design economic trade off for transport aircraft

    Science.gov (United States)

    Benito, A.

    The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.

  7. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    Science.gov (United States)

    Şöhret, Yasin

    2018-05-01

    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  8. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  9. Advanced Propulsion System Studies for General Aviation Aircraft

    Science.gov (United States)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  10. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    International Nuclear Information System (INIS)

    Lee, D S; Gonzalez, L F; Walker, R; Periaux, J; Onate, E

    2010-01-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO 2 ) and nitrogen oxides (NO x ) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO 2 ) and NO x using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NO x with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NO x with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NO x and CO 2 (minimum mission fuel weight).

  11. 77 FR 55770 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-09-11

    ... aircraft's hydraulic power pack wiring for incorrect installation, and if needed, correct the installation... this AD, whichever occurs first, inspect the hydraulic power pack wiring for correct installation...) Correct the Installation of the Hydraulic Power Pack Wiring (1) Single engine aircraft: If you find...

  12. Desaid : the development of an expert system for aircraft initial design

    OpenAIRE

    Nah, Seung-Hyeog

    1991-01-01

    As all engineering works are a blend of theory and empiricism, aircraft design, by its nature, represents a mixture of aircraft designer's knowledge obtained from aeronautical engineering disciplines and its usage combined with his experience. This means not only the application but also the integration of all the fundamental knowledge of aerodynamics, structure, propulsion, stability and control, operational and economic aspects, etc., based upon the designer's jud...

  13. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  14. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    Science.gov (United States)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  15. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A [Office National d` Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C [Societe Nationale d` Etude et de Construction de Moteurs d` Aviation (SNECMA), Villaroche (France)

    1998-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  16. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  17. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  18. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  19. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  20. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    Science.gov (United States)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  1. Structural analysis of aircraft impact on a nuclear powered ship

    International Nuclear Information System (INIS)

    Dietrich, R.

    1976-01-01

    The paper investigates the aircraft impact on the collision barrier at the side of the ship. The aircraft impact on top of the reactor hatchway is investigated by another analysis. It appears that the most unfavorable angle of impact is always normal to the surface of the collision barrier. Consequently, only normal impact will be considered here. For the specific case of an aircraft striking a nuclear powered ship, the following two effects are considered: Local penetration and dynamic response of the structuure. The local penetration occurs at points where the engines or other rigid objects hit the structure. It is assumed that the aircraft engine is a rigid body projectile and the side wall of the ship is the target. The applied steel penetration formulae for projectiles were empirically derived for military applications, where both the projectile and the target are unlike those of an impact of an aircraft engine. For this reason it is expedient to calculate the upper and the lower limit values of the penetration depths. The results show that the highest penetration depth is less than the sum of all wall thicknesses of the collision barrier. The solution of the dynamic analysis is obtained by using the finite element method. The results are the eigenmodes, the eigenfrequencies, the displacements of the nodes, and the stresses in the applied plane stress elements. It is shown that the maximum stress which only appears in one element is on the same level as the yield stress of the St. 42 steel. The structural analysis shows that the collision barrier is a sufficient safeguard against the perforation of the engine and against the cracking of the structure as a result of the dynamic response to an aircraft impact. (orig./HP) [de

  2. Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components

    Science.gov (United States)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.

    2016-01-01

    In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.

  3. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  4. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming

    2012-01-01

    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  5. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  6. The application of cast SiC/Al to rotary engine components

    Science.gov (United States)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  7. Technology trend and production statistics of gas turbines and superchargers in Japan in 1992. ; Aircraft gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takeo, K [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1992-01-01

    Research and developments programs of aircraft gas turbines in Japan have been firmly proceeding. The Japanese Aero Engine Corporation(JAEC) has completed V2500 aircraft engines and this engine is going to be installed on MD90 aircraft. Intensive development activities have been proceeded in large engines which will cover the thrust of up to 90,000 LBF. Engines for 75-100 seat aircraft has been under study which is basically a high bypass turbofan in the thrust class of 12,000-20,000 LBF with low noise, low emission level. The research works for Super/Hypersonic Transport Propulsion System have been conducted by the Japanese engine manufacturers and four foreign companies (GE, UTC, RR and SNECMA). Japan defence agency with joint participation with MHI, IHI and KHI has been conducting a research demonstrator program of the small turbofan engine with reheat called XF3-400. National Aerospace Laboratory(NAL) and Space and Aeronautical Science(ISAS) have been conducting research program on air-turbo-ramjet and turbo-ramjet engine. 2 figs.

