WorldWideScience

Sample records for airborne ground penetrating

  1. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  2. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case...... electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring...

  3. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  4. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    Science.gov (United States)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  5. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  6. Characterization of airborne uranium from test firing of XM774 ammunition

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Mishima, J.

    1979-11-01

    Pacific Northwest Laboratory conducted experiments at Aberdeen Proving Grounds, Maryland, to characterize the airborne depleted uranium (DU) resulting from the test firings of 105-mm, APFSDS-T XM774 ammunition. The goal was to obtain data pertinent to evaluations of human inhalation exposure to the airborne DU. Data was desired concerning the following: (1) size distribution of airborne DU; (2) quantity of airborne DU; (3) dispersion of airborne DU from the target vicinity; (4) amount of DU deposited on the ground; (5) solubility of airborne DU compounds in lung fluid; and (6) oxide forms of airborne and fallout DU. The experiments involved extensive air sampling for total airborne DU particulates and respirable DU particles both above the targets and at distances downwind. Fallout and fragments were collected around the target area. High-speed movies of the smoke generated from the impact of the penetrators were taken to estimate the cloud volumes. Results of the experiments are presented

  7. Spatially Extensive Ground-Penetrating Radar Observations during NASA's 2017 SnowEx campaign

    Science.gov (United States)

    McGrath, D.; Webb, R.; Marshall, H. P.; Hale, K.; Molotch, N. P.

    2017-12-01

    Quantifying snow water equivalent (SWE) from space remains a significant challenge, particularly in regions of forest cover or complex topography that result in high spatial variability and present difficulties for existing remote sensing techniques. Here we use extensive ground-penetrating radar (GPR) surveys during the NASA SnowEx 2017 campaign to characterize snow depth, density, and SWE across the Grand Mesa field site with a wide range of varying canopy and topographical conditions. GPR surveys, which are sensitive to snow density and microstructure, provide independent information that can effectively constrain leading airborne and spaceborne SWE retrieval approaches. We find good agreement between GPR observations and a suite of supporting in situ measurements, including snowpits, probe lines, and terrestrial LiDAR. Preliminary results illustrate the role of vegetation in controlling SWE variability, with the greatest variability found in dense forests and lowest variability found in open meadows.

  8. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  9. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  10. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  11. Use of ground-penetrating radar techniques in archaeological investigations

    Science.gov (United States)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  12. Tree root mapping with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-09-01

    Full Text Available In this paper, the application of ground penetrating radar (GPR) for the mapping of near surface tree roots is demonstrated. GPR enables tree roots to be mapped in a non-destructive and cost-effective manner and is therefore a useful prospecting...

  13. Ground penetrating radar system and method for detecting an object on or below a ground surface

    NARCIS (Netherlands)

    De Jongth, R.; Yarovoy, A.; Schukin, A.

    2001-01-01

    Ground penetrating radar system for detecting objects (17) on or below a ground surface (18), comprising at least one transmit antenna (13) having a first foot print (14) at the ground surface, at least one receive antenna (15) having a second foot print (16) at the ground surface, and processing

  14. Ground penetrating radar evaluation of new pavement density.

    Science.gov (United States)

    2015-02-01

    The objective of this project was to map pavement surface density variations using dielectric : measurements from ground penetrating radar (GPR). The work was carried out as part of an : Asphalt Intelligent Compaction demonstration project on SR 539 ...

  15. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    Science.gov (United States)

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  16. Development of Stepped-Frequency Ground-Penetrating Radar

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne

    1998-01-01

    The status of the development of a multi-monostatic stepped-frequency ground-penetrating radar (GPR) at The Department of Applied Electronics (IAE), The Technical University of Denmark (DTU) is presented. The feasibility of the used approach is demonstrated by the successful detection of small me...... metallic and non-metallic objects with a diameter of 54 mm buried in loamy soil....

  17. Ground Penetrating Radar Imaging of Buried Metallic Objects

    DEFF Research Database (Denmark)

    Polat, A. Burak; Meincke, Peter

    2001-01-01

    During the past decade there has been considerable research on ground penetrating radar (GPR) tomography for detecting objects such as pipes, cables, mines and barrels buried under the surface of the Earth. While the earlier researches were all based on the assumption of a homogeneous background...

  18. Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys

    DEFF Research Database (Denmark)

    Meincke, Peter

    2007-01-01

    A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...

  19. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground

  20. Deep Ground Penetrating Radar (GPR) WIPL-D Models of Buried Sub-Surface Radiators

    National Research Council Canada - National Science Library

    Norgard, John D; Wicks, Michael C; Musselman, Randy L

    2005-01-01

    .... A new Ground Penetrating Radar (GPR) concept is proposed in this paper to use subsurface radiators, delivered as earth penetrating non-explosive, electronic e-bombs, as the source of strong radiated transmissions for GPR experiments...

  1. Low-resolution Airborne Radar Air/ground Moving Target Classification and Recognition

    Directory of Open Access Journals (Sweden)

    Wang Fu-you

    2014-10-01

    Full Text Available Radar Target Recognition (RTR is one of the most important needs of modern and future airborne surveillance radars, and it is still one of the key technologies of radar. The majority of present algorithms are based on wide-band radar signal, which not only needs high performance radar system and high target Signal-to-Noise Ratio (SNR, but also is sensitive to angle between radar and target. Low-Resolution Airborne Surveillance Radar (LRASR in downward-looking mode, slow flying aircraft and ground moving truck have similar Doppler velocity and Radar Cross Section (RCS, leading to the problem that LRASR air/ground moving targets can not be distinguished, which also disturbs detection, tracking, and classification of low altitude slow flying aircraft to solve these issues, an algorithm based on narrowband fractal feature and phase modulation feature is presented for LRASR air/ground moving targets classification. Real measured data is applied to verify the algorithm, the classification results validate the proposed method, helicopters and truck can be well classified, the average discrimination rate is more than 89% when SNR ≥ 15 dB.

  2. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Airborne Second Generation Precipitation Radar (APR-2) GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  3. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  4. ESA CryoVEx 2014 - Airborne ASIRAS radar and laser scanner measurements during 2014 CryoVEx campaign in the Arctic

    DEFF Research Database (Denmark)

    Hvidegaard, S. M.; Nielsen, J. E.; Sørensen, L. Sandberg

    the penetration depth of the ASIRAS radar. An opportunity site on the Greenland Ice Sheet was surveyed near Jakobshavn Isbræ. No other ground experiments were coordinated with the CryoVEx campaing on the Greenland Ice Sheet. The CryoVEx 2014 campaign was a success and the processed data is of high quality......This report outlines the airborne field operations with the ESA airborne Ku‐band interferometric radar (ASIRAS), coincident airborne laser scanner (ALS) and vertical photography to acquire data over sea‐ and land ice along validation sites and CryoSat‐2 ground tracks. The airborne campaign...... in the Beaufort Sea lead by US office of Naval Research (ONR) and north of Greenland as a dedicated ESA CryoVEx initiative. In addition, selected CryoSat‐2 ground tracks were under‐flown in the Lincoln Sea from CFS Alert, North of Greenland and Svalbard from St. Nord and Longyearbyen. Several of the flights...

  5. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude...... and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  6. The airborne radioactivity and electrical properties of ground level air

    International Nuclear Information System (INIS)

    Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Trzaskowska, H.; Kubicki, M.

    2001-01-01

    The data presented in this work are the result of systematic measurements of radionuclide concentrations in air and density of vertical current. The airborne 7 Be concentration changes similar to the electrical conductivity of air, collected with an ASS-500 high volume air sampler of the ground atr monitoring network supervised by the Central Laboratory for Radiological Protection. Sampling has been done since March 1991. Simultaneously, the routine complex meteorological observations were performed. In particular, the electrical properties of ground level atmospheric air were studied with measurements of electrical field intensity, positive and negative conductivity of the air,while other isotopes, anthropogenic or originating from the ground are correlated with dust and other meteorological factors like watering and wind. (author)

  7. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  8. Applicability of the grounded-source airborne electromagnetics to coastal areas

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tsukuda, Kazuhiro; Suzuki, Koichi; Kaieda, Hideshi; Kiho, Kenzo; Mogi, Toru

    2012-01-01

    Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance especially with regard to siting of geological disposal of nuclear wastes, whereas conventional airborne electromagnetic (AEM) surveys can reveal an electrical resistivity structure to a depth of only ∼200 m. In order to enhance the depth of investigation, we have developed a new type of AEM, grounded-electrical-source airborne transient electromagnetics (GREATEM). Here we have applied GREATEM to two coastal areas in Japan; Kujukuri, an alluvial coastal plain where thick Quaternary sediments prevail, and northwestern part of Awaji Island, where granitic rocks are dominant. It was found that the GREATEM system can reveal resistivity structure to a depth of ∼500 m and also high quality data are available just beneath the shoreline where shallow water prevails. (author)

  9. USING GROUND PENETRATING RADAR TO DETERMINE THE TUNNEL LOCATION BURIED UNDER THE GLACIER

    Directory of Open Access Journals (Sweden)

    Deryuga Andrey Mikhaylovich

    2013-09-01

    Full Text Available The works were carried out with the help of ground penetrating radar “Grot-10”. Doublet broadband antennas with the central frequency of 100 MHz were used. Georadar measures the speed of EM waves v in ice-saturated soil and then the value ε′ is calculated. The radargrams received as a result of georadar survey, which represents stacked data (the two-way time is indicated on vertical scale, were transformed into depth sections, which reflect the space structure located below ground. The distance between the bottom landing and buried mountain road near the north tunnel portal is 78,5 m (profile # 1, and the distance from the upper landing is 84,5 m (profile no. 2. Later, in the April 2003 during the hole boring with the diameter 1,2 m the vertical distance between the upper landing, where ground penetrating works were carried out, and the carpet road of the tunnel was calculated. This distance appeared to be 83 m, that means, the discrepancy between boring and georadar data (84,5 m was only 1,5 m. Thus, the results of ground penetrating investigations helped the workers of glacier to make the correct conclusion on time about the location and burial depth of the tunnel.

  10. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  11. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  12. Calibration of angle response of a NaI(Tl) airborne spectrometer to 137Cs and 60Co point sources on the ground

    International Nuclear Information System (INIS)

    Liu Xinhua; Zhang Yongxing; Gu Renkang; Shen Ensheng

    1998-01-01

    The angle response function F(φ,θ) is a basic calibration of airborne spectrometers in airborne surveying for nuclear emergency monitoring. The author describes the method and results of angle response function calibration of a NaI(Tl) airborne spectrometer for 137 Cs and 60 Co point sources on the ground, with less than 20% uncertainty. By using the results, the calibration factors of the NaI(Tl) airborne spectrometer fixed in Yun-5 plane at different flying heights are calculated by numerical integral method for 137 Cs uniform area source on ground surface, with less than 25% uncertainty. The minimum detection limits (L D ) are calculated at 90 m and 120 m flying heights in the range of over Shijiazhuang airborne surveying for 137 Cs uniform area source on ground surface to be 3.83 and 5.62 kBq/m 2 , respectively

  13. Conversion of Airborne Gamma ray Spectra to Ground Level Air Kerma Rates

    DEFF Research Database (Denmark)

    Bargholz, Kim; Korsbech, Uffe C C

    1997-01-01

    A new method for relating airborne gamma-ray spectra to dose rates and kerma rates at ground level is presented. Dependent on flying altitude 50 m to 125 m the method gives correct results for gamma energies above 250 keV respective 350 keV. At lower energies the method underestimate the dose...... or kerma rates; by having a large fraction of the ground level gamma-rays at energies below 350 keV special care should be taken at an interpretation of the results....

  14. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  15. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  16. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  17. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  18. Ground penetrating radar images of selected fluvial deposits in the Netherlands

    NARCIS (Netherlands)

    Berghe, J. van den; Overmeeren, R.A. van

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  19. Ground penetrating radar images of selected fluvial deposits in the Netherlands.

    NARCIS (Netherlands)

    Vandenberghe, J.; van Overmeeren, R.A.

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  20. Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data

    Science.gov (United States)

    Wilfrid Schroeder; Evan Ellicott; Charles Ichoku; Luke Ellison; Matthew B. Dickinson; Roger D. Ottmar; Craig Clements; Dianne Hall; Vincent Ambrosia; Robert. Kremens

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near-coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge...

  1. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Science.gov (United States)

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  2. Sedimentology and Ground-Penetrating Radar Characteristics of a Pleistocene Sandur Deposit

    DEFF Research Database (Denmark)

    Olsen, Henrik; Andreasen, Frank Erik

    1995-01-01

    -upward lithology, terminating with a jökulhlaup episode characterized by large compound dune migration and slack-water draping. Mapping of a more than 200 m long well exposed pitwall and ground-penetrating radar measurements in a 50 × 200 m grid along the pitwall made it possible to outline the three...

  3. EVALUATION OF AIRBORNE L- BAND MULTI-BASELINE POL-INSAR FOR DEM EXTRACTION BENEATH FOREST CANOPY

    Directory of Open Access Journals (Sweden)

    W. M. Li

    2018-04-01

    Full Text Available DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  4. Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy

    Science.gov (United States)

    Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.

    2018-04-01

    DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  5. Discrete complex images in modeling antennas over, below or penetrating the ground

    International Nuclear Information System (INIS)

    Arnautovski-Toseva, Vesna; Smokvarski, Aleksandar; Popovski, Borislav; Grcev, Leonid

    2002-01-01

    In this paper discrete complex images (DCI) are used to obtain approximate, efficient and fast solution of Sommerfeld integrals that appear in the analysis of vertical electric dipole (VED) in presence of air-ground half-space. The results are used to model vertical antenna above, below or penetrating the ground using the moment method technique with triangular expansion functions. Thus, the time consuming direct numerical evaluation of the Sommerfeld integrals is completely or partially avoided. (Author)

  6. Ground penetrating radar survey across the Bok Bak fault, Kedah, Malaysia

    International Nuclear Information System (INIS)

    Yuniarti Ulfa; Nur Fathin Mohd Jamel; Mardiana Samsuardi

    2013-01-01

    A ground penetrating radar (GPR) survey was done across the Bok Bak Fault zone in Baling, Kedah in order to investigate the shallow subsurface geology of the Bok Bak fault zone, its extension and associated weak zones within the study area. GPR data acquisition was compared with visual inspection on the slope of the outcrop. Ten GPR profiles were acquired using 250 MHz GPR frequency. Basic data processing and filtering to reduce some noise and unwanted signal was done using MALA RAMAC Ground Vision software. The data penetrate around 2 meters in depth for all survey lines. In most lines shows clear images of shallowest Bok Bak Fault (NW trending) as detected at distance of 28 m horizontal marker. It also exhibits several sets of faults as a result of Bok Bak Fault deformation, including the conjugate NE trending fault (Lubok Merbau Fault). Active seismicity encompasses the Malay-Thai Peninsular trigger the changes of Bok Bak Fault dipping direction, steeper dips of conjugate faults and faults or fractures rotational movement. (author)

  7. A 2.5-D Diffraction Tomography Inversion Scheme for Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Meincke, Peter

    1999-01-01

    A new 2.5-D inversion scheme is derived for ground penetrating radar (GPR) that applies to a monostatic fixed-offset measurement configuration. The inversion scheme, which is based upon the first Born approximation and the pseudo-inverse operator, takes rigorously into account the planar air...

  8. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.

    Science.gov (United States)

    Cresswell, A J; Sanderson, D C W

    2012-10-15

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq (137)Cs within large areas (10-20 km(2)h(-1)), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15m whilst maintaining speeds covering 1-2 km(2) h(-1) can detect buried (137)Cs sources of 0.5MBq or greater activity. A survey design to detect 100 kBq (137)Cs sources at 10 cm depth has also been defined, requiring surveys at <15m ground clearance and <2 ms(-1) ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Preliminary study of airborne electromagnetic survey using grounded source; Chihyo source gata kuchu denji tansa no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, T [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Shimoizumi, M [Kitakyushu Polytechnic College, Kitakyushu (Japan); Kusunoki, K [Central Research Institute of Electric Power Industry, Tokyo (Japan); Morikawa, T [Dowa Engineering Co. Ltd., Okayama (Japan); Jomori, N [Chiba Electronics Research Institute, Chiba (Japan)

    1996-05-01

    For the development of an airborne electromagnetic prospecting method capable of deeper exploration, a basic study was made about a system wherein a transmitter (source) is positioned on the ground and the receiving is done in the sky. Even in case of this airborne electromagnetic method, the TDEM method is supposedly advantageous over others as in case of groundborne exploration. In the study, the transient response of an airborne vertical magnetic field to a horizontal layered structure was calculated. The current source was 2000m long with a capacity of 30A. The one-layer structure was a 10 Ohm m semi-infinite ground, and the two-layer structure had a 100 Ohm m structure just under the one-layer structure. The result of the calculation suggests that, in the absence of a layer of extremely low resistivity, observation of an approximately 1 second long transient response aboard a helicopter flying at approximately 50km/h will enable an approximately 1000m deep exploration. Problems to affect airborne observation, such as swinging, natural magnetic field fluctuation, and artificially produced noises were investigated by use of a magnetometer suspended from a helicopter in flight. 2 refs., 6 figs.

  10. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    Directory of Open Access Journals (Sweden)

    S. Park

    2014-06-01

    Full Text Available This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR. Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using the energy projection method. Then signals for the objects are extracted by using the symmetry filtering method. Each signal is then processed for features, which are given as input to the support vector machine (SVM for landmine detection. Three landmines buried in various ground conditions are considered for the test of the proposed method. They demonstrate that the proposed method can successfully detect multiple landmines.

  11. Forestry applications of ground-penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  12. Detection of Leaks in Water Mains Using Ground Penetrating Radar

    OpenAIRE

    Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

    2016-01-01

    Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imagin...

  13. Through the looking glass: Applications of ground-penetrating radar in archaeology

    Science.gov (United States)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  14. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  15. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  16. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...... by multiplying the SDI by an altitude dependent conversion factor. The conversion factors are determined from spectra based on Monte Carlo calculations. The results are compared with measurements in a laboratory calibration set-up. IT-NT-27. June 1996. 27 p....

  17. Use of Ground Penetrating Radar for Locating Contraband Aboard Ocean Going Vessels: Feasibility Study

    National Research Council Canada - National Science Library

    Llopis, Jose

    2001-01-01

    Ground Penetrating Radar (GPR) surveys were conducted over various stockpiled materials at the Alabama state Docks located in Mobile, AL, to determine whether GPR is a viable method for rapidly detecting contraband materials...

  18. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    OpenAIRE

    N. N. Halimshah; A. Yusup; Z. Mat Amin; M. D. Ghazalli

    2015-01-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and effic...

  19. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    Science.gov (United States)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  20. Advanced ground-penetrating, imaging radar for bridge inspection

    International Nuclear Information System (INIS)

    Warhus, J.P.; Nelson, S.D.; Mast, J.E.; Johansson, E.M.

    1994-01-01

    During FY-93, the authors continued with development and experimental evaluation of components and system concepts aimed at improving ground-penetrating imaging radar (GPIR) for nondestructive evaluation of bridge decks and other high-value concrete structures. They developed and implemented a laboratory test bed, including features to facilitate component testing antenna system configuration evaluation, and collection of experimental data from realistic test objects. In addition, they developed pulse generators and antennas for evaluation and use in antenna configuration studies. This project was part of a cooperative effort with the Computational Electronics and Electromagnetics and Remote Imaging and Signal Engineering Thrust Areas, which contributed signal- and image-processing algorithm and software development and modeling support

  1. Introduction to ground penetrating radar inverse scattering and data processing

    CERN Document Server

    Persico, Raffaele

    2014-01-01

    This book presents a comprehensive treatment of ground penetrating radar using both forward and inverse scattering mathematical techniques. Use of field data instead of laboratory data enables readers to envision real-life underground imaging; a full color insert further clarifies understanding. Along with considering the practical problem of achieving interpretable underground images, this book also features significant coverage of the problem's mathematical background. This twofold approach provides a resource that will appeal both to application oriented geologists and testing specialists,

  2. THE RESULTS OF THE DEFECT PLACES INVESTIGATION OF DONETSK RAILWAY ROAD BED BY GROUND PENETRATING RADAR COMPLEX

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-10-01

    Full Text Available Purpose. Defective places definition of road bed at ground penetrating radar is examined. Methodology. For achievement of this goal the experimental research on ground penetrating radar inspection of road bed defective places of the Donetsk Railway, which are caused by a complex of various reasons of geotechnical and constructive character, were conducted. Findings. According to these diagnostic results of road bed on the three districts of the Donetsk Railway is revealed the main causes which lead to the defects appearance, deformities and injuries in it, there is abuse of process parameters and modify its physic mechanical soil properties of natural and technology-related factors. As it is established, the use of ground penetrating radar of series “Losa” on the railways of Ukraine allows searching ballast tank in the body of road bed, defining damp places in soil road bed and foundations, to find arrangement of foreign matter in the soil road bed and work search heterogeneity and places weakening soil. In addition, the use of ground penetrating radar provides rapid detection of defects, deformation and damage of railway track, especially in areas the most dangerous for rolling stock that creates the high level security at the main and auxiliary lines of Ukrzaliznytsia. In conducting the research was justified the high level of reliability and performance with autonomous use of ground penetrating radar. Originality. In modern conditions of defects determination, deformations and damages by traditional methods with application of engineering-geological investigations, it is impossible in connection with their insufficient efficiency. Therefore the using of highly effective methodology of expeditious tool identification of defective places allows reducing significantly the periods of repair of a railway track which is very important for introduction of the high-speed movement on the Ukrainian Railways. Practical value. On the basis of the

  3. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  4. Advies voor de toepassing van ground-penetrating radar bij de inventarisatie van de grondwaterdynamiek

    NARCIS (Netherlands)

    Knotters, M.

    2001-01-01

    Ground-penetrating radar (GPR) biedt mogelijk een nauwkeurig alternatief voor arbeidsintensieve metingen van de grondwaterstand in boorgaten. De GPR-metingen kunnen als hulpinformatie dienen bij geostatistische interpolatie van grondwaterstanden. Op basis van literatuurstudie en verkenning van het

  5. A controlled monitoring study of simulated clandestine graves using 3D ground penetrating radar

    CSIR Research Space (South Africa)

    van Schoor, Michael

    2017-06-01

    Full Text Available A controlled three-dimensional ground penetrating radar monitoring study over simulated clandestine graves was conducted near Pretoria, South Africa, in which the detectability of graves as a function of post-burial interval was assessed...

  6. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  7. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    International Nuclear Information System (INIS)

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  8. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  9. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  10. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Science.gov (United States)

    2010-10-01

    ..., fire fighting, emergency rescue, scientific research, commercial mining, or construction. (1) Parties... radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...

  11. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  12. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  13. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  14. Global Research Patterns on Ground Penetrating Radar (GPR)

    Science.gov (United States)

    Gizzi, Fabrizio Terenzio; Leucci, Giovanni

    2018-05-01

    The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995-2014. To do this, the Thomson Reuters' Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical-mathematical, sedimentological-stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.

  15. Construction of radioelement and dose rate baseline maps by combining ground and airborne radiometric data

    International Nuclear Information System (INIS)

    Rybach, L.; Medici, F.; Schwarz, G.F.

    1997-01-01

    For emergency situations like nuclear accidents, lost isotopic sources, debris of reactor-powered satellites etc. well-documented baseline information is indispensable. Maps of cosmic, terrestrial natural and artificial radiation can be constructed by assembling different datasets such as ground and airborne gamma spectrometry, direct dose rate measurements, and soil/rock samples. The in situ measurements were calibrated using the soil samples taken at/around the field measurement sites, the airborne measurements by a combination of in situ, and soil/rock sample data. The radioelement concentrations (Bq/kg) were in turn converted to dose-rate (nSv/h). First, the cosmic radiation map was constructed from a digital terrain model, averaging topographic heights within cells of 2 km X 2 km size. For the terrestrial radiation a total of 1615 ground data points were available, in addition to the airborne data. The artificial radiation map (Chernobyl and earlier fallout) has the smallest data base (184 data points from airborne and ground measurements). The dose rate map was constructed by summing up the above-mentioned contributions. It relies on a data base which corresponds to a density of about 1 point per 25 km 2 . The cosmic radiation map shows elevated dose rates in the high parts of the Swiss Alps. The cosmic dose rate ranges from 40 to 190 nSv/h, depending on altitude. The terrestrial dose rate maps show general agreement with lithology: elevated dose rates (100 to 200 nSv/h) characterize the Central Massifs of the Alps where crystalline rocks give a maximum of 370 nSv/h, whereas the sedimentary northern Alpine Foreland (Jura, Molasse basin) shows consistently lower dose rates (40-100 nSv/h). The artificial radiation map has its maximum value in the southern part of Switzerland (90 nSv/h). The map of total dose rate exhibits values from 55 to 570 nSv/h. These values are considerably higher than reported in the Radiation Atlas (''Natural Sources of Ionising

  16. a Study of Co-Planing Technology of Spaceborne, Airborne and Ground Remote Sensing Detecting Resource, Driven by Disaster Emergency Task

    Science.gov (United States)

    Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.

