WorldWideScience

Sample records for airbone trace metals

  1. Dissolved Trace Metals in the Tay Estuary

    Science.gov (United States)

    Owens, R. E.; Balls, P. W.

    1997-04-01

    Dissolved trace metals have been studied over an annual cycle in the relatively pristine Tay estuary (Scotland). The absence of a major anthropogenic signal has enabled some of the more subtle natural processes controlling trace metal distributions to be identified. Concentration ranges of dissolved metals in the Tay are similar to, or lower than, those observed in more industrialized estuaries. All metals behave non-conservatively in the Tay. Interactions with biogenic and detrital particulate phases are important in controlling dissolved trace metal concentrations. The degradation of organic matter appears to be particularly important for Cu. Removal of dissolved metals was observed in the turbidity maximum zone; a simple model was used to demonstrate that this could be accounted for by adsorption onto suspended particulate matter. At high salinity, coincident peaks of all six metals with ammonia and phosphate are attributed to sewage inputs from Dundee at the mouth of the estuary.

  2. Trace metals in barnacles: the significance of trophic transfer

    Institute of Scientific and Technical Information of China (English)

    Philip; S.; RAINBOW; WANG; Wen-Xiong

    2005-01-01

    Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters,identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.

  3. Trace element geochemistry of CR chondrite metal

    CERN Document Server

    Jacquet, Emmanuel; Alard, Olivier; Kearsley, Anton T; Gounelle, Matthieu

    2015-01-01

    We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry of metal grains from 9 different CR chondrites, distinguishing grains from chondrule interior ("interior grains"), chondrule surficial shells ("margin grains") and the matrix ("isolated grains"). Save for a few anomalous grains, Ni-normalized trace element patterns are similar for all three petrographical settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All types of grains are interpreted to derive from a common precursor approximated by the least melted, fine-grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors presumably formed by incomplete condensation, with evidence for high-temperature isolation of refractory platinum-group-element (PGE)-rich condensates before mixing with lower temperature PGE-depleted condensates. The rounded shape of the Ni-rich, interior ...

  4. Factors Controlling the Distribution of Trace Metals in Macroalgae

    Institute of Scientific and Technical Information of China (English)

    王宝利; 刘丛强

    2004-01-01

    This paper presents the concentrations of trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) in macroalgae from five areas. Significant differences were noticed in trace metal concentration in macroalgae, and a large range of variations between the minimum and maximum concentrations of trace metals was found. Trace metals detected in macroalgae generally occur in adsorbed and absorbed forms. Environmental and biological factors jointly control the trace metal compositions and concentrations in macroalgae. The complexity and variation of these factors cause significant differences in trace metal concentrations in macroalgae. Environmental factors play a more important role in controlling trace metal compositions and concentrations when external available trace metals are beyond requirement for algal metabolism and growth, especially for non-essential trace metals; however, when the external available trace metals just satisfy the needs of algal metabolism and growth, biological factors would play a more important role, especially for essential trace metals. Interactions among the trace metals can also influence their compositions and concentrations in macroalgae. It is also discussed how to make macroalgae as an excellent biomonitor for trace metals.

  5. [Development of trace metal ion analysis].

    Science.gov (United States)

    Kobayashi, J

    2000-09-01

    Analyses of trace biologically essential or toxic ionic compounds found in the environment are very important. However, the lack of sensitivity and interference caused by coexisting components are often serious problems. To determine trace levels of metal ions without the above problems, new preconcentration and analytical methods have been developed. Firstly, three methods for the selective preconcentration of metal ions are shown below: 1) 3-Chloropyridazine-6-carbohydrazide was immobilized on glass beads supports to be used as a column packing material. Multi-metal ions were concentrated on the column and eluted selectively with several buffers and hydrochloric acid. The eluate was analyzed off-line by flame atomized-atomic absorption spectrometry (AAS). This method was able to determine sub-ppb levels of cupper- and cadmium-ions in environmental samples. 2) Salicylideneamino-2-thiophenol was immobilized on the supports. Aluminum ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed off-line by flameless-AAS or on-line by flow injection analysis using pyrocatechol violet for a post-column colorimetric reagent. These methods were able to determine ppb-ppt levels of aluminium in environmental samples and were suitable for its state-analysis. 3) Bathocuproinesulfonic acid was immobilized on the supports. Copper ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed on-line by flow injection analysis using bathocuproinesulfonic acid. This method was able to determine sub-ppb levels of copper in environmental samples. On the other hand, to analyze simultaneously trace metal ions and anions, capillary electrophoresis was performed using ethylenediaminetetraacetic acid as an electrolyte component. Simultaneous determination of several ions in mineral waters was achieved by the system.

  6. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  7. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    Science.gov (United States)

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources.

  8. Arsenic and Associated Trace Metals in Texas Groundwater

    Science.gov (United States)

    Lee, L.; Herbert, B. E.

    2002-12-01

    The value of groundwater has increased substantially worldwide due to expanding human consumption. Both the quantity and quality of groundwater are important considerations when constructing policies on natural resource conservation. This study is focused on evaluating groundwater quality in the state of Texas. Historical data from the Texas Water Development Board and the National Uranium Resource Evaluation were collected into a GIS database for spatial and temporal analyses. Specific attentions were placed on arsenic and other trace metals in groundwater. Recent studies in the United States have focused on isolated incidences of high arsenic occurrence, ignoring possible connections between arsenic and other trace metals. Descriptive statistics revealed strong correlations in groundwater between arsenic and other oxyanions including vanadium, selenium and molybdenum. Arsenic and associated trace metals were clustered at three physiographic hotspots, the Southern High Plains, the Gulf Coastal Plains of Texas, and West Texas. A geologic survey showed that arsenic and other trace metals in Texas groundwater follow local geologic trends. Uranium deposits and associated mineralization were found to occur in the same physiographic locations. Uranium mineralization may be a significant natural source of arsenic and other trace metals in Texas groundwater. Recharge, evaporative concentration, and aquifer characteristics were also contributing factors to the occurrence of trace metals in Texas groundwater. Spatial statistics were used to delineate natural sources from anthropogenic inputs. Similarly, the natural background was estimated from the spatial distribution of trace metal observations in Texas groundwater.

  9. Evaluation of metal trace detachment from dosing pumps using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Omar, E-mail: omar.lozanogarcia@unamur.be [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Mejia, Jorge [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Laloy, Julie; Alpan, Lütfiye [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Toussaint, Olivier [Laboratory of Biochemistry and Cellular Biology (URBC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Dogné, Jean-Michel [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Lucas, Stéphane [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2014-07-15

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints)

  10. Bibliography on cycling of trace metals in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    LaRiviere, M.G.; Scott, A.J.; Woodfield, W.G.; Cushing, C.E.

    1978-07-01

    This bibliography is a listing of pertinent literature directly addressing the cycling of trace metals in freshwater ecosystems. Data on cycling, including the influences of environmental mediators, are included. 151 references.

  11. Evaluation of metal trace detachment from dosing pumps using PIXE

    Science.gov (United States)

    Lozano, Omar; Mejia, Jorge; Laloy, Julie; Alpan, Lütfiye; Toussaint, Olivier; Dogné, Jean-Michel; Lucas, Stéphane

    2014-07-01

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints).

  12. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    A seasonal analysis of particulate trace metals, viz. iron, manganese, zinc, copper, cobalt and nickel collected from 4 stations in Cochin backwaters are presented. The spatial trend for cobalt, iron and nickel was stationary at surface whereas...

  13. Trace metals -- a potential threat to our fishing industry

    OpenAIRE

    Oladimeji, A.A.

    1986-01-01

    Trace metals constitute a major form of water pollutant that can adversely affect fish production. The potentially toxic metals have been identified as lead, zinc, copper, arsenic, antimony, mercury beryllium, barium, cadmium, chromium, nickel, selenium among others. Preliminary laboratory studies have been directed to the determination of traces of lead in the aquatic biota and its toxicity. There are indications that the levels reported in effluents from some of the industries may be above ...

  14. Distribution of some trace metals in Syrian phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S.; Amin, Y.; Ibrahim, S.; Al-Bich, F

    2004-05-01

    Distribution of Cu, Cd, Zn and U in a Syrian phosphoric acid plant byproduct, phosphogypsum, has been determined. Uranium, Cd, Zn and Cu were found to be more enhanced in small phosphogypsum particles (45-75 {mu}m) where the highest concentration was found for Cu (51.7 ppm). In addition, the element transfer factors (((Trace element concentration in phosphogypsum (mg/kg))/(Trace element concentration in phosphate rock (mg/kg)))x100) from Syrian phosphate rock to phosphogypsum were calculated and found to be 30, 8 and 17% for Zn, Cd and U, respectively. Moreover, laboratory leaching experiments of phosphogypsum by distilled water, dilute H{sub 2}SO{sub 4} solutions and selective extractants have been performed. Leaching results have shown that around 20% of the U and 100% of the Zn are transferred to the aqueous phase. Batch-wise leaching with dilute H{sub 2}SO{sub 4} solutions shows increased solubility of U, Zn, Cu and Cd from phosphogypsum, while leaching with selective extractants has been performed to determine the amount of exchangeable trace metals which are adsorbed, on gypsum particle surfaces, the amount of trace metals present inside the gypsum lattice, the amount of trace metals associated with organic materials and the amount of trace metals soluble in acids. The results obtained in this study can be utilized to verify the environmentally safe use of phosphogypsum as an amendment to agricultural soils.

  15. The biogeochemical cycles of trace metals in the oceans.

    Science.gov (United States)

    Morel, F M M; Price, N M

    2003-05-01

    Planktonic uptake of some essential metals results in extraordinarily low concentrations in surface seawater. To sequester or take up these micronutrients, various microorganisms apparently release strong complexing agents and catalyze redox reactions that modify the bioavailability of trace metals and promote their rapid cycling in the upper water column. In turn, the low availability of some metals controls the rate of photosynthesis in parts of the oceans and the transformation and uptake of major nutrients such as nitrogen. The extremely low concentrations of several essential metals are both the cause and the result of ultraefficient uptake systems in the plankton and of widespread replacement of metals by one another for various biochemical functions.

  16. Trace metal analysis in Withania somnifera

    Directory of Open Access Journals (Sweden)

    Dr. Jaya Gupta

    2013-12-01

    Full Text Available The stem and seeds of Withania somnifera were digested with HNO3 and HClO4 (4:1 and the contents of thirteen trace elements such as Zn, Fe,Ni, Mn ,K ,Ca, Mg, Co, Cr, Cu, Cd, Pb, and As from different parts were determined by atomic absorption spectroscopy. The experimental results confirmed the presence of Fe, Ca, Mg, Zn, Ni, Co and Mn which are beneficial to the human body is within the limit and K is not detected. The heavy trace element which are harmful to human body i.e., Cd, Pb, Cu within the limit but As is higher and Cr is not detected.

  17. Sedimentary input of trace metals from the Chukchi Shelf

    Science.gov (United States)

    Aguilar-Islas, A. M.; Seguré, M.; Rember, R.; Nishino, S.

    2014-12-01

    The distribution of trace metals in the Arctic Ocean has implications for their global cycles, yet until recently few trace metal observations were available from this rapidly changing ocean. Profiles of dissolved Fe from recent Japanese field efforts in the Western Canada Basin (2008, 2010) indicate the broad Chukchi Shelf as a source of Fe to the halocline of the Western Canada Basin. Here we present dissolved and particulate data for crustal (Al, Mn, Fe) and non-crustal elements (Co, Cu, Zn) from the productive Chukchi Sea to characterize the sedimentary input of these metals to shelf waters contributing to the halocline layer of the Canada Basin. Water column profiles were collected in late summer 2013 onboard the R/V Mirai at 10 stations from the Bering Strait to the slope, and at a time-series (10 days) station located over the outer shelf. A narrow and variable (5-10 m) benthic boundary layer was sampled at the time-series station with highly elevated dissolved and suspended particulate metal concentrations. High metal concentrations were also observed in the subsurface at a station over Barrow Canyon where mixing is enhanced. Reactivity of suspended particulate metals was determined by the leachable vs. refractory fractions. Metal concentrations were determined by ICP-MS. Trace metal transport from the shelf to the interior will be discussed in context with shelf mechanisms contributing to this export, and to expected future changes in the Arctic Ocean.

  18. Soil trace metals and analytical chemistry; Metaux traces des sols et chimie analytique

    Energy Technology Data Exchange (ETDEWEB)

    Bermond, A. [Institut National Agronomique, Lab. de Chimie Analytique, 75 - Paris (France)

    2004-09-01

    The hazard due to the presence of large amounts of trace metals in some soils is strongly related to what we call the speciation of these metals. This so-called speciation is usually performed with extracting reagents, that is to say corresponds to the use of chemical reagents in order to extract metallic cations from a soil sample and to quantify the extracted metals in the solution when equilibrium is reached. This paper is more particularly devoted to the use for this purpose of two reagents, hydrogen peroxide and EDTA. (author)

  19. Transcranial sonography in brain disorders with trace metal accumulation.

    Science.gov (United States)

    Walter, Uwe

    2010-01-01

    Transcranial sonography (TCS) can detect trace metal accumulation in deep brain structures with higher sensitivity than conventional MRI. Especially, increased iron content in the substantia nigra in Parkinson's disease, increased copper content in the lenticular nucleus (LN) in Wilson's disease and idiopathic dystonia, and increased manganese content in the LN in manganese-induced Parkinsonism were detected with TCS, even in subjects with normal MRI. TCS, therefore, might be useful to detect an increased risk of developing neurological symptoms in relatives of patients with Parkinson's or Wilson's disease. The exact mechanism of how an elevated trace metal content leads to an increased echogenicity needs to be further elucidated.

  20. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, A; Dawson, K; Sassiat, N; Quinn, A J; O' Riordan, A, E-mail: alan.oriordan@tyndall.ie [Nanotechnology Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2011-08-17

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H{sub 2}SO{sub 4} and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu{sup 2+} nanomolar concentrations. Linear correlations were observed for increasing Cu{sup 2+} concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  1. Effect of trace metal availability on coccolithophorid calcification.

    Science.gov (United States)

    Schulz, K G; Zondervan, I; Gerringa, L J A; Timmermans, K R; Veldhuis, M J W; Riebesell, U

    2004-08-01

    The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.

  2. Influence of trace metals on some soil nitrogen transformations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.H.; Broadbent, F.E.

    An investigation to evaluate the influence of trace metals on N immobilization, N mineralization, and nitrification was conducted. Samples of Yolo silt loam amended with 100 ppm NH/sub 4/-N, 1% sewage sludge, and 1% ground alfalfa (Medicago sativa L.) were treated with solutions to provide 100, 200, and 400 ppm of Cd(II), Cr(III), Cu(II), Mn(II), Pb(II) and Zn(II), and incubated for 2, 4, 8, and 12-week periods. Metals were determined by extracting with water, KNO/sub 3/, DPTA (diethylenetriaminepentaacetic acid), and HNO/sub 3/ at the end of each incubation period. All metals reverted quickly to more insoluble forms. Quantities of metals extractable with water + KNO, + DPTA decreased with time, while corresponding increases in HNO/sub 3/-soluble forms occurred. Nitrogen immobilization was measured during 2- to 4-week period, and N mineralization and nitrification during the 4- to 12-week period. At low levels of metal addition Mn and Pb stimulated N transformations. Among the six metals studied the sequence in order of decreasing inhibition was Cr > Cd > Cu > Zn > Mn > Pb. It was concluded that N transformation rates may be affected by trace metals in soils receiving heavy sludge applications.

  3. Trace metal mapping by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Jozef [ORNL; Novotny, Dr. Karel [Masaryk University; Hrdlicka, A [Brno University of Technology, Czech Republic; Malina, R [Brno University of Technology, Czech Republic; Hartl, M [Brno University of Technology, Czech Republic; Kizek, R [Mendel University of Brno; Adam, V [Mendel University of Brno

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  4. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  5. Trace metal speciation in natural waters: Computational vs. analytical

    Science.gov (United States)

    Kirk, Nordstrom D.

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  6. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  7. Characterization of airborne trace metal and trace organic species from coal gasification.

    Science.gov (United States)

    Osborn, J F; Santhanam, S; Davidson, C I; Flotard, R D; Stetter, J R

    1984-12-01

    Fugitive emissions from a slagging fixed-bed coal-gasification pilot plant were analyzed by flameless atomic absorption spectrophotometry, gas chromatography, and mass spectrometry for trace metal and trace organic species. Analysis of the size distributions of airborne particulate matter inside the plant showed an abundance of large metal-containing particles; outdoor distributions in the vicinity of the plant resembled the indoor distributions, suggesting the importance of the gasifier in influencing ambient air quality. This conclusion was further supported by identification of similar organic compounds inside and outside the plant. Trace element enrichment factors based on the earth's crustal composition were greater than those based on the composition of the lignite used in the gasifier, showing the importance of characterizing the proper source material when inverstigating chemical fraction during aerosol formation. Enrichments in the present study were much greater than those found in previous sampling during aborted start-up and cleaning procedures, where normal operating temperatures had not yet been reached. Both studies showed evidence of enrichment factors which decreased with increasing particle size. Although much of the airborne mass was associated with large particles having low respirability, the high concentrations of some metals indoors suggests that further assessment of potential occupational exposures is warranted.