  8. 78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-02-12

    ... (2) Model 172S, S/N l72S11074 through 172S11193. (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe... Airworthiness Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT...

  9. 77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-12-05

    ... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition This AD was prompted by reports of chafing of a new... flight, reinstall the fuel return line assembly (Cessna P/N 0516031-1) following Cessna Aircraft Company...

  10. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    Science.gov (United States)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  11. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  12. Electromagnetic launch systems for civil aircraft assisted take-off

    Directory of Open Access Journals (Sweden)

    Bertola Luca

    2015-12-01

    Full Text Available This paper considers the feasibility of different technologies for an electromagnetic launcher to assist civil aircraft take-off. This method is investigated to reduce the power required from the engines during initial acceleration. Assisted launch has the potential of reducing the required runway length, reducing noise near airports and improving overall aircraft efficiency through reducing engine thrust requirements. The research compares two possible linear motor topologies which may be efficaciously used for this application. The comparison is made on results from both analytical and finite element analysis (FEA.

  13. 76 FR 70379 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2011-11-14

    ...) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code Fuel, 28...-1245; Directorate Identifier 2011-CE-033-AD; RIN 2120-AA64] Airworthiness Directives; Cessna Aircraft... certain Cessna Aircraft Company (Cessna) Models 172R and 172S airplanes. The existing AD requires you to...

  14. Energy optimization analysis of the more electric aircraft

    Science.gov (United States)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  15. FY 1995 annual report on research and development of propulsion systems for supersonic transport aircraft. Pt. 2. Research and development of methane-fueled engines for aircraft; 1995 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Described herein are the R and D results of FY 1995 for the total system as part of R and D of propulsion systems for supersonic transport aircraft. For R and D of the intake, researches on aerodynamic flow passages at a combined intake design point of Mach 5 are conducted, in which the effects of the boundary layer are taken into consideration, and the wind tunnel tests are conducted for the combined intake. For R and D of the nozzle, experiments are conducted to establish the techniques for designing exhaust nozzle variable schedules in the turbo region, aerodynamic force in the turbo and ram regions, cooling systems, and composite liners. For R and D of the turbojet engines, the second phase engine tests are conducted with the engine of improved designs and two-dimensional variable exhaust nozzle. The tests produce good results in terms of engine endurance and mechanical soundness of the low-pressure systems. For R and D of the combined cycle engine incorporating the turbojet and ramjet engines, the model tests are conducted to understand aerodynamic characteristics when these engines are switched to each other. (NEDO)

  16. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  17. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Science.gov (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  18. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  19. Flying without fuel. Minimalism in aircraft construction; Fliegen ohne Sprit. Minimalisten im Flugzeugbau

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W.

    1997-05-01

    The article describes the solar aircraft `Icare`` which was constucted in a joint project by engineers and scientists of Stuttgart university. The aircraft requires slightly more than one kW for staying up. The theoretical fundamentals are presented in the dissertation of Peer Frank, ``Aircraft design for minimum fuel consumption` (Institute of Aircraft Engineering, Stuttgart, 1992). (orig.) [Deutsch] Allein mit Sonnenkraft kann das Flugzeug `Icare` fliegen. Es entstand in Gemeinschaftsarbeit von Ingenieuren und Wissenschaftlern der Stuttgarter Universitaet. Das Solarflugzeug Icare benoetigt etwas ueber ein Kilowatt, um oben zu bleiben. In seiner Doktorarbeit `Die Auslegung von Flugzeugen mit geringstem Antriebsleistungsbedarf` (Institut fuer Flugzeugbau, Stuttgart, 1992) hat der Duesseldorfer Peer Frank die theoretischen Grundlagen dazu behandelt. (orig.)

  20. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Jian FU

    2018-05-01

    Full Text Available Electromechanical actuators (EMAs are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. Keywords: Bond graph, Electromechanical actuator, Flight control, Model-based system engineering, More electric aircraft, Power-by-wire

  1. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  2. Engineering excellence at Rolls-Royce; a taste of English culture

    NARCIS (Netherlands)

    Schnelders, J.