    2018-04-01

    Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.

  17. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  18. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  19. Civil engineering applications of ground penetrating radar

    CERN Document Server

    Pajewski, Lara

    2015-01-01

    This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods, and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges, and tunnels, and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars, and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, nondestructive, and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagn...

  20. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  1. High-resolution mapping, modeling, and evolution of subsurface geomorphology using ground-penetrating radar techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.

    subsurface. It has been useful to decipher shallow geomorphic structures having various options to use different antennas for different depth penetration (0-30 m) with higher resolution.   7.2 Principles of GPR  Ground Penetrating Radar (GPR) was invented... about 90m. Flat and plain land is being used, at present, for agriculture (paddy cultivation) practice. Sand dunes are low lying and highly reworked due to social forestry plantation (acacia) activities. 13    7.8.6 Paleo­Lagoon  GPR data shows two...

  2. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  3. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  4. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides

    OpenAIRE

    C. Lissak; O. Maquaire; J.-P. Malet; F. Lavigne; C. Virmoux; C. Gomez; R. Davidson

    2014-01-01

    The objective of this paper is to demonstrate the applicability of Ground Penetrating Radar (GPR) for monitoring the displacement of slow-moving landslides. GPR data is used to estimate the vertical movement of rotational slides in combination with other surveying techniques. The experimental site is located along the Normandy coast (North East France) here several rotational landslides are continuously affected by a seasonal kinematic pattern (low displacem...

  5. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Science.gov (United States)

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  6. Improving mine recognition through processing and Dempster-Shafer fusion of ground-penetrating radar data

    NARCIS (Netherlands)

    Milisavljević, N.; Bloch, I.; Broek, S.P. van den; Acheroy, M.

    2003-01-01

    A methodfor modeling andcombination of measures extractedfrom a ground-penetrating radar (GPR) in terms of belief functions within the Dempster-Shafer framework is presentedandillustratedon a real GPR data set. A starting point in the analysis is a preprocessed C-scan of a sand-lane containing some

  7. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  8. Airborne Tactical Crossload Planner

    Science.gov (United States)

    2017-12-01

    Regiment AGL above ground level AO area of operation APA American psychological association ASOP airborne standard operating procedure A/C aircraft...awarded a research contract to develop a tactical crossload tool. [C]omputer assisted Airborne Planning Application ( APA ) that provides a

  9. Wideband Cavity Backed Spiral Antenna for Stepped Frequency Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Lenler-Eriksen, Hans-Rudolph

    2005-01-01

    A 1.7 turn cavity backed coplanar waveguide to coplanar strip-fed logarithmic uniplanar spiral antenna is presented and compared to a 1.5 turn spiral antenna. The 1.7 turn spiral antenna has a wide beamwidth, are circular polarised and has a bandwidth with a return loss better than 6 dB in the fr......B in the frequency band from 0.25 GHz to 4.5 GHz (18:1). The antenna is useful for Ground Penetrating Radar (GPR)....

  10. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  11. Ground Penetrating Radar investigation of depositional architecture: the São Sebastião and Marizal formations in the Cretaceous Tucano Basin (Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Larissa Natsumi Tamura

    Full Text Available ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.

  12. Integrity inspection of main access tunnel using ground penetrating radar

    Science.gov (United States)

    Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.

    2017-11-01

    This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.

  13. Investigation of counter-measures in the case of radioactive materials penetration in soils and ground water

    International Nuclear Information System (INIS)

    Sachse, G.; Anders, G.; Puehrer, H.; Stohn, W.

    1975-03-01

    Proceeding from the methods known from hydraulic engineering for the protection of ground waters from penetrating noxious substances, suitable measures for preventing the contamination of ground waters and soils are discussed. Since preventive measures are always of priority, a facility using concrete containers with double walls is considered to be an appropriate method for temporary storage of low and medium activity waste waters. (author)

  14. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  15. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  16. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    Science.gov (United States)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  17. Airborne measurement of submicron aerosol number concentration and CCN activity in and around the Korean Peninsula and their comparison to ground measurement in Seoul

    Science.gov (United States)

    Park, M.; Kim, N.; Yum, S. S.

    2016-12-01

    Aerosols exert impact not only on human health and visibility but also on climate change directly by scattering or absorbing solar radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus altering cloud radiative and microphysical properties. Aerosol indirect effects on climate has been known to have large uncertainty because of insufficient measurement data on aerosol and CCN activity distribution. Submicron aerosol number concentration (NCN, TSI CPC) and CCN number concentration (NCCN, DMT CCNC) were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul from May 2nd to June 10th, 2016. CCNC on the airborne platform was operated with the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated with the five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). The NASA DC-8 conducted 20 research flights (about 150 hours) in and around the Korean Peninsula and the ground measurement at Olympic Park was continuously made during the measurement period. Both airborne and ground measurements showed spatially and temporally varied aerosol number concentration and CCN activity. Aerosol number concentration in the boundary layer measured on airborne platform was highly affected by pollution sources on the ground. The average diurnal distribution of ground aerosol number concentration showed distinct peaks are located at about 0800, 1500, and 2000. The middle peak indicates that new particle formation events frequently occurred during the measurement period. CCN activation ratio at 0.6% supersaturation (NCCN/NCN) of the airborne measurement ranged from 0.1 to 0.9, indicating that aerosol properties in and around the Korean Peninsula varied so much (e. g. size, hygroscopicity). Comprehensive analysis results will be shown at the conference.

  18. Airborne relay-based regional positioning system.

    Science.gov (United States)

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  19. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  20. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    OpenAIRE

    Igor Prokopovich; Alexei Popov; Lara Pajewski; Marian Marciniak

    2017-01-01

    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the s...

  1. The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia

    Science.gov (United States)

    Almutairi, Yasir; Almutair, Muteb

    2015-04-01

    Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to

  2. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be

  3. Stakeholder needs for ground penetrating radar utility location

    Science.gov (United States)

    Thomas, A. M.; Rogers, C. D. F.; Chapman, D. N.; Metje, N.; Castle, J.

    2009-04-01

    In the UK alone there are millions of miles of underground utilities with often inaccurate, incomplete, or non-existent location records that cause significant health and safety problems for maintenance personnel, together with the potential for large, unnecessary, social and financial costs for their upkeep and repair. This has led to increasing use of Ground Penetrating Radar (GPR) for utility location, but without detailed consideration of the degree of location accuracy required by stakeholders — i.e. all those directly involved in streetworks ranging from utility owners to contractors and surveyors and government departments. In order to ensure that stakeholder requirements are incorporated into a major new UK study, entitled Mapping the Underworld, a questionnaire has been used to determine the current and future utility location accuracy requirements. The resulting data indicate that stakeholders generally require location tolerances better than 100 mm at depths usually extending down to 3 m, and more occasionally to 5 m, below surface level, providing significant challenges to GPR if their needs are to be met in all ground conditions. As well as providing much useful data on stakeholder needs, these data are also providing a methodology for assessment of GPR utility location in terms of the factor most important to them — the degree to which the equipment provides location within their own accuracy requirements.

  4. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  5. Air concentration and ground deposition following radioactive airborne releases

    International Nuclear Information System (INIS)

    Brofferio, C.; Cagnetti, P.; Ferrara, V.

    1985-01-01

    The fundamental aim of this report is to provide the mathematical and physical operational basis for the evaluation of air concentration and ground deposition, following radioactive airborne releases from a nuclear power plant, both during normal operations and in accidental conditions. As far as accidental releases are concerned, the basical assumptions on meteorological and diffusive situation are considered from a safety point of view: namely those pessimistic but realistically representative situation are taken into account which lead to maximum air concentration and ground deposition values, even if characterized by low recurrence probability. Those elements are the inputs for many environmental transfer models of maximum consequence evaluations up to man. As far as routine releases are concerned, it is shown, together with the usual models based on long term averaged meteorological conditions, also models studied to estimate atmospheric diffusion and deposition in low wind situations and in fog conditions, being those latter very frequent in the Po valley. Finally, the main operations and modalities of collecting and elaborating meteorological data for for radioprotection evaluations are also shown. It is to be pointed out that the methods and the models developed and considered in this work are of a more general validity, and can be also used for applications concerning non-radioactive releases, as it is the case when dealing with conventional power plants

  6. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  7. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    Science.gov (United States)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  8. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  9. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  10. Application of ground-penetrating radar at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station

  11. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  12. Developing an Efficient and Cost Effective Ground-Penetrating Radar Field Methodology for Subsurface Exploration and Mapping of Cultural Resources on Public Lands

    National Research Council Canada - National Science Library

    Conyers, Lawrence B

    2006-01-01

    .... A new, emerging technology is the use of ground penetrating radar (GPR). However, in using this device due to the number of variables that can impact energy penetration and resolution, researchers are often not guaranteed a successful survey...

  13. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available 1. All the radargrams were processed by applying basic GPR processing steps, which included a time zero correction, a dewow filter and the application of an automatic gain control (AGC) function. No migration was applied so as to preserve.... Suitable automatic detection algorithm could potentially be employed if target responses with specific characteristics are being sought. The results from this experiment are likely to be frequency independent. If so, a low frequency GPR system – say...

  14. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  15. Investigating hydrocarbon contamination using ground penetrating radar

    International Nuclear Information System (INIS)

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-01-01

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection

  16. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Science.gov (United States)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  17. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...

  18. The alpine Swiss-French airborne gravity survey

    Science.gov (United States)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  19. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  20. Civil Engineering Applications of Ground Penetrating Radar in Finland

    Science.gov (United States)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  1. Airborne laser: a tool to study landscape surface features

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Jackson, T.J.; Everitt, J.H.; Escobar, D.E.; Murphey, J.B.; Grissinger, E.H.

    1992-01-01

    Landscape surface features related to erosion and hydrology were measured using an airborne laser profiler. The airborne laser profiler made 4,000 measurements per second with a recording accuracy of 5 cm (1.9 inches) on a single measurement. Digital data from the laser are recorded and analyzed with a personal computer. These airborne laser profiles provide information on surface landscape features. Topography and canopy heights, cover, and distribution of natural vegetation were determined in studies in South Texas. Laser measurements of shrub cover along flightlines were highly correlated (R 2 = 0.98) with ground measurements made with line-intercept methods. Stream channel cross sections on Goodwin Creek in Mississippi were measured quickly and accurately with airborne laser data. Airborne laser profile data were used to measure small gullies in a level fallow field and in field with mature soybeans. While conventional ground-based techniques can be used to make these measurements, airborne laser profiler techniques allow data to be collected quickly, at a high density, and in areas that are essentially inaccessible for ground surveys. Airborne laser profiler data can quantify landscape features related to erosion and runoff, and the laser proler has the potential to be a useful tool for providing other data for studying and managing natural resources

  2. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  3. Levelling Airborne and Ground Gamma-Ray Spectrometric Data to Assist Uranium Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Matolin, M., E-mail: matolin@natur.cuni.cz [Charles University, Prague (Czech Republic); Minty, B. [Geoscience Australia, Canberra (Australia)

    2014-05-15

    Geophysical methods can be used for mapping in both 2 and 3 dimensions, as well as the direct detection of ore bodies. The gamma-ray spectrometric method is an efficient method for the regional assessment of uranium potential and the detection of surface mineralization. However, the full potential of the method can only be realized when the data are adequately standardized. Examples of this standardization at both regional and local scales are dealt in this paper. At a regional scale, it is shown how the levelling of airborne gamma-ray spectrometry data over Australia increases the value of the resulting data, and on a local scale a geometrical correction for ground gamma-ray spectrometry in shallow holes that improves the accuracy of measurements is introduced. (author)

  4. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  5. Simulation model study of limitation on the locating distance of a ground penetrating radar; Chichu tansa radar no tansa kyori genkai ni kansuru simulation model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, T; Tsunasaki, M; Kishi, M; Hayakawa, H [Osaka Gas Co. Ltd., Osaka (Japan)

    1996-10-01

    Various simulations were carried out under various laying conditions to obtain the limitation of locating distance for ground penetrating radar. Recently, ground penetrating radar has been remarked as location technology of obstacles such as the existing buried objects. To enhance the theoretical model (radar equation) of a maximum locating distance, the following factors were examined experimentally using pulse ground penetrating radar: ground surface conditions such as asphalt pavement, diameter of buried pipes, material of buried pipes, effect of soil, antenna gain. The experiment results well agreed with actual field experiment ones. By adopting the antenna gain and effect of the ground surface, the more practical simulation using underground models became possible. The maximum locating distance was more improved by large antenna than small one in actual field. It is assumed that large antenna components contributed to improvement of gain and reduction of attenuation during passing through soil. 5 refs., 12 figs.

  6. Magnetometry and Ground-Penetrating Radar Studies in the Sihuas Valley, Peru

    Science.gov (United States)

    Wisnicki, E.; Papadimitrios, K.; Bank, C.

    2013-12-01

    The Quillcapampa la Antigua site in Peru's Sihuas Valley is a settlement from Peru's Middle Horizon (600-100 A.D.). Archaeological interest in the area stems from the question of whether ancient civilizations were able to have extensive state control of distant groups, or whether state influence occurred through less direct ties (e.g., marriage, religion, or trade). Our geophysical surveys are preliminary to archaeological digging in the area. Ground-penetrating radar and magnetometry attempt to locate areas of interest for focused archaeological excavation, characterize the design of architectural remains and burial mounds in the area, and allow archaeologists to interpret the amount of influence the Wari civilization had on the local residents.

  7. Airborne monitoring system

    International Nuclear Information System (INIS)

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  8. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...... aerial photography. To address this issue, surface elevation in low contrast areas was measured manually at point locations and interpolated using a universal kriging approach. We conclude that ground-based SfM is well suited to establish high-quality DEMs of smaller glaciers. Provided favorable...

  9. Estimate of airborne release of plutonium from Babcock and Wilcox plant as a result of severe wind hazard and earthquake

    International Nuclear Information System (INIS)

    Mishima, J.; Schwendiman, L.C.; Ayer, J.E.

    1978-10-01

    As part of an interdisciplinary study to evaluate the potential radiological consequences of wind hazard and earthquake upon existing commercial mixed oxide fuel fabrication plants, the potential mass airborne releases of plutonium (source terms) from such events are estimated. The estimated souce terms are based upon the fraction of enclosures damaged to three levels of severity (crush, puncture penetrate, and loss of external filter, in order of decreasing severity), called damage ratio, and the airborne release if all enclosures suffered that level of damage. The discussion of damage scenarios and source terms is divided into wind hazard and earthquake scenarios in order of increasing severity. The largest airborne releases from the building were for cases involving the catastrophic collapse of the roof over the major production areas--wind hazard at 110 mph and earthquakes with peak ground accelerations of 0.20 to 0.29 g. Wind hazards at higher air velocities and earthquakes with higher ground acceleration do not result in significantly greater source terms. The source terms were calculated as additional mass of respirable particles released with time up to 4 days; and, under these assumptions, approximately 98% of the mass of material of concern is made airborne from 2 h to 4 days after the event. The overall building source terms from the damage scenarios evaluated are shown in a table. The contribution of individual areas to the overall building source term is presented in order of increasing severity for wind hazard and earthquake

  10. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, M.; Wiljanen, B. (Roadscanners Oy, Rovaniemi (Finland))

    2008-09-15

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  11. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    International Nuclear Information System (INIS)

    Silvast, M.; Wiljanen, B.

    2008-09-01

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  12. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  13. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  14. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  15. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139-4307 (United States); Dunham, E. W.; Collins, P.; Bida, T.; Bright, L. [Lowell Observatory, Flagstaff, AZ (United States); Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D. [Williams College-Hopkins Observatory, Williamstown, MA (United States); Tholen, D. J. [Institute for Astronomy, University of Hawaii, Manoa, HI (United States); Taylor, B. [Boston University, Boston, MA (United States); Wolf, J.; Pfueller, E. [Deutsches SOFIA Institut, Universitaet Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany); Meyer, A., E-mail: mjperson@mit.edu [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it

  16. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  17. Beach-ridge architecture constrained by beach topography and Ground-Penetrating Radar, Itilleq (Lakse Bugt), Disko, Greenland – Implications for sea-level reconstructions

    DEFF Research Database (Denmark)

    Emerich Souza, Priscila; Kroon, Aart; Nielsen, Lars

    2018-01-01

    Detailed topographical data and high-resolution ground-penetrating radar (GPR) reflection data are presented from the present-day beach and across successive raised beach-ridges at Itilleq (Disko, West Greenland). In the western part of our study area, the present low-tide level is well-marked by......Detailed topographical data and high-resolution ground-penetrating radar (GPR) reflection data are presented from the present-day beach and across successive raised beach-ridges at Itilleq (Disko, West Greenland). In the western part of our study area, the present low-tide level is well...... beach-ridge GPR profiles. Most of them are located at the boundary between a unit with reflection characteristics representing palaeo foreshore deposits, and a deeper and more complex radar unit characterized by diffractions, which, however, is not penetrated to large depths by the GPR signals. Based...

  18. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan; Weihermü ller, Lutz; Scharnagl, Benedikt; Kowalsky, Michael B.; Bechtold, Michel; Hubbard, Susan S.; Vereecken, Harry; Lambot, Sé bastien

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model

  19. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  20. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  1. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  2. Improvement in operating incident experience at the Savannah River Burial Ground

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1979-01-01

    Low-level radioactive wastes generated at the Savannah River Plant and Laboratory are stored at the Savannah River burial ground. These wastes have accumulated from >20 years of reprocessing nuclear fuels and materials for defense programs at the Savannah River Plant. Burial in earthen trenches and aboveground storage for transuranic materials are the principal modes of storage. The infrequent operating incidents that have occurred during the 20-year period have been analyzed. The incidents can be categorized as those causing airborne contamination, waterborne contamination, or vegetation contamination through penetration of plant roots into contaminated soil. Contamination was generally confined to the immediate area of the burial ground. Several incidents occurred because of unintentional burial or exhumation of material. The frequency of operating incidents decreased with operating experience of the burial ground, averaging only about two incidents per year during the last six years of operation

  3. Guidelines for calculating radiation doses to the public from a release of airborne radioactive material under hypothetical accident conditions in nuclear reactors

    International Nuclear Information System (INIS)

    1991-04-01

    This standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The radionuclides considered are those associated with substances having the greatest potential for becoming airborne in reactor accidents: tritium (HTO), noble gases and their daughters, radioiodines, and certain radioactive particulates (Cs, Ru, Sr, Te). The standard focuses on the calculation of radiation doses for external exposures from radioactive material in the cloud; internal exposures for inhalation of radioactive material in the cloud and skin penetration of tritium; and external exposures from radionuclides deposited on the ground. It uses as modified Gaussian plume model to evaluate the time-integrated concentration downwind. (52 refs., 12 tabs., 21 figs.)

  4. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave

    Science.gov (United States)

    Anbazhagan, P.; Lijun, Su; Buddhima, Indraratna; Cholachat, Rujikiatkamjorn

    2011-08-01

    Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.

  5. Pengolahan data Ground Penetrating Radar (GPR dengan menggunakan software MATGPR R-3.5

    Directory of Open Access Journals (Sweden)

    Elfarabi Amien

    2017-03-01

    Full Text Available Alat Ground Penetration Radar (GPR memancarkan sinyal gelombang elektromagnetik yang dipancarkan kedalam bumi kemudian gelombang elektromagnetik di tangkap saat sudah sampai permukaan bumi. Alat GPR ini dapat memetakan kondisi bawah permukaan yang dilewatinya, selain itu alat ini sangat sensitif terhadap benda-benda yang memiliki komponen atau muatan listrik dan magnet yang besar. Benda-benda tersebut dapat dikatakan sebagai sumber noise. Pengaruh noise ini akan mempengaruhi pada hasil yang keluarkan, oleh karena itu diperlukan pengolahan data untuk menfilter noise tersebut agar dapat menghasilkan hasil yang baik dan tidak menimbulkan kebingungan pada saat proses interpretasi data.

  6. Ground-penetrating radar for sedimentology: methodological advances and examples from the Usumacinta-Grijalva delta plain, Tabasco, México

    NARCIS (Netherlands)

    Van Dam, Remke; Nooren, Kees|info:eu-repo/dai/nl/33761430X; Dogan, Mine; Hoek, Wim|info:eu-repo/dai/nl/163819394

    2014-01-01

    Ground-penetrating radar (GPR) is widely used as a tool for imaging sedimentary structures and reconstructing depositional history in a range of settings. Most GPR systems use a pair of dipole antennas to transmit and receive electromagnetic energy, typically in the frequency range of 0.025-1 GHz.

  7. Detection and delineation of underground septic tanks in sandy terrain using ground penetrating radar

    Science.gov (United States)

    Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.

    2010-09-01

    A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.

  8. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  9. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases.

    Science.gov (United States)

    Welch, David; Buonanno, Manuela; Grilj, Veljko; Shuryak, Igor; Crickmore, Connor; Bigelow, Alan W; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2018-02-09

    Airborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin. This is because, due to its strong absorbance in biological materials, far-UVC light cannot penetrate even the outer (non living) layers of human skin or eye; however, because bacteria and viruses are of micrometer or smaller dimensions, far-UVC can penetrate and inactivate them. We show for the first time that far-UVC efficiently inactivates airborne aerosolized viruses, with a very low dose of 2 mJ/cm 2 of 222-nm light inactivating >95% of aerosolized H1N1 influenza virus. Continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airborne-mediated microbial diseases.

  10. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    Science.gov (United States)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  11. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar:" ongoing research activities and mid-term results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2015-04-01

    This work aims at presenting the ongoing activities and mid-term results of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' Almost three hundreds experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been praised among the running Actions as 'COST Success Story' ('The Cities of Tomorrow: The Challenges of Horizon 2020,' September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects

  12. Ground penetrating radar applied to rebar corrosion inspection

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank; Chiou, Chien-Ping T.; Roberts, Ron; Wendt, Scott

    2013-01-01

    In this paper we investigate the use of ground penetrating radar (GPR) to detect corrosion-induced thinning of rebar in concrete bridge structures. We consider a simple pulse/echo amplitude-based inspection, positing that the backscattered response from a thinned rebar will be smaller than the similar response from a fully-intact rebar. Using a commercial 1600-MHz GPR system we demonstrate that, for laboratory specimens, backscattered amplitude measurements can detect a thinning loss of 50% in rebar diameter over a short length. GPR inspections on a highway bridge then identify several rebar with unexpectedly low amplitudes, possibly signaling thinning. To field a practical amplitude-based system for detecting thinned rebar, one must be able to quantify and assess the many factors that can potentially contribute to GPR signal amplitude variations. These include variability arising from the rebar itself (e.g., thinning) and from other factors (concrete properties, antenna orientation and liftoff, etc.). We report on early efforts to model the GPR instrument and the inspection process so as to assess such variability and to optimize inspections. This includes efforts to map the antenna radiation pattern, to predict how backscattered responses will vary with rebar size and location, and to assess detectability improvements via synthetic aperture focusing techniques (SAFT).

  13. Using ground-based geophysics to constrain the interpretation of airborne TEM data recorded across the Okavango Delta, Botswana

    Science.gov (United States)

    Podgorski, J. E.; Kalscheuer, T.; Doetsch, J.; Rabenstein, L.; Tshoso, G.; Meier, P.; Horstmeyer, H.; Kgotlhang, L.; Ploug, C.; Auken, E.; Kinzelbach, W. K.; Green, A. G.