  8. Trace Metals And Organic Matter Diagenesis At The Oman Margin

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    METALS AND ORGANIC MATTER DIAGENESIS AT THE OMAN MARGIN Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by R. ALAGARSAMY Oceanography Laboratories, Department of Earth....1.5 Reagent Preparation 65 3.1.6 Sequential Leaching Extraction Procedure 68 3.1.7 Preparation of Standard Solutions 69 3.1.8 Instrumentation 70 3.1.8.1 Flame AAS 70 3.1.8.2 Graphite AAS 71 3.1.9 Determination of Trace Metals 72 3...

  9. Trace Metal Mercury Levels in Residential Homes in Kuwait

    OpenAIRE

    L. AL-Awadi; A R. Khan; R. Al-Kandari

    2008-01-01

    Kuwait is an oil rich state on the northeastern corner of Arabian Peninsula and has faced the unprecedented man made environmental disaster in early 1991 of igniting over 600 oil wells those continually burnt for a period of over six months. The use of crude and heavy fuel oil in the power generating facilities has aggravated the pollution due to particulate matters that carry trace metals. The climatic conditions in this part of the world result into very frequent dust storm transporting par...

  10. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, A.K.; Tripathy, S.C.; Patra, S.; Sarma, V.V.

    an important carbon and nutrient source to the adjacent lagoonal and coastal systems (Odum & Heald, 1972, 1975; Twilley, 1988; Wattayakorn et al., 1990; Robertson et al., 1992). The Coringa River mangrove ecosystem is the second largest coastal ecosystem... and blanks were digested with a mixture of perchloric acid and nitric acid and evaporated to almost dryness. The residues after dilution to 25 ml with HCL (0.1N) were then subjected to trace metal analysis using Perkin Elmer (Model 3110) Atomic Absorption...

  11. Critical evaluation of soil contamination assessment methods for trace metals.

    Science.gov (United States)

    Desaules, André

    2012-06-01

    Correctly distinguishing between natural and anthropogenic trace metal contents in soils is crucial for assessing soil contamination. A series of assessment methods is critically outlined. All methods rely on assumptions of reference values for natural content. According to the adopted reference values, which are based on various statistical and geochemical procedures, there is a considerable range and discrepancy in the assessed soil contamination results as shown by the five methods applied to three weakly contaminated sites. This is a serious indication of their high methodological specificity and bias. No method with off-site reference values could identify any soil contamination in the investigated trace metals (Pb, Cu, Zn, Cd, Ni), while the specific and sensitive on-site reference methods did so for some sites. Soil profile balances are considered to produce the most plausible site-specific results, provided the numerous assumptions are realistic and the required data reliable. This highlights the dilemma between model and data uncertainty. Data uncertainty, however, is a neglected issue in soil contamination assessment so far. And the model uncertainty depends much on the site-specific realistic assumptions of pristine natural trace metal contents. Hence, the appropriate assessment of soil contamination is a subtle optimization exercise of model versus data uncertainty and specification versus generalization. There is no general and accurate reference method and soil contamination assessment is still rather fuzzy, with negative implications for the reliability of subsequent risk assessments.

  12. Trace Metals in Urban Stormwater Runoff and their Management

    Science.gov (United States)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations

  13. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  14. Lead isotopes and trace metals in dust at Yucca Mountain

    Science.gov (United States)

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  15. Trace Metal Mercury Levels in Residential Homes in Kuwait

    Directory of Open Access Journals (Sweden)

    L. AL-Awadi

    2008-01-01

    Full Text Available Kuwait is an oil rich state on the northeastern corner of Arabian Peninsula and has faced the unprecedented man made environmental disaster in early 1991 of igniting over 600 oil wells those continually burnt for a period of over six months. The use of crude and heavy fuel oil in the power generating facilities has aggravated the pollution due to particulate matters that carry trace metals. The climatic conditions in this part of the world result into very frequent dust storm transporting particulate matters short and long distance. Mercury in atmosphere is mainly due to burning of fossil fuel, incinerators, crematoriums, extraction of precious metals and salt-chlorine industries. This study has been initiated for mercury measurements from an old salt-chlorine industrial site that has been closed since 1984. To compare the mercury levels elsewhere, a comprehensive measurement program was devised and conducted to obtain mercury levels in most of the urban areas in Kuwait. Domestic dust samples from selected residences were collected for a period of a week. These samples were analyzed using KISR/T0-345 method especially developed for precise measurements of trace metals in particulate matter. It is required to identify the sources of mercury that resulted into such mercury levels in indoor air in the urban areas. For those areas where mercury levels are substantially high mitigation methods have been proposed to reduce the impact on to the residents.

  16. Trace metals in wine and vineyard environment in southern Ukraine.

    Science.gov (United States)

    Vystavna, Yuliya; Rushenko, Liliya; Diadin, Dmytro; Klymenko, Olga; Klymenko, Mykola

    2014-03-01

    The study was focused on measuring the concentration levels of trace metals in the environment, vines and wine within the wine-growing region of Ukraine and comparing the findings to the data from well known wine-growing areas. Analysis was carried out of Cr, Cu, Ni, Pb and Zn in irrigation water, grape juice and wine, Cu, Pb and Zn in soil (pseudo-total and acid-soluble fractions) and Vitis vinifera L. in leaves and grapes. The accumulation levels of Cu and Zn from soil to leaves were significantly higher than from soil to grapes. Pb had lower potential to accumulate in aerial parts than Cu and Zn. Higher contents of Cu and Zn were observed in Muscat white grape juice compared to Chardonnay. The concentration levels of Zn and Cu were higher in wine than in juice. Trace metals were regulated by the soil composition and biological specificity of cultivars. The data obtained from the study area did not exceed the international limits.

  17. Daily intake of trace metals through coffee consumption in India.

    Science.gov (United States)

    Suseela, B; Bhalke, S; Kumar, A V; Tripathi, R M; Sastry, V N

    2001-02-01

    The trace element contents of five varieties of instant coffee powder available in the Indian market have been analysed. Ca, Cr, Fe, K, Mg, Mn, Ni, Sr, Zn and Pb, Cd, Cu have been determined using atomic absorption spectrophotometry and differential pulse anodic stripping voltammetry, respectively. The metal levels in the coffee powders observed in this study are comparable with those reported for green coffe beans (Arabica and Robusta variety) reported worldwide with the exception of Sr and Zn, which were on the lower side of the reported values. Concentrations of these metals have been converted into intake figures based on coffee consumption. The daily intakes of the above metals through ingestion of coffee are 1.4 mg, 1.58 microg, 124 microg, 41.5 mg, 4.9 mg, 17.9 microg, 2.9 microg, 3.8 microg, 12.5 microg, 0.2 microg, 0.03 microg and 15.5 microg, respectively. The values, which were compared with the total dietary, intake of metals through ingestion by the Mumbai population, indicate that the contribution from coffee is less than or around 1% for most of the elements except for Cr and Ni which are around 3%.

  18. Preconcentration method for trace metals in natural waters using 4-morpholine dithiocarbamate

    Directory of Open Access Journals (Sweden)

    T. SABO

    2002-12-01

    Full Text Available The optimum conditions were found for the preconcentration of trace metals in natural waters and model samples with standard metals concentrations by using 4-morpholinedithiocarbamate. The formed complexes were extracted with chloroform. Different methods for recovering the metals from the organic solvent were studied and compared before AAS metal analysis. The developed preconcentration method was successfully applied to the determination of trace metals concentrations in water samples from the “Barje” lake (Leskovac, Yugoslavia.

  19. Study on Dissolved Trace Metals in Sea Surface Microlayer in Daya Bay

    Institute of Scientific and Technical Information of China (English)

    张正斌; 刘春颖; 刘莲生; 于琳; 王肇鼎

    2004-01-01

    Glass-plate sampling during 1988-1999 in Daya Bay and suitable corresponding analytical methods were used for the measurement of dissolved trace metals, dissolved organic carbon, biological oxygen demand, chemical oxygen demand, salinity of the sea surface microlayer and subsurface water. Apparent enrichment mechanism and diurnal variation have been revealed for dissolved trace metals in the microlayer in Daya Bay. The more dissolved organic matter was enriched in the sea surface microlayer, the more dissolved trace metals were enriched in the layer. The organic matter played an important role in the enrichment process. The diurnal variations of dissolved trace metals showed that their concentration was apparently inversely related to the tide activity that the concentration was low during rising tide, but high during falling tide. The behavior of dissolved trace metals expressed by the diurnal variation was clearly opposite to that of salinity.

  20. Pathways of trace metal uptake in the lugworm Arenicola marina

    Energy Technology Data Exchange (ETDEWEB)

    Casado-Martinez, M.C. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)], E-mail: c.casado-martinez@nhm.ac.uk; Smith, B.D. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Valls, T.A. del [Unesco UNITWIN Wicop Chair, Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, C.P. 11510 Puerto Real, Cadiz (Spain); Rainbow, P.S. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2009-04-02

    Radiotracer techniques were used to determine the rates of trace metal (Ag, Cd and Zn) uptake and elimination (33 psu, 10 deg. C) from water and sediment by the deposit-feeding polychaete Arenicola marina, proposed as a test species for estuarine-marine sediments in whole-sediment toxicity tests. Metal uptake rates from solution increase with increasing dissolved metal concentrations, with uptake rate constants ({+-} SE) (l g{sup -1} d{sup -1}) of 1.21 {+-} 0.11 (Ag), 0.026 {+-} 0.002 (Zn) and 0.012 {+-} 0.001 (Cd). Assimilation efficiencies from ingested sediments were measured using a pulse-chase radiotracer feeding technique in two different lugworm populations, one from a commercial supplier (Blyth, Northumberland, UK) and the other a field-collected population from the outer Thames estuary (UK). Assimilation efficiencies ranged from 2 to 20% for Zn, 1 to 6% for Cd and 1 to 9% for Ag for the Northumberland worms, and from 3 to 22% for Zn, 6 to 70% for Cd and 2 to 15% for Ag in the case of the Thames population. Elimination of accumulated metals followed a two-compartment model, with similar efflux rate constants for Zn and Ag and lower rates of elimination of Cd from the slow pool. Efflux rate constants ({+-} SE) of Zn and Ag accumulated from the dissolved phase were 0.037 {+-} 0.002 and 0.033 {+-} 0.006 d{sup -1} whereas Cd was eliminated with an efflux rate constant one order of magnitude lower (0.003 {+-} 0.002 d{sup -1}). When metals were accumulated from ingested sediments, the efflux rate constants for the slow-exchanging compartment were of the same order of magnitude for the three metals, and of the same order of magnitude as those derived after the dissolved exposure for Zn and Ag (0.042 {+-} 0.004 and 0.056 {+-} 0.012 d{sup -1} for Zn and 0.044 {+-} 0.012 and 0.069 {+-} 0.016 d{sup -1} for Ag for the Northumberland and Thames populations, respectively). Cd accumulated from ingested sediments was eliminated with a rate constant not different from the

  1. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  2. Trace metal behaviour in riverine sediments: Role of organic matter and sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Charriau, Adeline; Lesven, Ludovic [Universite Lille 1 Sciences et Technologies, Laboratoire Geosystemes (FRE-CNRS 3298), 59655 Villeneuve d' Ascq (France); Gao Yue; Leermakers, Martine; Baeyens, Willy [Department of Analytical and Environmental Chemistry (ANCH), Vrije Universiteit Brussel (VUB), B-1050 Brussels (Belgium); Ouddane, Baghdad [Universite Lille 1 Sciences et Technologies, Laboratoire Geosystemes (FRE-CNRS 3298), 59655 Villeneuve d' Ascq (France); Billon, Gabriel, E-mail: gabriel.billon@univ-lille1.fr [Universite Lille 1 Sciences et Technologies, Laboratoire Geosystemes (FRE-CNRS 3298), 59655 Villeneuve d' Ascq (France)

    2011-01-15

    Graphical abstract: Experimental and modelling approach on trace metal fate in anoxic sediments. Display Omitted Research highlights: {yields} Experimental and modelling approach on trace metals fate in anoxic sediments. {yields} Organic matter and sulphides compete for the binding of trace metals. {yields} Efficient scavenging of trace metals in sulphide minerals. {yields} Dissolved organic matter increases the solubility of trace metals in pore waters. {yields} Similar lability of trace metals in pore waters and sediment particles. - Abstract: Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb

  3. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    Science.gov (United States)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  4. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-de-Alba, Margarita [Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio S. Pedro, E-11510, Puerto Real, Cadiz (Spain); Huerta-Diaz, Miguel Angel, E-mail: huertam@uabc.edu.mx [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico); Delgadillo-Hinojosa, Francisco [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico); Hare, Landis [Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9 (Canada); Galindo-Riaño, M. Dolores [Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio S. Pedro, E-11510, Puerto Real, Cadiz (Spain); Siqueiros-Valencia, Arturo [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Campus Ensenada, Km. 103 Carr. Tijuana-Ensenada, Ensenada 22800, Baja California (Mexico)

    2016-02-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) > 80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20 ± 0.13 to (0.30 ± 0.56) × 10{sup 3} mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (< 25%) while degrees of sulfidization (DOS) were high (~ 50%) because of the contribution of acid volatile sulfide. DOP values correlated with DTMP values (p ≤ 0.001), indicating that metals are gradually incorporated into pyrite as this mineral is formed. Significant correlations were also found between DTMP values and − log(K{sub sp(MeS)}/K{sub sp(pyr)}) for both harbors, indicating that incorporation of trace metals into the pyrite phase is a function of the solubility product of the corresponding metal sulfide. The order in which elements were pyritized in both harbors was Zn ≈ Mn < Fe < Cd ≈ Pb < Ni ≈ Co < < Cu. Lastly, a strong correlation (r{sup 2} = 0.87, p < 0.01) was found between average reactive trace metal concentrations and metal concentrations measured in Armandia brevis (a deposit-feeding Opheliid polychaete), suggesting that these labile sedimentary metals are

  5. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokolowski, A.; Wolowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporall

  6. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals.

    Science.gov (United States)

    Gao, Xuelu; Zhou, Fengxia; Chen, Chen-Tung Arthur

    2014-01-01

    It is well recognized that the ecosystem of the Bohai Sea is being rapidly degraded and the Sea has basically lost its function as a fishing ground. Billions of funds have been spent in slowing down, halting and finally reversing the environmental deterioration of the Bohai Sea. Although trace metals are routinely monitored, the data with high temporal resolution for a clear understanding of biogeochemical processes in the ecosystem of the Bohai Sea are insufficient, especially in the western literature. In this review, status of trace metal contamination in the Bohai Sea is assessed based on a comprehensive review of their concentrations recorded in the waters, sediments and organisms over the past decades. Studies show that metal contamination in the Bohai Sea is closely associated with the fast economic growth in the past decades. Concentrations of trace metals are high in coastal areas especially in the estuaries. Alarmingly high metal concentrations are observed in the waters, sediments and organisms from the western Bohai Bay and the northern Liaodong Bay, especially the coasts near Huludao in the northernmost area of the Bohai Sea, which is being polluted by industrial sewage from the surrounding areas. The knowledge of the speciation and fractionation of trace metals and the influence of submarine groundwater discharge on the biogeochemistry of trace metals in the Bohai Sea is far from enough and related work needs to be done urgently to get a better understanding of the influence of trace metals on the ecosystem of the Bohai Sea. A clear understanding of the trace metal pollution status of the Bohai Sea could not be achieved presently for lack of systematic cooperation in different research fields. It is quite necessary to apply the environmental and ecological modeling to the investigation of trace metals in the Bohai Sea and then provide foundations for the protection of the environment and ecosystem of the Bohai Sea.

  7. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  8. Portable Sensor for Rapid In Situ Measurement of Trace Toxic Metals in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a sensor to detect select trace toxic heavy metals (Ag, Cd, Mn, Ni, and Zn) in water is proposed. Using an automatic side-stream sampling technique,...

  9. Trace Element Composition of Metal and Sulphides in Iron Meteorites Determined Using ICP-MS

    Science.gov (United States)

    Giscard, M. D.; Hammond, S. J.; Bland, P. A.; Benedix, G. K.; Rogers, N. W.; Russell, S. S.; Genge, M. J.; Rehkamper, M.

    2012-09-01

    We measured trace element concentrations in Nantan, Toluca, Cape York, Carthage, Gibeon and Dronino. Poikiloblastic daubreelite in Gibeon indicates shock metamorphism. There is a volatile depletion in metal and sulphides.

  10. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  11. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  12. Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene Barra Rodriguez

    2016-02-01

    Full Text Available Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirement of Symbiodinium is lacking. Here we show that the requirement of S. kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn and varying Fe concentrations, we observed that Cu, Zn and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal interreplacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment.