    2013-01-01

    Rolls-Royce is one of the most well-known brands in the world and synonymous with the highest engineering quality. Amongst Aerospace Engineers, Rolls-Royce is directly associated with the Trent turbofan aircraft engines. The engines power the world’s newest passenger aircraft, including the Boeing

  3. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  4. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    Science.gov (United States)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond

    2001-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  5. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Science.gov (United States)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  6. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  7. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  8. Assessment of an Anomaly Detector for Jet Engine Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sebastien Borguet

    2011-01-01

    Full Text Available The goal of module performance analysis is to reliably assess the health of the main components of an aircraft engine. A predictive maintenance strategy can leverage this information to increase operability and safety as well as to reduce costs. Degradation undergone by an engine can be divided into gradual deterioration and accidental events. Kalman filters have proven very efficient at tracking progressive deterioration but are poor performers in the face of abrupt events. Adaptive estimation is considered as an appropriate solution to this deficiency. This paper reports the evaluation of the detection capability of an adaptive diagnosis tool on the basis of simulated scenarios that may be encountered during the operation of a commercial turbofan engine. The diagnosis tool combines a Kalman filter and a secondary system that monitors the residuals. This auxiliary component implements a generalised likelihood ratio test in order to detect abrupt events.

  9. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  10. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  11. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  12. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  13. Structured automated code checking through structural components and systems engineering

    NARCIS (Netherlands)

    Coenders, J.L.; Rolvink, A.

    2014-01-01

    This paper presents a proposal to employ the design computing methodology proposed as StructuralComponents (Rolvink et al [6] and van de Weerd et al [7]) as a method to perform a digital verification process to fulfil the requirements related to structural design and engineering as part of a

  14. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  15. The Demand for Single Engine Piston Aircraft,

    Science.gov (United States)

    1987-08-01

    flying markets. The wing incorporates the drooped leading edge technology developed by NASA for more stability and spin resistance and its aerodynamic ...composites more quickly because of the absence of certi- ficatjcr: requirements. Less conventional configurations such as carar( wings and winglets are...smooth contours and surfaces. Composites offer much promise and are already in use in winos of a number of aircraft. Winglets reduce vortex drag by

  16. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  17. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  18. Direct carbon dioxide emissions from civil aircraft

    OpenAIRE

    Grote, Matt; Williams, Ian; Preston, John

    2014-01-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories – policy and legal-related measures, and technological and operational measures. Results of the review are used to develop sever...

  19. Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application

    Science.gov (United States)

    Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan

    2018-03-01

    A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.

  20. Aircraft Design Software

    Science.gov (United States)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  1. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  2. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    1994-04-01

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  3. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  4. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  5. 77 FR 58003 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Science.gov (United States)

    2012-09-19

    ...) is Document Management Facility, U.S. Department of Transportation, Docket Operations, M-30, West... INFORMATION CONTACT: Norm Perenson, Aerospace Engineer, New York Aircraft Certification Office, FAA, Engine... the proposal and the FAA's response to that comment. Request To Determine if AD Applies to IO-360...

  6. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  7. 40 CFR 85.1715 - Aircraft meeting the definition of motor vehicle.

    Science.gov (United States)

    2010-07-01

    ... motor vehicle. 85.1715 Section 85.1715 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Motor Vehicles and Motor Vehicle Engines § 85.1715 Aircraft meeting the definition of motor vehicle. This section applies for aircraft meeting the definition of motor vehicle in § 85.1703. (a) For the...