    2011-12-01

    The Okavango Delta in northern Botswana is a near endorheic inland delta that has developed over the past ~2 MA in an active graben at the southwestern end of the East Africa Rift System. An annual flood from the north causes a slowly flowing surface water regime in the delta, but previous wetter climatic periods were responsible for intermittent lacustrine environments. The Okavango Delta is the largest permanent water body in the Kalahari Desert and, as such, represents an important resource for wildlife and humans alike. An airborne time-domain electromagnetic (TEM) survey, commissioned by the Botswana government, was undertaken in 2007 for the purpose of better understanding the hydrogeology of the delta. Initial processing and inversion of these data show within the main fan of the delta a resistive 20-50 m thick surface layer underlain by a 30-200 m thick conductive layer. In the upper fan, the conductive layer is underlain by a resistive unit beginning at about 150 m depth. This unit exhibits a dendritic pattern implying a fluvial origin. To help interpret this and other structures, geophysical field work was initiated in early 2011 at various locations in the delta. Seismic reflection and refraction, electrical resistive tomography (ERT), and ground TEM methods were employed. The seismic methods are useful for delineating the boundaries of the weathering and basement layers, whereas ERT provides an independent estimate of the resistivity structure, particularly at shallow depths. Ground TEM allows for a direct comparison with the airborne TEM soundings, helping to estimate the accuracy of the latter. Though still evolving, the current large-scale hydrogeological interpretation of the airborne data set includes a fresh water-saturated surface layer underlain by a saline aquifer and clay aquitard. In the upper fan of the delta, a fresh water aquifer appears to lie between the aquitard and the basement rock.

  14. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  15. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  16. Fundamentals of ground penetrating radar in environmental and engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Casas, A.; Pinto, V.; Rivero, L. [Barcelona Univ., Barcelona (Spain). Faculty of Geology, Dept. of Geochemistry, Petrology and Geological Prospecting

    2000-12-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  17. Fundamentals of ground penetrating radar in environmental and engineering applications

    International Nuclear Information System (INIS)

    Casas, A.; Pinto, V.; Rivero, L.

    2000-01-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples

  18. Ground-Penetrating Radar Prospecting in the Peinan Archaeological Site, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2013-01-01

    Full Text Available The Peinan archaeological site is the largest prehistoric village in Taiwan. Only small-scale pits are allowed for research purposes because the Peinan site is protected by the Cultural Heritage Preservation Act. Careful selection of the pit locations is crucial for future archaeological research at this site. In this study, a ground-penetrating radar (GPR survey was applied near the stone pillar to understand the GPR signatures of the subsurface remains. Seven GPR signatures were categorized based on the radar characters shown on the GPR image. A detailed GPR survey with dense parallel survey lines was subsequently conducted in the area of northern extent of the onsite exhibition to map the subsurface ancient buildings. The results were verified by two test pits, which indicate that the distribution of the subsurface building structures can be well recognized from GPR depth slices. It will be very helpful for setting proper pits priorities for future archaeological research, and for making proper design of the new onsite exhibition.

  19. Fundamental of ground penetrating radar in environmental and engineering applications

    Directory of Open Access Journals (Sweden)

    L. Rivero

    2000-06-01

    Full Text Available Ground Penetrating Radar (GPR is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  20. Inversion and sensitivity analysis of ground penetrating radar data with waveguide dispersion using deterministic and Markov chain Monte Carlo methods

    NARCIS (Netherlands)

    Bikowski, J.; Huisman, J.A.; Vrugt, J.A.; Vereecken, H.; van der Kruk, J.

    2012-01-01

    Ground-penetrating radar (GPR) data affected by waveguide dispersion are not straightforward to analyse. Therefore, waveguide dispersed common midpoint measurements are typically interpreted using so-called dispersion curves, which describe the phase velocity as a function of frequency. These

  1. Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island

    DEFF Research Database (Denmark)

    Nielsen, Lars; Møller, I.; Nielsen, L. H.

    2009-01-01

    Sea level rise may have large implications for low-gradient barrier coastal systems. This problem motivated an integrated ground-penetrating radar (GPR) and sedimentological study of the Rømø Wadden Sea barrier island. Crossing W-E and N-S-oriented 100 MHz GPR reflection profiles with a total...... island. We document different standard processing steps which lead to increased signal-to-noise ratio, improved resolution and trustworthy GPR-to-borehole correlation. The GPR signals image the subsurface layering with a vertical resolution of ~ 0.2-0.3 m. The penetration depth of the GPR reflection...... conversion of the reflection profiles. The GPR reflections are correlated with sedimentological facies logs, and we test to which extent it is possible to map the architecture of different sedimentary units of the Rømø barrier island based on joint interpretation of the GPR and core data. Detailed...

  2. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Science.gov (United States)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  3. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    Science.gov (United States)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  4. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  5. Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan

    2017-04-01

    Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess

  6. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    Science.gov (United States)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  7. Airborne campaigns for CryoSat pre-launch calibration and validation

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René; Skourup, Henriette

    2010-01-01

    From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice in the Ar......From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice...... in the Arctic Ocean. The main goal of the airborne surveys was to acquire coincident scanning laser and CryoSat type radar elevation measurements of the surface; either sea ice or land ice. Selected lines have been surveyed along with detailed mapping of validation sites coordinated with insitu field work...... and helicopter electromagnetic surveying. This paper summarises the pre-launch campaigns and presents some of the result from the coincident measurement from airborne and ground observations....

  8. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Vest Christiansen, Anders; Tembo, Alice

    2015-01-01

    The geological and morphological evolution of the Kalahari Basin of Southern Africa has given rise to a complex hydrogeological regime that is affected by water quality issues. Among these concerns is the occurrence of saline groundwater. Airborne and ground-based electromagnetic surveying...... of a low-resistivity (below 13 Ωm) valley that extends southwestwards into the Makgadikgadi salt pans. The electrical resistivity distribution is indicative of a full graben related to the Okavango–Linyati Fault system as a result of propagation of the East African Rift Valley System into Southern Africa...

  9. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  10. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    Science.gov (United States)

    Zhang, Hong-Bo; Zheng, Lei; Su, Yan; Fang, Guang-You; Zhou, Bin; Feng, Jian-Qing; Xing, Shu-Guo; Dai, Shun; Li, Jun-Duo; Ji, Yi-Cai; Gao, Yun-Ze; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.

  11. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  12. On thin ice: ground penetrating radar improves safety for seismic crews in frigid arctic darkness

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2002-02-01

    The fact that workers are pushing the limits of the Canadian Arctic's ice is more than act of faith; it is the result of rapidly advancing technologies that are taking the guesswork, and therefore the risk, out of icetop exploration. The most important element to improve safety in recent years has been the increased use of ground penetrating radar (GPR) which allows the most detailed images yet of ice thickness. It is an absolutely invaluable tool for allowing vehicles to drive along the ice roads up the rivers and offshore, with significantly reduced risk for the people involved. GPR is an essential part of the equipment usually tied into global positioning system (GPS) and and geographic information system (GIS). The collected GPS and GPR data are loaded into the workstation and merged to produce a GIS map where the colored map of ice thickness is overlaid over satellite image or aerial photographs. Ground penetrating radar was first used in Austria in 1929 to measure glacial ice thickness. It fell into disuse during the 1950s but the technology advanced rapidly in subsequent years; it was used as part of Apollo 17's lunar sounder experiment in 1972. It is particularly useful in northern Arctic regions to determine near-surface thickness. With pipeline developments in the active planning stages, measuring the thickness of ice is more vital than ever; investors will not commit to multi-billion dollar projects before the resource base is fully delineated.

  13. INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA

    Energy Technology Data Exchange (ETDEWEB)

    CUMMINS GD

    2010-11-11

    As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending

  14. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  15. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  16. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    of ice, corresponding to roughly a quarter of its 1985 volume (148.6 ± 47.6 10 m) and a thinning rate of 0.60 ± 0.11 m a. The computations are challenged by a relatively large fraction of the 1985 DEM (∼50% of the glacier surface) being deemed unreliable owing to low contrast (snow cover) in the 1985......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...

  17. GROUND PENETRATING RADAR INVESTIGATIONS FOR ARCHITECTURAL HERITAGE PRESERVATION OF THE HABIB SAKAKINI PALACE, CAIRO, EGYPT

    Directory of Open Access Journals (Sweden)

    Sayed HEMEDA

    2012-09-01

    Full Text Available The modern architectural heritage of Egypt is both varied and vast. It covers all nonecclesiastical buildings, important monumental structures (mansions, municipal buildings in the history of architecture, as well as more common buildings. They include houses (from mansions to simple dwellings, public buildings (schools, administrative buildings, hospitals, industrial buildings (factories, warehouses, mills, bridges, monastic dependencies (drinking foundations, gardens and any other modern structures that fall within the category of monuments and comprise the Egyptian cultural heritage. We present herein a comprehensive Ground Penetration Radar (GPR investigation and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace, in Cairo, considered one of the most significant architectural heritage sites in Egypt. The palace is located on an ancient water pond at the eastern side of the Egyptian gulf, beside the Sultan Bebris Al-Bondoqdary mosque, a place also called “Prince Qraja al-Turkumany pond”. That pond was drained by Habib Sakakini in 1892, to construct his famous palace in 1897. Eight hundred meters of Ground Penetration Radar (GPR profiling were conducted, to monitor the subsurface conditions. 600 meters were made in the surrounding area of the Palace and 200 m at the basement. The aim was to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna were used (500-100 MHZ to penetrate to the desired depth of 7 meters (ASTM D6432. The GPR was also used to detect the underground water. At the building basement the GPR was used to identify the foundation thickness and the soil - basement interface, as well as for the inspection of cracks in some supporting columns, piers and masonry walls. All the results, together with the seismic hazard analysis, will be used for a complete

  18. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  19. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    International Nuclear Information System (INIS)

    Zhang Hong-Bo; Zheng Lei; Su Yan; Feng Jian-Qing; Xing Shu-Guo; Dai Shun; Li Jun-Duo; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Zhou Bin; Ji Yi-Cai; Gao Yun-Ze

    2014-01-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm

  20. Quantifying Airborne Allergen Levels Before and After Rain Events Using TRMM/GPM and Ground-Sampled Data

    Science.gov (United States)

    Stewart, Randy M.

    2006-01-01

    Allergies affect millions of Americans, increasing health risks and also increasing absenteeism and reducing productivity in the workplace. Outdoor allergens, such as airborne pollens and mold spores, commonly trigger respiratory distress symptoms, but rainfall reduces the quantity of allergens in the air (EPA, 2003). The current NASA Tropical Rainfall Measuring Mission provides accurate information related to rain events. These capabilities will be further enhanced with the future Global Precipitation Measurement mission. This report examines the effectiveness of combining these NASA resources with established ground-based allergen/spore sampling systems to better understand the benefits that rain provides in removing allergens and spores from the air.

  1. Spectroscopic characterization of extrasolar planets from ground-, space- and airborne-based observatories

    Science.gov (United States)

    Angerhausen, Daniel

    2010-11-01

    This thesis deals with techniques and results of observations of exoplanets from several platforms. In this work I present and then attempt solutions to particular issues and problems connected to ground- and space-based approaches to spectroscopic characterization of extrasolar planets. Furthermore, I present the future prospects of the airborne observatory, SOFIA, in this field of astronomy. The first part of this thesis covers results of an exploratory study to use near-infrared integral-field-spectroscopy to observe transiting extrasolar planets. I demonstrate how adaptive-optics assisted integral field spectroscopy compares with other spectroscopic techniques currently applied, foremost being slit spectroscopy. An advanced reduction method using elements of a spectral-differential decorrelation and optimized observation strategies is discussed. This concept was tested with K-Band time series observations of secondary eclipses of HD 209458b and HD 189733b obtained with the SINFONI at the Very Large Telescope (VLT), at spectral resolution of R~3000. In ground-based near infrared (NIR) observations, there is considerable likelihood of confusion between telluric absorption features and spectral features in the targeted object. I describe a detailed method that can cope with such confusion by a forward modelling approach employing Earth transmission models. In space-based transit spectroscopy with Hubble's NICMOS instrument, the main source of systematic noise is the perturbation in the instrument's configuration due to the near Earth orbital motion of the spacecraft. I present an extension to a pre-existing data analysis sequence that has allowed me to extract a NIR transmission spectrum of the hot-Neptune class planet GJ 436b from a data set that was highly corrupted by the above mentioned effects. Satisfyingly, I was able to obtain statistical consistency in spectra (acquired over a broad wavelength grid) over two distinct observing visits by HST. Earlier

  2. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  3. Application of ground penetrating radar in placer mineral exploration for mapping subsurface sand layers: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Barnwal, R.P.; Singh, V.K.; Gujar, A.R.; Rajamanickam, G.V.

    radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, v. 47, p. 435-449. Jol, H.M. & Bristow, C.S., 2003. GPR in sediments: advice on data collection, basic processing and interpretation, a good practice... guide, In: Bristow, C.S. and Jol, H.M. (Eds.), GPR in sediments, Geological Society of London, Special Publication, 211. Neal, A., 2004. Ground Penetrating Radar and its use in sedimentology: Principles, Problems and Progress. Earth-Science Reviews...

  4. Characterization of concrete properties from dielectric properties using ground penetrating radar

    International Nuclear Information System (INIS)

    Lai, W.L.; Kou, S.C.; Tsang, W.F.; Poon, C.S.

    2009-01-01

    This paper presents the experimental results of a study of the relationships between light-weight (LWAC) and normal aggregate concrete (NAC) properties, as well as radar wave properties that are derived by using ground penetrating radar (GPR). The former (LWAC) refers to compressive strength, apparent porosity and saturated density, while the latter (NAC) refers to real part of dielectric permittivity (ε' or real permittivity) and wave energy level (E). Throughout the test period of the newly cast concrete cured for 90 days, the above mentioned material properties gradually changed which can be attributed to the effects of cement hydration, different types of aggregates and initial water to binder ratios. A number of plots describing various properties of concrete such as dielectric, strength and porosity perspectives were established. From these plots, we compare the characteristics of how much and how fast free water was turned to absorbed water in LWAC and NAC. The underlying mechanisms and a mechanistic model are then developed.

  5. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  6. Suitability of ground penetrating radar for locating large fractures

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, E. [Poeyry Finland Oy, Vantaa (Finland); Kantia, P. [Roadscanners Oy, Rovaniemi (Finland)

    2011-12-15

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analysed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting features (TCF) or full perimeter intersections (FPI). Suitability of ground penetrating radar (GPR) method for locating large fractures was assessed. The assessment used data measured with 100 MHz and 270 MHz radar tool on ONKALO access tunnel right-hand wall, chainage 3344 - 3578 and on TKU-3 niche floor chainage 15 - 55 and 25 - 67 m. GPR images were processed to enhance reflections and suppress interference and diffractions. Images were placed on measurement position in 3D presentation software. The tunnel wall and floor mapping data was presented along with GPR images. A review of observed GPR reflections, and assessment of visibility of large fractures, was drawn on basis of 3D view examination. The GPR tool can detect reflections from cleaned and dry rock floor and wall. Depth of penetration is 8-12 m for 270 MHz antenna. The antenna has high resolution. Coupling on rock surface is good, which suppresses ringing and interference. Penetration is 20-24 m for 100 MHz antenna, which has a trade off of higher interference due to weaker contact to surface caused by large antenna. There are observed many kind of reflecting surfaces and diffractors in the images, like for example lithological contacts and high grade shearing, and also fractures. Proper manner to apply the method is to use raw and processed images during geological mapping to confirm the origin of reflections. Reflections deemed to be caused by fractures are useful to be compiled to 3D model objects. The

  7. Suitability of ground penetrating radar for locating large fractures

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kantia, P.

    2011-12-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analysed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting features (TCF) or full perimeter intersections (FPI). Suitability of ground penetrating radar (GPR) method for locating large fractures was assessed. The assessment used data measured with 100 MHz and 270 MHz radar tool on ONKALO access tunnel right-hand wall, chainage 3344 - 3578 and on TKU-3 niche floor chainage 15 - 55 and 25 - 67 m. GPR images were processed to enhance reflections and suppress interference and diffractions. Images were placed on measurement position in 3D presentation software. The tunnel wall and floor mapping data was presented along with GPR images. A review of observed GPR reflections, and assessment of visibility of large fractures, was drawn on basis of 3D view examination. The GPR tool can detect reflections from cleaned and dry rock floor and wall. Depth of penetration is 8-12 m for 270 MHz antenna. The antenna has high resolution. Coupling on rock surface is good, which suppresses ringing and interference. Penetration is 20-24 m for 100 MHz antenna, which has a trade off of higher interference due to weaker contact to surface caused by large antenna. There are observed many kind of reflecting surfaces and diffractors in the images, like for example lithological contacts and high grade shearing, and also fractures. Proper manner to apply the method is to use raw and processed images during geological mapping to confirm the origin of reflections. Reflections deemed to be caused by fractures are useful to be compiled to 3D model objects. The

  8. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  9. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    Science.gov (United States)

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  10. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  11. Ground penetrating radar documents short-term near-surface hydrological changes around Old Faithful Geyser, Yellowstone National Park, USA

    Science.gov (United States)

    Lynne, Bridget Y.; Heasler, Henry; Jaworowski, Cheryl; Smith, Gary J.; Smith, Isaac J.; Foley, Duncan

    2018-04-01

    In April 2015, Ground Penetrating Radar (GPR) was used to characterize the shallow subsurface (images were collected between two eruptions of Old Faithful Geyser. Each set of time-sequence GPR recordings consisted of four transects aligned to provide coverage near the potential location of the inferred 15 m deep geyser chamber. However, the deepest penetration we could achieve with a 200 MHz GPR antennae was 5 m. Seven time-sequence events were collected over a 48-minute interval to image changes in the near-surface, during pre- and post-eruptive cycles. Time-sequence GPR images revealed a series of possible micro-fractures in a highly porous siliceous sinter in the near-surface that fill and drain repetitively, immediately after an eruption and during the recharge period prior to the next main eruptive event.

  12. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    Science.gov (United States)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  13. The Use of Ground Penetrating Radar to extend the Results of Archaeological Excavation

    Science.gov (United States)

    Utsi, E.

    2009-04-01

    The condition of the Romano-British archaeological site in Wortley, Gloucestershire, UK is typical of sites of the period in that it has been heavily robbed out since it first fell into disuse. Building materials taken from the site have been re-used over the centuries to construct other local buildings. This makes both preservation of the extant remains and interpretation of the excavation problematic. Following the accidental discovery of the site in the 1980s, a programme of excavation was set in place. This excavation was run as a practical archaeological training school and, as a result, a wide range of archaeological and geophysical techniques were applied to the site. This included the introduction of Ground Penetrating Radar (GPR). The preliminary results of the first GPR used on site were not entirely satisfactory which led to the development of a new radar in the early 1990s, specifically developed for use on archaeological sites. The excavation and GPR results were published in a series of excavation reports [1] [2]. It was not possible to excavate fully for two reasons. Firstly the site crossed present day ownership boundaries and secondly the ownership of the excavation area changed. At this point the excavation was summarily terminated. In 2007, permission was given by the owner of an adjacent property to carry out a GPR survey over their land in order to derive additional information, if possible. An area survey was carried out in May 2007 with reduced transect spacing [3]. The radar data showed similar patterning to that of the original investigation i.e. substantial remains which had been subject to a high degree of post-occupational attrition. Time slices from the radar survey were matched to the principal excavation plans. It proved possible to deduce the full extent of certain partially excavated features, notably the courtyard and bath house. It was also possible to demonstrate that one part of the adjacent property did not contain similar

  14. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  15. Measuring canopy structure with an airborne laser altimeter

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Evans, D.L.; Jacobs, D.; Everitt, J.H.; Weltz, M.A.

    1993-01-01

    Quantification of vegetation patterns and properties is needed to determine their role on the landscape and to develop management plans to conserve our natural resources. Quantifying vegetation patterns from the ground, or by using aerial photography or satellite imagery is difficult, time consuming, and often expensive. Digital data from an airborne laser altimeter offer an alternative method to quantify selected vegetation properties and patterns of forest and range vegetation. Airborne laser data found canopy heights varied from 2 to 6 m within even-aged pine forests. Maximum canopy heights measured with the laser altimeter were significantly correlated to measurements made with ground-based methods. Canopy shape could be used to distinguish deciduous and evergreen trees. In rangeland areas, vegetation heights, spatial patterns, and canopy cover measured with the laser altimeter were significantly related with field measurements. These studies demonstrate the potential of airborne laser data to measure canopy structure and properties for large areas quickly and quantitatively

  16. Design of Wireless Automatic Synchronization for the Low-Frequency Coded Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Zhenghuan Xia

    2015-01-01

    Full Text Available Low-frequency coded ground penetrating radar (GPR with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.

  17. Practical experience in and improvements to aerosol sampling for trace analysis of airborne radionuclides in ground level air

    International Nuclear Information System (INIS)

    Arnold, D.; Jagielak, J.; Kolb, W.; Pietruszewski, A.; Wershofen, H.; Zarucki, R.

    1994-01-01

    In November 1989 the Polish government and the German government signed a bilateral agreement for scientific and technological co-operation. In the framework of this co-operation the Central Laboratory for Radiological Protection (CLRP), Warsaw, and the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, conducted a co-operation project in the field of monitoring the airborne radioactivity in ground level air. This progress report deals with the history of the project covering the period from July 1990 to December 1992, the scientific activities and their results. A proposal for future co-operation, which is planned for the near future, is made. (orig.)

  18. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  19. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    Science.gov (United States)

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  20. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  1. Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils

    Energy Technology Data Exchange (ETDEWEB)

    Khakiev, Zelimkhan; Kislitsa, Konstantin; Yavna, Victor [Rostov State Transport University, Rostov-on-Don (Russian Federation)

    2012-12-15

    The work considers the depth evaluation of ground penetrating radar (GPR) surveys using the attenuation factor of electromagnetic radiation in a medium. A method of determining the attenuation factor of low-conductive non-magnetic soils is developed based on the results of direct measurements of permittivity and conductivity of soils in the range of typical frequencies of GPR. The method relies on measuring the shift and width of the resonance line after a soil sample is being placed into a tunable cavity resonator. The advantage of this method is the preservation of soil structure during the measurement.

  2. Uranium measurement by airborne gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1975-01-01

    In the airborne measurement of uranium, window type gamma-ray spectrometers are used and it is necessary to correct for scattered high energy radiation from thallium 208 in the thorium decay series. This radiation can be scattered in the crystal, in the ground, and in the air. A theory, analogous to the theory of radioactive decay, is developed; it can adequately explain the spectrum buildup in the uranium window for a point source of thorium oxide immersed to different depths in water and for a detector above the water. The theory is extended to predict the buildup as a function of altitude for detectors of different sizes and shows that errors in the airborne measurement of uranium can be significant if no allowance is made for radiation scattered in the ground and in the air

  3. Microwave tomography for an effective imaging in GPR on UAV/airborne observational platforms

    Science.gov (United States)

    Soldovieri, Francesco; Catapano, Ilaria; Ludeno, Giovanni

    2017-04-01

    GPR was originally thought as a non-invasive diagnostics technique working in contact with the underground or structure to be investigated. On the other hand, in the recent years several challenging necessities and opportunities entail the necessity to work with antenna not in contact with the structure to be investigated. This necessity arises for example in the case of landmine detection but also for cultural heritage diagnostics. Other field of application regards the forward-looking GPR aiming at shallower hidden targets forward the platfrom (vehicle) carrying the GPR [1]. Finally, a recent application is concerned with the deployment of airborne/UAV GPR, able to ensure several advantages in terms of large scale surveys and "freedom" of logistics constraint [2]. For all the above mentioned cases, the interest is towards the development of effective data processing able to make imaging task in real time. The presentation will show different data processing strategies, based on microwave tomography [1,2], for a reliable and real time imaging in the case of GPR platforms far from the interface of the structure/underground to be investigated. [1] I. Catapano, A. Affinito, A. Del Moro,.G. Alli, and F. Soldovieri, "Forward-Looking Ground-Penetrating Radar via a Linear Inverse Scattering Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5624 - 5633, Oct. 2015. [2] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, "A tomographic approach for helicopter-borne ground penetrating radar imaging," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 378-382, May 2012.

  4. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  5. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  6. Ground Penetrating Radar Investigations in the Noble Hall of São Carlos Theater in Lisbon, Portugal

    Science.gov (United States)

    Fontul, S.; Solla, M.; Cruz, H.; Machado, J. S.; Pajewski, L.

    2018-05-01

    This paper describes a study conducted by the National Laboratory for Civil Engineering of Portugal (LNEC), in cooperation with the Defense University Center at the Spanish Naval Academy and "La Sapienza," University of Rome, to assess the health and safety conditions of the Noble Hall floor in the São Carlos National Theater (Lisbon, Portugal). In a multidisciplinary approach, extensive fieldwork was carried out. The survey included the location and characterization of beams in the various areas of the floor by using two ground penetrating radar (GPR) systems equipped with two different ground- or air-coupled antennas, local inspection openings to visually assess the geometry, timber species and conservation state of structural members, and an assessment of the conservation state of the timber beam ends using drilling equipment. All the tests performed and the results obtained are presented. The potential of using non-destructive tests for the inspection of timber cultural heritage structures, particularly GPR, is discussed, and some practical recommendations are made.