  13. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  14. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes.

    Science.gov (United States)

    Locatelli, Fabricio M; Goo, Kian-Sim; Ulanova, Dana

    2016-05-01

    Bacteria belonging to the Streptomyces genus are characterized by a complex life cycle and the production of many bioactive secondary metabolites. Trace metals play an important role in streptomycete metabolism and development, however, their mechanism of action is not fully understood. In this review, we summarize the present knowledge on metallosensing regulators and trace metal action, as well as discuss the possible application in natural product discovery.

  15. Remobilization of trace metals induced by microbiological activities near sediment-water interface, Aha Lake, Guiyang

    Institute of Scientific and Technical Information of China (English)

    WANG Fushun; LIU Congqiang; LIANG Xiaobing; WEI Zhongqing

    2003-01-01

    The Aha Lake, as a seasonally oxygen-absent man-made reservoir, has been polluted by acidic mining drainage and domestic sewages for a long time, withiron, manganese and sulfate excessively enriched in water and sediment. By means of microbe counting, the analysis of trace metals in pore water and electronicacceptors for organic matter decomposing, we have found that strong biogeochemical remobilization of trace metals occurred near the water-sediment interface. The microbial reduction of iron, manganese and sulfate took place in different parts throughout the sediment core with the extend of iron reduction lower than that of sulfate reduction, which happened in the surficial sediments and hampered the upward release of some trace metals to some extent. Some trace metals in pore water, due to the "dual releasing" effects caused by the reduction of Fe3+ andMn4+ at varying depth, show a tendency of being enriched excessively in the upper 10 cm of sediment. In this study, we discussed the microbiological mechanism of trace metals enrichment in surficial sediments and the environmental condition, with an attempt to realize the unsteady mobilization of trace metals and their potential harm to overlying lake water in the Aha Lake, Guiyang.

  16. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    Science.gov (United States)

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit.

  17. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes.

  18. Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions

    NARCIS (Netherlands)

    Griethuysen, van C.; Luitwieler, M.; Joziasse, J.; Koelmans, A.A.

    2005-01-01

    Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a

  19. Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.

    2005-01-01

    Trace metals are essential for anaerobic microorganisms, because they are present as cofactor in many of their enzymes. Therefore anaerobic wastewater treatment systems using these microorganisms to perform biological conversions are dependent on these metals for their (optimal) performance. In prac

  20. Volcano emissions of trace metals, atmospheric deposition, and supply to biogeochemical cycles

    Science.gov (United States)

    Hinkley, T.; Thornber, C. R.; Matsumoto, A.

    2003-12-01

    Quiescently degassing (not exploding) volcanoes inject into the troposphere plumes that have remarkably high concentrations of ordinarily-rare, volatile trace metals. In pre-industrial times, these emissions appear to have accounted for the strong "enrichments" (relative to concentrations in crustal material or in ocean solute) of many such trace metals in the material deposited from the atmosphere. This has been shown by measuring the source strength of the emissions of metals from volcanoes, and comparing that to the amounts of the metals (excess over amounts accounted for by rock dust and sea salt) deposited onto high-latitude ice sheets: volcano degassing outputs of metals and deposition masses of metals to ice are comparable, on the basis of the masses (fluxes) and proportions of the metals, and from the proportions of lead (Pb) isotopes. There is indication that in modern industrial times the elevated trace metal fractions in the atmospheric material that has small particle size and long atmospheric residence time is still more strongly influenced by volcano emissions than by industrial emissions. Throughout earth's history it is likely that volcano emissions were a major control on the environmental background levels of trace elements, in which plants and animals evolved their tolerances to these mostly-poisonous substances.

  1. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    Science.gov (United States)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  2. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.

    Science.gov (United States)

    Zhang, Chutian; Yang, Yong; Li, Weidong; Zhang, Chuanrong; Zhang, Ruoxi; Mei, Yang; Liao, Xiangsen; Liu, Yingying

    2015-09-01

    Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city.

  3. Fundamental Studies of Underpotential Metal Deposition and Trace Analysis Using Solid Electrodes.

    Science.gov (United States)

    1982-01-01

    7AD-At30 099 FUNDAMENTAL STUDIES OF UNDERPOTENTIAL METAL DEPOSITION 1 BUFFALO DEPT OF CHEMISTRY S BRUCKENSTEIN 1982 UNCLASSIFIED AFOSR-TR-83-0557...T’S CAT A--CG t,-V5EP A . ITE(ad utilS TYPE OF REPCRT 0 0 .’EOEt’ Fundamental Studies of Underpotential Metal Final Deposition and Trace411111110...siectrocatalyls (by underpotential metal deposition ). A second objective was to develop new approaches to studying electrcxhemical reactions at solid

  4. Oyster-based national mapping of trace metals pollution in the Chinese coastal waters.

    Science.gov (United States)

    Lu, Guang-Yuan; Ke, Cai-Huan; Zhu, Aijia; Wang, Wen-Xiong

    2017-03-02

    To investigate the distribution and variability of trace metal pollution in the Chinese coastal waters, over 1000 adult oyster individuals were collected from 31 sites along the entire coastline, spanning from temperate to tropical regions (Bohai Sea, Yellow Sea, East China Sea and South China Sea), between August and September 2015. Concentrations of macroelements [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] and trace elements [cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), chromium (Cr), silver (Ag), and titanium (Ti)] in these oysters were concurrently measured and analyzed. The results showed high Ti, Zn and Cu bioaccumulation in oysters from Guangdong (South China Sea) and Zhejiang (East China Sea). Oysters at Nanji Island (Wenzhou) and Daya Bay (Huizhou) accumulated significantly high concentrations of Ni and Cr. The elements in these oysters were several times higher than the national food safety limits of China. On the other hand, the present study found that normalization of metals by salinity (Na) and nutrient (P) could reflect more details of metal pollution in the oysters. Biomonitoring of metal pollution could benefit from incorporating the macroelement calibration instead of focusing only on the total metal concentrations. Overall, simultaneous measurement of macroelements and trace metals coupled with non-linear analysis provide a new perspective for revealing the underlying mechanism of trace metal bioavailability and bioaccumulation in marine organisms.

  5. Insights into Carbonate Formation through the Incorporation of Trace Metals into Ooids

    Science.gov (United States)

    Fairbank, V. E.; Robinson, L. F.; Parkinson, I. J.; Elliott, T.

    2014-12-01

    Trace metal ratios are widely used as paleoclimate proxies for past ocean conditions. In particular Mg/Ca and Sr/Ca ratios in biogenic carbonates have been used as paleothermometers. Of course the use of these trace metal ratios as reliable climate proxies does not come without complications. As well as biologically mediated "vital effects", there have also been other secondary controls on trace metal incorporation reported, including salinity, carbonate ion concentration and growth rate. Within this study a range of trace metal ratios and their isotopes have been measured for modern ooid samples forming under a range of environmental conditions. Since ooids are thought to form through inorganic precipitation (although microbial mediation may play a role), the "vital effects" seen in biogenic carbonates should be minimised or absent. Therefore, ooids should be expected to incorporate trace metals similarly to carbonate precipitated in experimental studies. Through studying modern ooids we can test this hypothesis, as well as looking at the factors that affect the incorporation of trace metals into calcium carbonates without the control of typical "vital effects".The sample set includes both pure aragonite and pure calcite ooids, as well as samples with intermediate mineralogy as determined by in situ Raman spectroscopy. The distribution coefficients for purely aragonite or calcite ooids are offset from the reported inorganic precipitate values, with DSr being larger, while DMg has been found to be lower. The incorporation of Mg and Sr across the sample set is inversely correlated and does not seem to be explained by mineralogy alone. Here we explore alternative secondary factors contributing to the incorporation of these trace elements into oolitic carbonate. This will be accomplished by utilising stable Sr isotope fractionation during incorporation and using kinetic models and distribution coefficients to investigate the controls on Mg and Sr partitioning into

  6. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    Science.gov (United States)

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  7. Maximum permissible concentrations for water, sediment and soil derived from toxicity data for nine trace metals

    OpenAIRE

    Plassche EJ van de; Polder MD; Canton JH

    1992-01-01

    In this report Maximum Permissible Concentrations (MPC) are derived for 9 trace metals based on ecotoxicological data. The elements are: antimony, barium, beryllium, cobalt, molybdenum, selenium, thallium, tin, and vanadium The study was carried out in the framework of the project "Setting integrated environmental quality objectives". For the aquatic environment MPCs could be derived for all trace elements. These values were based on toxicity data for freshwater as well as saltwater...

  8. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  9. QUANTITATIVE AAS STIMATION OF HEAVY METALS AND TRACE ELEMENTS IN MARKETED AYURVEDIC CHURNA PREPARATIONS IN INDIA

    Directory of Open Access Journals (Sweden)

    Munish Garg* and Jaspreet Singh

    2012-05-01

    Full Text Available Churna preparations are an important and widely used form of Ayurvedic herbal formulations in India. These are prepared by mixing powdered form of single or mixture of several crude drugs meant to be dispensed as such. Since the quality of raw material plays an important role in the overall quality of a herbal formulation due to common practice of collecting and processing medicinal plants from different geographical sources and the fact presence of certain trace elements and heavy metals have a great significance in this matter, the present study is based on the screening of 19 popular herbal Churna preparations sold in the Indian market for the quantitative analysis of essential trace and toxic heavy metals by atomic absorption spectrometry. Heavy metals like Pb, Cd and trace metals like Ca, Mg, Al, Cu, Zn were determined using flame atomic absorption spectrometer (FAAS and heavy metals such as As and Hg were determined by hydride generation technique (cold vapour atomic absorption spectrometery. The results reveal that among the trace (micronutrients metals Ca and Mg were found in highest amount. Sixteen samples for Hg content and eight for Pb content were exceeding the WHO permissible limits. Arsenic was found below the permissible limit while Cd was above the permissible limit in all the tested samples. In conclusion, the quality of herbal Churna preparations sold in India market is questionable and need to be regulated efficiently before launching in to the market. Besides, the present paper provides a simple, convenient and reliable AAS method for the quantitative analysis of trace and heavy metals in herbal products which can be utilized for industrial purpose.

  10. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    , the majority of the boilers are currently equipped with the old precipitators. The results of the study show remarkably high concentrations of toxic heavy metals in the flue gases (e.g., Pb, Zn, Mn and As: >200 μg/m3 each) and clear accumulation of Pb, Cd, Zn, Tl and As on the fly ash. Additionally...

  11. Determination of Trace Metals Abnormalities in Patients with Vivax Malaria

    Directory of Open Access Journals (Sweden)

    GS Gachal

    2011-06-01

    Full Text Available Background: In the present study, blood serum level of metals were determined in malarial pa­tients and compared with those in the normal subjects without complication using Atomic Absorp­tion Spectrometer.Methods: For the determination of these metals twelve intravenous blood samples each from re­ferred malarial patients and a group of normal subjects were collected and immediately centri­fuged to obtain the supernatant liquid, serum of both the groups for analysis.Results: The blood serum levels of copper in malarial patients determined to be 2.6917 ppm, which is higher as compared to that found 2.045 in normal subjects. Whereas the blood serum levels of iron, magnesium, and zinc found 2.0708 ppm, 12.2467 ppm and 4.9017 ppm respec­tively in malarial patients, who are lower than those, are determined in the blood serum of normal sub­jects. Blood serum levels of iron, magnesium, and zinc in normal subjects found 3.950 ppm, 19.4892 ppm, and 5.242 ppm respectively.Conclusion: In this study the metal content of copper, iron, magnesium and zinc in vary in malar­ial patients as compared those in the normal subjects. It may suggest that the decreased lev­els of iron, magnesium, and zinc can be maintained by giving as supplement of these metals in therapy.

  12. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  13. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection.

  14. Atmospherically deposited trace metals from bulk mineral concentrate port operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m{sup 2}/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m{sup 2}/day). Maximum loading values after a 10-minute play period were 3012 μg/m{sup 2}, more than seven times the goal of 400 μg/m{sup 2} used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m{sup 2}) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m{sup 2}/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ({sup 208}Pb/{sup 207}Pb and {sup 206}Pb/{sup 207}Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear — even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. - Graphical abstract: Post-play hand wipe, Headland Park, Townsville, Australia. - Highlights: • Bulk mineral port

  15. Trace metal levels in fruit juices and carbonated beverages in Nigeria.

    Science.gov (United States)

    Williams, Akan B; Ayejuyo, Olusegun O; Ogunyale, Adekunle F

    2009-09-01

    Trace metal levels in selected fruit juices and carbonated beverages purchased in Lagos, Nigeria were determined using atomic absorption spectrophotometer (Unicam model 969) equipped with SOLAAR 32 windows software. Fruit juices analysed were grape, pineapple, apple, orange, lemon juices and their brand names were used. Some carbonated drinks were also evaluated for metal levels. Trace metals investigated were Cr, Cu, Pb, Mn, Ni, Zn, Sn, Fe, Cd and Co. Trace metal contents of fruit juices were found to be more than the metallic contents of carbonated beverages. Pb level in the fruit juices ranged from 0.08 to 0.57 mg/l but was not detected in the carbonated drinks. Concentrations of Pb in lemon juice and Mn in pineapple juice were relatively high. Cd and Co were not detected in the selected juices and beverages. Additionally, Pb, Cu, Cr and Fe were not detected in canned beverages but were present in bottled beverages. However, the metal levels of selected fruit juices and carbonated beverages were within permissible levels except for Mn in pineapple juice and Pb in lemon juice.

  16. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively.

  17. Assessment of trace metal contamination of drinking water in the Pearl valley, azad jammu and kashmir

    Energy Technology Data Exchange (ETDEWEB)

    Ghulam Sarwar Shah, Syed [Centre for the Study of Health, School of Social Sciences and Law, Brunel University, Uxbridge (United Kingdom); Jabbar Chaudhary, Abdul [Institute for the Environment, Brunel University, Uxbridge (United Kingdom); Haleem Khan, Mohammad [Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad (Pakistan); Javaid, Saboor

    2008-02-15

    The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  18. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    Science.gov (United States)

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited.

  19. Fluid displacive resin embedding of laminated sediments: preserving trace metals for high-resolution paleoclimate investigations

    NARCIS (Netherlands)

    Jilbert, T.; Lange, G.J. de; Reichart, G.-J.

    2008-01-01

    For the high-resolution study of trace metal profiles in laminated anoxic sediments, a specially adapted method of resin embedding has been developed. Fluid displacement is the preferred means of sediment dehydration, offering optimum structural preservation and facilitating desalination. Exchanges

  20. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  1. Bioconcentration of trace metals by Saccostrea cucullata (von Born 1778) from Andaman waters

    Digital Repository Service at National Institute of Oceanography (India)

    Abhilash, K.R.; Gireeshkumar, T.R.; Venu, S.; Raveendran, T.V

    Journal of Geo Marine Sciences Vol.42(3), June 2013, pp. 326-330 Bioconcentration of trace metals by Saccostrea cucullata (von Born 1778) from Andaman waters Abhilash K.R.1, Gireeshkumar T.R.2, Venu S.3& Raveendran T.V.1* 1National...

  2. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; DineshKumar, P.K.; Nair, M.; Muraleedharan, K.R.

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance...

  3. Petroleum hydrocarbons and trace metals in Visakhapatnam harbour and Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; VaraPrasad, S.J.D.; Gupta, G.V.M.; Sudhakar, U.

    High concentrations of PHC were observed in the inner channels (viz. South lighter canal, Northern arm, North Western arm and Western arm) of Visakhapatnam Harbour, Andhra Pradesh, India. The estimation of trace metals (Cu, Zn, Pb, Cd, Co, Ni and Cr...

  4. Maximum permissible concentrations for water, sediment and soil derived from toxicity data for nine trace metals

    NARCIS (Netherlands)

    van de Plassche EJ; Polder MD; Canton JH

    1992-01-01

    In this report Maximum Permissible Concentrations (MPC) are derived for 9 trace metals based on ecotoxicological data. The elements are: antimony, barium, beryllium, cobalt, molybdenum, selenium, thallium, tin, and vanadium The study was carried out in the framework of the project "Setting int

  5. Biogeochemical cycling of nutrients and trace metals in the sediment of Haringvliet lake: reponse to salinization

    NARCIS (Netherlands)

    Canavan, R.W.

    2006-01-01

    This thesis examines sediment redox processes associated with organic matter degradation and their impact on the cycling of nutrients (N, P) and trace metals (Cd, Co, Ni, Pb, Zn). Our study site, Haringvliet Lake, is located in the Rhine-Meuse River Delta in the southwest of The Netherlands. This wa

  6. Biogeochemical Cycling of Nutrients and Trace Metals in the Sediment of Haringvliet Lake: Response to Salinization

    NARCIS (Netherlands)

    Canavan, R.W.