  8. SIMPLIFIED MATHEMATICAL MODEL OF SMALL SIZED UNMANNED AIRCRAFT VEHICLE LAYOUT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Strong reduction of new aircraft design period using new technology based on artificial intelligence is the key problem mentioned in forecasts of leading aerospace industry research centers. This article covers the approach to devel- opment of quick aerodynamic design methods based on artificial intelligence neural system. The problem is being solved for the classical scheme of small sized unmanned aircraft vehicle (UAV. The principal parts of the method are the mathe- matical model of layout, layout generator of this type of aircraft is built on aircraft neural networks, automatic selection module for cleaning variety of layouts generated in automatic mode, robust direct computational fluid dynamics method, aerodynamic characteristics approximators on artificial neural networks.Methods based on artificial neural networks have intermediate position between computational fluid dynamics methods or experiments and simplified engineering approaches. The use of ANN for estimating aerodynamic characteris-tics put limitations on input data. For this task the layout must be presented as a vector with dimension not exceeding sev-eral hundred. Vector components must include all main parameters conventionally used for layouts description and com- pletely replicate the most important aerodynamics and structural properties.The first stage of the work is presented in the paper. Simplified mathematical model of small sized UAV was developed. To estimate the range of geometrical parameters of layouts the review of existing vehicle was done. The result of the work is the algorithm and computer software for generating the layouts based on ANN technolo-gy. 10000 samples were generated and the dataset containig geometrical and aerodynamic characteristics of layoutwas created.

  9. Features of FJR 710 engine

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Hirokazu; Kobayashi, Hideo [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1989-03-01

    The FJR 710/600 high by-pass ratio turbofan engine was outlined, which was developed under the National Research and Development Program of Agency of Industrial Science and Technology, MITI dated from 1971. Results of developmental tests and flying tests of the engine were reported, which were performed to install the engine on the quiet STOL research aircraft under development by the National Aerospace Laboratory (NAL), the Science and Technology Agency, and the STOL aircraft was also outlined. Developmental tests of FJR 710 (design specification : thrust of 50kN, specific fuel consumption of 37.4g/N.h, turbine inlet temperature of 1.250{degree}C) were performed for 4,800 hours to verify airworthiness, and from those test results, the results of such environmental resistance tests as a foreign object strike test, icing test, inlet distortion test, cross wind test, and noise and exhaust measurement were reported in detail. 20 flying tests by a flying test bed (FTB) aircraft and flight tests by the STOL aircraft were also outlined. 10 refs., 5 figs., 2 tabs.

  10. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  11. Some current engineering topics in nuclear power plant components

    International Nuclear Information System (INIS)

    Amana, M.

    1977-01-01

    An analysis based on the principle of fracture mechanics, is presented for several engineering problems occuring in nuclear power plant components. The specific problems covered are: underclad cracking; stress corrosion cracking; cracks in HAZ of nozzle weld; feedwater nozzle corner crack; shift of transition temperature due to neutron irradiation; LWR local-ECC thermal shock experiment; and design and material selection of RPV in terms of fracture mechanics. (B.R.H.)

  12. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  13. MATHEMATICAL ASPECTS OF AIRCRAFT ENGINES RUNNING OPTIMIZATION FOR MINIMUM FUEL CONSUMPTION WHILE LANDING

    Directory of Open Access Journals (Sweden)

    Yuriy Michaylovich Chinyuchin

    2017-01-01

    Full Text Available The consistency of the potential increase of fuel efficiency, based on aircraft maintenance optimization, is mathe- matically proved. The mathematical apparatus and a set mathematical model of aircraft spatial motion allow to analyze aircraft behavior on the stage before landing and to draw optimal flight path for minimum fuel consumption with fixed time.For effective problem solving the choice and realization of optimal flight paths are made. The algorithm for the problem of optimal civil aircraft flight control aimed at the most accurate realization of chosen soft path under limited time conditions is proposed. The optimization of the given process is made by solving a point-to-point boundary canonical sys- tem based on the Pontryagin maximum principle.The necessary initial data and conditions for the statement of problem are given. The mathematical model for the simplification of calculations is created and its equivalent representation is given by uniting problems of controls by thrust channels and the angle of attack as the thrust control function. The boundary-value problem is mathematically composed and the analytical apparatus of its solution is presented. Optimal aircraft landing paths reflecting the behavior of the angle of attack and thrust are constructed. The potential of this method is proved by the economic justifiability and its effectiveness, in particular the compar- ison of total aircraft fuel consumption on obtained optimal path to the classic path on which there are rectilinear sections what allowed to confirm the conclusion about the economical expedience and effectiveness of the method of aircraft con- stant landing while making flights.

  14. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  15. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  16. Study of V/STOL aircraft implementation. Volume 1: Summary

    Science.gov (United States)

    Portenier, W. J.; Webb, H. M.