  7. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    Science.gov (United States)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  8. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  9. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  10. Individual tree crown modeling and change detection from airborne lidar data

    NARCIS (Netherlands)

    Xiao, W.; Xu, Sudan; Oude Elberink, S.J.; Vosselman, G.

    2016-01-01

    Light detection and ranging (lidar) provides a promising way of detecting changes of trees in three-dimensional (3-D) because laser beams can penetrate through the foliage and therefore provide full coverage of trees. The aim is to detect changes in trees in urban areas using multitemporal airborne

  11. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    Science.gov (United States)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  12. Matching sampler penetration curves to definitions of respirable fraction

    International Nuclear Information System (INIS)

    Mercer, T.T.

    1977-01-01

    A formal definition of 'respirable fraction' (the probability that a particle of a given size will deposit in the alveolar regions of the lung if inhaled) is useful only if there is a method of sorting out airborne contamination approximately in accordance with the definition. The matching of the definitions adopted by different organizations to the penetration curves of various types of sample is discussed. (author)

  13. COST Action TU1208 - Working Group 3 - Electromagnetic modelling, inversion, imaging and data-processing techniques for Ground Penetrating Radar

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos

    2017-04-01

    This work aims at presenting the main results achieved by Working Group (WG) 3 "Electromagnetic methods for near-field scattering problems by buried structures; data processing techniques" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. Among the most interesting achievements of WG3, we wish to mention the following ones: (i) A new open-source version of the finite-difference time-domain simulator gprMax was developed and released. The new gprMax is written in Python and includes many advanced features such as anisotropic and dispersive-material modelling, building of realistic heterogeneous objects with rough surfaces, built-in libraries of antenna models, optimisation of parameters based on Taguchi's method - and more. (ii) A new freeware CAD was developed and released, for the construction of two-dimensional gprMax models. This tool also includes scripts easing the execution of gprMax on multi-core machines or network of computers and scripts for a basic plotting of gprMax results. (iii) A series of interesting freeware codes were developed will be released by the end of the Action, implementing differential and integral forward-scattering methods, for the solution of simple electromagnetic problems by buried objects. (iv) An open database of synthetic and experimental GPR radargrams was created, in cooperation with WG2. The idea behind this initiative is to give researchers the

  14. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    Science.gov (United States)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  15. INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kris Budiono

    2017-07-01

    Full Text Available A survey of Ground Penetrating Radar (GPR was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition

  16. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  17. Civil Engineering Applications of Ground Penetrating Radar: Research Perspectives in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2013-04-01

    Ground Penetrating Radar (GPR) is a safe, non-destructive and non-invasive imaging technique that can be effectively used for advanced inspection of composite structures and for diagnostics affecting the whole life-cycle of civil engineering works. GPR provides high resolution images of structures and subsurface through wide-band electromagnetic waves. It can be employed for the surveying of roads, pavements, bridges, tunnels, for detecting underground cavities and voids, for utility sensing, for the inspection of buildings, reinforced concrete and pre-cast concrete structures, for geotechnical investigation, in foundation design, as well as for several other purposes. Penetration and resolution of GPR depend primarily on the transmitting frequency of the equipment, the antenna characteristics, the electrical properties of the ground or of the surveyed material, and the contrasting electrical properties of the targets with respect to the surrounding medium. Generally there is a direct relationship between the transmitter frequency and the resolution that can be obtained; conversely there is an inverse relationship between frequency and penetration depth. GPR works best in dry ground environments, but can also give good results in wet, saturated materials; it does not work well in saline conditions, in high-conductivity media and through dense clays which limit signal penetration. Different approaches can be employed in the processing of collected GPR data. Once data have been processed, they still have to be analysed. This is a challenging problem, since interpretation of GPR radargrams is typically non-intuitive and considerable expertise is needed. In the presence of a complex scenario, an accurate electromagnetic forward solver is a fundamental tool for the validation of data interpretation. It can be employed for the characterization of scenarios, as a preliminary step that precedes a survey, or to gain a posteriori a better understanding of measured data. It

  18. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  19. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    Science.gov (United States)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  20. Airborne campaigns for CryoSat prelaunch calibration and validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hanson, Susanne; Hvidegaard, Sine Munk

    2011-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite is planned for spring 2011. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the prelaunch performance...... of the CryoSat radar altimeter (SIRAL), an airborne version of the SIRAL altimeter (ASIRAS) has been flown together with a laser scanner in 2006 and 2008. Of particular interest is to study the penetration depth of the radar altimeter over both land- and sea ice. This can be done by comparing the radar...... and laser measurements with in situ observations. Here, an overview of the prelaunch airborne campaigns is given, together with results of the ASIRAS performance over land- and sea ice. The observations, used in this study, are obtained from the Greenland ice sheet and from both multiyear and first year sea...

  1. Geophex Airborne Unmanned Survey System

    International Nuclear Information System (INIS)

    Won, I.L.; Keiswetter, D.

    1995-01-01

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  2. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  3. Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Štěpančíková, Petra; Karousová, M.; Tábořík, P.; Flechsig, C.; Gaballah, M.

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1019-1036 ISSN 0039-3169 R&D Projects: GA AV ČR IAA300120905 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30460519 Keywords : fault tectonics * resistivity tomography * ground penetrating radar Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  4. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  5. A Review on Migration Methods in B-Scan Ground Penetrating Radar Imaging

    Directory of Open Access Journals (Sweden)

    Caner Özdemir

    2014-01-01

    Full Text Available Even though ground penetrating radar has been well studied and applied by many researchers for the last couple of decades, the focusing problem in the measured GPR images is still a challenging task. Although there are many methods offered by different scientists, there is not any complete migration/focusing method that works perfectly for all scenarios. This paper reviews the popular migration methods of the B-scan GPR imaging that have been widely accepted and applied by various researchers. The brief formulation and the algorithm steps for the hyperbolic summation, the Kirchhoff migration, the back-projection focusing, the phase-shift migration, and the ω-k migration are presented. The main aim of the paper is to evaluate and compare the migration algorithms over different focusing methods such that the reader can decide which algorithm to use for a particular application of GPR. Both the simulated and the measured examples that are used for the performance comparison of the presented algorithms are provided. Other emerging migration methods are also pointed out.

  6. Performance of ground-penetrating radar on granitic regoliths with different mineral composition

    Science.gov (United States)

    Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.

    2011-01-01

    Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.

  7. INTERPRETATION OF COAL POTENTION USING GROUND PENETRATING RADAR (GPR METHOD

    Directory of Open Access Journals (Sweden)

    Rohmatul Wahidah

    2018-01-01

    Full Text Available Coal exposure founded at Klatak Kebo Ireng village in Besuki Tulungagung precisely in the vicinity of the river. Energy needs is increasing so the coal used for one of alternative energy source that can be used by society. This study was conducted to determine of the potential distribution coal modeling on geological structure. Identification of coal structure is using Ground Penetrating Radar (GPR 2005 it conducted because this method is more suitable for shallow of surveys. The location for taking data is around the river that showed to exposure. There are 5th lines of taken data with length about 50 until 100 meters. Data processing was done using of software Future series 2005. The data displayed with software in the color pattern to obtain based on the constant of dielectric and conductivity. The results of interpretation study are the data indicates that there is a coal on the overall trajectory. Only in 2nd track contain little of coal. The Coal layers are appear in processing the results of data is thickness about 6 at the top. In the area of study also found the cavity (cavity area which contained of several tracks. On the bottom of the track there is a pattern of coal reddish of yellow color which indicates that material contains of minerals.

  8. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  9. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Science.gov (United States)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  10. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  11. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": first-year activities and results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2014-05-01

    This work aims at presenting the first-year activities and results of COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This Action was launched in April 2013 and will last four years. The principal aim of COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. The first WG

  12. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  13. Ground penetrating radar measurements at the ONKALO research tunnel and eastern part of the Olkiluoto investigation area at July 2006

    International Nuclear Information System (INIS)

    Sipola, V.; Tarvainen, A.-M.

    2007-04-01

    Ground Penetrating Radar (GPR) measurements were carried out at ONKALO research site in summer 2006. Measurements included 400 metres of measurements inside ONKALO access tunnel and about 1800 metres of measurements on the ground, at the eastern parts of Olkiluoto investigation area. The purpose of the measurements done inside the access tunnel was to investigate, whether it would be possible to locate deformation structures or long fractures in the rock mass below the tunnel. The purpose of the measurements made on top of the ground was to investigate, whether it would be possible to locate glacio-isostatic faults from the soils. A secondary target was to try and locate the rock surface. The chosen part of ONKALO tunnel was measured using five different frequencies, which enabled comparing the results to each other. It also enabled getting a higher resolution picture of the top rock, than what would have been possible using only one low-frequency antenna. The on-the-ground measurements were measured using only one frequency. (orig.)

  14. INTEGRATING SMARTPHONE IMAGES AND AIRBORNE LIDAR DATA FOR COMPLETE URBAN BUILDING MODELLING

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  15. Esa Cryovex 2011 Airborne Campaign For Cryosat-2 Calibration And Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Einarsson, Indriði; Sørensen, Louise Sandberg

    of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser...... measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north...

  16. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    Liu Yanyang; Liu Qingcheng; Zhang Zhiyong

    2008-01-01

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  17. Ground Penetrating Radar employment for searching ancient cisterns.

    Science.gov (United States)

    Semeraro, Grazia; Notario, Corrado; Persico, Raffaele

    2017-04-01

    Ground Penetrating Radar technology and methodology can provide support for the archaeological research. In particular, investigations in archaeological sites [1-3] and monuments of historical interest [4-6] have provided in many cases information of interest about the presence, the size, the shape and the depth of embedded anomalies, that can range from foundations to crypts, or also walled passages, walled doors, embedded voids or reinforcement bars, fractures and so on. In this contribution we will focus on the possibility to identify ancient cisterns with the aid of a GPR prospection. In particular, the attention will be focused on Messapic cisterns. The Messapians were a population that used to reside in the southern part of the Apulia region (the so called Salento), Their remains dates back from the 8th century B.C. up to the Roman conquest, in the 3rd century B.C. They used to build cisterns for gathering the rain water, both for drinking and for agricultural purposes. The shape of the cisterns can be quite different from case to case, and rarely they are found empty. Rether, in most cases the remains shows a structure with the roof collapsed and filled up with loose materials, which makes their identification with a GPR a challenging issue. At the conference, the results and the interpretation of GPR data gathered in the two Messapic sites of San Vito dei Normanni and Cavallino (both in the Salento area) will be shown and discussed. References 1) R. Lasaponara, G. Leucci, N. Masini, R. Persico, Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru, Journal of Archaeological Science, vol. 42, pp. 216-230, 2014. 2) R. Castaldo, L. Crocco, M. Fedi, B. Garofalo, R. Persico, A. Rossi, F. Soldovieri, GPR Microwave Tomography for Diagnostic of Archaeological Sites: the Case of a high-way construction in Pontecagnano (Southern Italy), Archaeological Prospection, vol. 16, pp. 203-217, 2009. 3) L. Matera

  18. MERGING AIRBORNE LIDAR DATA AND SATELLITE SAR DATA FOR BUILDING CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    2015-05-01

    Full Text Available A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, airborne photogrammetry and LIDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, these approaches classify geometrical attributes. Moreover, ground survey and manual editing works are finally required in attribute data classification. On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 PALSAR2. Therefore, in this study, we focus on an integration of airborne LIDAR data and satellite SAR data for building extraction and classification.

  19. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  20. Significance of radioelement concentration measurements made by airborne gamma-ray spectrometry over the Canadian Shield

    International Nuclear Information System (INIS)

    Charbonneau, B.W.; Killeen, P.G.; Carson, J.M.; Cameron, G.W.; Richardson, K.A.

    1976-01-01

    Results of airborne gamma-ray spectrometer surveys conducted by the Geological Survey of Canada are presented as maps contoured in units of radioelement and concentration ratios. These contoured values represent the average surface concentrations of the radioelements over areas of the order of several square kilometres. The relationship between this ''average surface concentration'' and the radioelement concentration in bedrock underlying the area depends on: (1) the percentage of outcrop; (2) the relation between overburden and bedrock radioelement concentration; (3) percentage of marshland or surface water in the area; (4) soil moisture; and (5) density of vegetation. More than 2500 portable gamma-ray spectrometer analyses of outcrop and overburden have been made in the Bancroft, Elliot Lake and Fort Smith areas of the Canadian Precambrian Shield. In the areas examined, the radioelement concentrations in glacial drift reflect the concentrations in the underlying bedrock. Rocks with near-crustal average contents of thorium, uranium and potassium are overlain by glacial drift having approximately the same concentrations. As the concentration in bedrock increases, the concentration in the local overburden also increases, but not to the same extent. In addition, in-situ gamma-ray spectrometry measurements were made at almost 1000 stations within the area of airborne surveys near Mont Laurier and Elliot Lake. These ground measurements were compared with the airborne measurements by averaging the values for all those ground stations located in the areas between each contour level on airborne maps. Radioelement concentrations in bedrock are considerably higher than corresponding airborne measurements, and this difference between bedrock and airborne values increases at higher radioelement concentrations. Radioelement concentrations in glacial drift are only slightly higher than airborne contour values for the same area. Airborne contour maps of the radioelement ratios

  1. CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hvidegaard, Sine Munk; Forsberg, René

    2013-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. Part of this was repeated in Spring 2012. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since...... 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done...... of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the AlfredWegener Institute (AWI) Polar- 5 carrying an EM induction sounder. The paper presents an overview of the 2011-12 airborne campaigns...

  2. Holocene relative sea level variations at the spit system Feddet (Denmark) resolved by ground-penetrating radar and geomorphological data

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Bendixen, Mette; Clemmensen, Lars B

    Estimates of Holocene sea-level variations have been presented in a range of studies based on different approaches, including interpretation of internal beach ridge characteristics from ground-penetrating radar (GPR) and geomorphological data. We present GPR data and geomorphological observations...... of independent GPR and geomorphologic data collected across the recent and sub-recent beach ridge deposits. The data analyses include coastal topography, internal dips of beach ridge layers, and sea-level measurements. A clear change in characteristic layer dip is observed between beach face and upper shoreface...

  3. Proceedings of the Government Users Workshop on Ground Penetrating Radar Applications and Equipment 26-27 March 1992 Vicksburg, Mississippi

    Science.gov (United States)

    1992-12-01

    Allison P.O. Box 946 USDA Tifton , GA 31794 Box 946 Phone: 912-386-3899 Tifton , GA 31794 FAX: 912-386-7215 Phone: 912-386-7075 FAX: 912-386-7215 Paul...FAX: 603-889-3984 FAX: 071-724-1433 Ricky Fletcher S. V. Cosvay USDA-ARS-SEWRL Sensors and Software, Inc. Rt. 4, Box 1390 5566 Tomken Road Tifton , GA ... Tifton , GA 31793 Phone: 305-634-4507 Phone: 912-386-7174 FAX: 305-635-4901 FAX: 912-386-7215 8 GOVERNMENT USERS WORKSHOP ON GROUND PENETRATING RADAR

  4. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  5. Overview of Ground Air Quality Measurements and Their Links to Airborne, Remote Sensing and Model Studies during the KORUS-AQ Campaign

    Science.gov (United States)

    Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.

    2017-12-01

    During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.

  6. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  7. Study of adsorption properties of impregnated charcoal for airborne iodine and methyl iodide

    International Nuclear Information System (INIS)

    Qi-dong, L.; Sui-yuang, H.

    1985-01-01

    The adsorption characteristics of airborne radioiodine and methyl iodide on impregnated charcoal were investigated. The activated charcoal tested was made from home-made oil-palm shells, and KI and TEDA were used as impregnants. A new technique was used to plot the dynamic partial adsorption isotherm at challenge concentrations (concentration range of iodine: 1-20 ppm v/v). Some adsorption properties of the impregnated charcoal were estimated with the dynamic partial adsorption isotherm. The dependences of the adsorption capacity and penetration behavior for airborne iodine and methyl iodide on the ambient conditions (temperature, relative humidity, and superficial velocity) were studied

  8. Three-dimensional architecture and development of Danianbryozoan mounds at Limhamn, south-west Sweden, usingground-penetrating radar

    DEFF Research Database (Denmark)

    Nielsen, Lars; Schack von Brockdorff, A.; Bjerager, Morten Gustav Erik

    2009-01-01

    in the Limhamn limestone quarry, south-west Sweden, obtained from combined reflected ground-penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark-grey to black flint bands which...... outline mound geometries. Ground-penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground-penetrating radar images outline the geometry of the internal...... layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground-penetrating radar images. Small-scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth...

  9. Karoo airborne geophysical survey: preliminary report on airborne radiometric data from block 12

    International Nuclear Information System (INIS)

    Day, R.W.; Wright, O.M.

    1980-02-01

    The analogue gamma-ray spectrometer records of block 12 of the Karoo airborne geophysical survey were studied and significant uranium anomalies were selected and graded. The anomalies were plotted on 1:50 000 scale maps and the co-ordinates of the anomalies were tabulated. The anomalies were transferred to 1:250 000 scale maps which are included in this report. The geological setting of the anomalies has been studied. Ground follow-up work has been recommended for anomalies which occur over mineralized pans and drainage channels, and the Lower Beaufort Stage. Other anomalies which occur over the Ecca Series, the Middle Beaufort Stage, the Upper Beaufort Stage and the Stormberg Series have also been recommended for ground investigation

  10. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  11. Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment

    NARCIS (Netherlands)

    Jong, de S.M.; Pebesma, E.; Lacaze, B.

    2003-01-01

    In July of 1997, various experimental flights were carried out with the Digital Airborne Imaging Spectrometer (DAIS7915). DAIS7915, or DAIS for short, is a European airborne imaging spectrometer and is maintained and operated by the German Aerospace Centre (DLR) at Oberpfaffenhofen. One of the 1997

  12. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    Science.gov (United States)

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  13. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  14. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  15. ATFM airborne delays without extra fuel consumption in wind conditions

    OpenAIRE

    Delgado, L.; Prats, X.

    2012-01-01

    Air Traffic Flow Management (ATFM) regulations, such as ground holdings, are often canceled before their initially planned ending time. The ground delays impact on the cost of recovering part of the delay if the regulation is canceled, as aircraft are still at the origin airport. In previous publications, the authors have suggested a speed reduction strategy to split the assigned ATFM delay between ground delay and airborne delay. By flying at the the minimum speed that g...

  16. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  17. Airborne electromagnetics supporting salinity and natural resource management decisions at the field scale in Australia

    NARCIS (Netherlands)

    Cresswell, R.G.; Mullen, I.C.; Kingham, R.; Kellett, J.; Dent, D.L.; Jones, G.L.

    2007-01-01

    Airborne geophysics has been used at the catchment scale to map salt stores, conduits and soil variability, but few studies have evaluated its usefulness as a land management tool at the field scale. We respond to questions posed by land managers with: (1) comparison of airborne and ground-based

  18. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    Science.gov (United States)

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  19. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  20. Fundamental study on airborne electromagnetic survey using grounded source; Chihyo source gata kuchu denji tansa no kisoteki kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, T; Fujimitsu, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Tanaka, Y [Kyoto University, Kyoto (Japan). Faculty of Science; Jomori, N [Chiba Electronics Research Institute, Chiba (Japan); Morikawa, T [Dowa Engineering Co. Ltd., Okayama (Japan); Kusunoki, K [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    With an objective to develop an airborne electromagnetic survey method for greater depths achievable of exploration, a discussion was given on an exploration method of a type in which a transmitting device is placed on the ground to receive signals in an atmosphere. A prototype exploration apparatus is mounted with a fluxgate magnetometer, an attitude meter, a GPS, and a battery. This exploration apparatus is suspended on a 30 meter long rope from a helicopter to perform the exploration. Two flight tests on this apparatus were carried out in the Unzen area, Nagasaki Prefecture and the Motomiya area, Wakayama Prefecture. The ground source was extended to a distance of 1.5 km, and a current of about 20 A was flown with a quiescent wave having four-second cycles. The helicopter flew nearly horizontally at a ground speed of about 50 km, a flight altitude of 450 m above sea level, and a terrain clearances of 100 to 400 m. The obtained data had variations in correspondence with changes in roll and pitch angles, whereas the variation of about 5000 nT was reduced to about 1000 nT as a result of correction. It was not possible, however, to correct completely the variation with short cycles, requiring further discussions on frequency characteristics of the magnetometer. 6 figs., 1 tab.

  1. Ice Penetrating Radar Reveals Spatially Variable Features in Basal Channel under the Nansen Ice Shelf, Terra Nova Bay, Antarctica

    Science.gov (United States)

    Wray, P. L.; Dow, C. F.; Mueller, D.; Lee, W. S.; Lindzey, L.; Greenbaum, J. S.; Blankenship, D. D.

    2017-12-01

    The stability of Antarctic ice shelves is of great concern as their current thinning and future collapse will contribute to sea-level rise via the acceleration of grounded tributary glaciers into the ocean. The study of the sub-ice-shelf environment is essential for understanding ice-ocean interaction, where warming ocean temperatures have already begun to threaten the long-term viability of Antarctic ice shelves. Obtaining direct measurements of the sub-ice-shelf cavity remains challenging. Here, we demonstrate that ground-based geophysical methods can deliver high resolution monitoring and mapping of the spatial and temporal changes in features, melt rates, and ice mass transport of this environment. In November 2016, 84 km of ground-based, low frequency, Ice Penetrating Radar (IPR) surveys were completed on three sites over the Nansen Ice Shelf in Terra Nova Bay, Antarctica. The surveys examined an ocean-sourced basal channel incised into the bottom of the shelf, originally detected from a large surface depression. Results reveal high resolution features of a several kilometre-wide, 100 m high channel, with 40 m high sub-channels, zones of significant marine ice accumulation, and basal crevasses penetrating large fractions of the ice shelf thickness. Data from multiple airborne geophysical surveys were compared to the November 2016 IPR data to calculate mass change both spatially and temporally. Many of the smaller scale features we detected are not represented through hydrostatic equilibrium as calculated from ice thicknesses, due to bridging stresses, and as such can not be detected with satellite based remote sensing methods. Our in-field geophysical methods produced high-resolution information of these features, which underscores the need for similar surveys over vulnerable ice shelves to better understand ice-ocean processes.

  2. Estimating forest biomass and volume using airborne laser data

    Science.gov (United States)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  3. Spotting Radioactive Sources Buried Underground Using an Airborne Radiation Monitoring System

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Wengrowicz, U.; Beck, A.; Marcus, E.; Tirosh, D.

    2002-01-01

    This article provides theoretical background concerning the capability of the Airborne Radiation Monitoring System [1]to detect fission products buried at 1-meter depth under the ground surface,at a flight altitude of 100 meters above ground.The 137 Cs source was used as a typical fission product. The System monitors radioactive contamination in the air or on the ground using two 2 inch NaI(Tl) scintillation detectors and computerized accessories for analysis purposes

  4. Airborne lidar measurements of the Soufriere eruption of 17 April 1979

    Science.gov (United States)

    Fuller, W. H., Jr.; Sokol, S.; Hunt, W. H.

    1982-01-01

    At the time of the Soufriere, St. Vincent, volcanic eruption of April 17, 1979, a NASA P-3 aircraft with an uplooking lidar (light detection and ranging) system onboard was airborne 130 kilometers east of the island. Lidar measurements of the fresh volcanic ash were made approximately 2 hours after the eruption, 120 kilometers to the northeast and east. On the evening of April 18, the airborne lidar, on a southerly flight track, detected significant amounts of stratospheric material in layers at 16, 17, 18, and 19.5 kilometers. These data, and measurements to the north on April 19, indicate that the volcanic plume penetrated the stratosphere to an altitude of about 20 kilometers and moved south during the first 48 hours after the eruption.

  5. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant

    OpenAIRE

    Valle, Russell P.; Wu, Tony; Zuo, Yi Y.

    2015-01-01

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air–water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handl...