    2006-01-01

    This thesis examines sediment redox processes associated with organic matter degradation and their impact on the cycling of nutrients (N, P) and trace metals (Cd, Co, Ni, Pb, Zn). Our study site, Haringvliet Lake, is located in the Rhine-Meuse River Delta in the southwest of The Netherlands. This wa

  7. Microbial Activity Indices: Sensitive Soil Quality Indicators for Trace Metal Stress

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Tao; T.BECQUER; C.QUANTIN; M.BENEDETTI; P.LAVELLE; DAI Jun

    2005-01-01

    Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251,250, 171, and 2.4mg kg-1 respectively. DTPA-extractable metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, total Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C mineralization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some "linked" microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.

  8. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf

    DEFF Research Database (Denmark)

    Naji, Abolfazl; Khan, Farhan; Hashemi, Seyed Hassan

    2016-01-01

    This study was carried out to evaluate the concentration of trace metals (Cd, Cu, Ni, Pb and Zn) in the muscle of four fish species from the Persian Gulf. Trace metals were analyzed using atomic absorption spectroscopy and consumption rates advisory for minimizing chronic systemic effects...

  9. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique

    Energy Technology Data Exchange (ETDEWEB)

    Janaki-Raman, D. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Jonathan, M.P. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico)]. E-mail: mp_jonathan7@yahoo.com; Srinivasalu, S. [Department of Geology, Anna University, Chennai - 600 025 (India); Armstrong-Altrin, J.S. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico); Mohan, S.P. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Ram-Mohan, V. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India)

    2007-01-15

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO{sub 3}, organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO{sub 3} indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources. - Natural and anthropogenic trace metals afeecting mangrove sediments.

  10. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities.

  11. [Trace metals in coastal sediments from Costa Rica].

    Science.gov (United States)

    García-Céspedes, Jairo; Acuña-González, Jenaro; Vargas-Zamora, José A

    2004-12-01

    Marine sediment samples from four coastal ecosystems in Costa Rica were taken between the years 2000-2002 and their iron, lead, copper and zinc concentrations were determined by the atomic absorption technique with flame or graphite furnace. In the Pacific coast, Culebra Bay (Papagayo Gulf), Gulf of Nicoya, and Golfito Bay (Dulce Gulf), were selected as representative sites, and Moín Bay, at the Caribbean coast. Mean metal concentrations for all ecosystems followed the same pattern: Fe > Zn > Cu > Pb. No temporal pattern was found for any metal. Iron and copper mean concentrations were higher in Golfito Bay (5.8% and 87 microg/g, respectively) and lower in Moín Bay (3.4% and 52 microg/g, respectively). Zinc mean concentration was also higher in Golfito Bay (96 microg/g), but lower in Culebra Bay (66 microg/g). Lead mean concentration was higher in Moín Bay (6.4 microg/g) and lower in Culebra Bay (3.0 microg/g). Lead highest concentrations occurred in the Caribbean and in Golfito Bay, and for the rest of the elements the maximum values were found in Golfito Bay. On the basis of data obtained in this work, Culebra Bay was considered a relatively unpolluted location; Golfito Bay was more contaminated, and Moín Bay and the Gulf of Nicoya showed an intermediate condition.

  12. Polycyclic aromatic hydrocarbons and trace metal contamination of coastal sediment and biota from Togo.

    Science.gov (United States)

    Gnandi, Kissao; Musa Bandowe, Benjamin A; Deheyn, Dimitri D; Porrachia, Magali; Kersten, Michael; Wilcke, Wolfgang

    2011-07-01

    The state of contamination of tropical environments, particularly in Africa, remains a relatively under explored subject. Here, we determined polycyclic aromatic hydrocarbon (PAH) and trace metal concentrations in coastal sediment and biota samples (fish and mussels) from Togo (West Africa). In the sediments, the ∑21 PAH concentrations ranged from EF) values relative to the Earth's crust show that the contamination is extremely severe for Cd (EF = 191), severe for Cr (EF = 18) and U (EF = 17.8), moderately severe for Zr (EF = 8.8), for Ni (EF = 6.8), Sr (EF = 5.9) and Ba (EF = 5.4), and moderate for V (EF = 3.6) and Zn (EF = 3.4). Sediments sampled in areas affected by the dumping of phosphorite mine tailings showed particularly high concentrations of trace metals. Overall, concentrations of both PAHs and trace metals in sediment tend to increase from the coastline to the open sea (2 km offshore). This is attributable to the increasingly finer texture of coastal sediment found offshore, which has a terrigenous origin and appears loaded with various contaminants through adsorption processes. Such high loads of trace metals were also found in the biota (fish and mussels). The ratio of measured trace metal concentrations in biota to threshold limits set by the World Health Organization herein defined as relative health factor (RHF) was high. Average RHF values in fish were highest for Se (470), As (250), Ag (97), Ni (78), Mn (63), Fe (53), Pb (36), Cd (10), and Cr (7) while lowest for Cu (0.08) and Zn (0.03). Cd and Al did not bioaccumulate in the analyzed fish species. In mussels, the RHF values were highest for Fe (9,108), As (295), Pb (276), Se (273), Mn (186), Ni (71), Ag (70), Cd (14), and Cu (4).

  13. The concentrations of trace metals in plants from phosphogypsum waste heap in Wiślinka, northern Poland

    Directory of Open Access Journals (Sweden)

    Boryło A.

    2013-04-01

    Full Text Available The aim of this work was determination of trace metals (Pb, Zn, Ni, Cu and Fe in different plants collected in the vicinity of phosphogypsum waste heap in Wiślinka (northern Poland. The concentrations of trace metals were determined by two methods: AAS (atomic absorption spectrometry and OES-ICP (atomic emission spectrometry with inductively coupled plasma. Enhanced levels of iron were observed in all the analyzed samples. This fact can be explained by the higher content of iron in the groundwaters of Žuławy Wiślane, where concentration of iron was 60 mg/l. The trace metals concentrations in plant samples from phosphogypsum waste heap recorded in this study are generally higher than in control sites. In this study the relationship is shown between atmospheric trace metals deposition and elevated trace metals element concentrations in plants and topsoils, especially in the vicinity of phoshpogypsum waste heap.

  14. Trace metals in atmospheric particulates characterized of aerosol emitted by industrial and urban sources

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, A.; Solisio, C.; Zilli, M.; Del Borghi, M. [Genoa University, Genoa (Italy). Chemical and Process Engineering Institute G.B. Bonino

    1998-12-31

    The results of a year`s study in the Savona area (Italy) for dust deposition have been analyzed in order to characterize the emission sources. The contribution of the major pollutant sources has been determined by tracer metals and their enrichment factors. The selected metals were Cd, Cu, Pb, An, Cr, and Ni. The obtained results show four types of emission sources responsible for airborne trace metals; traffic, industrial plants a large oil and coal fired power station, resuspension of soil particles and residential heating. 9 refs., 9 figs., 1 tab.

  15. Bioindication of atmospheric trace metals - With special references to megacities

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Bernd, E-mail: markert@schlundmail.de [Fliederweg 17, D-49733 Haren/Erika (Germany); Wuenschmann, Simone [Fliederweg 17, D-49733 Haren/Erika (Germany); Fraenzle, Stefan [International Graduate School Zittau, D-02763 Zittau (Germany); Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Linea Prestes 2242, CEP 05508-090, Sao Paulo (Brazil); Wang Meie [State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Beijing 110016 (China)

    2011-08-15

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental 'health', the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable. - Highlights: > Chemical Pollution. > Bioindication. > Multi-Markered-Bioindication-Concept (MMBC). > Mega cities. - Bioindication is a relevant technique for observing the atmospheric deposition of chemical elements of the environment in megacities.

  16. Assessment of trace metal toxicity in soils of Raniganj Coalfield, India

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Chakrapani, G.J. [University of Glasgow, Glasgow (United Kingdom). Dept. of Geological & Earth Science

    2011-06-15

    Soil, rock and water samples were collected from India's oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E{sub f}), geoaccumulation index (I{sub geo}) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.

  17. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  18. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2011-09-01

    Full Text Available Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain and at a nearby mountainous site (Montseny affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5 especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight, whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace

  19. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2011-05-01

    Full Text Available Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain and at a nearby mountainous site (Montseny affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5 especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight, whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace

  20. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    Science.gov (United States)

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (stress to young planted pines on tree farms within the watershed.The Florida Geological Survey/US Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. The data are intended to provide a benchmark for comparison with metal concentration data measurements. Seventy nine short cores were collected from 66 sample locations

  1. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    Science.gov (United States)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2017-01-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  2. Changes in Trace Metal Species and Other Components of the Rhizosphere During Growth of Radish

    DEFF Research Database (Denmark)

    Hamon, R. E.; Lorenz, S. E.; Holm, Peter Engelund;

    1995-01-01

    transpiration rates and prevented excess addition of nutrient ions, so that subtle changes in soil solution composition would not be obscured. Soil solution pH, the concentration of dissolved organic carbon (DOC) and the concentrations of major and trace elements in solution were found to vary over time. Strict...... control of fertilizer additions led to the maintenance of a relatively low ionic strength in the soil solution, and under such conditions trace metal solubility appeared to be highly influenced by the concentration of DOC. A chemical speciation analysis was performed which showed that, while dissolved Cd...

  3. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas.

    Science.gov (United States)

    Whelan, Thomas; Espinoza, Jorge; Villarreal, Xiomara; Cottagoma, Maria

    2005-01-01

    Seagrass communities dominate the Laguna Madre, which accounts for 25% of the coastal region of Texas. Seagrasses are essential to the health of the Laguna Madre (LM) and have experienced an overall decline in coverage in the Lower Laguna Madre (LLM) since 1967. Little is known on the existing environmental status of the LLM. This study focuses on the trace metal chemistry of four micronutrient metals, Fe, Mn, Cu, and Zn, and two non-essential metals, Pb and As, in the globally important seagrass Thalassia testudinum. Seasonal trends show that concentrations of most essential trace metals increase in the tissue during the summer months. With the exception of (1) Cu in the vertical shoot and root, and (2) Mn in the roots, no significant positive correlation exists between the rhizosphere sediment and T. testudinum tissue. Iron indicates a negative correlation between the morphological units and the rhizosphere sediments. No other significant relationship was found between the sediments and the T. testudinum tissue. Mn was enriched up to 10-fold in the leaf tissue relative to the other morphological units and also enriched relative to the rhizosphere sediments. Both Cu and Mn appear to be enriched in leaf tissue compared to other morphological units and also enriched relative to the Cu and Mn in the rhizoshpere sediments. Sediments cores taken in barren areas were slightly elevated in Zn relative to the rhizosphere sediments, whereas no other metals showed statistical differences between barren sediment cores and rhizosphere sediments. However, no correlation was measured in T. testudinum tissue and Zn in rhizosphere sediments. Previous studies suggested that Fe/Mn ratios could indicate differences between seagrass environments. Our results indicate that there is an influence from the Rio Grande in the Fe/Mn signature in sediments, and that ratio is not reflected in the T. testudinum tissue. The results from this study show that the LLM contains trace metal

  4. Modeling of the distribution of heavy metals and trace elements in argan forest soil and parts of argan tree.

    Science.gov (United States)

    Mohammed, Faez A E; Bchitou, Rahma; Boulmane, Mohamed; Bouhaouss, Ahmed; Guillaume, Dominique

    2013-01-01

    The transfer of heavy metals and trace elements from argan forest soil into the wood, leaves, almonds, and argan oil was studied. Analyzed metals were: chromium, cadmium, copper, zinc, lead, calcium, phosphorus, potassium, and magnesium. Correlations linking different behaviors of the studied heavy metals and trace elements observed by multidimensional analysis were attributed to partial-spatial variations. Whereas the RV-coefficient of wood, leaf, almond and oil groups was high, the soil group correlated poorly with the other groups.

  5. Trace Metal Levels in Lichen Samples From Roadsides in East Black Sea Region, Turkey

    Institute of Scientific and Technical Information of China (English)

    OZGUR DOGAN ULUOZLU; KADIR KINALIOGLU; MUSTAFA TUZEN; MUSTAFA SOYLAK

    2007-01-01

    Objective To determine the metal contents of lichen species from East Black Sea region of Turkey for investigation of trace metal pollution sourced traffic.Methods The levels of copper,cadmium,lead,zinc,manganese,iron,chromium,nickel,cobalt,palladium in lichen samples collected from East Black Sea region of Turkey were determined by flame and graphite furnace atomic absorption spectrometry after microwave digestion method.The accuracy of the method was corrected by standard reference material(NIST SRM IAEA-336 Lichen). Results The contents of investigated trace metals in lichen samples were 7.19-22.4 μg/g for copper,0.10-0.64 μg/g for cadmium,4.03-44.6 μg/g for lead,14.5-41.8 1.μg/g for zinc,25.8-208 μg/g for manganese,331-436 μg/g for iron,1.20-3.01 μg/g for chromium,1.48-3.90 μg/g for nickel,0.20-3.55 μg/g for cobalt.0.11-0.64 μg/g for palladium.The results were compared with the literature values.Conclusion Some lichen species such as Xanthoparmelia conspersa,Xanthoria calcicola,Peltigera membranacea,and Physcia adscendens are accumulated trace metals at a high ratio.

  6. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  7. Trace metal concentrations in menhaden larvae Brevoortia patronus from the northern Gulf of Mexico

    Science.gov (United States)

    Hanson, Peter J.; Hoss, Donald E.

    1986-09-01

    Whole body concentrations of Cu, Zn, Mn and Fe were measured in individual gulf menhaden larvae, Brevoortia patronus (11-18 mm standard length) from coastal waters of the northern Gulf of Mexico as part of a continuing project investigating the mechanisms of biological interaction and effect of trace metals in marine food webs. Larvae were collected at three different times between February 1981 and 1982 at two locations, offshore of Southwest Pass of the Mississippi River and offshore of Galveston, Texas. Fish at the Mississippi location had significantly ( P≤0·05) greater concentrations of all metals compared with those from the Galveston location. No significant ( P>0·05) differences in concentration were detected among the three sampling periods. Menhaden larvae had metal conentrations comparabe to other species of larval fish and zooplankton from the Gulf of Mexico and other coastal waters. Differences in metal concentrations in larvae from the two locations appear to be a subtle response of the fish to differences in the trace metal chemistries of the two coastal areas. Processes influencing metal concentrations are discussed.

  8. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C., E-mail: cyril.marchand@ird.fr [Institut de Recherche pour le Développement (IRD), UR 206/UMR 7590 IMPMC, 98848 Nouméa, New Caledonia (France); Fernandez, J.-M.; Moreton, B. [AEL/LEA, 7 rue Loriot de Rouvray, 98800 Nouméa, New Caledonia (France)

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low.

  9. Degree of trace metal pyritization in sediments from the Pacific coast of Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nava Lopez, Carmen; Huerta Diaz, Miguel Angel [Instituto de Investigaciones Oceanologicas, Ensenada, Baja California (Mexico)

    2001-06-01

    We analyzed sediments from a core collected on the Pacific coast of Baja California, 45 km off the city of Tijuana and at 1257 m water depth (32 Celsius degrees 9.5N , 117 Celsius degrees 8.3W), for trace metal content in two operationally-defined fractions, HCl and pyrite. Our results indicate transference of Cu>Ni>Zn>>Hg y Ag from the HCl to the pyrite fraction. Sediments have degrees of pyritization (DOP) that average 7.2{+-} 4.9% with a maximum value of 18.5%. Average degrees of trace metal pyritization (DTMP) range from 6.2 {+-}2.1% to 83{+-} 8% for Mn and Hg, respectively, although maximum values for some metals were closed to 100%. This transference is apparently a function of the solubility products of metal sulfides and the relative abundances of metals in the HCl fraction, as suggested by the significant correlation (p<0.001) observed between these two parameters and the DTMP of a number of trace metals. A similar correlation was obtained from published data of two cores collected in the Gulf of Mexico. [Spanish] Se analizaron sedimentos de un nucleo recolectado en la costa del Pacifico de Baja California 45 km de la costa de la ciudad de Tijuana y a 1257 m de profundidad del agua (32 grados Celsius 9.5N, 117 grados Celsius 8.3W), para determinar su contenido de metales traza en dos fracciones operacionales definidas HCl y pirita. Los resultados indican una transferencia de Cu>Ni>Zn>>Hg y Ag de la fraccion de HCl a la fase piritica. Los grados de piritizacion (DOP) en los sedimentos promediaron 7.2{+-} 4.9%, con un valor maximo de 18.5%. Los valores promedio de los grados de piritizacion de metales traza (DTMP) abarcaron el intervalo de 6.2 {+-}2.1% a 83{+-}18% para Mn y Hg, respectivamente, aunque los valores maximos para algunos metales estuvieron cercanos al 100%. Esta transferencia aparentemente es funcion de los productos de solubilidad de los sulfuros metalicos y de la abundancia relativa de metales en la fraccion HCl, como sugiere la correlacion

  10. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  11. Aerosol Organic Matter-Trace Metal Relationships Revealed by Ultra-High Resolution Mass Spectrometry

    Science.gov (United States)

    Wozniak, A. S.; Sleighter, R. L.; Morton, P. L.; Landing, W. M.; Shelley, R. U.; Hatcher, P. G.