    1973-01-01

    A high density short haul air market which by 1980 is large enough to support the introduction of an independent short haul air transportation system is discussed. This system will complement the existing air transportation system and will provide relief of noise and congestion problems at conventional airports. The study has found that new aircraft, exploiting V/STOL and quiet engine technology, can be available for implementing these new services, and they can operate from existing reliever and general aviation airports. The study has also found that the major funding requirements for implementing new short haul services could be borne by private capital, and that the government funding requirement would be minimal and/or recovered through the airline ticket tax. In addition, a suitable new short haul aircraft would have a market potential for $3.5 billion in foreign sales. The long lead times needed for aircraft and engine technology development will require timely actions by federal agencies.

  17. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 2: Technology aircraft

    Science.gov (United States)

    1975-01-01

    Technology flight vehicles were defined for three different approaches which demonstrate the concept and characteristics of the multipurpose aircraft established for Navy missions. The propulsion system used for the various technology flight vehicles was representative of that established for the multipurpose aircraft. Existing J97-GE100 gas generators were selected based on cost, availability and exhaust characteristics. The LF459 fans were also selected and are compatible with both technology and operational vehicles. To comply with the design guideline safety criteria, it was determined that three gas generators were required to provide engine out safety in the hover flight mode. The final propulsion system established for the technology aircraft was three existing J97 gas generators powering three LF459 fans. Different aircraft candidates were evaluated for application to the three designated design approaches. Each configuration was evaluated on the basis of (1) propulsion system integration, (2) modification required, (3) pilot's visibility, (4) payload volume, and (5) adaptability to compatible location of center-of-gravity/aerodynamic center and thrust center.

  18. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    Science.gov (United States)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  19. Superconducting and conventional electromagnetic launch system for civil aircraft assisted take-off

    OpenAIRE

    Bertola, Luca; Cox, Thomas; Wheeler, Patrick; Garvey, Seamus D.

    2016-01-01

    This paper compares three possible linear motor topologies for an electromagnetic launch system to assist civil aircraft take-off. Assisted launch of civil aircraft has the potential of reducing the required runway length, reducing noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. A comparison is made of practical designs of a linear induction motor, a linear permanent magnet synchronous motor and a superconducting linear ...

  20. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  1. Load event: Aircraft crash

    International Nuclear Information System (INIS)

    Fritsch, H.

    1985-01-01

    The bibliography includes 48 quotations, up to the year 1983, on the following issues: Experiments and computational methods. Design load for the dimensioning of reinforced concrete buildings and components with respect to the dynamic load in the event of an aircraft crash. (orig./HP) [de

  2. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  3. Towards Prognostics for Electronics Components

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is...

  4. Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures

    OpenAIRE

    Kofroň, Jan; Tumova, Jana

    2017-01-01

    These are the proceedings of the 14th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on April 22, 2017 in Uppsala (Sweden) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'17). The aim of the FESCA workshop is to bring together junior researchers from formal methods, software engineering, and industry interested in the development and application of formal modelling ...

  5. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  6. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  7. Effects of cosmic radiation on devices and embedded systems in aircrafts

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  8. Sensor fault diagnosis of aero-engine based on divided flight status

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  9. Sensor fault diagnosis of aero-engine based on divided flight status.

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  10. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  11. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  12. METHOD IMPROVEMENT FOR DETERMINING THE TECHNICAL LEVEL OF CIVIL AIRCRAFT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Aircraft are high-tech engineering products which are characterized by a wide range of properties including the two most important groups that respectively characterize the efficiency and technical level.Improving the aircraft efficiency is an essential factor for air transport development, but the efficiency can not be fully describe the technical system, especially in forecasting and new technology requirements development. Aircraft de- signer must evaluate the prospects of a technical solution, but it’s not always possible to calculate the efficiency accuratelyat the design stage. The operator should be able to choose the most technically-advanced aircraft available in the market inorder not to let it grow obsolete quickly. This determines the need for non-economic evaluation of technical systems that can be done by assessment of their technical level.The technical level is a general index that includes a set of technical perfection indicators. Technical perfection is reflected in terms of material and energy intensity, in terms of ergonomics, safety, etc. and is achieved as a result of origi- nal design solutions, the use of new high-strength low-density materials, the introduction of advanced technological pro-cesses, calculation methods, verification, testing, etc.There is a tight connection between the product properties and its weight, because weight is the material reflection of these properties. Therefore, improvement of the product properties usually leads to an intense increase of its weight. To deal with this phenomenon is only possible with widely using scientific and technical progress results. In accordance with this, the technical perfection can be interpreted as a major component of quality that is created without the weight increase. This approach requires investment in research and testing new technical solutions.The method was developed to determine the technical level of civil long-haul aircraft which has been modified to