  6. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  7. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ''error'' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand

  8. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  9. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  10. Development of airborne remote sensing data assimilation system

    International Nuclear Information System (INIS)

    Gudu, B R; Bi, H Y; Wang, H Y; Qin, S X; Ma, J W

    2014-01-01

    In this paper, an airborne remote sensing data assimilation system for China Airborne Remote Sensing System is introduced. This data assimilation system is composed of a land surface model, data assimilation algorithms, observation data and fundamental parameters forcing the land surface model. In this data assimilation system, Variable Infiltration Capacity hydrologic model is selected as the land surface model, which also serves as the main framework of the system. Three-dimensional variation algorithm, four-dimensional variation algorithms, ensemble Kalman filter and Particle filter algorithms are integrated in this system. Observation data includes ground observations and remotely sensed data. The fundamental forcing parameters include soil parameters, vegetation parameters and the meteorological data

  11. Determining a pre-mining radiological baseline from historic airborne gamma surveys: A case study

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-01

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered ‘controllable’ for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of 226 Ra soil activity concentration and 222 Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, 226 Ra soil activity concentrations, and 222 Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. - Highlights:

  12. Introduction of ramp-LOSA at KLM Ground Services

    NARCIS (Netherlands)

    de Boer, R.J.; Koncak, B.; Habekotté, R.; van Hilten, G.J.

    2011-01-01

    Airline ground operations are subject to the conflicting demands of short turn-around times and safety requirements. They involve multiple parties, but are less regulated than airborne processes. Not surprisingly, more than a quarter of all aircraft incidents occur on the ground. These incidents

  13. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  14. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    Science.gov (United States)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  15. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    Science.gov (United States)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  16. Subsurface Investigation using 2D Resistivity and Ground Penetrating Radar at Teluk Kumbar, Penang

    Science.gov (United States)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    The objective of this study is to determine the structure and condition of the subsurface by using 2D resistivity and Ground Penetrating Radar (GPR) methods. The study was conducted at SK Sungai Batu, Teluk Kumbar, Penang Island. For 2D resistivity method, Wenner-Schlumberger array was used while for GPR, 250 MHz antenna was used at the site. The survey consists of 200m length survey line. GPR result shows that there is high intensity of EM. 2D resistivity result shows that the low resistivity region (200 Ωm to 340 Ωm) appears to be at the centre of the survey line from depth 7 m to 13 m. Meanwhile, the higher resistivity region (4000 Ωm to 6000 Ωm) may indicate the bedrock structure of the subsurface, which is the granitic rock. This region is bedrock which rested at depth 14 m and below. In conclusion, data obtained from GPR and 2D resistivity methods can be easily correlated to determine the features of the subsurface.

  17. Joint application of Geoelectrical Resistivity and Ground Penetrating Radar techniques for the study of hyper-saturated zones. Case study in Egypt

    Directory of Open Access Journals (Sweden)

    Hany S. Mesbah

    2017-06-01

    Full Text Available This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS and Ground Penetrating Radar (GPR for outlining and investigating of surface springing out (flow of groundwater to the base of an service building site, and determining the reason(s for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form, are easily clarifying the direction of groundwater flow toward the studied building.

  18. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    Science.gov (United States)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  19. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    Science.gov (United States)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  20. Ground penetrating radar data used in discovery of the early Christian church of Notre Dame de Baudes near Labastide-du-Temple, France.

    Science.gov (United States)

    Gragson, Ted L; Thompson, Victor D; Leigh, David S; Hautefeuille, Florent

    2016-06-01

    Data on ground-penetrating radar transect files are provided that support the research presented in "Discovery and Appraisal of the Early Christian Church of Notre Dame de Baudes near Labastide-du-Temple, France" [1]. Data consist of 102 transect files obtained with a GSSI SIR-3000 controller and a 400 MHz center frequency antenna in two grid blocks covering ca. 2700 m(2). The data are distributed raw without post-processing in SEG-Y rev. 1 format (little endian).

  1. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  2. COST Action TU1208 - Working Group 1 - Design and realisation of Ground Penetrating Radar equipment for civil engineering applications

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio

    2017-04-01

    This work aims at presenting the main results achieved by Working Group (WG) 1 "Novel Ground Penetrating Radar instrumentation" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.cost.eu, www.GPRadar.eu). The principal goal of the Action, which started in April 2013 and is ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar techniques in civil engineering, whilst promoting throughout Europe the effective use of this safe non-destructive technique. The Action involves more than 300 Members from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. The most interesting achievements of WG1 include: 1. The state of the art on GPR systems and antennas was composed; merits and limits of current GPR systems in civil engineering applications were highlighted and open issues were identified. 2. The Action investigated the new challenge of inferring mechanical (strength and deformation) properties of flexible pavement from electromagnetic data. A semi-empirical method was developed by an Italian research team and tested over an Italian test site: a good agreement was found between the values measured by using a light falling weight deflectometer (LFWD) and the values estimated by using the proposed semi-empirical method, thereby showing great promises for large-scale mechanical inspections of pavements using GPR. Subsequently, the method was tested on a real scale, on an Italian road in the countryside: again, a good agreement between LFWD and GPR data was achieved. As a third step, the method was tested at larger scale, over three different road sections within the districts of Madrid and Guadalajara, in Spain: GPR surveys were carried out at the speed of traffic for a total of 39 kilometers, approximately; results were collected by using different GPR antennas

  3. Medical support to military airborne training and operations.

    Science.gov (United States)

    Starkey, Kerry J; Lyon, J; Sigman, E; Pynn, H J; Nordmann, G

    2018-05-01

    Airborne operations enable large numbers of military forces to deploy on the ground in the shortest possible time. This however must be balanced by an increased risk of injury. The aim of this paper is to review the current UK military drop zone medical estimate process, which may help to predict the risk of potential injury and assist in planning appropriate levels of medical support. In spring 2015, a British Airborne Battlegroup (UKBG) deployed on a 7-week overseas interoperability training exercise in the USA with their American counterparts (USBG). This culminated in a 7-day Combined Joint Operations Access Exercise, which began with an airborne Joint Forcible Entry (JFE) of approximately 2100 paratroopers.The predicted number of jump-related injuries was estimated using Parachute Order Number 8 (PO No 8). Such injuries were defined as injuries occurring from the time the paratrooper exited the aircraft until they released their parachute harness on the ground. Overall, a total of 53 (2.5%) casualties occurred in the JFE phase of the exercise, lower than the predicted number of 168 (8%) using the PO No 8 tool. There was a higher incidence of back (30% actual vs 20% estimated) and head injuries (21% actual vs 5% estimated) than predicted with PO No 8. The current method for predicting the incidence of medical injuries after a parachute drop using the PO No 8 tool is potentially not accurate enough for current requirements. Further research into injury rate, influencing factors and injury type are urgently required in order to provide an evidence base to ensure optimal medical logistical and clinical planning for airborne training and operations in the future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Design and validation of inert homemade explosive simulants for ground penetrating radar

    Science.gov (United States)

    VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.

    2015-05-01

    The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.

  5. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Airborne Precipitation Radar (APR-2) is a dual-frequency (13 GHz and 35 GHz), Doppler, dual-polarization radar system. It has a downward...

  6. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  7. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  8. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  9. Current uses of ground penetrating radar in groundwater-dependent ecosystems research.

    Science.gov (United States)

    Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís

    2017-10-01

    Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ground penetrating radar data used in discovery of the early Christian church of Notre Dame de Baudes near Labastide-du-Temple, France

    Directory of Open Access Journals (Sweden)

    Ted L Gragson

    2016-06-01

    Full Text Available Data on ground-penetrating radar transect files are provided that support the research presented in "Discovery and Appraisal of the Early Christian Church of Notre Dame de Baudes near Labastide-du-Temple, France" [1]. Data consist of 102 transect files obtained with a GSSI SIR-3000 controller and a 400 MHz center frequency antenna in two grid blocks covering ca. 2700 m2. The data are distributed raw without post-processing in SEG-Y rev. 1 format (little endian.

  11. Large-scale, high-definition Ground Penetrating Radar prospection in archaeology

    Science.gov (United States)

    Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.

    2012-04-01

    The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high

  12. CryoSat-2 Validation using CryoVEX 2011-12 Airborne Campaigns

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Kildegaard Rose, Stine

    Sat-2 by comparison to airborne and ground measurements. This is possible only through a major effort involving a large group of international partners. DTU Space has been involved in the CryoVEx campaigns with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter...... (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. The campaigns are focused on five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice...... north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. This presentation summarizes the 2011-12 airborne campaigns...

  13. A systematic method for characterizing the time-range performance of ground penetrating radar

    International Nuclear Information System (INIS)

    Strange, A D

    2013-01-01

    The fundamental performance of ground penetrating radar (GPR) is linked to the ability to measure the signal time-of-flight in order to provide an accurate radar-to-target range estimate. Having knowledge of the actual time range and timing nonlinearities of a trace is therefore important when seeking to make quantitative range estimates. However, very few practical methods have been formally reported in the literature to characterize GPR time-range performance. This paper describes a method to accurately measure the true time range of a GPR to provide a quantitative assessment of the timing system performance and detect and quantify the effects of timing nonlinearity due to timing jitter. The effect of varying the number of samples per trace on the true time range has also been investigated and recommendations on how to minimize the effects of timing errors are described. The approach has been practically applied to characterize the timing performance of two commercial GPR systems. The importance of the method is that it provides the GPR community with a practical method to readily characterize the underlying accuracy of GPR systems. This in turn leads to enhanced target depth estimation as well as facilitating the accuracy of more sophisticated GPR signal processing methods. (paper)

  14. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Veronika Leitold; Michael Keller; Douglas C Morton; Bruce D Cook; Yosio E Shimabukuro

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas...

  15. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  16. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  17. Air pollutant penetration through airflow leaks into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  18. An Iterative Approach to Ground Penetrating Radar at the Maya Site of Pacbitun, Belize

    Directory of Open Access Journals (Sweden)

    Sheldon Skaggs

    2016-09-01

    Full Text Available Ground penetrating radar (GPR surveys provide distinct advantages for archaeological prospection in ancient, complex, urban Maya sites, particularly where dense foliage or modern debris may preclude other remote sensing or geophysical techniques. Unidirectional GPR surveys using a 500 MHz shielded antenna were performed at the Middle Preclassic Maya site of Pacbitun, Belize. The survey in 2012 identified numerous linear and circular anomalies between 1 m and 2 m deep. Based on these anomalies, one 1 m × 4 m unit and three smaller units were excavated in 2013. These test units revealed a curved plaster surface not previously found at Pacbitun. Post-excavation, GPR data were reprocessed to best match the true nature of excavated features. Additional GPR surveys oriented perpendicular to the original survey confirmed previously detected anomalies and identified new anomalies. The excavations provided information on the sediment layers in the survey area, which allowed better identification of weak radar reflections of the surfaces of a burnt, Middle Preclassic temple in the northern end of the survey area. Additional excavations of the area in 2014 and 2015 revealed it to be a large square structure, which was named El Quemado.

  19. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  20. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    Science.gov (United States)

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    F.R. Faillace; Y. Yuan

    2000-01-01

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  2. Aerosol penetration through capillaries and leaks: experimental studies on the influence of pressure

    International Nuclear Information System (INIS)

    Morton, D.A.V.; Mitchell, J.P.

    1995-01-01

    It is important to understand the movement of aerosols through ultrafine leak-paths with dimensions of similar order to the gas-borne particles when assessing the validity of leak-testing procedures for transport containers for radioactive materials. Experiments have been undertaken to investigate the penetration of micron-sized airborne particles using glass micro-capillaries as model leak-paths. Previous studies demonstrated a simple relationship between air leakage and total particle penetration rates at a constant driving pressure (100 kPa). The present work has demonstrated the importance of pressure in regulating the rate at which the leak-path is plugged by deposited particles. Much of this deposition appears to take place at the entrances of the capillaries where the air-flow converges. (author)

  3. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    Science.gov (United States)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic

  4. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  5. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  6. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    Won, I.J.; Taylor, D.W.A.

    1995-01-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  7. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  8. Ground processing of the McDonnell Douglas Payload Assist Module (PAM)

    Science.gov (United States)

    Bryan, C. E.; Maclean, D. A.

    1985-01-01

    The payload assist module (PAM) ground processing operations which have evolved since they were started in 1982 are described. The objective of the changes was to reduce the prelaunch testing of the airborne support equipment to increase the throughput of PAM systems while not compromising the reliability of the system when functioned on-orbit. The changes that resulted from the initial cargo element ground processing, the on-orbit performance of the systems, plus the postflight refurbishment and recertification of the airborne support equipment resulted in significant reductions in labor expenditures and work shifts required to prepare a PAM system for flight.

  9. Detecting and characterizing unroofed caves by ground penetrating radar

    Science.gov (United States)

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to

  10. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  11. Ice volume changes (1936–1990–2007 and ground-penetrating radar studies of Ariebreen, Hornsund, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Javier Lapazaran

    2013-08-01

    Full Text Available Ariebreen is a small (0.37 km2-valley glacier located in southern Spitsbergen. Our ground-penetrating radar surveys of the glacier show that it is less than 30 m thick on average, with a maximum thickness of 82 m, and it appears to be entirely cold. By analysing digital terrain models of the ice surface from different dates, we determine the area and volume changes during two periods, 1936–1990 and 1990–2007. The total ice volume of the glacier has decreased by 73% during the entire period 1936–2007, which is equivalent to a mean mass balance rate of −0.61±0.17 m y−1 w.eq. The glacier thinning rate has increased markedly between the first and second periods, from −0.50±0.22 to −0.95±0.17 m y−1 w.eq.

  12. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  13. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases...

  14. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    Science.gov (United States)

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (psubway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  15. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  16. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  17. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  18. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  19. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  20. Improving buried threat detection in ground-penetrating radar with transfer learning and metadata analysis

    Science.gov (United States)

    Colwell, Kenneth A.; Torrione, Peter A.; Morton, Kenneth D.; Collins, Leslie M.

    2015-05-01

    Ground-penetrating radar (GPR) technology has proven capable of detecting buried threats. The system relies on a binary classifier that is trained to distinguish between two classes: a target class, encompassing many types of buried threats and their components; and a nontarget class, which includes false alarms from the system prescreener. Typically, the training process involves a simple partition of the data into these two classes, which allows for straightforward application of standard classifiers. However, since training data is generally collected in fully controlled environments, it includes auxiliary information about each example, such as the specific type of threat, its purpose, its components, and its depth. Examples from the same specific or general type may be expected to exhibit similarities in their GPR data, whereas examples from different types may differ greatly. This research aims to leverage this additional information to improve overall classification performance by fusing classifier concepts for multiple groups, and to investigate whether structure in this information can be further utilized for transfer learning, such that the amount of expensive training data necessary to learn a new, previously-unseen target type may be reduced. Methods for accomplishing these goals are presented with results from a dataset containing a variety of target types.

  1. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Igor Prokopovich

    2017-12-01

    Full Text Available This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique, and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development.

  2. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  3. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    Science.gov (United States)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  4. Near-surface Imaging of a Maya Plaza Complex using Ground-Penetrating Radar

    Science.gov (United States)

    Aitken, J. A.; Stewart, R. R.

    2005-05-01

    The University of Calgary has conducted a number of ground-penetrating radar surveys at a Maya archaeological site. The purpose of the study is to discern the near-surface structure and stratigraphy of the plaza, and to assist the archaeologists in focusing their excavation efforts. The area of study is located in Belize, Central America at the ancient Maya site of Maax Na. Flanked by structures believed to be temples to the north and west, the archaeologists were interested in determining how many levels of plaza were built and if there was any discernable slope to the plaza. Over the last three years, both 2-D lines and 3-D grids were acquired at the plaza using a Sensors and Software Inc. Noggin Plus system at an antenna frequency of 250 MHz. The processing flow consisted of the application of gain, various filtering techniques and a diffraction stack migration using Reflexw. Interpolation of the gridded data was investigated using simple averaging, F-K migration, pre-stack migration and inversion techniques. As this study has evolved over different field seasons, measured velocities appear to change with the saturation level of the shallow section. Velocity measurements ranged from 0.058 - .106 m/ns during the wet conditions encountered in 2002 and 2004, while velocities of 1.22 - 1.40 m/ns were measured in the drought of 2003. The GPR images to date indicate continuous and interpretable images of the subsurface, showing evidence of structure, discontinuities and amplitude variations. A number of interesting anomalies have been identified, and prioritized for excavation.

  5. Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees.

    Science.gov (United States)

    Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad

    2009-08-01

    A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.

  6. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    Science.gov (United States)

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  7. IMPROVED TOPOGRAPHIC MODELS VIA CONCURRENT AIRBORNE LIDAR AND DENSE IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available Modern airborne sensors integrate laser scanners and digital cameras for capturing topographic data at high spatial resolution. The capability of penetrating vegetation through small openings in the foliage and the high ranging precision in the cm range have made airborne LiDAR the prime terrain acquisition technique. In the recent years dense image matching evolved rapidly and outperforms laser scanning meanwhile in terms of the achievable spatial resolution of the derived surface models. In our contribution we analyze the inherent properties and review the typical processing chains of both acquisition techniques. In addition, we present potential synergies of jointly processing image and laser data with emphasis on sensor orientation and point cloud fusion for digital surface model derivation. Test data were concurrently acquired with the RIEGL LMS-Q1560 sensor over the city of Melk, Austria, in January 2016 and served as basis for testing innovative processing strategies. We demonstrate that (i systematic effects in the resulting scanned and matched 3D point clouds can be minimized based on a hybrid orientation procedure, (ii systematic differences of the individual point clouds are observable at penetrable, vegetated surfaces due to the different measurement principles, and (iii improved digital surface models can be derived combining the higher density of the matching point cloud and the higher reliability of LiDAR point clouds, especially in the narrow alleys and courtyards of the study site, a medieval city.

  8. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability

    International Nuclear Information System (INIS)

    Beard, L.P.; Nyquist, J.E.

    1998-01-01

    Where the magnetic permeability of rock or soil exceeds that of free space, the effect on airborne electromagnetic systems is to produce a frequency-independent shift in the in-phase response of the system while altering the quadrature response only slightly. The magnitude of the in-phase shift increases as (1) the relative magnetic permeability is increased, (2) the amount of magnetic material is increased, and (3) the airborne sensor gets nearer the earth's surface. Over resistive, magnetic ground, the shift may be evinced by negative in-phase measurements at low frequencies; but over more conductive ground, the same shift may go unnoticed because of the large positive in-phase response. If the airborne sensor is flown at low levels, the magnitude of the shift may be large enough to affect automatic inversion routines that do not take this shift into account, producing inaccurate estimated resistivities, usually overestimates. However, layered-earth inversion algorithms that incorporate magnetic permeability as an additional inversion parameter may improve the resistivity estimates. The authors demonstrate this improvement using data collected over hazardous waste sites near Oak Ridge, Tennessee, USA. Using resistivity inversion without magnetic permeability, the waste sites are almost invisible to the sensors. When magnetic permeability is included as an inversion parameter, the sites are detected, both by improved resistivity estimates and by estimated magnetic permeability

  9. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours.

    Science.gov (United States)

    Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia

    2018-02-22

    To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.

  10. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  11. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  12. Geophex airborne unmanned survey system

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  13. Parameterizing road construction in route-based road weather models: can ground-penetrating radar provide any answers?

    International Nuclear Information System (INIS)

    Hammond, D S; Chapman, L; Thornes, J E

    2011-01-01

    A ground-penetrating radar (GPR) survey of a 32 km mixed urban and rural study route is undertaken to assess the usefulness of GPR as a tool for parameterizing road construction in a route-based road weather forecast model. It is shown that GPR can easily identify even the smallest of bridges along the route, which previous thermal mapping surveys have identified as thermal singularities with implications for winter road maintenance. Using individual GPR traces measured at each forecast point along the route, an inflexion point detection algorithm attempts to identify the depth of the uppermost subsurface layers at each forecast point for use in a road weather model instead of existing ordinal road-type classifications. This approach has the potential to allow high resolution modelling of road construction and bridge decks on a scale previously not possible within a road weather model, but initial results reveal that significant future research will be required to unlock the full potential that this technology can bring to the road weather industry. (technical design note)

  14. Airborne hyperspectral remote sensing in Italy

    Science.gov (United States)

    Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano

    1994-12-01

    The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.

  15. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for 239 Pu and 10 -8 to 10 -5 μCi/(m 2 day) for 238 Pu. Airborne respirable 239 Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239 240 Pu, similar to weapons grade plutonium rather than fallout plutonium

  16. Airborne UV DIAL Measurements of Ozone and Aerosols

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  17. Airborne gamma anomalies in the Elbe Valley near Koenigstein, Germany - Origin and variation with time

    International Nuclear Information System (INIS)

    Ruhrmann, G.; Schmeling, B.; Schauer, M.; Gatzweiler, R.

    1997-01-01

    In 1982, an airborne gamma spectrometer survey was undertaken by SDAG WISMUT which was directed at the detection of further uranium mineralization in Saxony and Thuringia. Anomalies outlined along the Elbe river near the existing Koenigstein uranium mine were attributed to one or a combination of the following causes: radioactive residues from uranium processing facilities located upstream, temporary accumulation of Rn-decay products attached to dust particles in the atmosphere at the time of the survey, and radioactive waters emerging from uraniferous rocks along tectonic structures. In 1994, WISMUT GmbH re-evaluated the survey to determine the need for implementing cleanup measures. Subsequent to the verification of the original airborne data, ground surveys were undertaken that included gamma spectrometry, percussion probing and river sediment sampling. The new results did not confirm the magnitude of most of the 1982 airborne anomalies. The general decline of the radioactivity pointed out by the 1994 ground measurements is interpreted to be a result of the partial erosion and dilution of radionuclides in fluvial sediments as well as burial by additional river sediments since. Additional anomalous copper and zinc concentrations are attributed to sources other than mining. The ground follow-up delineated a new anomalous zone that is caused by radionuclides discharged with treated process and mine water. It is the only area, which may require further investigations and possible remedial action. (author)

  18. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  19. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  20. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Science.gov (United States)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  1. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    Science.gov (United States)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  2. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  3. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    Science.gov (United States)

    Briggs, Martin A.; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John W.

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  4. Study on Penetration Characteristics of Tungsten Cylindrical Penetrator

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Hyun; Lee, Young Shin; Kim, Jae Hoon [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Bae, Yong Woon [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The design of missile require extremely small warheads that must be highly efficient and lethal. The penetration characteristics of each penetrator and the total number of penetrators on the warhead are obvious key factors that influence warhead lethality. The design of the penetrator shape and size are directly related to the space and weight of the warhead. The design of the penetrator L/D was directly related to the space and weight of the warhead. L and D are the length and the diameter of the projectile, respectively. The AUTODYN-3a code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, obliquity angle and L/D of penetrator. The residual velocity and residual mass were decreased with increasing initial impact velocity under L/D{<=}4.

  5. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    The site of the Barcombe Romano-British villa lies in a field on the perimeter of Barcombe village in East Sussex, England. The site came to the attention of the Mid Sussex Field Archaeological Team (MSFAT) and the University College London Field Archaeological Unit (UCL, subsequently replaced by the Centre for Continuing Education of the University of Sussex, CCE) because it was in danger of disappearing altogether without being adequately recorded [1]. In common with many other UK sites of the period, the villa had been extensively robbed out in the centuries following its demise in order to provide building material for the adjacent village and its associated farms, a common problem with Romano-British sites in the UK [2]. In addition, the site is positioned on the ridge of a field in agricultural use and has therefore been extensively ploughed out. As a result, the archaeological evidence was sparse and the little that remained was being rapidly eroded. In April 2001, a Ground Penetrating Radar (GPR) survey was carried out jointly by the Department of Engineering, Portsmouth and Utsi Electronics Ltd on behalf of the archaeological team in order to investigate the possibility of mapping both the villa and earlier prehistoric remains on the same ridge. Using a 40m by 60m grid laid out by the archaeological team, a Groundvue 1, with antennas of central frequency 400MHz, was used to survey along a series of parallel transects at intervals of 50cm. The sampling interval along the line of survey was 5cm and probing was carried out to 40ns. The results of the GPR survey, including a comparison with the evidence from the resistivity work, were published in 2002 [3]. The original GPR data were processed (using the ReflexW package) by applying background removal, adding time based gain, averaging over 2 traces in order to reduce noise resulting from the relative movement of the antennas across the ploughed field and finally applying a Bandpass Butterworth filter of 200

  6. Airborne and truck-borne ``radiation footprints`` of areas producing, storing, using or being exposed to nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Pavlik, B; Bottos, F [Picodas Group Inc., Richmond Hill, ON (Canada); Cuneen, P J [World Geoscience Corp. Ltd., Perth (Australia); Jurza, P; Hoeschl, V [Picodas Prague s.r.o., Prague (Czech Republic)

    1997-11-01

    The paper discusses the use of advanced Airborne Gamma Ray Spectrometer for environmental assessment of nuclear radiation in areas exposed to radioactive materials. The use of high capacity real time processors operating in parallel mode packaged into one mechanical enclosure together with navigation, allows implementation of highly sophisticated proprietary algorithms to produce results in absolute physical units. Airborne footprinting provides rapid, well defined spatial images of natural and manmade radioactive contamination. Integrated GPS guidance systems provides instant position information related to the internal geographical data base. Short time span of data acquisition provides consistent data. Airborne acquisition of data guarantees good spatial resolution. Airborne measurements are calculated via special algorithms in absolute units and related to the individual radioactive nuclei on the ground in real time. Full raw and calculated data recording is provided including the position coordinates. More precise results may be achieved via post flight processing. Principles of ground contamination estimates measured from the air and the sensitivities for different radioactive nuclei are also discussed. Results from an Ontario Hydro (Canada) test over a nuclear power plant, an Atom bomb blast measurements in Maralinga (Australia), after 40 years, and a Nuclear power plant in Slovakia and Uranium mining area in Germany are presented and discussed. (author). 6 refs, 1 fig.