    2011-12-01

    Atmospheric delivery of aerosols is important for the biogeochemical cycling of organic matter (OM) and trace elements in marine environments. Aerosols over marine environments can be derived from marine sources or transported from continental regions of variable vegetative cover and anthropogenic influence. These different sources are key determinants of aerosol OM composition, as well as trace metal amounts and characteristics. Dust-influenced aerosols typically contain higher amounts of Fe than anthropogenic-influenced aerosols but have lesser % of soluble Fe (%FeS), believed to be the bioavailable form of Fe for marine phytoplankton. Four samples from the 2008 GEOTRACES intercalibration experiments (Miami, FL, USA) were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and related to both air mass back trajectories and %FeS. Three samples showed aerosol sources from the east consistent with Saharan dust inputs, while the fourth sample was derived in part from air masses to the north, influenced by the North American continent. This North American-influenced sample was collected following the 3 day period with the highest %FeS (1.3-1.7%) of the 11 day intercalibration experiment (mean = 0.4-1.1%). FT-ICR mass spectra showed 795 peaks common to the dust-influenced samples but absent from the North American-influenced sample. These peaks were assigned molecular formulas characterized by CHO and CHON compounds with lower H/C and O/C ratios than the 1257 formulas common to all 4 samples, suggesting that the dust-influenced aerosols carry OM that is less oxygenated and more condensed in structure along with Fe of lesser solubility. Air mass trajectory analyses revealed samples collected during a 2010 cruise in the North Atlantic Ocean to be characterized by European-influenced (anthropogenic), African-influenced (dust), and primarily marine air masses, making them ideal for further exploration of the

  12. Feedback interactions between trace metal nutrients and phytoplankton in the ocean

    Directory of Open Access Journals (Sweden)

    William eSunda

    2012-06-01

    Full Text Available In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon the productivity and species composition of marine phytoplankton communities are affected by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium. Of these, iron exerts the greatest limiting influence on carbon fixation rates and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2 fixation rates, and thus exerts an important influence on ocean inventories of biologically available fixed nitrogen. Because of these effects, iron is thought to play a key role in controlling the biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 levels and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese have a lesser effect on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among algal species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals affect the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and regeneration processes, downward flux of biogenic particles, cellular release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution marine and terrestrial biology over geologic history.

  13. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean.

    Science.gov (United States)

    Sunda, William G

    2012-01-01

    In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N(2)) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO(2) pump, which helps regulate atmospheric CO(2) and CO(2)-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history.

  14. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    Science.gov (United States)

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  15. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  16. Definitions and principles for bioindication and biomonitoring of trace metals in the environment.

    Science.gov (United States)

    Markert, Bernd

    2007-01-01

    Clear-cut definitions are given for most terms used in monitoring studies. In these studies the observation or experimental investigation of living organisms give a qualitative or quantitative information on the state of the environment with special reference to trace metals. The focus and future goals of biogeochemical research must consider the direct effects on human health, by including modelling of active biogeochemical processes than they have done so far. Newly developed strategies as the multi-markered bioindication concept (MMBC) with its functional and integrated windows on prophylactic healthcare are essential tools for successfully observing the environment with respect to trace metals. An intensified training of students and a strong hand in hand work between industrial, educational and public institutions is necessary.

  17. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review.

    Science.gov (United States)

    Bayen, Stéphane

    2012-11-01

    Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems.

  18. Analysis of Trace Metals in Petroleum Products, State of the Art; Analyse de metaux traces dans les produits petroliers, etat de l'art

    Energy Technology Data Exchange (ETDEWEB)

    Lienemann, C.P. [Institut Francais du Petrole, Dir. Physique et Analyse, 69 - Vernaison (France)

    2005-11-15

    Following a brief introduction to the problems posed by trace metals in the petroleum industry, a review of the three main techniques available for trace metals determination is presented, with their recent developments. Different introduction modes, used for graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma with optical emission spectrometry and inductively coupled plasma with mass spectrometry, are discussed and compared in terms of detection limits. Applications are various and apply to all kinds of petroleum products, from bio-ethanol to the more common gasoline and diesel, and also to heavier products such as bitumen. A review of the main chromatographic techniques coupled with ICP demonstrates the promise of these techniques for the future in terms of speciation of trace metals in petroleum products. (author)

  19. Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia.

    Science.gov (United States)

    Al-Taani, Ahmed A; Batayneh, Awni; Nazzal, Yousef; Ghrefat, Habes; Elawadi, Eslam; Zaman, Haider

    2014-09-15

    The Gulf of Aqaba (GoA) is of significant ecological value with unique ecosystems that host one of the most diverse coral communities in the world. However, these marine environments and biodiversity have been threatened by growing human activities. We investigated the levels and distributions of trace metals in surface seawater across the eastern coast of the Saudi GoA. Zn, Cu, Fe, B and Se in addition to total dissolved solids and seawater temperature exhibited decreasing trends northwards. While Mn, Cd, As and Pb showed higher average levels in the northern GoA. Metal input in waters is dependent on the adjacent geologic materials. The spatial variability of metals in water is also related to wave action, prevailing wind direction, and atmospheric dry deposition from adjacent arid lands. Also, water discharged from thermal desalination plants, mineral dust from fertilizer and cement factories are potential contributors of metals to seawater water, particularly, in the northern GoA.

  20. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, M. M. [Physics Department, Doctorate Technical Center of PNU, P.O. Box 19536-33511, Tehran (Iran, Islamic Republic of); Parvin, P., E-mail: parvin@aut.ac.ir; Moosakhani, A. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mortazavi, S. Z.; Reyhani, A. [Physics Department, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin (Iran, Islamic Republic of); Majdabadi, A. [Laser and Optics Research School, NSTRI, P.O. Box 11155-3486, Tehran (Iran, Islamic Republic of); Abachi, S. [Physics Department, University of California, Irvin, CA 92697 (United States)

    2014-06-15

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  1. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    Directory of Open Access Journals (Sweden)

    M. M. Hashemi

    2014-06-01

    Full Text Available Several characteristic emission lines from the metal targets (Cu, Zn and Pb were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air, relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  2. Capping of contaminated marine sediments : Redox reactions and trace metal mobility

    OpenAIRE

    Eide-Fredriksen, Jannicke

    2007-01-01

    The risk associated with exposure to contaminants, has drawn attention to the fate and transport of contaminants in marine sediments. Remediation of contaminated marine sediment has been necessary at several locations to reduce the risk of exposure. Capping is a widely used remediation strategy that aims to isolate the contaminants from the surrounding environment. Toxic trace metals are often found co-precipitated with iron sulphides in sediment. Interactions between oxic minerals in ca...

  3. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    Science.gov (United States)

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples.

  4. Study of trace metals concentration and antimicrobial properties of tropical Aloe vera plant from southern India

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available This study was carried out with an objective to investigate the antibacterial and antifungal potentials and trace metals concentrations in Aloe vera (Linn plant leaves. Fresh leaves of Aloe vera were collected from Tiruchirappalli district of Tamil Nadu during the period of February - March 2014. The 100 g of shade dried A. vera leave power was used to collect the methanol extraction of the test plant by the soxhlet apparatus. The extracted solutions were dried by hot air oven at 60 °C for 48-72 h for further analysis. The antimicrobial activity of Aloe vera methanol extract was examined with six various pathogenic microorganisms such as gram positive, gram negative and fungal strains using the disk diffusion test. The two tested concentrations such as 0.60 and 1.20 mg/disc produce zone of inhibition on muller hinton agar (MHA and potato dextrose agar (PDA plates for bacteria and fungi, respectively. In this study, higher (1.20 mg concentration got greater sensitivity than lower (0.60 mg concentration against all strains. All the microbial strains depict higher sensitivity to the higher concentration (1.2 mg / disc for the test sample when compared to the positive control except bacterial strains such as Aeromonas liquefaciens MTCC 2645 (B1. The trace metal analyses of the plants were also carried out. The mean concentration of trace metals such as cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, nickel (Ni, lead (Pb and zinc (Zn were 0.04, BDL, 0.06, 0.08, BDL, 0.02 and 0.22 mg kg-1, respectively. Therefore, it is signified that Aloe vera plant extract is safe to be used as an antimicrobial agent. Hence, throughout impoundment is needed to verify the trace metal levels in plants.

  5. Trace metals, anions and polybromodiphenyl ethers in settled indoor dust and their association.

    Science.gov (United States)

    Kefeni, Kebede K; Okonkwo, Jonathan O

    2013-07-01

    Contaminants in settled indoor dust are potentially health hazardous to human. Thus, identification and quantification of toxic chemicals in settled indoor dust is of great concern. In this study, the levels of major anions ([Formula: see text]), trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, As and Pb) and polybromodiphenyl ethers (PBDEs) in settled office and home dust were determined and correlations between the contaminants investigated. Depending on the available materials in both microenvironments, the most possible sources were identified. The results showed that the settled office dusts (n = 6 pooled samples from 85 offices) were more contaminated than home dusts (n = 8 homes). For anions, [Formula: see text] and Cl(-) accounted for 87 and 97% of the total office and home dust contaminants, respectively. For trace metals, Fe, Cu, Zn and Mn, accounted for 98% of the contaminants in both office and home dust samples. Fe exhibited the highest percentage of 76.7 and 87.3% in office and home dust samples, respectively. For PBDEs, the mean concentrations detected in office and home dust ranged between 5.8-86.3 and 1.5-20.6 ng g(-1), respectively. The log-transformed correlation between the total concentrations of trace metals and major anions detected in offices and homes was positive for offices and negative for homes with a statistically significant values (r = 0.73, p < 0.01; r = -0.22, p < 0.01, respectively). The daily exposure rates determined for the most hazardous such as As, Cd, Pb and PBDEs congeners, relative to the individual concentrations reported in the literature in settled indoor dust, were found very lower. Therefore, maybe it is possible to expect less potential health risk. Investigation of formation of coordination compounds between trace metals and PBDEs congeners is possible; however, this requires further study.

  6. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    Science.gov (United States)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots.

  7. Effect of nitrification on movement of trace metals in soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.; Broadbent, F.E.

    1980-01-01

    Soil column experiments were conducted with sludge-treated and untreated samples of two soils, Omni silty clay and Delhi loamy sand, to determine whether protons generated during the nitrification process would affect the mobility of the trace metals Cd, Cr, Cu, Mn, Pb, and Zn. Columns 5 cm x 100 cm were leached bi- or tri-weekly with 7.5-cm applications of solutions of CaCl/sub 2/, NH/sub 4/Cl, or KCl. Trace metals in effluents from the columns were analyzed after each application of leaching solution. After 11 appications over a period of several months-the columns were sectioned and the vertical distribution of 2N NCl-extractable metals determined. Average concentrations of metals in column effluents were well below 1 ppM in all cases except Zn eluted from untreated Delhi loamy sand where 20 mM NH/sub 4/Cl or KCl leaching solutions produced effluent concentrations slightly above 1 ppM. There was evidence of nitrification affecting movement of several of the metals, particularly in the cases of Mn, Zn, Cu, and Cd in the untreated Delhi soil. The presence of sludge had a pronounced stabilizing influence of Cd and Zn, and to a lesser degree on other metals, probably as a result of organo-metal complexes. Much of the input labeled NH/sub 4/-N was denitrified, as shown by recoveries of N ranging from 14 to 20% in the Omni soil and 40 to 78% in the Delhi soil. Proton generation during denitrification. It was concluded that nitrification had relatively little effect on metal mobility under the conditions of the experiment.

  8. Determination of trace metals in canned anchovies and canned rainbow trouts.

    Science.gov (United States)

    Mol, Suhendan

    2011-02-01

    Trace metal (Fe, Zn, Cu, Cd, Sn, Hg and Pb) concentrations of canned anchovies (Engraulis encrasicolus Linnaeus, 1758) and canned rainbow trouts (Oncorhynchus mykiss Walbaum, 1792), commercialized in Turkey, were determined using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The average contents of trace metals in canned anchovies and canned rainbow trouts were found as 50.708 and 6.980 mg/kg for iron, 22.467 and 11.605 mg/kg for zinc, 1.145 and 0.541 mg/kg for copper, 0.019 and 0.001 mg/kg for cadmium, 0.140 and 0.023 mg/kg for tin, 0.041 and 0.026 mg/kg for mercury, and 0.188 and 0.167 mg/kg for lead, respectively. Although these products pose no risk with respect to the concentrations of zinc, copper, cadmium, tin and mercury, some of the samples had higher contents of lead and iron than the permissible limits. Comprehensive and periodic controls of trace metals in canned fish are needed to assess the safety of these products with respect to human health.

  9. Accumulation of trace metals in the embryos and hatchlings of Chelonia mydas from Peninsular Malaysia incubated at different temperatures.

    Science.gov (United States)

    Ikonomopoulou, Maria P; Olszowy, Henry; Francis, Rod; Ibrahim, Kamarruddin; Whittier, Joan

    2013-04-15

    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.

  10. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    Science.gov (United States)

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH)2, CuCO3, and Zn5(CO3)2(OH)6, and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process.

  11. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.

  12. Comparing the levels of trace metal from two fish species harvested from treated waste water in Pretoria, South Africa.

    Science.gov (United States)

    Olowoyo, J O; Mdakane, S T R; Okedeyi, O O

    2011-06-15

    The persistent problem of water scarcity with the ever increasing demand of water has necessitated the reuse of effluent in agriculture. The present study evaluated the reuse of treated waste water and bioaccumulation properties of two fish species from a manmade lake. Trace metals content of two fish species: Clarias gariepinus and Cyprinus carpio and levels of trace metals from waste water in the lake where the fish species were harvested were determined by Inductive Couple Plasma-Optical Emission Spectrometer (ICP-OES). The trace metal values from fish samples ranged between 0.45-4.41 microg g(-1) for Cu, 16.45-72.23 microg g(-1) for Zn, 1.92-4.71 microg g(-1) for Cr, 2.45-5.65 microg g(-1) for Ni, 10.23-44.31 microg g(-1) for Mn, 9.67-46.59 microg g(-1) for Fe and 0.12-0.56 microg g(-1) for Pb. The carp exhibited a significantly higher concentration for the trace metals for all the parts analyzed (pgill>muscle>bone and metal accumulation was in the order Zn>Fe>Mn>Cr>Ni >Cu>Pb. The concentration of trace metals such as zinc, iron, chromium and nickel were higher than the recommended legal limits for human consumption. The result revealed that properly treated waste water could be used for the purpose of aquaculture. Clarias gariepinus bio accumulated more trace metals from the lake when compared with Cyprinus carpio.

  13. Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India

    Directory of Open Access Journals (Sweden)

    Harikumar P.S,

    2010-05-01

    Full Text Available A study was carried out to invstigate the concentrations and spatial distribution of trace metals in the sediments of Kottuli Wetland,whuich is in the south west coast of India Eight stations were strategically positioned along the length of wetland and sampled for trace metals (Cu, Mn, Cd, Ni, Pb, Zn &Cr content. From the analysis, it was observed that the mean concentration of all the analysed trace metals exceeded the average world wide shale concentrations and average Japanese river sediment values. Pollution load index value (PLI of the studied area ranged from 0.10 to 58.78 which indicated that the wetland sediments were polluted. From the study, PLI of the downstream area of the wetland had the highest values of Cu, Mn, Cd, Zn & Cr. According to the index of Geoaccumulation, Igeo, all the sampling stations may face a severe trace metal pollution contamination problem in the future.

  14. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China.

    Science.gov (United States)

    Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi

    2017-01-19

    In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems.

  15. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  16. An exposure and risk assessment for fluoride and trace metals in black tea

    Energy Technology Data Exchange (ETDEWEB)

    Sofuoglu, Sait C. [Izmir Institute of Technology, Department of Chemical Engineering and Environmental Research Center, Guelbahce, Urla 35430 Izmir (Turkey)], E-mail: cemilsofuoglu@iyte.edu.tr; Kavcar, Pinar [Izmir Institute of Technology, Department of Chemical Engineering and Environmental Research Center, Guelbahce, Urla 35430 Izmir (Turkey)], E-mail: pinarkavcar@iyte.edu.tr

    2008-10-30

    Exposure and associated health risks for fluoride and trace metals in black tea were estimated. Fifty participants were randomly recruited to supply samples from the tea that they drink, and self-administer a questionnaire that inquired about personal characteristics and daily tea intake. Analyzed trace metals included aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, manganese, nickel, strontium, and zinc. Fluoride and four metals (Al, Cr, Mn, Ni) were detected in all samples while barium was detected only in one sample. The remaining metals were detected in >60% of the samples. Fluoride and aluminum levels in instant tea bag samples were greater than in loose tea samples (p < 0.05) while the differences in elemental concentrations of loose and pot bag tea samples were not significant. Median and 90th percentile daily tea intake rates were estimated as 0.35 and 1.1 l/day, respectively. Neither fluoride nor aluminum levels in black tea were found to associate with considerable risks of fluorosis and Alzheimer's disease, respectively. However, carcinogenic risk levels for arsenic were high; R > 1.0 x 10{sup -6} even at the median level. According to sensitivity analysis, daily tea intake was the most influencing variable to the risk except for arsenic for which the concentration distribution was of more importance.