  13. Development of an Unmanned Aircraft Systems Program: ACUASI

    Science.gov (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2017-12-01

    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  14. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  15. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  16. QUALITY INFLUENCE OF SURFACE ON AIRCRAFT TAKE-OFF

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article considers quality impact influence of surface on aircraft take-off. It considers the IL-114 takeoff with all the operating engines. The goal of this research is to conduct calculating experiment to determine quality influence of surface on alteration of IL-114 takeoff characteristics during operation. Researches were carried out using the system of mathematical modeling of a flight dynamics. The main part of the system is a unit for calculating increments of aerodynam- ic coefficients caused with changing of technical condition of the surface of the airframe (roughness, waviness, available protruding elements on the airframe surface, etc. and residual deformation of the wing, fuselage, vertical and horizontal tail, as well as the difference between the rods symmetrically operating engines. In order to compute loss of rod and an increase in engine fuel consumption due to engine operation time during operation, an integral factor of thrust loss and increase in fuel consumption coefficient were introduced. Research proved that the individual characteristics of the aircraft, due to loss of engine power and increase in drag do not affect the assigned level of flight safety. The plane has a considera- ble reserve as for unsafe takeoff speed and the full gradient of climb, that ensures safety of operation.

  17. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  18. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  19. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine

    Science.gov (United States)

    Antoni, Jérôme; Griffaton, Julien; André, Hugo; Avendaño-Valencia, Luis David; Bonnardot, Frédéric; Cardona-Morales, Oscar; Castellanos-Dominguez, German; Daga, Alessandro Paolo; Leclère, Quentin; Vicuña, Cristián Molina; Acuña, David Quezada; Ompusunggu, Agusmian Partogi; Sierra-Alonso, Edgar F.

    2017-12-01

    This paper presents the content and outcomes of the Safran contest organized during the International Conference Surveillance 8, October 20-21, 2015, at the Roanne Institute of Technology, France. The contest dealt with the diagnosis of a civil aircraft engine based on vibration data measured in a transient operating mode and provided by Safran. Based on two independent exercises, the contest offered the possibility to benchmark current diagnostic methods on real data supplemented with several challenges. Outcomes of seven competing teams are reported and discussed. The object of the paper is twofold. It first aims at giving a picture of the current state-of-the-art in vibration-based diagnosis of rolling-element bearings in nonstationary operating conditions. Second, it aims at providing the scientific community with a benchmark and some baseline solutions. In this respect, the data used in the contest are made available as supplementary material.

  20. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  1. 78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Science.gov (United States)

    2013-11-25

    .... Mail: U.S. Department of Transportation, Docket Operations, M-30, West Building Ground Floor, Room W12... receipt. FOR FURTHER INFORMATION CONTACT: Norm Perenson, Aerospace Engineer, New York Aircraft..., Supplement 1, dated August 29, 2013 to identify previously omitted engine models. FAA's Determination We are...

  2. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  3. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe

    2012-11-01

    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  4. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  5. 14 CFR 33.28 - Engine control systems.

    Science.gov (United States)

    2010-01-01

    ...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...

  6. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  7. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  8. Advanced rotary engine components utilizing fiber reinforced Mg castings

    Science.gov (United States)

    Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.

    1986-01-01

    Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.

  9. Fire resistant aircraft seat program

    Science.gov (United States)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  10. Rotor Systems of Aircraft Jet Engines

    Directory of Open Access Journals (Sweden)

    Ján Kamenický

    2000-01-01

    engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.