  7. Airborne and truck-borne ''radiation footprints'' of areas producing, storing, using or being exposed to nuclear materials

    International Nuclear Information System (INIS)

    Pavlik, B.; Bottos, F.; Cuneen, P.J.; Jurza, P.; Hoeschl, V.

    1997-01-01

    The paper discusses the use of advanced Airborne Gamma Ray Spectrometer for environmental assessment of nuclear radiation in areas exposed to radioactive materials. The use of high capacity real time processors operating in parallel mode packaged into one mechanical enclosure together with navigation, allows implementation of highly sophisticated proprietary algorithms to produce results in absolute physical units. Airborne footprinting provides rapid, well defined spatial images of natural and manmade radioactive contamination. Integrated GPS guidance systems provides instant position information related to the internal geographical data base. Short time span of data acquisition provides consistent data. Airborne acquisition of data guarantees good spatial resolution. Airborne measurements are calculated via special algorithms in absolute units and related to the individual radioactive nuclei on the ground in real time. Full raw and calculated data recording is provided including the position coordinates. More precise results may be achieved via post flight processing. Principles of ground contamination estimates measured from the air and the sensitivities for different radioactive nuclei are also discussed. Results from an Ontario Hydro (Canada) test over a nuclear power plant, an Atom bomb blast measurements in Maralinga (Australia), after 40 years, and a Nuclear power plant in Slovakia and Uranium mining area in Germany are presented and discussed. (author)

  8. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in ..mu..Ci/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10/sup -4/ to 10/sup 4/. This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10/sup -7/ to 10/sup -3/ ..mu..Ci/(m/sup 2/ day) for /sup 239/Pu and 10/sup -8/ to 10/sup -5/ ..mu..Ci/(m/sup 2/ day) for /sup 238/Pu. Airborne respirable /sup 239/Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, /sup 240/Pu//sup 239/ /sup 240/Pu, similar to weapons grade plutonium rather than fallout plutonium.

  9. Ground-Penetrating Radar Investigations along Hajipur Fault: Himalayan Frontal Thrust—Attempt to Identify Near Subsurface Displacement, NW Himalaya, India

    Directory of Open Access Journals (Sweden)

    Javed N. Malik

    2012-01-01

    Full Text Available The study area falls in the mesoseismal zone of 1905 Kangra earthquake (Mw 7.8. To identify appropriate trenching site for paleoseismic investigation and to understand the faulting geometry, ground-penetrating radar (GPR survey was conducted across a Hajipur Fault (HF2 scarp, a branching out fault of Himalayan Frontal Thrust (HFT in a foot hill zone of NW Himalaya. Several 2D and 3D profiles were collected using 200 MHz antenna with SIR 3000 unit. A 2D GPR profile collected across the HF2 scarp revealed prominent hyperbolas and discontinuous-warped reflections, suggesting a metal pipe and a zone of deformation along a low-angle thrust fault, respectively. The 3D profile revealed remarkable variation in dip of the fault plane and pattern of deformation along the strike of the fault.

  10. Problems for the Purported Cognitive Penetration of Perceptual Color Experience and Macpherson’s Proposed Mechanism

    Directory of Open Access Journals (Sweden)

    Steven Gross

    2014-12-01

    Full Text Available Fiona Macpherson (2012 argues that various experimental results provide strong evidence in favor of the cognitive penetration of perceptual color experience. Moreover, she proposes a mechanism for how such cognitive penetration occurs. We argue, first, that the results on which Macpherson relies do not provide strong grounds for her claim of cognitive penetrability; and, second, that, if the results do reflect cognitive penetrability, then time-course considerations raise worries for her proposed mechanism. We base our arguments in part on several of our own experiments, reported herein.

  11. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  12. Testing and evaluation of absorbers for gaseous penetrative forms of radioiodine

    International Nuclear Information System (INIS)

    Kabot, M.

    1974-10-01

    A significant fraction of airborne radioiodine, encountered at times in operational areas of Ontario Hydro nuclear power generating stations, was found to be penetrative inorganic and organic species. Theorectical evaluation of iodine chemistry is presented based on analysis of operational iodine concentrations in station systems, areas and effluents under actual operating conditions. The theoretical evaluation and the operational experiments show that hypoiodous acid and organic iodides are the basic forms of airborne iodine which occur in the field and in station effluents. A method was developed for laboratory generation of HOI and its identity confirmed by use of specific absorbers. Six of the commercially available (and recently developed) absorbers were tested for HOI removal efficiency in the laboratory under conditions similar to those found in the field. Experimental equipment, methods used for the absorber testing and experimental conditions are described. Results show that charcoals have generally better initial absorption efficiency for hypoiodous acid than silver impregnated inorganic absorbers. Both technical and economical aspects of the operational use of the tested absorbers are discussed. (auth)

  13. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates

    International Nuclear Information System (INIS)

    Beamish, David

    2014-01-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h −1 ) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h −1 ) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h −1 is observed in the soil data. A wide range of

  14. Exchanging knowledge and working together in COST Action TU1208: Short-Term Scientific Missions on Ground Penetrating Radar

    Science.gov (United States)

    Santos Assuncao, Sonia; De Smedt, Philippe; Giannakis, Iraklis; Matera, Loredana; Pinel, Nicolas; Dimitriadis, Klisthenis; Giannopoulos, Antonios; Sala, Jacopo; Lambot, Sébastien; Trinks, Immo; Marciniak, Marian; Pajewski, Lara

    2015-04-01

    This work aims at presenting the scientific results stemming from six Short-Term Scientific Missions (STSMs) funded by the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (Action Chair: Lara Pajewski, STSM Manager: Marian Marciniak). STSMs are important means to develop linkages and scientific collaborations between participating institutions involved in a COST Action. Scientists have the possibility to go to an institution abroad, in order to undertake joint research and share techniques/equipment/infrastructures that may not be available in their own institution. STSMs are particularly intended for Early Stage Researchers (ESRs), i.e., young scientists who obtained their PhD since no more than 8 years when they started to be involved in the Action. Duration of a standard STSM can be from 5 to 90 days and the research activities carried out during this short stay shall specifically contribute to the achievement of the scientific objectives of the supporting COST Action. The first STSM was carried out by Lara Pajewski, visiting Antonis Giannopoulos at The University of Edinburgh (United Kingdom). The research activities focused on the electromagnetic modelling of Ground Penetrating Radar (GPR) responses to complex targets. A set of test scenarios was defined, to be used by research groups participating to Working Group 3 of COST Action TU1208, to test and compare different electromagnetic forward- and inverse-scattering methods; these scenarios were modelled by using the well-known finite-difference time-domain simulator GprMax. New Matlab procedures for the processing and visualization of GprMax output data were developed. During the second STSM, Iraklis Giannakis visited Lara Pajewski at Roma Tre University (Italy). The study was concerned with the numerical modelling of horn antennas for GPR. An air-coupled horn antenna was implemented in GprMax and tested in a realistically

  15. The cloud radiation impact from optics simulation and airborne observation

    Science.gov (United States)

    Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles

    2017-02-01

    The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.

  16. Fusion of Satellite Multispectral Images Based on Ground-Penetrating Radar (GPR Data for the Investigation of Buried Concealed Archaeological Remains

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-06-01

    Full Text Available The paper investigates the superficial layers of an archaeological landscape based on the integration of various remote sensing techniques. It is well known in the literature that shallow depths may be rich in archeological remains, which generate different signal responses depending on the applied technique. In this study three main technologies are examined, namely ground-penetrating radar (GPR, ground spectroscopy, and multispectral satellite imagery. The study aims to propose a methodology to enhance optical remote sensing satellite images, intended for archaeological research, based on the integration of ground based and satellite datasets. For this task, a regression model between the ground spectroradiometer and GPR is established which is then projected to a high resolution sub-meter optical image. The overall methodology consists of nine steps. Beyond the acquirement of the in-situ measurements and their calibration (Steps 1–3, various regression models are examined for more than 70 different vegetation indices (Steps 4–5. The specific data analysis indicated that the red-edge position (REP hyperspectral index was the most appropriate for developing a local fusion model between ground spectroscopy data and GPR datasets (Step 6, providing comparable results with the in situ GPR measurements (Step 7. Other vegetation indices, such as the normalized difference vegetation index (NDVI, have also been examined, providing significant correlation between the two datasets (R = 0.50. The model is then projected to a high-resolution image over the area of interest (Step 8. The proposed methodology was evaluated with a series of field data collected from the Vésztő-Mágor Tell in the eastern part of Hungary. The results were compared with in situ magnetic gradiometry measurements, indicating common interpretation results. The results were also compatible with the preliminary archaeological investigations of the area (Step 9. The overall

  17. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Martin Black

    2014-05-01

    Full Text Available The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4 package reveal absolute reflectance values somewhat in line with laboratory measured spectra, with Root Mean Square Error (RMSE values of 5% in the visible near infrared (0.4–1 µm and 8% in the shortwave infrared (1–2.5 µm. Residual noise remains present due to the absorption by atmospheric gases and aerosols, but certain parts of the spectrum match laboratory measured features very well. This study demonstrates that commercially available packages for carrying out atmospheric correction are capable of correcting airborne hyperspectral data in the challenging environment present in Antarctica. However, it is anticipated that future results from atmospheric correction could be improved by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models, or with the use of multiple ground targets for calibration and validation.

  18. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    Directory of Open Access Journals (Sweden)

    Shanker Man Shrestha

    2003-11-01

    Full Text Available Super-resolution is very important for the signal processing of GPR (ground penetration radar to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform, has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method, which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio. Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  19. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    Science.gov (United States)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  20. An investigation of recent storm histories using Ground Penetrating Radar at Bay-Bay Spit, Bicol, Central Philippines

    Science.gov (United States)

    Switzer, Adam D.; Pile, Jeremy; Soria, Janneli Lea A.; Siringan, Fernando; Daag, Arturo; Brill, Dominik

    2016-04-01

    The Philippine archipelago lies in the path of seasonal tropical cyclones, and much of the coast is prone to periodic inundation and overwash during storm surges. On example is typhoon Durian a category 3 storm that made landfall on the 30th November 2006, in Bicol province, on the east central Philippine coast. Satellite imagery from May 2007 reveal that Durian breached a sandy spit that runs southeast from the mouth of the Quinale River at Bay-Bay village towards Tabaco City. The imagery also showed that, although the breach site showed signs of partial recovery, geomorphological evidence of the inundation event associated with typhoon Durian still remains. In 2012 we mapped the geomorphological features of Durian. In June 2013 we returned to conduct Ground Penetrating Radar (GPR) surveys on the Bay-Bay spit to investigate potential subsurface evidence of previous storm events. The GPR surveys comprised five, 1.5 km, longshore profiles and 12 cross-shore profiles, of 50 m - 200 m in length. The GPR system used for this study was a Sensors and Software Noggin with 100 Mhz antennas. Near surface velocities were determine using Hyperbolae matching in order to estimate depth. Topographic and positional data were collected using a dGPS system. After minimal processing depth of penetration during the survey varied from 2 - 8 m. The cross-shore GPR profiles reveal at least two erosional events prior to 2006 typhoon Durian, with approximately 10 m of recovery and progradation between each erosion surface. The GPR profiles that captured the erosional features were revisited in September 2013 for trial pitting, stratigraphic description, and sediment sampling. Sediment cores were taken horizontally from the trench walls and vertically from the trench bases to date sediments using Optically Stimulated Luminescence (OSL), which eventually could constrain the timing of the erosional surfaces.

  1. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  2. High-Penetration Photovoltaic Planning Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David Wenzhong [Alternative Power Innovations, LLC, Broomfield, CO (United States); Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-24

    The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection to the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.

  3. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  4. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  5. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  6. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  7. Ground penetrating radar and seismic refraction investigation of fracture patterns in the basalt of Lucky Peak near Boise, Idaho

    International Nuclear Information System (INIS)

    Dougherty, M.E.; Hudson, W.K.; Kay, S.E.; Vincent, R.J.

    1994-01-01

    In hard rock environments, fluid flow and basement integrity are often controlled by the degree and connectivity of fracturing on an outcrop scale, rather than strictly by laboratory values of the permeability and competence of the matrix rock. Therefore, in many cases it is important to have a subsurface image of fracture characteristics of rock units in addition to an image of gross rock type. Fortunately, within a single rock type, many physical properties on outcrop scale are greatly influenced by fracturing, and changes in these physical properties should be detectable through the innovative use of geophysical methods. Work presented here is an attempt to use surface geophysical methods to delineate areas within a basalt flow which display different fracture characteristics and which have different electrical and seismic properties. The Basalt of Luck Peak is an intracanyon basalt flow exposed in cliffs around Lucky Peak Reservoir and in a terrace downstream from Lucky Peak Dam near Boise, Idaho. Visible in the face of the terrace below Lucky Peak Dam are the colonnade and entablature structures characteristic of differential cooling rates within basalt flows. Exposure of structural units within the cliff face is used to ground truth results from ground penetrating radar (GPR) and seismic refraction data collected along a line running perpendicular and away from the top edge of the cliff. 19 refs., 6 figs

  8. Enabling kinetic micro-penetrator technology for Solar System research

    Science.gov (United States)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  9. Evaluating natural radiation level by existing airborne radioactive data

    International Nuclear Information System (INIS)

    Mingkao, Hu; Changqing, Han; Jiangqi, Fang; Zhengxin, Shen

    2002-01-01

    Airborne Survey and Remote Sensing Center of Nuclear Industry, founded in the middle of 1950s, is a unique unit specialized in uranium exploration by airborne radioactive survey in China. Large numbers of airborne data of radioactivity and abundant experience have been accumulated for more than 40 years. All-round detailed investigation of environmental radiation levels in our country will not be completed in the near future. Thus, at present it is considered to evaluate natural radiation levels using the existing radioactive data. This paper introduces the results of analysis and study comparing airborne radioactive data for radiation environmental evaluation obtained from survey area in Gansu, China, in the 2001 with the measurement results by ground gamma ray radiation dose-rate instrument for environment. The air-earth inter-comparison error does not exceed 30% at radiation fields with a definite area, and the air-earth inter-comparison error does not exceed 60% at outcrop of granite. In 6km long profile that has various circumstances, such as desert, Gobi, farmland and residential area, minimum of air absorbed dose rate is 47nGy/h at an altitude of 1 meter above the soil plane, maximum is 68nGy/h. The inter-comparison errors are usually less than 20%, and maximum is 25.38%. This shows that it is feasible to obtain natural radiation levels rapidly if we could use the existing radioactive data adequately and make some correction, such as geology factor

  10. ALGORITMA ESTIMASI KANDUNGAN KLOROFIL TANAMAN PADI DENGAN DATA AIRBORNE HYPERSPECTRAL

    Directory of Open Access Journals (Sweden)

    Abdi Sukmono

    2015-02-01

    Full Text Available Klorofil merupakan pigmen yang paling penting dalam proses fotosintesis. Tanaman sehat yang mampu tumbuh maksimum umumnya  memiliki jumlah klorofil yang lebih besar daripada tanaman yang tidak sehat. Dalam Estimasi kandungan klorofil tanaman padi dengan airborne hyperspectral dibutuhkan algoritma khusus untuk mendaaptkan akurasi yang baik. Objek dari penelitian ini mengembangkan reflektan in situ menjadi model algoritma   estimasi kandungan klorofil tanaman padi untuk airborne hyperspectral.  Dalam penelitian ini beberapa indeks vegetasi seperti normalized difference vegetation index (NDVI, modified simple ratio (MSR  , modified/transformed chlorophyll absorption ratio index (MCARI, TCARI dan bentuk integrasi (MCARI/OSAVI and TCARI/OSAVI digunakan untuk membentuk model estimasi dengan metode regresi linear. Selain itu juga digunakan  Blue/Green/Yellow/Red Edge Absorption Clhorophyll Index. Dari proses regresi di dapatkan tiga ground model yang mempunyai korelasi kuat (R2≥0.5 terhadap klorofil tanaman padi. Ketiga model tersebut yaitu MSR (705,750 dengan R2 sebesar 0.51, TCARI/OSAVI (705, 750 dengan R2 sebesar 0.52 dan REACL 2 dengan R2 sebesar 0.57. Dari ketiga tersebut dipilih groun model terbaik REACL 2 untuk di upscalling ke model algoritma airborne hyperspectral.  Pembentukan algoritma dengan data airborne hyperspectral sensor Hymap dan REACL 2 menghasilkan model algoritma ( Klorofil (SPAD unit = 3.031((B22-B18/(B18-B13 + 31.596 dengan R2 sebesar 0.78

  11. AMS Ground Truth Measurements: Calibration and Test Lines

    International Nuclear Information System (INIS)

    Wasiolek, P.

    2013-01-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  12. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  13. Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment

    Science.gov (United States)

    Cortada, Unai; Martínez, Julián; Hidalgo, Mª Carmen; Rey, Javier

    2017-04-01

    Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment Abandoned tailings ponds constitute a severe environmental problem in old Pb mining districts due to their high contents in metallic and semi-metallic elements. In most of the cases, there is a lack of information about the construction procedures and the previous environmental situation, which hinders the environmental risk evaluation. In these cases, Ground Penetrating Radar (GPR) could be an interesting technique to analyze the internal structure of the tailings ponds and detect vulnerable zones for leaching processes. Consequently, the GPR could help in the abandoned tailings ponds environmental risk assessment. In this study, a GPR 3D campaign was carried out with a 250 MHz frequency antenna in order to evaluate the efficiency of this technique in both the analysis of internal structures and the environmental risk assessment. Subsequently, 2D and 3D models were undertaken to represent graphically the obtained results. The studied tailings pond is located in the Guadiel river bank, a water course draining the mining district of Linares, Spain. The dam is 150 m length and 80 m width. The GPR 3D was done in a selected area near the central part of the pond. The analyzed grid was 25x50 m and the spacing of the slides was 1 m. The study revealed that the contact between the tailings and the substratum is located at 2.5 m. No intermediate layer was found, which means that the tailings pond was heightened on the fluvial terrace without any insulation system. Inside the first meter of the pond, a cross stratification was identified. The orientation of those laminations changed with the depth, which means that the stockpiling was performed from the different sides of the tailings pond. Furthermore, the direction of these stratifications is slightly concentric to the middle of the dam which could be associated with a central drainage system

  14. Association of Prehospital Mode of Transport With Mortality in Penetrating Trauma: A Trauma System-Level Assessment of Private Vehicle Transportation vs Ground Emergency Medical Services.

    Science.gov (United States)

    Wandling, Michael W; Nathens, Avery B; Shapiro, Michael B; Haut, Elliott R

    2018-02-01

    Time to definitive care following injury is important to the outcomes of trauma patients. Prehospital trauma care is provided based on policies developed by individual trauma systems and is an important component of the care of injured patients. Given a paucity of systems-level trauma research, considerable variability exists in prehospital care policies across trauma systems, potentially affecting patient outcomes. To evaluate whether private vehicle prehospital transport confers a survival advantage vs ground emergency medical services (EMS) transport following penetrating injuries in urban trauma systems. Retrospective cohort study of data included in the National Trauma Data Bank from January 1, 2010, through December 31, 2012, comprising 298 level 1 and level 2 trauma centers that contribute data to the National Trauma Data Bank that are located within the 100 most populous metropolitan areas in the United States. Of 2 329 446 patients assessed for eligibility, 103 029 were included in this study. All patients were 16 years or older, had a gunshot wound or stab wound, and were transported by ground EMS or private vehicle. In-hospital mortality. Of the 2 329 446 records assessed for eligibility, 103 029 individuals at 298 urban level 1 and level 2 trauma centers were included in the analysis. The study population was predominantly male (87.6%), with a mean age of 32.3 years. Among those included, 47.9% were black, 26.3% were white, and 18.4% were Hispanic. Following risk adjustment, individuals with penetrating injuries transported by private vehicle were less likely to die than patients transported by ground EMS (odds ratio [OR], 0.38; 95% CI, 0.31-0.47). This association remained statistically significant on stratified analysis of the gunshot wound (OR,  0.45; 95% CI, 0.36-0.56) and stab wound (OR,  0.32; 95% CI, 0.20-0.52) subgroups. Private vehicle transport is associated with a significantly lower likelihood of death when compared with

  15. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  16. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  17. Seagrass biomass and productivity in the Florida Keys, USA: ground-level and airborne measurements

    Science.gov (United States)

    Yarbro, L.; Carlson, P. R., Jr.; McHan, C.; Carlson, D. F.; Hu, C.; Danielson, T.; Durnan, B.; English, D. C.; Muller-Karger, F. E.; Yates, K. K.; Herwitz, S.; Merrill, J.; Mewes, T.

    2013-12-01

    Seagrass communities serve as essential habitat for fish and shellfish, and recent research indicates that they can play a significant role in reducing ocean acidification. As part of a collaborative project funded by the NASA ROSES program and administered by the NASA UAV Collaborative, we collected hyperspectral imagery of seagrass beds and measured productivity of Thalassia testudinum at Sugarloaf Key, Florida, in May 2012, October 2012, and May 2013. Our primary goal was to evaluate the utility of hyperspectral sensors, in general, and UAV platforms, in specific, to measure seagrass health and productivity. Airborne measurements using the AISA Eagle hyperspectral imaging system were carried out simultaneously with ground measurements of Thalassia fluorescence, oxygen metabolism, growth, and biomass, as well as remote sensing reflectance and several in situ optical properties. Water depths at the study site ranged from less than 1 m to 5 m. Phytoplankton chlorophyll-a concentrations (0.09-0.72 ug l-1), ag(440) (0-0.02 m-1), and turbidity (0.12-4.1 ntu) were relatively low for all three deployments, facilitating the collection of excellent imagery and application of water-column radiative-transfer corrections. Aboveground Thalassia and macroalgal biomass, at 18 sites in the study area, ranged from 210 to 690 and 11 to 590 gDW m-2, respectively. One-sided green leaf area index of Thalassia ranged from 0.7 to 3.0. Preliminary findings show that the sensitivity of relationships between seagrass productivity and biomass parameters and remotely-sensed habitat spectra is reduced with increasing water depth and, even in shallow water, is complicated by epiphytic algae and sediment coverage of leaf surfaces.

  18. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...... for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed....

  19. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    Science.gov (United States)

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  20. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  1. Research on Integrated Geophysics Detect Potential Ground Fissure in City

    Science.gov (United States)

    Qian, R.

    2017-12-01

    North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such

  2. Karoo airborne geophysical survey

    International Nuclear Information System (INIS)

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  3. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Science.gov (United States)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  4. Investigating the internal structure of four Azorean Sphagnum bogs using ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    D. Pereira

    2017-08-01

    Full Text Available This study evaluates the applicability of ground penetrating radar (GPR as a technique for determining the thickness and internal structure of four peat deposits on Terceira Island (Azores archipelago, mid-Atlantic region. The peatlands studied are all Sphagnum mires located above 500 m a.s.l., but they differ hydrogenetically and in their degree of naturalness. Radargrams for all four bogs, obtained using both 100 MHz and 500 MHz GPR antennae, are presented and compared. The radargram data were validated against peat characteristics (bulk density, von Post H, US method obtained by direct sampling (‘open cores’ across the whole peat profile at each site. A scheme of ‘soft scoring’ for degree of naturalness (DN of the peatland was developed and used as an additional validation factor. The GPR data were positively correlated with DN, and relationships between GPR data, peat bulk density and degree of humification (H were also found. From the radargrams it was possible to distinguish the interface between the peat and the mineral substratum as well as some of the internal structure of the peat deposit, and thus to derive the total thickness of the peat deposit and (in some cases the thicknesses of its constituent layers. The first evaluation of the propagation velocity of electromagnetic waves in Azorean peat yielded a value of 0.04 m ns-1 for 100 MHz and 500 MHz radar antennae. For one of the study sites, the GPR data were analysed using GIS software to produce tridimensional models and thus to estimate the volumes of peat layers. This type of analysis has potential utility for quantifying some of the ecosystem services provided by peatlands.