  17. Arsenic and trace metals in commercially important bivalves, Anadara granosa and Paphia undulata

    Energy Technology Data Exchange (ETDEWEB)

    Mat, I. (Univ. of Malaya, Kuala Lumpur (Malaysia))

    1994-06-01

    The semi-culture of marine bivalves particularly Anadara granosa is of considerable economic importance in Malaysia. Currently, about 4-5000 ha of mudflats along the west coast are utilized for this purpose. Therefore, contamination of the highly productive mudflats with heavy metals tend to be accumulated in the filter feeding organisms such as bivalve molluscs which often serve as important environmental sinks of heavy metals. Bivalve molluscs, A. granosa and Paphia undulata are commercially important seafoods and popular among the locals in Malaysia. With this point in mind, it is intended to evaluate the concentration levels of arsenic as well as trace metals (Co, Cu, Ni, Cd, Zn, Cr and Pb) in both species derived from retail outlets in the city of Kuala Lumpur. Although this analysis may not indicate the site of capture but may act as a direct check on the contamination of seafoods available to the consumers. 17 refs., 2 tabs.

  18. Epiphytic lichen Flavoparmelia caperata as a sentinel for trace metal pollution

    Directory of Open Access Journals (Sweden)

    Mitrović Tatjana

    2012-01-01

    Full Text Available Widely spread lichen specie Flavoparmelia caperata is used in a biomonitoring study for atmospheric trace metal pollution in natural ecosystems in Southeastern Serbia. The concentration and distribution pattern of 21 metals in lichens were determined by inductively coupled plasma atomic emission spectrometry. The difference observed between metal deposition in peripheral and central parts of lichen thalli reflected air quality changes in the last and previous years. These findings were confirmed with principal component analysis. Our study demonstrated the accumulation of Ba, K, Mg, Na, Tl and Zn in peripheral parts of thalli, while As, B, Cd, Cr, Cu, Fe, Ga, In, Li, Ni, Pb and Se were concentrated in central parts of thalli.

  19. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    Science.gov (United States)

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management.

  20. The role of Spartina maritima and Sarcocornia fruticosa on trace metals retention in Ria Formosa, Portugal

    Science.gov (United States)

    Moreira da Silva, Manuela; Duarte, Duarte; Isidoro, Jorge; Chícharo, Luís

    2013-04-01

    Over the last years, phytoremediation has become an increasingly recognized pathway for contaminant removal from water and shallow soils. Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season and water chemistry. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. Saltmarsh plants can sequestrate and inherently tolerate high metal concentrations found in saltmarsh sediments. An increasing number of studies have been carried out to understand the role of halophyte vegetation on retention, biovailability and remediation of the pollutants in coastal areas (estuaries and lagoons). It is already known that the accumulation capacity and the pattern of metal distribution in the plant tissues vary among plant species, namely monocotyledonous and dicotyledonous, and with sediment characteristics. During the last decades, there has been a large increase in urbanization and industrialization of the area surrounding Ria Formosa. Due to this reality, anthropogenic contaminants, including trace metals, are transported via untreated sewage and agricultural effluents to several parts of the lagoon. The dominant producers are Spartina maritima (Poales: Poaceae) and Sarcocornia fruticosa (Caryophyllales: Chenopodiaceae), appearing in pure stands respectively in the lower and in the upper saltmarshes. The aim of this work was to survey, comparatively, the role of S. maritima and S. fruticosa on minor and trace element (Ag, Cd, Cu, Cr, Mo, Ni, Pb and Zn), contents and distribution amongst sediment and plant tissues. Both S. maritima and S. fruticosa could fix metals from the surrounding belowground environment and accumulate metals, mainly in roots (also in rhizomes in the case of the former). Metal translocation to aerial parts of the plants was, in general, residual.

  1. Research of trace metals as markers of entry pathways in combined sewers.

    Science.gov (United States)

    Gounou, C; Varrault, G; Amedzro, K; Gasperi, J; Moilleron, R; Garnaud, S; Chebbo, G

    2011-01-01

    Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.

  2. Trace metals in scalp hair of children and adults in three Alberta Indian villages.

    Science.gov (United States)

    Moon, J; Smith, T J; Tamaro, S; Enarson, D; Fadl, S; Davison, A J; Weldon, L

    1986-10-01

    This study examined trace metal levels in scalp hair taken from 122 children and 27 adult residents of three small northern Alberta (Canada) Indian villages, one of which is situated close to the world's first tar sands oil extraction plants. The three communities studied were: Fort McKay (the exposed village), Fort Chipewyan (also in the tar sands ecosystem but distant from the plants), and Garden River (not in the tar sands ecosystem). Inductively coupled argon plasma emission spectroscopy was used to determine hair sample metal content. Nineteen metals were included in data analysis. Children from Fort McKay had the highest average hair lead, cadmium and nickel levels. Chromium levels were approximately equal in hair from Fort McKay and Garden River children, and significantly elevated above levels found in the hair of Fort Chipewyan children. Children from Garden River showed highest hair levels of eight metals: vanadium, aluminum, iron, manganese, barium, zinc, magnesium and calcium. Fort Chipewyan children had the highest hair levels of copper, but the lowest levels of all other metals. Among adults, hair lead, nickel and cadmium levels were highest in Fort McKay residents, while phosphorous and vanadium were highest in hair from Garden River residents. Bioaccumulation of lead, cadmium, nickel and chromium in hair from Fort McKay residents may be related to exposure to extraction plant pollution. Plant stack emissions are known to contain appreciable amounts of lead, nickel and chromium. Spills into the Athabasca River, until recently the source of Fort McKay drinking water, have been reported from plant wastewater holding ponds, known to contain elevated levels of lead, nickel and cadmium. An increased number of significant metal-metal correlations in hair metal levels for Fort McKay children suggests a richer source of multiple metal exposure, relative to children in the other two communities.

  3. Towards field trace metal speciation using electroanalytical techniques and tangential ultrafiltration.

    Science.gov (United States)

    Monteiro, Adnívia Santos Costa; Parat, Corinne; Rosa, André Henrique; Pinheiro, José Paulo

    2016-05-15

    In this work we propose a trace metal speciation methodology to determine the total, free and ultrafiltered (ultrafiltration (UF) experiments that can easily be carried out on-site. We tested our methodology spiking Cadmium ions into two natural waters samples from Itapanhau and Sorocabinha rivers in Sao Paulo State, Brazil. The limits of detection (LOD) was 1.6×10(-9) M for the total Cd(2+) determination performed by Stripping Chronopotentiometry (SCP) in the source and acidified ultrafiltered solution and 1.9×10(-9) M for the free Cd(2+) determination using Absence of gradients and Nernstian equilibrium stripping (AGNES), using a thin mercury film electrode. The total metal determination was performed by SCP in acidified samples and the results compared with graphite furnace atomic absorption spectroscopy (GF-AAS). The SCP results were adequate with a 96% of recovery from the known metal spike for the 12 samples tested. For the Itapanhau sample the free metal determined by AGNES and the ultrafiltered fraction are identical, while for the Sorocabinha the free metal in the source is significantly smaller than the ultrafiltered fraction, indicating that this sample must be rich in metal complexes with small inorganic ligands that are able to permeate the 1kDa membrane. The proposed metal speciation methodology validated in the laboratory combining UF and SCP/AGNES is able to be used in on-site experiments providing valid information regarding the total and free metal concentrations and additionally some insight on the role of small inorganic ligands to the metal complexation.

  4. A simple laser ablation ICPMS method for the determination of trace metals in a resin gel.

    Science.gov (United States)

    Gao, Yue; Lehto, Niklas

    2012-04-15

    Trace metal analysis of DGT gels using laser ablation inductively coupled plasma (LA-ICP-MS) has traditionally been carried out by ablating single spots along a line to provide high resolution data on trace metal distributions on a resin gel. This work compares the performance of two different LA-ICPMS systems, one at Lancaster University, UK and another at VUB, Belgium, in terms of instrument sensitivity and limit of detection in the analysis of trace metals (Co, Ni, Cu, Zn, Cd, and Pb) bound by a DGT resin gel using SPR-IDA resin. No defocusing of the laser beam was necessary to prevent burning through the resin gel and the internal standardization became very simple by using (13)C, naturally present in the resin-gel, instead of impregnating a back-up layer with (115)In. Furthermore, this work also explores the option of analysing the spatial distribution of resin bound trace metals by means of ablating a continuous line between two points and considers the advantages of using this approach. The work found that the LODs assessed on blank samples for Cu and Pb are similar for both LA-ICPMS systems, while for Co, Ni and Zn they are lower for the one at VUB and for Cd for the other one at Lancaster. The work found that the laser ablation systems at the two laboratories allowed more precise control over laser power and spot size than previously reported. For the line scan, the optimum scan parameters were determined as: scan speed of 50 μm s(-1), output energy of 40% and repetition rate of 30 Hz. An acquisition time of 25 ms, resulted in a much lower resolution (10 μm) compared to the spot ablation (a crater size of 100 μm and also some space between craters) and a better sensitivity. The LODs using the line scan were found to be lower than those obtained by the spot ablation. However, for some of the metals the difference is rather small. This work suggests that the time and gas consumption achieved by using the line scan is about 30% lower than for the

  5. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness.

    Science.gov (United States)

    Carter, J F; Tinggi, U; Yang, X; Fry, B

    2015-03-01

    This research has explored the potential of stable isotope and trace metal profiles to distinguish Australian prawns from prawns imported from neighbouring Asian countries. Australian prawns were collected mostly from the Brisbane area. Strong differences in Australian vs. imported prawns were evident from both the isotope and trace element data, with the differences most likely occurring because imported prawns are typically reared in aquaculture facilities and frozen prior to sale in Australia. The aquaculture origins are characterised by comparatively; low δHVSMOW, δ(13)CVPDB values, low concentrations of arsenic, zinc and potassium, and high water contents (>80%). Relatively high arsenic and cadmium contents were found within Australian prawns, but the concentrations did not exceed local human health guidelines.

  6. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  7. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues

    Institute of Scientific and Technical Information of China (English)

    Mehmet Yaman; Gokce Kaya; Hayrettin Yekeler

    2007-01-01

    AIM: To assess whether trace metal concentrations (which influence metabolism as both essential and non-essential elements) are increased or decreased in cancerous tissues and to understand the precise role of these metals in carcinogenesis.METHODS: Concentrations of trace metals including Cd,Ni, Cu, Zn, Fe, Mg and Ca in both cancerous and noncancerous stomach tissue samples were determined by atomic absorption spectrometry (AAS). Tissue samples were digested using microwave energy. Slotted tube atom trap was used to improve the sensitivity of copper and cadmium in flame AAS determinations.RESULTS: From the obtained data in this study,the concentrations of nickel, copper and iron in the cancerous human stomach were found to be significantly higher than those in the non-cancerous tissues, by using t-test for the paired samples. Furthermore, the average calcium concentrations in the cancerous stomach tissue samples were found to be significantly lower than those in the non-cancerous stomach tissue samples by using t-test. Exceedingly high Zn concentrations (207-826 mg/kg) were found in two paired stomach tissue samples from both cancerous and non-cancerous parts.CONCLUSION: In contrast to the literature data for Cu and Fe, the concentrations of copper, iron and nickel in cancerous tissue samples are higher than those in the non-cancerous samples. Furthermore, the Ca levels are lower in cancerous tissue samples than in non-cancerous tissue samples.

  8. SEASONAL VARIATIONS OF TRACE METAL ACCUMULATION ON CORAL REEF IN GULF OF MANNAR, INDIA

    Directory of Open Access Journals (Sweden)

    J.S. Yogesh Kumar

    2012-08-01

    Full Text Available Investication of trace metal occumulation on coral and reef environment (sediment and water of the Gulf of Mannar biosphere reserve was studied during July 2007 to June 2008. The samples were collected for analyzing from Thoothukudi and Vembar group of Islands, Gulf of Mannar. The concentration of trace metal in the water are in the order of Fe > Pb > Zn > As > Mn > Cd > Cu and in sediment in the order of Fe > Mn > Pb > Zn > Cu >Cd and in coral rubbles in the order of Fe > Mn > Pb > Zn > Cu > Cd. In the waters the iron ranks first and copper ranks last; in the sediment iron ranks first in concentration and cadmium ranks the last. In corals the iron ranks first and cadmium ranks the last in concentration and during the entire study periods. SPSS two tailed Correlation coefficients between the months and the temporal variablilities of heavy metals were assessed using the monthly data for each component in all stations and analysis of variances (f values for the water, sediment and coral rubbles between the stations and month during the study period. Conclude that the values recorded at Thoothukdi group of islands were little higher than the Vembar group of islands, and it might be due to discharges pumped from the industrial belt of Thoothukudi, domestic sewages from Thoothukudi town, harbour activities and thermal power plant operation along the southern side of the Gulf of Mannar.

  9. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  10. [Conceptuel model of transport of trace metals (chromium and nickel) in the Sebou River--Morocco].

    Science.gov (United States)

    Es-Sette, B; Ajdor, Y; Zidane, F; Fakhraddine, A; Foutlane, A

    2005-08-01

    This paper examines trace metals' behavior, mainly chromium and nickel, in Sebou River in the level located between Sidi Harazem upstream and Azib Soltane downstream. The studied level is the most exposed to pollution with heavy metals rejected by Fès stream. This often condemns tens of kilometers of Sebou and leads to a threat and an important handicap for some catches of water located downstream of the town of Fès. The purpose is then to develop a physicochemical model simulating trace metals' behavior (Cr and Ni) in Sebou River. This model combines transport phenomena (advection and dispersion) with physical and chemical processes studied in the two compartments of the river: water column and sediment as sorption, diffusion, deposition, resuspension and burial. These processes are grouped under a conceptual model diagram and converted into an equations system solved by numeric methods. The model calibration uses a data of suspended matter, nickel and chromium concentrations measured in water column and sediment. Results shown in this paper are related to model development and calibration. They are consistent with the possibility of simulating the evolution for nickel, chromium and the suspended matter concentrations along the Sebou River.

  11. Microscale Biogeochemical Controls on Manganese Oxyhydroxide Biomineral Formation and Associated Trace Metal Sequestration in ARD Biofilms

    Science.gov (United States)

    Haack, E. A.; Warren, L. A.

    2002-12-01

    Identifying the processes controlling reactive metal transport is a necessary prerequisite to the design of effective, mitigative, strategies for contaminated aqueous environments, such as acid rock drainage (ARD). Our research investigates the biogeochemical processes affecting trace metal fate in shallow tailings-associated seepage streams from a northern Ontario ARD environment (Onaping mine, Falconbridge Ltd., Sudbury, ON, Canada). Monthly, from June-Sept 2001, in situ characterization of biofilm geochemical parameters and quantification of biofilm-associated metal concentrations, by sequential extraction, was conducted on a diel scale. Results indicate that significant (p 0.89), implying an important role for Mn oxyhydroxides as a sorbent phase in this system. On a diel basis, Mn concentrations in the amorphous oxyhydroxide fraction decreased significantly in the afternoon compared to morning or late evening values. The magnitude of the loss of Mn was correlated to shifts in the relative depth of the oxic/anoxic boundary. Fine-scale profiling of biofilm pH and O2, using microelectrodes, reflected photosynthesis and respiration; the oxic/anoxic boundary deepened and pH increased within the biofilm during daylight hours. Due to the low pH conditions of the biofilms (3.5-4.5) Mn oxyhydroxide formation is necessarily microbially-catalyzed. Therefore, although the exact mechanisms controlling Mn cycling in this fraction have yet to be elucidated, likely processes include microbially mediated Mn oxidation during non-photosynthetically active hours and abiotic dissolution during photosynthetically active, daylight hours. Trace metal concentrations in the amorphous fraction showed element-specific diel variations. While Cr concentrations followed the same diel pattern as Mn, Ni and Co concentrations did not cycle on a diel basis, resulting in enriched Ni/Mn and Co/Mn ratios in the late afternoon. This enrichment is attributed to rapid resorption of these elements to

  12. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    Science.gov (United States)

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  13. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment

    Science.gov (United States)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2013-03-01

    Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.