  11. Optimized Matching Lift Unit Transmission Ratio of Engine Driven Ducted Fan

    Directory of Open Access Journals (Sweden)

    Xiao Senlin

    2018-01-01

    Full Text Available As a kind of VTOL technology, ducted fan is not only used by many kinds of aircrafts, but also one of the trends of the future aircraft lift system, and attracts more and more attention. For an engine driven ducted fan lift unit, involving the engine and ducted fan matching problem, the form of transmission and transmission ratio are the key design parameters. In order to design and develop a ducted fan aircraft reasonably, a thrust test platform was set up to connect the engine with the ducted fan through the belt driving. The matching relationship between the engine and the transmission system was experimentally studied and the optimal transmission ratio was determined. The results showed that the optimal transmission ratio for the engine 1 is 2.2:1, and for the engine 2, the optimal transmission ratio should be 2.95:1 based on the current ducted and movable blade aerofoil design. At this time, the lift will exceed 130 kg•f, meeting the aircraft's original design requirements.

  12. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  13. Model Specification for Rework of Aircraft Engine, Power Transmission, and Accessory/Auxiliary Ball and Roller Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2007-01-01

    This document provides a model specification for the rework and/or repair of bearings used in aircraft engines, helicopter main power train transmissions, and auxiliary bearings determined to be critical by virtue of performance, function, or availability. The rolling-element bearings to be processed under the provisions of this model specification may be used bearings removed after service, unused bearings returned from the field, or certain rejected bearings returned for reinspection and salvage. In commercial and military aircraft application, it has been a practice that rolling-element bearings removed at maintenance or overhaul be reworked and returned to service. Depending on the extent of rework and based upon theoretical analysis, representative life factors (LF) for bearings subject to rework ranged from 0.87 to 0.99 the lives of new bearings. Based on bearing endurance data, 92 percent of the bearing sets that would be subject to rework would result in L(sub 10) lives equaling and/or exceeding that predicted for new bearings. The remaining 8 percent of the bearings have the potential to achieve the analytically predicted life of new bearings when one of the rings is replaced at rework. The potential savings from bearing rework varies from 53 to 82 percent of that of new bearings depending on the cost, size, and complexity of the bearing

  14. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  15. 78 FR 44045 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Helicopters

    Science.gov (United States)

    2013-07-23

    ...; (iv) Aft Walking Beam Assembly, P/N 70400-08104-048; or (v) Close Tolerance Bolt, P/N 70400-26802-102... after receipt. FOR FURTHER INFORMATION CONTACT: Michael Davison, Flight Test Engineer, Boston Aircraft... Office, FAA, may approve AMOCs for this AD. Send your proposal to: Michael Davison, Flight Test Engineer...

  16. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  17. Analysis of Control Strategies for Aircraft Flight Upset Recovery

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.

    2012-01-01

    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  18. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    Science.gov (United States)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  19. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  20. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  1. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  2. 75 FR 6636 - Foreign-Trade Zone 77-Memphis, TN Application for Subzone Cummins, Inc. (Engine Components...

    Science.gov (United States)

    2010-02-10

    ...-origin internal combustion engine (diesel and CNG) parts and components for the U.S. market and export...-origin parts and components that would be admitted to the proposed subzone for distribution include... harnesses, lights, fuel injection components, turbochargers, and block heaters (duty rate range: free--9.9...

  3. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  4. Proceedings of the 1987 coatings for advanced heat engines workshop

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  5. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  6. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  7. Research and development of cooled turbine for aircraft engines. Koku engine yo reikyaku turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maya, T; Yamawaki, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    For the turbine which is one of the principal elements of aircraft engine, progress in turbine use material development and cooling performance further heightened for the turbine are needed to grapple with the required heightening of turbine inlet temperature. In the present paper based on the turbine inlet temperature designed to be 1600[degree]C as a target, a two-dimensional model used for the turbine cooling performance test was structurally given together with the result of the above test which aimed at confirming the design calculation. As a result of cooling design for the turbine which was about 1600[degree]C in inlet temperature, the highest gas temperature was 1890 and 1470[degree]C on the stator blade and rotor blade, respectively. Both those blades were 0.66 and 0.62, respectively in cooling efficiency. To test the cooling performance, a two-dimensional cascade was tested with a doubly amplified model of cooling blade, the use of which could set its Reynolds number near that of the actual one. As compared with the actual operation, the test was made at low temperatures of 400 to 500[degree]C and low pressures of 0.02 to 0.03MPa. The test agreed with the design calculation in result. 4 refs., 8 figs.