  5. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  6. Confinement of airborne radioactivity. Progress report, January--December 1974

    International Nuclear Information System (INIS)

    Dexter, A.H.; Evans, A.G.; Jones, L.R.

    1974-01-01

    Several commercial activated carbons, marketed for iodine removal in reactor off-gas cleanup systems, were evaluated for iodine penetration at elevated temperatures (4 hr at 180 0 C), and the penetration data varied widely. Subsequent chemical analysis of the samples indicated a strong correlation between the atom ratio of iodine to potassium (I/K) in the carbon and the high-temperature performance data. Iodine penetration tests were also performed on several carbons in an intense gamma radiation field (greater than 10 7 rads/hr). Test data show that carbons intentionally exposed to high concentrations of DOP aerosol performed as well as unexposed carbons. Studies of the rate of evaporation of elemental iodine from aqueous solutions indicated that significant quantities of I 2 might be expected to become airborne within a short period of time (5 hr) after release to open ponds. Addition of sodium thiosulfate to the solution substantially reduced the evaporative loss of iodine; however, the effects of high-intensity radiation fields on iodine-thiosulfate solutions remain to be evaluated. Small HEPA filters containing filter media of the type used in the Savannah River confinement system were exposed to reactor building air and a high-intensity radiation field. Following this exposure, they were tested for flow performance under simulated accident conditions. Radiation exposure slightly impaired the performance of new filters and improved the performance of service-aged filters. Service aging effects on filter performance were far more significant than radiation effects

  7. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR

    Directory of Open Access Journals (Sweden)

    J. Jubanski

    2013-06-01

    Full Text Available Quantification of tropical forest above-ground biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne light detection and ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed, and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square metre of about 4 resulted in the best cost / benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site-specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 43%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong greenhouse gas (GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  8. Airborne Video Surveillance

    National Research Council Canada - National Science Library

    Blask, Steven

    2002-01-01

    The DARPA Airborne Video Surveillance (AVS) program was established to develop and promote technologies to make airborne video more useful, providing capabilities that achieve a UAV force multiplier...

  9. LAN MAP: An Innovative Airborne Light at Night Mapping Project

    Science.gov (United States)

    Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.

    2013-01-01

    Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.

  10. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    Science.gov (United States)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  11. Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study

    Science.gov (United States)

    S. Urbanski; V. Kovalev; W. M. Hao; C. Wold; A. Petkov

    2010-01-01

    A ground-based scanning lidar was utilized with a set of airborne instruments to acquire measurements of smoke plume dynamics, smoke aerosol distribution and chemical composition in the vicinity of active wildfires in the western U.S. A new retrieval technique was used for processing lidar multiangle measurements. The technique determines the location of...

  12. Investigating airborne low frequency GPR antenna-ground coupling through modelling

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available . The plane of symmetry is a perfect electric conductor. The models are run using two rock materials: granite and dolerite, from the catalogue in Vogt (2000). These two materials cover the range of electrical properties expected for Karoo sediments... that is refracted into the ground away from the antenna travels along the surface at a greater velocity than the propagation in the ground, causing a propagation shape that has “ears” which are flatter than the typical spherical propagation in the earth...

  13. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  14. Airborne gravity tests in the Italian area to improve the geoid model of Italy

    DEFF Research Database (Denmark)

    Barzaghi, R; Borghi, A; Keller, K

    2009-01-01

    Airborne gravimetry is an important method for measuring gravity over large unsurveyed areas. This technology has been widely applied in Canada, Antarctica and Greenland to map the gravity fields of these regions and in recent years, in the oil industry. In 2005, two tests in the Italian area were...... performed by ENI in cooperation with the Politecnico di Milano and the Danish National Space Center. To the knowledge of the authors, these were the first experiments of this kind in Italy and were performed over the Ionian coasts of Calabria and the Maiella Mountains. The Calabria test field......, the collocation method applied to compare and merge ground-based and airborne data proved to be efficient and reliable. The standard deviation of the discrepancies between airborne data and collocation upward continued gravity is, in both cases, less than 8 mgal. In the Maiella test, the gravity field obtained...

  15. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    . The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  16. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  17. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Science.gov (United States)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  18. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    Science.gov (United States)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  19. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    Science.gov (United States)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  20. Adapting Ground Penetrating Radar for Non-Destructive In-Situ Root and Tuber Assessment

    Science.gov (United States)

    Teare, B. L.; Hays, D. B.; Delgado, A.; Dobreva, I. D.; Bishop, M. P.; Lacey, R.; Huo, D.; Wang, X.

    2017-12-01

    Ground penetrating radar (GPR) is a rapidly evolving technology extensively used in geoscience, civil science, archeology, and military, and has become a novel application in agricultural systems. One promising application of GPR is for root and tuber detection and measurement. Current commercial GPR systems have been used for detection of large roots, but few studies have attempted to detect agronomic roots, and even fewer have attempted to measure and quantify the total root mass. The ability to monitor and measure root and tuber mass and architecture in an agricultural setting would have far-reaching effects. A few of these include the potential for breeding higher yielding root and tuber crops, rapid bulking roots, discovery of crops with greater carbon sequestration, discovery of plant varieties which have greater ability to stabilize slopes against erosion and slope failure, and drought tolerant varieties. Despite the possible benefits and the current maturity of GPR technology, several challenges remain in the attempt to optimize its use for root and tuber detection. These challenges center on three categories: spatial resolution, data processing, and field-deployable hardware configuration. This study is centered around tuber measurement and its objectives are to i) identify ideal antenna array configurations, frequency, and pulse density; ii) develop novel processing techniques which leverage powerful computer technologies to provide highly accurate measurements of detected features; and iii) develop a cart system which is appropriate for agricultural fields and non-destructive sampling. Already, a 2 GHz multiarray antenna has been identified as an optimal system for tuber detection. Software and processing algorithm development is ongoing, but has already shown improvement over current software offerings. Recent field activity suggest that carts should be width adjustable and sport independent suspension systems to maintain antenna orientation.

  1. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  2. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": ongoing research activities and third-year results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio

    2016-04-01

    This work aims at disseminating the ongoing research activities and third-year results of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." About 350 experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Colombia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been recognised among the running Actions as "COST Success Story" ("The Cities of Tomorrow: The Challenges of Horizon 2020," September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of

  3. Application of Ground Penetrating Radar Supported by Mineralogical-Geochemical Methods for Mapping Unroofed Cave Sediments

    Directory of Open Access Journals (Sweden)

    Teja Čeru

    2018-04-01

    Full Text Available Ground penetrating radar (GPR using a special unshielded 50 MHz Rough Terrain Antenna (RTA in combination with a shielded 250 MHz antenna was used to study the capability of this geophysical method for detecting cave sediments. Allochthonous cave sediments found in the study area of Lanski vrh (W Slovenia are now exposed on the karst surface in the so-called “unroofed caves” due to a general lowering of the surface (denudation of carbonate rocks and can provide valuable evidence of the karst development. In the first phase, GPR profiles were measured at three test locations, where cave sediments are clearly evident on the surface and appear with flowstone. It turned out that cave sediments are clearly visible on GPR radargrams as areas of strong signal attenuation. Based on this finding, GPR profiling was used in several other places where direct indicators of unroofed caves or other indicators for speleogenesis are not present due to strong surface reshaping. The influence of various field conditions, especially water content, on GPR measurements was also analysed by comparing radargrams measured in various field conditions. Further mineralogical-geochemical analyses were conducted to better understand the factors that influence the attenuation in the area of cave sediments. Samples of cave sediments and soils on carbonate rocks (rendzina were taken for X-ray diffraction (XRD and X-ray fluorescence (XRF analyses to compare the mineral and geochemical compositions of both sediments. Results show that cave sediments contain higher amounts of clay minerals and iron/aluminium oxides/hydroxides which, in addition to the thickness of cave sediments, can play an important role in the depth of penetration. Differences in the mineral composition also lead to water retention in cave sediments even through dry periods which additionally contribute to increased attenuation with respect to surrounding soils. The GPR method has proven to be reliable for

  4. Frozen: The Potential and Pitfalls of Ground-Penetrating Radar for Archaeology in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    Thomas M. Urban

    2016-12-01

    Full Text Available Ground-penetrating radar (GPR offers many advantages for assessing archaeological potential in frozen and partially frozen contexts in high latitude and alpine regions. These settings pose several challenges for GPR, including extreme velocity changes at the interface of frozen and active layers, cryogenic patterns resulting in anomalies that can easily be mistaken for cultural features, and the difficulty in accessing sites and deploying equipment in remote settings. In this study we discuss some of these challenges while highlighting the potential for this method by describing recent successful investigations with GPR in the region. We draw on cases from Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Kobuk Valley National Park, and Gates of the Arctic National Park and Preserve. The sites required small aircraft accessibility with light equipment loads and minimal personnel. The substrates we investigate include coastal saturated active layer over permafrost, interior well-drained active layer over permafrost, a frozen thermo-karst lake, and an alpine ice patch. These examples demonstrate that GPR is effective at mapping semi-subterranean house remains in several contexts, including houses with no surface manifestation. GPR is also shown to be effective at mapping anomalies from the skeletal remains of a late Pleistocene mammoth frozen in ice. The potential for using GPR in ice and snow patch archaeology, an area of increasing interest with global environmental change exposing new material each year, is also demonstrated.

  5. Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England

    Science.gov (United States)

    Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.

    2017-12-01

    Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.

  6. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency

    Science.gov (United States)

    Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.

    2018-01-01

    Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

  7. Ground penetrating radar and microwave tomography for the safety management of a cultural heritage site: Miletos Ilyas Bey Mosque (Turkey)

    International Nuclear Information System (INIS)

    Kadioglu, Selma; Kadioglu, Yusuf Kagan; Catapano, Ilaria; Soldovieri, Francesco

    2013-01-01

    Detection and assessment of structural damage affecting foundation robustness is of significant relevance for the safety management of cultural heritage sites. In this framework, ground penetrating radar (GPR) is worth consideration owing to its capability of providing high resolution and detailed information about the inner status of a structure, without involving significant invasive actions and ensuring a fast survey. On the other hand, the effectiveness of a GPR diagnostic survey can be impaired by the low interpretability of the raw data radargrams; thus huge interest is currently focused on the development of advanced and application-oriented data processing strategies. In this paper, a data processing chain based on the combined use of the commercial REFLEXW program and a microwave tomography approach is presented. An assessment of the achievable imaging capabilities is provided by processing measurements collected during a survey at the Great Mosque of Ilyas Bey (Ilyas Bey Mosque), one of the most important cultural heritages in ancient Miletos-Iona in Söke-Aydin city (Turkey). (paper)

  8. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Directory of Open Access Journals (Sweden)

    I. R. Burling

    2011-12-01

    Full Text Available We have measured emission factors for 19 trace gas species and particulate matter (PM2.5 from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  9. Temporal dynamics of airborne lead-210 in Missouri (USA): implications for geochronological methods

    International Nuclear Information System (INIS)

    Sheets, R.W.; Lawrence, A.E.

    1999-01-01

    Lead-210 ( 210 Pb) deposited from the atmosphere is used in the dating of certain geological materials such as glacial ice and lacustrine sediments, but its long-term atmospheric behavior has been little studied. The present investigation reports measurements of airborne 210 Pb at 21 monitoring stations in Springfield, Missouri, during 1975-1995. Seasonal and diurnal patterns of atmospheric concentrations are established, and the mean annual concentrations of 210 Pb in ground level air during the 20-year period are examined. Although airborne 210 Pb concentrations are found to vary diurnally and seasonally, mean annual concentrations in southwest Missouri have remained relatively constant during this time period. This finding is important for geochronological methods that assume a constant 210 Pb flux from the atmosphere. (orig.)

  10. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    otherwise, inclusion of excitation energy decreases the T1/2 values. ... penetrates the nuclear barrier and reaches scission configuration after running .... between the ground-state energy levels of the parent nuclei and the ground-state energy.

  11. Based on airborne multi-array butting for IRFPA staring imagery

    Science.gov (United States)

    Mao, Minjun; Xiao, Gonghai; Lin, Yancheng; Xie, Feng; Shu, Rong

    2010-10-01

    Because infrared system detects the radiation energy of the target, it has the ability to work all day that the visible-light detection system cannot achieve, at the same time, infrared system is a passive detection system, does not need active detection technology such as radar, which requires large radiation power or a larger expandable antenna. It is more suitable for airborne applications, therefore, infrared imaging based on the aircraft and aerostat platform, has been an important means of monitoring the ground. However, due to detector limitations, the spatial resolution of current infrared cameras or spectrographs and the total field coverage of view are generally not satisfied the customer's requirements. This paper proposes an airborne infrared camera imaging method based on multi-planar arrays, using frame-type imaging array. In order to provide large ground coverage together with good spatial resolution, the mirror is drove to scan rapidly by the galvanometer. The scanning mirror works at staring imagery mode. During multi-planar detectors exposure and imaging, the mirror moves to the staring position. There is more than 10 % overlapping sensor foot prints between two adjacent frames, and the functions of image matching algorithms are used to ensure the seamless butting. This imaging method improves the system integration time, and effectively improves the sensitivity of infrared systems; frame-type imaging solves the serious image distortion caused by the platform attitude.

  12. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  13. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  14. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  15. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    Science.gov (United States)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of

  16. Ground penetrating radar and differential global positioning system data collected in April 2016 from Fire Island, New York

    Science.gov (United States)

    Forde, Arnell S.; Bernier, Julie C.; Miselis, Jennifer L.

    2018-02-22

    Researchers from the U.S. Geological Survey (USGS) conducted a long-term coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical and sediment sampling surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets.  This report, along with the associated USGS data release, serves as an archive of ground penetrating radar (GPR) and post-processed differential global positioning system (DGPS) data collected from beach and back-barrier environments on Fire Island, April 6–13, 2016 (USGS Field Activity Number 2016-322-FA). Data products, including unprocessed GPR trace data, processed DGPS data, elevation-corrected subsurface profile images, geographic information system files, and accompanying Federal Geographic Data Committee metadata are available for download.

  17. The Use of Ground Penetrating Radar and Electrical Resistivity Imaging for the Characterisation of Slope Movements in Expansive Marls

    Science.gov (United States)

    Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen

    2017-04-01

    Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the

  18. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    Science.gov (United States)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  19. Comparing LiDAR-Generated to ground- surveyed channel cross-sectional profiles in a forested mountain stream

    Science.gov (United States)

    Brian C. Dietterick; Russell White; Ryan Hilburn

    2012-01-01

    Airborne Light Detection and Ranging (LiDAR) holds promise to provide an alternative to traditional ground-based survey methods for stream channel characterization and some change detection purposes, even under challenging landscape conditions. This study compared channel characteristics measured at 53 ground-surveyed and LiDAR-derived crosssectional profiles located...

  20. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  1. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier

    Directory of Open Access Journals (Sweden)

    L. Sold

    2015-05-01

    Full Text Available The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs in helicopter-borne ground-penetrating radar (GPR data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e. of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011 to 0.1 km for the deepest (i.e. oldest layer (2006. According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.

  2. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  3. An Integration of Ground-Penetrating Radar, Remote Sensing, and Discharge Records of the Modern Kicking Horse River, BC

    Science.gov (United States)

    Cyples, N.; Ielpi, A.; Dirszowsky, R.

    2017-12-01

    The Kicking Horse River is a gravel-bed stream originating from glacial meltwater supplied by the Wapta Icefields in south-eastern British Columbia. An alluvial tract extends for 7 km through Field, BC, where the trunk channel undergoes diurnal and seasonal fluctuations in flow as a result of varying glacial-meltwater supply and runoff recharge. Prior studies erected the Kicking Horse River as a reference for proximal braided systems, and documented bar formation and sediment distribution patterns from ground observations. However, a consistent model of planform evolution and related stratigraphic signature is lacking. Specific objectives of this study are to examine the morphodynamic evolution and stratigraphic signature of channel-bar complexes using high-resolution satellite imagery, sedimentologic and discharge observations, and ground-penetrating radar (GPR). Remote sensing highlights rates of lateral channel migration of as much as 270 meters over eight years ( 34 meters/year), and demonstrates how flood stages are associated with stepwise episodes of channel braiding and anabranching. GPR analysis aided in the identification of five distinct radar facies, including: discontinuous, inclined, planar, trough-shaped, and mounded reflectors, which were respectively related to specific architectural elements and fluvial processes responsible for bar evolution. Across-stream GPR transects demonstrated higher heterogeneity in facies distribution, while downstream-oriented transects yielded a more monotonous distribution in radar facies. Notably, large-scale inclined reflectors related to step-wise bar accretion are depicted only in downstream-oriented transects, while discontinuous reflectors related to bedform stacking appear to be dominant in along-stream transects. Integration of sedimentological data with remote sensing, gauging records, and GPR analysis allows for high-resolution modelling of stepwise changes in alluvial morphology. Conceptual models stemming

  4. Three-dimensional mapping of salt load in the Murray-Darling Basin, 1 Steps in calibration of airborne electromagnetic surveys

    NARCIS (Netherlands)

    Cresswell, R.G.; Dent, D.L.; Jones, G.; Galloway, D.

    2004-01-01

    An airborne electromagnetic survey yields a three-dimensional map of ground electrical conductivity. The remotely sensed data are translated into salt load by field and laboratory calibration: drilling, measurement of borehole conductivity, electrical conductivity of 1 : 5 soil¿water extracts

  5. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration

    International Nuclear Information System (INIS)

    2013-01-01

    through the use of effective exploration techniques. Geophysical methods with the capability of mapping surface and subsurface parameters in relation to uranium deposition and accumulation are proving to be vital components of current exploration efforts around the world. There is continuous development and improvement of technical and scientific disciplines using measuring instruments and spatially referenced data processing techniques. Newly designed geophysical instruments and their applications in uranium exploration are contributing to an increased probability of successful discoveries. Dissemination of information on advances in geophysical techniques encourages new strategies and promotes new approaches toward uranium exploration. Meetings and conferences organized by the IAEA, collecting the experience of participating countries, as well as its publications and the International Nuclear Information System, play an important role in the dissemination of knowledge of all aspects of the nuclear fuel cycle. The purpose of this report is to highlight advances in airborne and ground geophysical techniques, succinctly describing modern geophysical methods and demonstrating the application of techniques through examples. The report also provides some basic concepts of radioactivity, nuclear radiation and interaction with matter.

  6. Radioactive Contamination Estimation from micro-copters or helicopter Airborne survey: Simulation and real measurements

    International Nuclear Information System (INIS)

    Halevy, I.; Ghelman, M.; Yehuda-Zada, Y.; Manor, A.; Dadon, S.; Sharon, A.; Yaar, I.

    2014-01-01

    One of the main advantages of acquiring aero-radiometric measurements lies in the high collection rate of data over large areas and rough terrain. Typical aero-radiometric system records and saves gamma ray spectrum, correlated with the GPS derived location information in regular time intervals of one to two seconds. Such data can be used to locate radiation anomalies on the ground, map ground contamination or track a radioactive airborne plume. Acquiring spectral data of this type allows separation of natural radioactivity from that of man-made sources and identification of specific isotopes, natural or man-made

  7. Radioactive Contamination Estimation from Micro-Copters or Helicopter Airborne Survey: Simulation and Real Measurements

    International Nuclear Information System (INIS)

    Halevy, I.; Ghelman, M.; Yehuda-Zada, Y.; Manor, A.; Sharon, A.; Yaar, I.

    2014-01-01

    One of the main advantages of acquiring aero-radiometric measurements lies in the high collection rate of data over large areas and rough terrain. Typical aero-radiometric system records and saves gamma ray spectrum, correlated with the GPS derived location information in regular time intervals of one to two seconds. Such data can be used to locate radiation anomalies on the ground, map ground contamination or track a radioactive airborne plume. Acquiring spectral data of this type allows separation of natural radioactivity from that of man-made sources and identification of specific isotopes, natural or man-made

  8. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    International Nuclear Information System (INIS)

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT ampersand E) project by EG ampersand G Energy Measurement's (EG ampersand G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG ampersand G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available

  9. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  10. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. II - Backscatter structure

    Science.gov (United States)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Post, Madison J.

    1991-01-01

    Measurements of tropospheric aerosol volume backscatter coefficients at 10.6-microns wavelength were obtained with airborne continuous wave and ground-based pulsed CO2 Doppler lidars over the Colorado High Plains during a 20-day period in summer 1982. A persistent 'background' layer was found between 6- and 10-km altitude, with a generally uniform backscatter mixing ratio of about 10 to the -10th sq m/kg per sr. The upper boundary of this background layer varied with the tropopause height; the lower boundary varied with the strength and diurnal cycle of convective mixing in the planetary boundary layer (PBL). For quiescent meteorological conditions, the transition from the PBL to the background layer was usually very sharp, with backscatter decreases sometimes as large as 3 decades in about 70 m. Sharp gradients were also found at the boundaries of shallow (tens of meters) subvisible cirrus clouds. For less stable conditions, associated with vertical aerosol transport by deep cumuliform clouds, backscatter tended to decrease exponentially with altitude.

  11. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    Science.gov (United States)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  12. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Science.gov (United States)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  13. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    S. Düsing

    2018-01-01

    Full Text Available This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP2 Observational Prototype Experiment (HOPE in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System provided measurements of the aerosol particle number size distribution (PNSD, the aerosol particle number concentration (PNC, the number concentration of cloud condensation nuclei (CCN-NC, and meteorological atmospheric parameters (e.g., temperature and relative humidity. These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc for three wavelengths (355, 532, and 1064 nm. Particle extinction coefficient (σext profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR. A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908, optical aerosol properties under ambient

  14. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    John C. Bain

    2017-12-01

    Full Text Available Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing are all key factors affecting biomass estimation that require additional research. Specifically, many aspects of GPR applicability for coarse root measurement have not been tested with a full range of antenna frequencies. We tested the effects of multiple scanning directions, root crossover, and root versus soil moisture content in a sand-hill mixed oak community using a 1500 MHz antenna, which provides higher resolution than the oft used 900 MHz antenna. Combining four scanning directions produced a significant relationship between GPR signal reflectance and coarse root biomass (R2 = 0.75 (p < 0.01 and reduced variability encountered when fewer scanning directions were used. Additionally, significantly fewer roots were correctly identified when their moisture content was allowed to equalize with the surrounding soil (p < 0.01, providing evidence to support assertions that GPR cannot reliably identify dead root mass. The 1500 MHz antenna was able to identify roots in close proximity of each other as well as roots shadowed beneath shallower roots, providing higher precision than a 900 MHz antenna. As expected, using a 1500 MHz antenna eliminates some of the deficiency in precision observed in studies that utilized lower frequency antennas.

  15. Analysis of the karst aquifer structure of the Lamalou area (Herault, France) with ground penetrating radar

    International Nuclear Information System (INIS)

    Al-Fares, W.; Bakalowicz, M.; Guerin, R.; Dukhan, M.

    2004-01-01

    The study site at Lamalou karst spring Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulse EKKO 100 (Sensors and Software) was used on the site with a 50 MHz antenna frequency. The results highlight structures characterizing the karstic environment: The epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of GPR data by giving direct access to the karstic conduit and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections. (author

  16. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  17. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    Science.gov (United States)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  18. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  19. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  20. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  1. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    Science.gov (United States)

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. The use of Ground Penetrating Radar in coastal research, archeaological investigations, lake studies, peat layer measurments and applied research in Estonia

    Science.gov (United States)

    Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel

    2014-05-01

    Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating

  3. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained......, partially or fully drained. However, lowering the penetration rate in silty soils has a great significance because of the soil permeability, and only a small change in penetration rate will result in changed cone penetration measurements. In this paper, analyses will be done on data from 15 field cone...