  14. Trace metals in surface sediments of the Taiwan Strait: geochemical characteristics and environmental indication.

    Science.gov (United States)

    Gao, Xuelu; Zhou, Fengxia; Lui, Hon-Kit; Lou, Jiann-Yuh; Chen, Chen-Tung Arthur; Zhuang, Wen

    2016-06-01

    The concentration and geochemical fractionation of six trace metals related with environmental quality assessment, namely Cd, Cr, Cu, Ni, Pb, and Zn, in 30 surface sediments from both inshore and offshore areas of the Taiwan Strait were measured to investigate their distribution characteristics, evaluate their potential mobility, and assess their pollution status. The geoaccumulation index results indicated that, on average, the studied metals presented an order of Cd > Pb > Ni > Zn > Cu > Cr and were practically in uncontaminated status except Cd. The results of the sequential extraction analysis indicated that, on average, the studied metals were mostly accumulated in residual fraction except Cd whose concentration was the highest in the acid soluble fraction presenting a high risk to the environment, and their mobility decreased in the sequence of Cd > Pb > Ni > Cu > Zn > Cr. Based on the mean probable effect level quotients, the combination of the studied metals had an 8 % probability of being toxic at two sampling sites and had a 21 % probability of being toxic at the rest of sites. The spatial distribution of the studied metals in total concentrations and different geochemical fractions corroborated the previous findings about the possible sediment transportation routes in and around the Taiwan Strait.

  15. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    Directory of Open Access Journals (Sweden)

    Cristina Yacoub

    2012-01-01

    Full Text Available This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL. The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES. The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  16. Concentrations and solubility of selected trace metals in leaf and bagged black teas commercialized in Poland

    Directory of Open Access Journals (Sweden)

    L. Polechońska

    2015-09-01

    Full Text Available The objective of this study was to determine the concentrations of heavy metals in bagged and leaf black teas of the same brand and evaluate the percentage transfer of metals to tea infusion to assess the consumer exposure. Ten leaf black teas and 10 bagged black teas of the same brand available in Poland were analyzed for Zn, Mn, Cd, Pb, Ni, Co, Cr, Al, and Fe concentrations both in dry material and their infusion. The bagged teas contained higher amounts of Pb, Mn, Fe, Ni, Al, and Cr compared with leaf teas of the same brand, whereas the infusions of bagged tea contained higher levels of Mn, Ni, Al, and Cr compared with leaf tea infusions. Generally, the most abundant trace metals in both types of tea were Al and Mn. There was a wide variation in percentage transfer of elements from the dry tea materials to the infusions. The solubility of Ni and Mn was the highest, whereas Fe was insoluble and only a small portion of this metal content may leach into infusion. With respect to the acceptable daily intake of metals, the infusions of both bagged and leaf teas analyzed were found to be safe for human consumption.

  17. Trace metal concentrations in zooplankton from the eastern Arabian Sea and western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Balachandran, K.K.; Nair, M.; Joseph, T.; DineshKumar, P.K.; Achuthankutty, C.T.; Nair, K.K.C.; Pillai, N.G.K.

    stream_size 46236 stream_content_type text/plain stream_name Environ_forensics_9_22.pdf.txt stream_source_info Environ_forensics_9_22.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Downloaded By...: [Petrisor, Ioana] At: 06:22 9 April 2008 Environmental Forensics, 9:22–32, 2008 Copyright C© Taylor & Francis Group, LLC ISSN: 1527–5922 print / 1527–5930 online DOI: 10.1080/15275920701506193 Trace Metal Concentrations in Zooplankton from the Eastern...

  18. Distribution of particulate trace metals in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Murty, P.V.S.P.; Sarma, V.V.

    comprising inshore and offshore of the western Bay of Bengal have been analysed for particulate trace metals, total suspended matter (TSM) and particulate organic carbon (POe). The results show relative enrichment of particu lateMn,Fe, Cu, Zn, Pband POC... arealmost similar in both inshore and offshore regions. The vertical profiles showed a decreasing trend from surface to intermediate depths (2OO-S00 m) followed bya slight increase in the bottom in the case of particulate Mn, Zn, Co, TSM and POC while a...

  19. Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater--a review.

    Science.gov (United States)

    La Colla, Noelia Soledad; Domini, Claudia Elizabeth; Marcovecchio, Jorge Eduardo; Botté, Sandra Elizabeth

    2015-03-15

    Evaluation of trace metal levels in seawater samples is undertaken regularly by research groups all over the world, leading to a growing demand for techniques involving fewer toxic reagents, less time-consuming protocols and lower limits of detection. This review focuses on providing a brief but concise description of the latest methodologies developed to this end, outlining the advantages and disadvantages of the various protocols, chelating and dispersive agents and instruments used. Conclusions are drawn on the basis of the articles reviewed, highlighting improvements introduced in order to enhance the performance of the protocols.

  20. The carbon isotopes ratio and trace metals content determinations in some Transylvanian fruit juices

    Science.gov (United States)

    Dehelean, A.; Magdas, D. A.; Cristea, G.

    2012-02-01

    This work presents a preliminary study on the carbon isotope signature and trace metal content investigated on the soil-plant-fruit pulp chain. The samples were collected from two Transylvanian areas namely Alba and Salaj. The average value of the δ13C at the soil surface was around δ13C ≈ -27%° and important differences of the δ13C values between the two studied areas were not observed. Meanwhile, differences between fruit pulp of grape juice and the pulp of pear juice relived a difference of about 1.5%° for δ13C values.

  1. Flow-injection sample preconcentration for ion-pair chromatography of trace metals in waters.

    Science.gov (United States)

    Pobozy, Ewa; Halko, Radoslav; Krasowski, Marcin; Wierzbicki, Tomasz; Trojanowicz, Marek

    2003-05-01

    Selected trace transition metal ions have been determined in an FIA/HPLC hyphenated system using on-line preconcentration on cellulose functionalised sorbent Cellex P. For HPLC separation ion-pair chromatography was employed with spectrophotometric detection at 510 nm using post-column derivatisation with PAR. Favourable kinetic conditions of sorption and elution as well as optimisation of hyphenated system allowed to obtain detection limits at sub-microgL(-1) level at 25 min preconcentration time. The developed method was employed for determination of Co(II), Ni(II), Cd(II) and Mn(II) in river water with reasonable agreement of obtained results with electrothermal AAS determination.

  2. Metals and trace elements in tissues of Common Eiders (Somateria mollissima) from the Finnish archipelago

    Science.gov (United States)

    Franson, J.C.; Hollmen, T.; Poppenga, R.H.; Hario, Martti; Kilpi, Mikael

    2000-01-01

    We sampled Common Eiders (Somateria mollissima) at five locations near coastal Finland in 1997 and 1998 for evidence of exposure to arsenic, cadmium, chromium, copper, iron, mercury, magnesium, manganese, molybdenum, lead, selenium, and zinc. Livers and kidneys were collected from adult males and females found dead and hunter-killed males, and livers were collected from ducklings. Two adult females, one of which had an ingested lead shot in its gizzard, were poisoned by lead. The concentrations of metals and trace elements that we found in tissues of eiders, other then the two lead poisoned birds, were not high enough to have independently caused mortality.

  3. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed....../preconcentration procedures have been suggested and applied, such as liquid-liquid extraction, (co)precipitation with collection in knotted reactors, adsorption, hydride generation, or ion-exchange. Selected examples of some of these procedures will be discussed. Emphasis will be placed on the use of FI...

  4. Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands

    NARCIS (Netherlands)

    Pižeta, I.; Sander, S.G.; Hudson, R.J.M.; Omanovic, D.; Baars, O.; Barbeau, K.A.; Buck, K.N.; Bundy, R.M.; Carrasco, G.; Croot, P.L.; Garnier, C.; Gerringa, L.J.A.; Gledhill, M.; Hirose, K.; Kondo, Y.; Laglera, L.M.; Nuester, J.; Rijkenberg, M.J.A.; Takeda, S.; Twining, B.S.; Wells, M.

    2015-01-01

    With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods u

  5. Study of Trace and Heavy Metals Content of Soft Drinks in the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. M. Alzaid

    2016-05-01

    Full Text Available The levels of 25 trace and heavy metals were determined in 29 brands of soft drinks collected from supermarkets and grand stores in Kuwait using an Agilent ICP/MS. Comparison of the elemental concentrations in the soft drinks samples with the international maximum allowable limits showed that the mean values as well as the ranges of all the investigated elements in all the samples analyzed were below both US-EPA and WHO regulatedlimits of drinking water. It was found that there is no significant effect on the material of the containers on the levels of the studied metals. In addition, these levels were found much lower than those found in other countries.

  6. A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes

    DEFF Research Database (Denmark)

    Stahl, Henrik; Warnken, Kent W.; Sochaczewski, Lukasz

    2012-01-01

    demonstrated localized mobilization of Ni, Cu, and Pb close to the burrow wall, where O-2 was elevated. The latter was also confirmed for Cu and Pb in natural sediments irrigated by the polychaete Hediste diversicolor. The sandwich sensor has great potential for investigating interrelations between O-2 d......A new sandwich sensor, consisting of an O-2 planar optode overlain by a thin (90 mu m) DGT layer is presented. This sensor can simultaneously resolve 2-D O-2 dynamics and trace metal fluxes in benthic substrates at a high spatial resolution. The DGT layer accumulates metals on a small particle size...... that the enhanced smearing and reduced response time of the O-2 signal associated with the additional DGT layer were marginal. To test sensor performance at realistic conditions, it was applied to an artificial burrow system consisting of permeable dialysis tubing flushed with oxygenated seawater. The measurements...

  7. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Science.gov (United States)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  8. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater.

    Science.gov (United States)

    Prakash, N; Arungalai Vendan, S

    2016-02-01

    The ternary blends consisting of Chitosan (CS), Nylon 6 (Ny 6) and Montmorillonite clay (MM clay) were prepared by the solution blending method with glutaraldehyde. The prepared ternary blends were characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo gravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bondings were established between chitosan, nylon 6 and montmorillonite clay. TGA showed the thermal stability of the blend is enhanced by glutaraldehyde as Crosslink agent. Results of XRD indicated that the relative crystalline of the pure chitosan film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend was rough and heterogenous. Further, it confirms the interaction between the functional groups of the blend components. The extent of removal of the trace metals was found to be almost the same. The removal of these metals at different pH was also done and the maximum removal of the metals was observed at pH 4.5 for both trace metals. Adsorption studies and kinetic analysis have also been made. Moreover, the protonation of amine groups is induced an electrostatic repulsion of cations. When the pH of the solution was more than 5.5, the sorption rate began to decrease. Besides, the quantity of adsorbate on absorbent was fitted as a function in Langmuir and Freundlich isotherm. The sorption kinetics was tested for pseudo first order and pseudo second order reaction. The kinetic experimental data correlated with the second order kinetic model and rate constants of sorption for kinetic models were calculated and accordingly, the correlation coefficients were obtained.

  9. Persistent impacts of trace metals from mining on floodplain grass communities along Soda Butte Creek, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Stoughton, J.A.; Marcus, W.A.

    2000-03-01

    In Yellowstone National Park, tailings and associated trace metals from past mining have been deposited along 28 km of Soda Butte Creek by large flood events. This study documents grass species diversity, density, and biomass; trace metal concentrations in soils; and soil pH, salinity, and clay content in four selected floodplain meadows contaminated by these tailings. Trace metal levels frequently exceed acceptable concentrations for agricultural soils at sampling points within the meadows. pH levels within flood-deposited tailings are strongly to moderately acid, while pH levels outside of tailings deposits are neutral. The data analysis: (1) shows that metals and acidity associated with tailings affect plant biomass, density, and diversity; (2) documents that the vegetation/metal and vegetation/pH associations are more of a threshold than a linear relationship; and (3) suggests that other factors may be involved in structuring the community. Vegetation diversity, density, and biomass decrease at threshold levels of trace metal concentrations and soil pH in all four meadows. CuSum plots of diversity in relation to trace metal levels show a decrease in mean diversity at 315 ppm copper, 22 ppm arsenic, 4.2% iron, 65 ppm lead, and 170 ppm zinc. Densities of Phleum pratense and Poa pratensis were significantly lower (P {le} 0.001) on plots with more than 250 ppm copper. Above-ground biomass of Phleum pratense was also significantly lower on plots with copper levels above 250 ppm. Decreased mean grass density was found on plots with pH < 6.4, but the only statistically significant difference was for Juncus balticus, which had increased density on plots with pH < 6.4. In contrast to the clear impacts of trace metals and pH on vegetation, other site characteristics did not alter measured vegetation characteristics.

  10. Trace metal concentrations and lead isotopic composition in surface waters of the Northeast Pacific along the United States - Mexico boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S. (Inst. of Marine Science, Santa Cruz, CA (United States))

    1990-01-09

    To evaluate the magnitude of heavy metal contamination along the United States - Mexico boundary, trace metal concentrations (Pb, Cd, Mn, Fe, and Zn) and lead isotopic composition ([sup 204]Pb, [sup 206]Pb, [sup 207]Pb, and [sup 208]Pb) were measured along four surface water transects across the continental shelf off the Baja California Coast. The stations were located between 2 to 45 km offshore, including both coastal and open ocean locations. All the metal distributions along the transects were characterized by offshore concentration gradients. The highest trace metal concentrations occurred in coastal waters in association with high salinities and nutrient concentrations. There was also a longshore gradient in trace metal concentrations. Trace element concentrations were lower in the southern locations than along the United States - Mexico boundary, and were comparable to typical open ocean values. The relative enrichment of metals in surface waters off the northern part of Baja California was primarily associated with advection/upwelling processes, not with anthropogenic inputs. Mass balance calculations indicated that about 1% of Cd and 13% of Zn were from urban discharges. The low metal levels measured in coastal waters off the central part of Baja California were attributed to the intrusion of open ocean waters, based on hydrographic data, satellite images and lead isotopic compositions.

  11. Soluble trace metals in aerosols over the tropical south east Pacific offshore of Peru

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2015-10-01

    Full Text Available Bulk aerosol samples collected during cruise M91 of FS Meteor off the coast of Peru in December 2012 were analysed for their soluble trace metal (Fe, Al, Mn, Ti, Zn, V, Ni, Cu, Co, Cd, Pb, Th and major ion (including NO3− and NH4+ content. These data are among the first recorded for trace metals in this relatively poorly studied region of the global marine atmosphere. To the north of ∼ 13° S, the concentrations of several elements (Fe, Ti, Zn, V, Ni, Pb appear to be related to distance from the coast. At the south of the transect (∼ 15–16° S, elevated concentrations of Fe, Cu, Co and Ni were observed. These may be related to the activities of the large smelting facilities in the south of Peru or northern Chile. Calculated dry deposition fluxes (3370–17 800 and 16–107 nmol m−2 d−1 for inorganic nitrogen and soluble Fe respectively indicated that atmospheric input to the waters of the Peru upwelling system contains an excess of Fe over N, with respect to phytoplankton requirements. This may be significant as primary production in these waters has been reported to be limited by Fe availability, but atmospheric deposition is unlikely to be the dominant source of Fe to the system.

  12. Determination of Trace Metals and Essential Minerals in Selected Fruit Juices in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    A. I. Ajai

    2014-01-01

    Full Text Available Levels of trace metals and essential minerals in selected fruit juice samples purchased from Minna were determined using atomic absorption spectrophotometer (AAS and Flame photometer. From the obtained result, Cu, Fe, Mn, Na, and Zn were present in all the samples, while Cd, Pb, and Cr were not detectable in all the samples. Concentrations of K range between 1.31 ± 0.10 and 41.20 ± 0.10 mg/100 mL, Na between 15.47 ± 0.15 and 3.50 ± 0.20 mg/100 mL, Mn between Nd and 0.27 ± 0.08 mg/100 mL, Fe between Nd and 0.90 ± 0.05 mg/100 mL, Cu between Nd-0.60 ± 0.00 mg/100 mL, and Zn between Nd-0.09 ± 0.01 mg/100 mL, respectively. The trace metal levels in all the samples were within permissible limit as recommended by WHO for edible foods and drinks and could therefore be taken to compliment the deficiency of these essential minerals from other food sources.

  13. Trace elements and heavy metals in hair of stage III breast cancer patients.

    Science.gov (United States)

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  14. Multielement trace determination in high purity advanced ceramics and high purity metals

    Indian Academy of Sciences (India)

    R Matschat; H-J Heinrich; M Czerwensky; S Kuxenko; H Kipphardt

    2005-07-01

    In the field of advanced ceramics two CRMs were developed in the last few years by the Federal Institute for Materials Research and Testing, one for silicon nitride and one for silicon carbide. Besides their application by industry they are appropriate to be used for the validation of special methods used for trace determination in accordance with high purity materials. This is demonstrated, for example, on ultrapure silicon carbide which was analysed by solid sampling electrothermal atomic absorption spectrometry (SS ET AAS). BAM is also certifying primary pure reference materials used as the National Standards for inorganic analysis in Germany. The crucial point of this project is the certification of the total purity of high purity materials, each representing one element of the periodic table. A variety of different analytical methods was necessary to determine the trace contents of metallic and non-metallic impurities from almost the whole periodic table in the high purity materials. The primary CRMs of copper, iron and molybdenum are used as examples to demonstrate the modus operandi, analytical effects observed by using high resolution ICP mass spectrometry (HR ICP–MS) and the results.