  8. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    Science.gov (United States)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  9. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  10. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen engine for aircraft); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kokukiyo suiso engine ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-05-01

    This report summarizes the research results on (1) the prospect of an aviation system based on hydrogen energy, (2) the total system of aircraft based on hydrogen energy, and (3) the performance, structure and specifications of airplanes and engines using synthetic fuel such as hydrogen. In (1), study was made on air transport energy, and prediction was made on the demand of liquid hydrogen assuming conversion of petroleum fuel into hydrogen fuel in the future. In (2), the supply system of liquid hydrogen is essential in conversion of current aircraft fuel into liquid hydrogen. Such supply system over the world is also necessary in conversion into liquid hydrogen for both domestic and international airlines. In (3), in order to discuss the feasibility of liquid hydrogen fuel aircraft, the merit of such aircraft as compared with current aircraft using JP fuel, and whether designing a new airframe or modifying existing airframes, study was made conceptually on the size and capacity of airframe by statistical treatment and analysis of previous conceptual designs. (NEDO)

  11. An Algorithm for Managing Aircraft Movement on an Airport Surface

    Directory of Open Access Journals (Sweden)

    Giuseppe Maresca

    2013-08-01

    Full Text Available The present paper focuses on the development of an algorithm for safely and optimally managing the routing of aircraft on an airport surface in future airport operations. This tool is intended to support air traffic controllers’ decision-making in selecting the paths of all aircraft and the engine startup approval time for departing ones. Optimal routes are sought for minimizing the time both arriving and departing aircraft spend on an airport surface with engines on, with benefits in terms of safety, efficiency and costs. The proposed algorithm first computes a standalone, shortest path solution from runway to apron or vice versa, depending on the aircraft being inbound or outbound, respectively. For taking into account the constraints due to other traffic on an airport surface, this solution is amended by a conflict detection and resolution task that attempts to reduce and possibly nullify the number of conflicts generated in the first phase. An example application on a simple Italian airport exemplifies how the algorithm can be applied to true-world applications. Emphasis is given on how to model an airport surface as a weighted and directed graph with non-negative weights, as required for the input to the algorithm.

  12. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    Science.gov (United States)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  13. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    Science.gov (United States)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  14. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices.

    Science.gov (United States)

    1981-09-01

    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  15. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text.

    Science.gov (United States)

    1981-09-01

    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  16. Jet engine R and D and I; Watashi to jet engine kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Murashima, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-06-10

    My efforts towards at the development of aeroengines since the end of the war are described. The J3-7 engine propelled the T1 trainer plane, and was installed as booster aboard the P2J antisubmarine patrol aircraft. It was the first jet engine that Japan produced after the end of the war, and had been in use until quite recently. I took part in the construction of a prototype of the JR100 series designed to serve as VTOL (vertical take-off and landing) aircraft lift engines, and in the test thereof. As the shift from turbojet to turbofan proceeded, I participated in the development of the FJR710 engine under the guidance of National Aerospace Laboratory, and the product was installed aboard an experimental STOL (short take-off and landing) aircraft Asuka. I next joined a Defense Agency initiative for a reheat turbofan to replace the J3 aboard trainer plane, and the result was the low bypass ratio/high output F3 engine. In 1989, Ministry of International Trade and Industry decided for a large-scale project of developing an engine for a next-generation supersonic transport, and the HYPR (Super/Hypersonic Transport Propulsion System) project was started. The project was participated in by manufacturers from overseas, which were GE, P and W, RR, and SNECMA. The foreign corporations worked on an equal footing with the Japanese parties, and collaboration between the participants was smooth, with each party endeavoring in the field they were good at. The project will be concluded as scheduled in fiscal 1998. (NEDO)

  17. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  18. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    Science.gov (United States)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  19. The Exergy of Lift and Aircraft Exergy Flow Diagrams

    OpenAIRE

    Paulus, Jr., David; Gaggioli, Richard

    2010-01-01

    Aside from incidental, auxiliary loads, in level flight the principal load on the aircraft propulsion engine is the power required to provide the continuous lift. To construct an exergy flow diagram for an aircraft – for example, for the purpose of pinpointing inefficiencies and for costing – an expression is needed for the exergy delivered to and by the wings. That is, an expression is needed for the exergy of lift. The purpose of this paper is to present an expression de...

  20. Aeroelastic tailoring of composite aircraft wings

    Science.gov (United States)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.