  4. Geometric Correction of PHI Hyperspectral Image without Ground Control Points

    International Nuclear Information System (INIS)

    Luan, Kuifeng; Tong, Xiaohua; Liu, Xiangfeng; Ma, Yanhua; Shu, Rong; Xu, Weiming

    2014-01-01

    Geometric correction without ground control points (GCPs) is a very important topic. Conventional airborne photogrammetry is difficult to implement in areas where the installation of GCPs is not available. The technical of integrated GPS/INS systems providing the positioning and attitude of airborne systems is a potential solution in such areas. This paper first states the principle of geometric correction based on a combination of GPS and INS then the error of the geometric correction of Pushbroom Hyperspectral Imager (PHI) without GCP was analysed, then a flight test was carried out in an area of Damxung, Tibet. The experiment result showed that the error at straight track was small, generally less than 1 pixel, while the maximum error at cross track direction, was close to 2 pixels. The results show that geometric correction of PHI without GCP enables a variety of mapping products to be generated from airborne navigation and imagery data

  5. Airborne gamma survey of the historic Sleisbeck mine area in the Northern Territory, Australia, and its use for site rehabilitation planning

    International Nuclear Information System (INIS)

    Bollhoefer, A.; Pfitzner, K.; Ryan, B.; Martin, P.; Fawcett, M.; Jones, D.R.

    2008-01-01

    An airborne γ-survey provided information about the extent of radioactive contamination around the historic Sleisbeck mine. Quickbird satellite data were acquired to relate airborne measurements to land cover features. Enhanced equivalent uranium (eU) levels were found to be confined to the mine and low grade waste rock dumps. The average terrestrial background radiation dose rate estimated from the airborne gamma survey data was 0.10-0.14 μGy h -1 while the area around the mine exhibited a maximum of ∼2.3 μGy h -1 , but measurements on the ground indicate that this maximum is exceeded in some localized areas. Rehabilitation of the site is likely to result in a threefold reduction in radiation doses to people accessing the area

  6. Synoptic channel morphodynamics with topo-bathymetric airborne lidar: promises, pitfalls and research needs

    Science.gov (United States)

    Lague, D.; Launeau, P.; Gouraud, E.

    2017-12-01

    Topo-bathymetric airborne lidar sensors using a green laser penetrating water and suitable for hydrography are now sold by major manufacturers. In the context of channel morphodynamics, repeat surveys could offer synoptic high resolution measurement of topo-bathymetric change, a key data that is currently missing. Yet, beyond the technological promise, what can we really achieve with these sensors in terms of depth penetration and bathymetric accuracy ? Can all rivers be surveyed ? How easy it is to process this new type of data to get the data needed by geomorphologists ? Here we report on the use of the Optech Titan dual wavelength (1064 nm & 532 nm) operated by the universities of Rennes and Nantes (France) and deployed over several rivers and lakes in France, including repeat surveys. We will illustrate cases where the topo-bathymetric survey is complete, reaching up to 6 m in rivers and offers unprecedented data for channel morphology analysis over tens of kilometres. We will also present challenging cases for which the technology will never work, or for which new algorithms to process full waveform are required. We will illustrate new developments for automated processing of large datasets, including the critical step of water surface detection and refraction correction. In suitable rivers, airborne topo-bathymetric surveys offer unprecedented synoptic 3D data at very high resolution (> 15 pts/m² in bathy) and precision (better than 10 cm for the bathy) down to 5-6 meters depth, with a perfectly continuous topography to bathymetry transition. This presentation will illustrate how this new type of data, when combined with 2D hydraulics modelling offers news insights into the spatial variations of friction in relation to channel bedforms, and the connectivity between rivers and floodplains.

  7. Sewage sludge as a sensitive indicator for airborne radionuclides from nuclear power plants

    International Nuclear Information System (INIS)

    Ingemansson, T.

    1982-01-01

    Sewage sludge collected at waste water treatment plants located in the vicinity of nuclear power stations, has been shown to be a sensitive and convenient indicator for airborne locally released activation products, 60 Co, 65 Zn, 58 Co and 54 Mn. We have therefore been able to study the distribution and behaviour of these radionuclides in the terrestrial environment of three Swedish nuclear power stations. Comparative measurements on ground level air and on samples of lichen (Cladonia alpestris) and soil have also been performed. The variation by distance from the power station of 60 Co measured in sludge as well as on air-filters could be described by the same power function. The temporal variation of the activity concentration in sludge samples well reflects the variation of the reported release rate of airborne radionuclides from the power stations if the prevalent wind direction is taken into consideration. The relation between the activity ratio 60 Co/ 7 Be in air and in sludge was investigated and indicated that most of the detected 60 Co and part of 58 Co and 54 Mn activity is released from a local source and is dry deposited on the ground before it is washed off by rain. (Author)

  8. On regulation of radioactive airborne discharge

    International Nuclear Information System (INIS)

    Stroganov, A.A.; Kuryndin, A.V.; Shapovalov, A.S.; Orlov, M.Yu.

    2013-01-01

    Authors present the Russian regulatory basis of radioactive airborne discharges which was updated after enactment of the Methodology for airborne discharge limits development. Criteria for establishing of airborne discharge limits, scope and other features of methodology are also considered in the article [ru

  9. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan; Lambot, Sé bastien; Dimitrov, Marin; Weihermü ller, Lutz

    2013-01-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn

  10. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    Science.gov (United States)

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  11. The calibration of portable and airborne gamma-ray spectrometers - theory, problems, and facilities

    International Nuclear Information System (INIS)

    Loevborg, L.

    1984-10-01

    A gamma-ray spectrometer for use in geological exploration possesses four stripping ratios and three window sensitivities which must be determined to make the instrumentation applicable for field assay or airborne measurement of potassium, uranium, and thorium contents in the ground. Survey organizations in many parts of the world perform the instrument calibration using large pads of concrete which simulate a plane ground of known radioelement concentration. Calibration and monitoring trials with twelve facilities in ten countries prove that moisture absorption, radon exhalation, and particle-size effects can offset a radiometric grade assigned to concrete whose aggregate contains an embedded radioactive mineral. These and other calibration problems are discussed from a combined theoretical and practical viewpoint. (author)

  12. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers

    International Nuclear Information System (INIS)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-01-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr_3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. - Highlights: • A small-sized UAV airborne sensor system was developed. • Three radioactive models were chosen to simulate the Fukushima accident. • Both the air and ground radiation were considered in the models. • The efficiency calculations and MDAC values were given. • The sensor system is able to monitor in serious nuclear accidents.

  13. The penetration depth and lateral distribution of pigment related to the pigment grain size and the calendering of paper

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Schueler, B.; Tullander, E.; Oestling, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2002-01-01

    The interaction of ink and newspaper has been investigated and the specific question of penetration of ink into the paper has been addressed with a nuclear microprobe using particle induced X-ray emission. The penetration depth of the newsprint is a critical factor in terms of increasing the quality of newsprint and minimising the amount of ink used. The objective of the experiment was to relate the penetration depth of pigment with the calendering of the paper. The dependence of the penetration depth on the pigment grain size was also studied. To study the penetration depth of pigment in paper, cyan ink with Cu as a tracer of the coloured pigment was used. For the study of the penetration depth dependence of pigment size, specially grounded Japanese ink with well-defined pigment grain size was used. This was compared to Swedish ink with pigment grains with normal size-distribution. The results show that the calendering of the paper considerably affects the penetration depth of ink

  14. Airborne Sun photometry and Closure Studies in SAFARI-2000 Dry Season Campaign

    Science.gov (United States)

    Schmid, B.; Russell, P. B.; Pilewskie, P.; Redemann, J.; Livingston, J. M.; Hobbs, P. V.; Welton, E. J.; Campbell, J.; Holben, B. N.; McGill, M.; hide

    2001-01-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign studied the complex interactions between the region's ecosystems, air pollution, atmospheric circulation, land-atmosphere interactions, and land use change. The field campaign was timed to coincide with the annual winter fire season in Southern Africa. This challenging campaign. which coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations, was head quartered at the Petersburg International Airport in South Africa's Northern Province. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by industrial emissions, biomass burning, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (3501558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar aboard the high flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of TOMS and Terra satellite aerosol and water-vapor retrievals will also be discussed.

  15. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  16. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    KAUST Repository

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  17. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    Science.gov (United States)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  18. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  19. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    Science.gov (United States)

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  20. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  1. Airborne gamma-ray spectrometry and computer data processing

    International Nuclear Information System (INIS)

    Raghuwanshi, S.S.; Bhishma Kumar; Tewari, S.G.

    1993-01-01

    The physical basis for the measurement of radioelemental concentrations of U, Th, and K on the surface of the earth by airborne gamma-ray spectrometry (AGRS) are described in this paper. The yield of an infinite radioactive plane source for a particular gamma energy helps to know the sampled volume in AGRS, the ground coverage, the ground resolution, the effective planning of the survey, flight line spacing, and sampling time. The infinite source-yield enables the determination of the attenuation coefficients in actual surveys and lays down the criteria for a standard test strip. Scattering of gamma-rays in matter is discussed in order to study its influence in the measurements from air. The theoretical gamma-ray spectrum from terrestrial U, Th, and K are discussed in contrast to its realistic picture which poses problems for their direct use for measurements. The criterion of FWHM (full width at half maximum) and inter-energy distance with their yields is described which finally helps to select the energy windows for (window and MCA) AGRS system. Factors which affect the measurements of radioelemental concentration in AGRS surveys include both correctable and non-correctable ones. Correctable factors are : (a) non-terrestrial sources of gamma-rays aircraft, cosmic, and airborne background (H) (B); (b) interference due to gamma-scattering inter channel effects (l); (c) height variations (H) due to navigation and topography; (d) temperature (T) of ambient air; and (e) pressure (P) of air at flying altitude. For removal of background effects, measurements over test strip and calibration pads are necessary for making the corrections in the order - BIH. These methods are described in the paper. The non-correctable factors include effects, due to terrain moisture, vegetation, and others. The possible ways to eliminate these effects are also briefly described. (author). 17 refs., 13 figs

  2. Ground penetrating radar study of a thickness of biogenic sediments in the vicinity of the Czechowskie Lake

    Science.gov (United States)

    Lamparski, Piotr

    2014-05-01

    The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i

  3. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  4. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  5. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  6. Estimating Carbon Stocks Along Depressional Wetlands Using Ground Penetrating Radar (GPR) in the Disney Wilderness Preserve (Orlando, Florida)

    Science.gov (United States)

    McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.

    2014-12-01

    Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.

  7. Cable Braid Electromagnetic Penetration Model.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  8. Ground motion measurement at Sefuri and Esashi area

    International Nuclear Information System (INIS)

    Sugahara, R.; Takeda, S.; Nozaki, M.; Yamaoka, H.; Yamashita, S.; Nakayama, Y.

    2008-02-01

    It is indispensable for the construction of the next-generation super high-energy accelerator to investigate the ground fluctuation and to get the information on the characteristics of ground vibration. KEK, ICEPP, and J-Power have cooperatively measured the usual tremor of various grounds. This report describes the results of the measurements carried out at the tunnel in Mise Expressway penetrating the Sefuri Mountains forming the boundary between Fukuoka and Saga prefectures and at the facility of Esashi earth tide measurement, National Astronomical Observatory. The comparison with past measurements on other area and the characteristics of wide band usual tremor of each area are also mentioned. (M.H.)

  9. Influence of jet thrust on penetrator penetration when studying the structure of space object blanket

    Directory of Open Access Journals (Sweden)

    N. A. Fedorova

    2014-01-01

    Full Text Available The article presents the calculation-and-theory-based research results to examine the possibility for using the jet thrust impulse to increase a penetration depth of high-velocity penetrator modules. Such devices can be used for studies of Earth surface layer composition, and in the nearest future for other Solar system bodies too. Research equipment (sensors and different instruments is housed inside a metal body of the penetrator with a sharpened nose that decreases drag force in soil. It was assumed, that this penetrator is additionally equipped with the pulse jet engine, which is fired at a certain stage of penetrator motion into target.The penetrator is considered as a rigid body of variable mass, which is subjected to drag force and reactive force applied at the moment the engine fires. A drag force was represented with a binomial empirical law, and penetrator nose part was considered to be conical. The jet thrust force was supposed to be constant during its application time. It was in accordance with assumption that mass flow and flow rate of solid propellant combustion products were constant. The amount of propellant in the penetrator was characterized by Tsiolkovsky number Z, which specifies the ratio between the fuel mass and the penetrator structure mass with no fuel.The system of equations to describe the penetrator dynamics was given in dimensionless form using the values aligned with penetration of an equivalent inert penetrator as the time and penetration depth scales. Penetration dynamics of penetrator represented in this form allowed to eliminate the influence of penetrator initial mass and its cross-section diameter on the solution results. The lack of such dependency is convenient for comparing the calculation results since they hold for penetrators of various initial masses and cross-sections.To calculate the penetration a lunar regolith was taken as a soil material. Calculations were carried out for initial velocities of

  10. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  11. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  12. Environmental airborn radioactivity survey around Burg El Arab Area, Western desert, Egypt

    International Nuclear Information System (INIS)

    Fouad, K.M.; Ammar, A.A.; Meleik, M.L.

    1977-01-01

    An environmental airborne radioactivity survey of approximately 250 square kilometres of Burg El Arab area was conducted by the Airborne Geophysical survey Division of the Geology and Raw Materials Department. The environmental levels of gamma radiation are measured so as to determine quickly the amount and extent of any possible future increase in radioactivity levels of the area by the proposed nuclear facility through normal operations or any accident that may occur. The aerial radiometric measurements were obtained by a continuously recording airborne scintillometer type RVS-1. installed in an Antonoff-2 aircraft, flying at an average speed of 170 Km/h, at a nominal ground clearance of 50 m. The survey was carried out along 84 parallel flight lines directed N-S, and spaced 250 m apart. The area is shown on the geological map as composed of four lithological units. The analysis of the data has proved that these units correspond to six distinct levels of characteristic radioactivity, as two of the lithological units could each be separated into two radioactivity levels on the basis of the radioactivity pattern. The six radiometric levels are, from north to south, beach limy sediments (15 to 101. and 97 to 191 cps), detrital limestone (201 to 354 cpt), saline lakes and salt deposits (262 to 444 cps), and alluvial deposits (307 to 308 and 412 to 742 cps)

  13. Ground penetrating radar results at the Box Canyon Site - 1996 survey as part of infiltration test

    International Nuclear Information System (INIS)

    Peterson, J.E. Jr.; Williams, K.H.

    1997-08-01

    This data report presents a discussion of the borehole radar tomography experiment conducted at Box Canyon, Idaho. Discussion concentrates on the survey methodology, data acquisition procedures, and the resulting tomographic images and interpretations. The entire geophysics field effort for FY96 centered around the collection of the borehole radar data within the inclined boreholes R1, R2, R3, and R4 before, during, and after the ponded infiltration experiment. The well pairs R1-R2, R2-R4, and R3-R4 comprised the bulk of the field survey; however, additional data were collected between vertical boreholes within and around the infiltration basin. The intent of the inclined boreholes was to allow access beneath the infiltration basin and to enhance the ability of the radar method to image both vertical and horizontal features where flow may dominate. This data report will concentrate on the inclined borehole data and the resulting tomograms. The borehole radar method is one in which modified ground penetrating radar antennas are lowered into boreholes and high frequency electromagnetic signals are transmitted through subsurface material to a receiving antenna. The transmitted signals may be represented as multiple raypaths crossing through the zone of interest. If sufficient raypaths are recorded, a tomographic image may be obtained through computer processing. The data normally recorded are signal amplitude versus time. The information extracted from such data includes the following: (a) the transit time which depends on the wave velocity, (b) the amplitude which depends on the wave attenuation, the dispersion which indicates a change in velocity and attenuation with frequency

  14. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  15. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  16. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  17. Data processing and initial results of Chang'e-3 lunar penetrating radar

    Science.gov (United States)

    Su, Yan; Fang, Guang-You; Feng, Jian-Qing; Xing, Shu-Guo; Ji, Yi-Cai; Zhou, Bin; Gao, Yun-Ze; Li, Han; Dai, Shun; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.

  18. Phase Center Interpolation Algorithm for Airborne GPS through the Kalman Filter

    Directory of Open Access Journals (Sweden)

    Edson A. Mitishita

    2005-12-01

    Full Text Available The aerial triangulation is a fundamental step in any photogrammetric project. The surveying of the traditional control points, depending on region to be mapped, still has a high cost. The distribution of control points at the block, and its positional quality, influence directly in the resulting precisions of the aero triangulation processing. The airborne GPS technique has as key objectives cost reduction and quality improvement of the ground control in the modern photogrammetric projects. Nowadays, in Brazil, the greatest photogrammetric companies are acquiring airborne GPS systems, but those systems are usually presenting difficulties in the operation, due to the need of human resources for the operation, because of the high technology involved. Inside the airborne GPS technique, one of the fundamental steps is the interpolation of the position of the phase center of the GPS antenna, in the photo shot instant. Traditionally, low degree polynomials are used, but recent studies show that those polynomials is reduced in turbulent flights, which are quite common, mainly in great scales flights. This paper has as objective to present a solution for that problem, through an algorithm based on the Kalman Filter, which takes into account the dynamic aspect of the problem. At the end of the paper, the results of a comparison between experiments done with the proposed methodology and a common linear interpolator are shown. These results show a significant accuracy gain at the procedure of linear interpolation, when the Kalman filter is used.

  19. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    Veatch, B.D.

    1994-01-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  20. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  1. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  2. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    Science.gov (United States)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  3. Evaluation of airborne lidar data to predict vegetation Presence/Absence

    Science.gov (United States)

    Palaseanu-Lovejoy, M.; Nayegandhi, A.; Brock, J.; Woodman, R.; Wright, C.W.

    2009-01-01

    This study evaluates the capabilities of the Experimental Advanced Airborne Research Lidar (EAARL) in delineating vegetation assemblages in Jean Lafitte National Park, Louisiana. Five-meter-resolution grids of bare earth, canopy height, canopy-reflection ratio, and height of median energy were derived from EAARL data acquired in September 2006. Ground-truth data were collected along transects to assess species composition, canopy cover, and ground cover. To decide which model is more accurate, comparisons of general linear models and generalized additive models were conducted using conventional evaluation methods (i.e., sensitivity, specificity, Kappa statistics, and area under the curve) and two new indexes, net reclassification improvement and integrated discrimination improvement. Generalized additive models were superior to general linear models in modeling presence/absence in training vegetation categories, but no statistically significant differences between the two models were achieved in determining the classification accuracy at validation locations using conventional evaluation methods, although statistically significant improvements in net reclassifications were observed. ?? 2009 Coastal Education and Research Foundation.

  4. Wire-grid electromagnetic modelling of metallic cylindrical objects with arbitrary section, for Ground Penetrating Radar applications

    Science.gov (United States)

    Adabi, Saba; Pajewski, Lara

    2014-05-01

    Authors demonstrated that the well-known same-area criterion yields affordable results but is quite far from being the optimum: better results can be obtained with a wire radius shorter than what is suggested by the rule. In utility detection, quality controls of reinforced concrete, and other civil-engineering applications, many sought targets are long and thin: in these cases, two-dimensional scattering methods can be employed for the electromagnetic modelling of scenarios. In the present work, the freeware tool GPRMAX2D [6], implementing the Finite-Difference Time-Domain method, is used to implement the wire-grid modelling of buried two-dimensional objects. The source is a line of current, with Ricker waveform. Results obtained in [5] are confirmed in the time domain and for different geometries. The highest accuracy is obtained by shortening the radius of about 10%. It seems that fewer (and larger) wires need minor shortening; however, more detailed investigations are required. We suggest to use at least 8 - 10 wires per wavelength if the field scattered by the structure has to be evaluated. The internal field is much more sensitive to the modelling configuration than the external one, and more wires should be employed when shielding effects are concerned. We plan to conduct a more comprehensive analysis, in order to extract guidelines for wire sizing, to be validated on different shapes. We also look forward to verifying the possibility of using the wire-grid modelling method for the simulation of slotted objects. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors thanks COST for funding COST Action TU1208. References [1] J.H. Richmond, A wire grid model for scattering by conducting bodies, IEEE Trans. Antennas Propagation AP-14 (1966), pp. 782-786. [2] S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propagation AP-30 (1982

  5. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    Science.gov (United States)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  6. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph D; Hagen, D E [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Corp., St. Louis, MO (United States)

    1998-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  7. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  8. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  9. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    Science.gov (United States)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  10. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    Science.gov (United States)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; hide

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  11. Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    Science.gov (United States)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.

  12. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  13. The Arctic Boreal Vulnerability Experiment (ABoVE) 2017 Airborne Campaign

    Science.gov (United States)

    Miller, C. E.; Goetz, S. J.; Griffith, P. C.; Hoy, E.; Larson, E. K.; Hodkinson, D. J.; Hansen, C.; Woods, J.; Kasischke, E. S.; Margolis, H. A.

    2017-12-01

    The 2017 ABoVE Airborne Campaign (AAC) was one of the largest airborne experiments ever conducted by NASA's Earth Science Division. It involved nine aircraft in 17 deployments - more than 100 flights - between April and October and sampled over 4 million km2in Alaska and northwestern Canada. Many of these flights were coordinated with detailed, same-day ground-based measurements to link field-based, process-level studies with geospatial data products derived from satellite remote sensing. A major goal of the 2017 AAC was to collect data that spanned the critical intermediate space and time scales that are essential for a comprehensive understanding of scaling issues across the ABoVE Study Domain and extrapolation to the pan-Arctic. Additionally, the 2017 AAC provided unique opportunities to validate satellite and airborne remote sensing data for northern high latitude ecosystems, develop and advance fundamental remote sensing science, and explore scientific insights from innovative sensor combinations. The 2017 AAC science strategy coupled domain-wide sampling with L-band and P-band synthetic aperture radar (SAR), imaging spectroscopy (AVIRIS-NG), full waveform lidar (LVIS) and atmospheric carbon dioxide and methane with more spatially and temporally focused studies using Ka-band SAR (Ka-SPAR) and solar induced chlorophyll fluorescence (CFIS). Additional measurements were coordinated with the NEON Airborne Observing Platform, the ASCENDS instrument development suite, and the ATOM EV-S2 investigation. Targets of interest included the array of field sites operated by the ABoVE Science Team as well as the intensive sites operated by the DOE NGEE-Arctic team on the Seward Peninsula and in Barrow, NSF's LTER sites at Toolik Lake (North Slope) and Bonanza Creek (Interior Alaska), the Canadian Cold Regions Hydrology sites in the Arctic tundra near Trail Valley Creek NT, the Government of the Northwest Territories Slave River/Slave Delta watershed time series and numerous

  14. Dynamic segmentation to estimate vine vigor from ground images

    OpenAIRE

    Sáiz Rubio, Verónica; Rovira Más, Francisco

    2012-01-01

    [EN] The geographic information required to implement precision viticulture applications in real fields has led to the extensive use of remote sensing and airborne imagery. While advantageous because they cover large areas and provide diverse radiometric data, they are unreachable to most of medium-size Spanish growers who cannot afford such image sourcing. This research develops a new methodology to generate globally-referenced vigor maps in vineyards from ground images taken wit...

  15. Dynamic segmentation to estimate vine vigor from ground images

    OpenAIRE

    Sáiz-Rubio, V.; Rovira-Más, F.

    2012-01-01

    The geographic information required to implement precision viticulture applications in real fields has led to the extensive use of remote sensing and airborne imagery. While advantageous because they cover large areas and provide diverse radiometric data, they are unreachable to most of medium-size Spanish growers who cannot afford such image sourcing. This research develops a new methodology to generate globally-referenced vigor maps in vineyards from ground images taken with a camera mounte...

  16. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  17. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    International Nuclear Information System (INIS)

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide

  18. Airborne iodine-125 arising from surface contamination

    International Nuclear Information System (INIS)

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  19. Combining 3D seismic tomography and ground-penetrating radar to reveal the structure of a megalithic burial tomb

    Science.gov (United States)

    Mendes, Manuela; Caldeira, Bento; Borges, José

    2017-04-01

    This work describes a case study concerning a prehistoric buried tomb (around 3000 years B.C.) located near Évora (Portugal). This monument is a tomb completely buried with only five visible irregular small stones distributed in a circle of 3 meter in diameter. A multi-approach combining 3D seismic tomography and ground-penetrating radar (GPR) have been applied to identify hidden elements and arrangement of the stones, required prior to any excavation work. The methodology for the 3D seismic data acquisition involves a total of 24 shots recorded by four lines, with twelve fixed receivers each one. For the GPR survey was used a 400 MHz antenna which moves along parallel lines with 50 cm separation, over a 30x30 m2 area that contains the buried tomb; the GPR unit was configured to a horizontal rate of 50 scans per meter (1024 samples/scan) and a time window of 60 ns. This multi-approach procedure allowed defining: (i) the housing of the tomb in the basement structure; (ii) the presence of a hidden corridor; (iii) the description of the internal structure of the walls of the tomb; (iv) the state of preservation of the monument. Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.

  20. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...