  15. Characteristics of trace metals in marine aerosols and their source identiifcation over the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuhui; CHEN Liqi; LIN Hongmei

    2015-01-01

    Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, Al and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundant of the analyzed trace metals, with an average concentration of 28.824 ng∙m-3. V and Zn concentrations were also high, and their average concentrations were 5.541 ng∙m-3 and 2.584 ng∙m-3, respectively. Although sea spray significantly influenced the marine aerosol particles measured (Na had the highest concentrations of the analyzed elements, with an average concentration of 2.65 μg∙m-3), multivariate analyses (enrichment factor and principal components analysis) indicated that most of the elements were not associated with oceanic sources. Over the Southern Ocean, Fe, Cd, As, Al and Cr in the aerosols mainly originated from crustal sources, while Cu, Pb, V and Zn originated from crustal sources and anthropogenic emissions. The enrichment factors (EFcrust) for most elements (Fe, Al, As, Cr, Cd, Cu and V) were much lower in the northern latitudes, indicating that when the sampling occurred closer to land the concentrations of these elements in aerosols were strongly affected by terrestrial crustal sources.

  16. Trace metals in soil vegetation, and voles from mine land treated with sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Alberici, T.M.; Sopper, W.E.; Storm, G.L.; Yahner, R.H.

    Trace-metal concentrations in soil, vegetation, and tissues of meadow voles (Microtus pennsylvanicus) were compared on a stripmined site reclaimed conventionally (control site) and with municipal sludge (treated site) in Somerset County, Pennsylvania, in March and April 1983. With the exception of Zn concentrations in birdsfoot trefoil (Lotus corniculatus L.), reclamation with municipal sludge did not increase trace metal concentrations in soil, vegetation, or meadow voles in comparison to the site reclaimed conventionally. Zinc concentration in birdsfoot trefoil from the site reclaimed with sludge was higher than that from the site reclaimed conventionally but was below phytotoxic levels. Concentrations of Cu, Zn, Co, Cd, and Ni in vole tissues were not significantly different between control and treated sites. However, Cr concentrations in kidney and bone and Pb concentrations in liver and bone were higher on the control site than on the treated site. Stomach analyses indicated that meadow voles preferred tall fescue (Festuca arundinaceae L.) and quackgrass (Agropyron repens L.) to birdsfoot trefoil and orchardgrass (Dactylis glomerata L.) 27 refs., 1 fig., 8 tabs.

  17. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines.

    Science.gov (United States)

    Fry, Brian; Carter, James F; Tinggi, Ujang; Arman, Ali; Kamal, Masud; Metian, Marc; Waduge, Vajira Ariyaratna; Yaccup, Rahman Bin

    2016-12-01

    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites.

  18. Airborne trace metals in snow on the Japan Sea side of Japan

    Science.gov (United States)

    Ecker, Franz-Josef; Hirai, Eiji; Chohji, Tetsuji

    Prevailing seasonal weather patterns produce a homogeneous distribution of snow from the coast to the mountains in the Hokuriku region on the Japan Sea (west) side of Japan. Daily snowfall was collected on polyethylene foils at six sites along the coast, in city areas and in the inland mountains. The samples were analyzed for pH and the soluble and insoluble fractions of Al, Cd, Cr, Cu, Fe, Mn, Pb and Zn. Comparison of the data from the various sites allowed an estimate of the regional background concentration of the trace metals. The contribution of trace metals derived from sea spray and Kosa-loess particles was found to be of minor importance to the regional background. The pH values of melted snow averaged around 4.6 over a range of 3 pH units, with the greatest fluctuations at the seaside and mountain sites. In the cities, these pH fluctuations occurred within a narrower and generally lower pH spectrum.

  19. Redox and trace metal regulation of ion channels in the pain pathway.

    Science.gov (United States)

    Evans, J Grayson; Todorovic, Slobodan M

    2015-09-15

    Given the clinical significance of pain disorders and the relative ineffectiveness of current therapeutics, it is important to identify alternative means of modulating nociception. The most obvious pharmacological targets are the ion channels that facilitate nervous transmission from pain sensors in the periphery to the processing regions within the brain and spinal cord. In order to design effective pharmacological tools for this purpose, however, it is first necessary to understand how these channels are regulated. A growing area of research involves the investigation of the role that trace metals and endogenous redox agents play in modulating the activity of a diverse group of ion channels within the pain pathway. In the present review, the most recent literature concerning trace metal and redox regulation of T-type calcium channels, NMDA (N-methyl-D-aspartate) receptors, GABAA (γ-aminobutyric acid A) receptors and TRP (transient receptor potential) channels are described to gain a comprehensive understanding of the current state of the field as well as to provide a basis for future thought and experimentation.

  20. Screening of phyto-chemical constituents, trace metals and antimicrobial efficiency of Cissus vitiginea

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available The present study focused on the phytochemical constituents, antimicrobial activity and trace metal concentrations of the Cissus vitiginea plant leaves which were collected from the Tiruchirappalli district, southern India. Preliminary phytochemical screening of leaves extracts revealed the presence of the bioactive compounds, such as steroids, triterpenoids, glycosides, sugar, alkaloids, flavonoids, tannins, amino acid, and coumarin in the leaves. The bacterial and fungal strains were tested for antimicrobial sensitivity against C. vitiginea using the disc diffusion method. The methanol extracts of the plant leaves exhibited the higher zone of inhibition against bacterial strains than fungal strains. The trace metal concentrations were analyzed form the powered plant leaves by 797 VA Computrace voltametry, Metrohm. The average concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn were 0.05, BDL, 018, 0.38, BDL, BDL and 0.48 mg kg-1, respectively. The bioactive compounds responsible for these antimicrobial activities could be isolated and identified to develop a new drug of pharmaceutical interest.

  1. Distribution of trace metals and Pb isotopes in bottom sediments of the Murucupi River, North Brazil

    Institute of Scientific and Technical Information of China (English)

    Diomar Cavalcante Oliveira; Jean Michel Lafon; Marcelo de Oliveira Lima

    2016-01-01

    The Murucupi River belongs to the hydrographic network of the Pará River estuary, at the southern portion of the Amazon River mouth, which consists of a fluvial-marine transitional zone under strong impact of both tidal and fluvial currents. The geochemical results obtained for bottom sediments from the Murucupi River, the Arrozal Channel, and the Pará River indicate a natural variation of Pb, Cr, Cu, Zn, and Ni content among these water ways with no significant anthropogenic influence. According to the threshold effects level (TEL), the contents of trace metals do not offer risk to the local biota. By contrast, the differences in the Pb isotopic composition of sediments in the Murucupi River, the Arrozal Channel, and the Pará River are significant. These isotopic signatures indicate an anthropogenic contribution of Pb in the Murucupi River originating from the domestic effluents of urban centers; industrial waste represented by red mud is not included. These results demonstrate that the Pb isotopic signature is a prospective indicator for future contamination of bottom sediments by trace metals and is useful for identifying contaminants among the possible anthropogenic sources.

  2. Record of the accumulation of sediment and trace metals in a Connecticut, U. S. A. , salt marsh. [Dating deposition of trace metals from polluted air masses

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, R.J.

    1977-01-01

    The nonlinear rate of accretion of a Connecticut salt marsh during the past century was estimated from the /sup 210/Pb distribution with depth by assuming a constant flux of /sup 210/Pb to the surface. This rate was found to be in general agreement with the smoothed record of relative mean sea level rise measured independently by the New York City tide gage since 1893. The rate of deposition of Mn, Fe, Cu, Zn, Pb and total inorganic matter on the surface of the salt marsh may be calculated from the age and sediment properties measured at small depth increments. Changes in the inorganic matter content are attributed to variations in land use on the watershed since it was cleared for agriculture. Fe, Mn, and inorganic matter are principally derived from stream transport of eroding soil, while the observed increases in the fluxes of Cu, Zn, and Pb are largely explained as increased supply via the atmosphere during the period of industrialization since the Civil War. Salt marshes thus may supply a refined record of the deposition of trace metals from polluted air masses over long periods of time.

  3. Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications.

    Science.gov (United States)

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2015-01-01

    Levels of six metals i.e. chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd) and lead (Pb) in three fish species (Channa punctatus, Heteropneustes fossilis and Trichogaster fasciata) from three urban rivers in Bangladesh were measured. Concentrations of Cr, Ni, Cu, As, Cd and Pb in fish species were 0.75-4.8, 0.14-3.1, 1.1-7.2, 0.091-0.53, 0.007-0.13, and 0.052-2.7mg/kg ww, respectively. The analyzed metals were significantly different between species and seasons (p<0.05). The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metal showed that As and Pb in muscle was particularly hazardous and potential risk for the low, medium and high fish consumer in Bangladesh. Some of the trace metals' concentrations are higher than the recommended value, which suggest that the water and fish of these rivers are not completely safe for human health.

  4. Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009

    Directory of Open Access Journals (Sweden)

    J. Fölster

    2011-07-01

    Full Text Available Long term data series (1996 through 2009 for trace metals were analyzed from a large number of streams and rivers across Sweden varying in tributary watershed size from 0.05 to 48 193 km2. The final data set included 139 stream sites with data for arsenic (As, cobalt (Co, copper (Cu, chromium (Cr, nickel (Ni, lead (Pb, zinc (Zn, and vanadium (V. Between 7 % and 46 % of the sites analyzed showed significant trends according to the seasonal Kendall test. However, in contrast to previous studies and depositional patterns, a substantial portion of the trends were positive, especially for V (100 %, As (95 %, and Pb (68 %. Other metals (Zn and Cr generally decreased, were mixed (Ni and Zn, or had very few trends (Co over the study period. Trends by region were also analyzed and some showed significant variation between the north and south of Sweden. Regional trends for both Cu and Pb were positive (60 % and 93 %, respectively in the southern region but strongly negative (93 % and 75 %, respectively in the northern region. Kendall's τ coefficients were used to determine dependence between metals and potential in-stream drivers including total organic carbon (TOC, iron (Fe, pH, and sulphate (SO42−. TOC and Fe correlated positively and strongly with As, V, Pb, and Co while pH and SO42− generally correlated weakly, or not at all with the metals studied.

  5. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    Science.gov (United States)

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process.

  6. Evaluation of Trace Metals Uptake by Some Plants Close to Some Industrial Zones in Khartoum City

    Directory of Open Access Journals (Sweden)

    Isam Eldin Hussein Elgailani

    2014-12-01

    Full Text Available The study aimed to evaluate the uptake of trace metals by the tissues of some plants which grow inside, or in the peripheries of, pools of water contaminated by waste water from neighboring industrial complexes in Khartoum City. It also aimed to verify the possibility of making use of this phenomenon in combating metal pollution in water and wastewater catchments. The flame atomic absorption spectrophotometry (FAAS was used to find the concentration of the subject metals in waste water and algal biomass of the phyla Chlorophyta, Cyanophyta, and Bacillariophyta; and in newly grown leaves of Calotropis procera in addition to their stems and roots. The physical parameters studied were pH and electrical conductivity (EC of waste water. The metals studied in waste water, algal biomass and C. procera were Fe, Zn, Cd, Pb, Cu, Ni, and Cr. The study covered during summer and autumn 6 sites in Khartoum city industrial complexes. Samples were collected, and analyzed for TMs concentration levels. The algal biomass was found to be more efficient for TMs uptake and accumulation than the three parts of C. procera. Among the parts of C. procera, the root was more efficient for TMs uptake than the leaf, while the stem was the least efficient.

  7. Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record

    Directory of Open Access Journals (Sweden)

    J. Ingri

    2011-01-01

    Full Text Available Sediment and water samples from the mine-polluted Yokostrovskaya basin in Lake Imandra have been analysed. Three major processes have influenced the accumulation and distribution of metals in the sediment: (1 Development of the apatite-nepheline and the sulfide ore mining industries. (2 Secondary formation of sulphides in the upper sediment column. (3 Redox cycling of Mn in the surface sediment and in the bottom water.

    This study demonstrate the dominant role of the Mn redox cycling in controlling distribution of several major and trace elements, especially during the winter stratification period. Mn oxides act as a major scavenger and carrier for the non-detrital fraction of Al, Ca, K, Mg, P, Ba, Co, Cu, Ni, Mo and Zn in the bottom water. Aluminium, Ca, K, Mg, P, Cu, Ni and Zn are mainly sorbed at the surface of the particulate Mn phase, while Ba and Mo form a phase (or inner sphere complex with Mn. Co is associated with the Mn-rich phase, probably by oxidation of Co(II to a trivalent state by the particulate Mn surface. Formation and dissolution of Mn particles most likely also control anoxic ammonium oxidation to nitrate and reduction of nitrate to N2. It is shown that secondary sulphides in Lake Imandra sediments are fed with trace metals primarily scavenged from the dissolved phase in the water column. This enrichment process, driven by the Mn-redox cycle, therefore changes the sediment record by the transfer of a dissolved pollution signal to the particulate sediment record, thus making it more complicated to trace direct influence of particles from different pollution sources.

  8. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    Energy Technology Data Exchange (ETDEWEB)

    Gokhan Alptekin

    2008-09-30

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the

  9. Trace metal contamination influenced by land use, soil age, and organic matter in montreal tree pit soil.

    Science.gov (United States)

    Kargar, Maryam; Jutras, Pierre; Clark, O Grant; Hendershot, William H; Prasher, Shiv O

    2013-09-01

    The short life span of many street trees in the Montreal downtown area may be due in part to higher than standard concentrations of trace metals in the tree pit soils. The effects of land use, soil organic matter, and time since tree planting in a given tree pit (soil age) were studied with respect to the total concentration of trace metals (Cr, Ni, Cu, Zn, Cd, and Pb) in soil collected from tree pits on commercial and residential streets. Contingency table analysis and multiple linear regression were applied to study how these variables were related to the total concentrations of trace metals in soil. Other variables, such as pH, street width, distance of the tree pit from the curb, and tree pit volume, were also used as input to statistical analysis to increase the analysis' explanatory power. Significantly higher concentrations of Cu, Cd, Zn, and Pb were observed in soils from commercial streets, possibly as a result of heavier traffic as compared with residential streets. Soil organic matter was positively correlated with the concentrations of Cu and Pb, probably due to the ability of organic matter to retain these trace metals. Nickel, Cu, Zn, Cd, and Pb were positively correlated with the soil age presumably because trace metals accumulate in the tree pit soil over time. This knowledge can be helpful in providing soil quality standards aimed at improving the longevity of downtown street trees.

  10. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    Science.gov (United States)

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  11. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    Science.gov (United States)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 μm) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 μm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  12. Stabilization of dissolved trace metals at hydrothermal vent sites: Impact on their marine biogeochemical cycles

    Science.gov (United States)

    Sander, Sylvia G.; Powell, Zach D.; Koschinsky, Andrea; Kuzmanovski, Stefan; Kleint, Charlotte

    2014-05-01

    Hydrothermal vents have long been neglected as a significant source of several bioactive trace metals as it was assumed that elements such as Fe, Mn, and Cu etc., precipitate in extensor forming poly-metallic sulfide and oxy-hydroxy sediments in the relative vicinity of the emanation site. However, recently this paradigm has been reviewed since the stabilization of dissolved Fe and Cu from hydrothermal vents was observed [1, 2] and increased concentrations of trace metals can be traced from their hydrothermal source thousands of kilometres through the ocean basins [3]. Furthermore several independent modelling attempts have shown that not only a stabilization of dissolved hydrothermal Fe and Cu is possible [4] but also that hydrothermalism must be a significant source of Fe to be able to balance the Fe-biogeochemical cycle [5]. Here we present new data that gives further evidence of the presence of copper stabilising organic and inorganic compounds in samples characterized by hydrothermal input. We can show that there are systematic differences in copper-complexing ligands at different vent sites such as 5°S on the Mid Atlantic Ridge, Brother Volcano on the Kermadec Arc, and some shallow hydrothermal CO2 seeps in the Bay of Plenty, New Zealand and the Mediterranean Sea. Quantitative and qualitative voltammetric data convincingly indicates that inorganic sulphur and organic thiols form the majority of the strong copper-complexing ligand pool in many of these hydrothermal samples. On average, the high temperature vents had a significantly higher copper binding capacity than the diffuse vents due to higher inorganic sulphur species concentrations. References: [1] Sander, S. G., et al. 2007. Organic complexation of copper in deep-sea hydrothermal vent systems. Environmental Chemistry 4: 81-89 [2] Bennett, S. A., et al. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270: 157-167. [3] Wu J

  13. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    Science.gov (United States)

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  14. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Fathi Alhashmi Bashir

    2012-01-01

    Full Text Available This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards.

  15. Trace metals in Norwegian lakes. Preliminary results for 473 lakes; Sporeelementer i norske innsjoeer. Foreloepig resultat for 473 sjoeer

    Energy Technology Data Exchange (ETDEWEB)

    Skjelkvaale, B.L.; Henriksen, A.; Vadset, M.; Roeyset, O. [Norsk Inst. for Luftforskning, Kjeller (Norway)

    1996-04-15

    In the autumn of 1995, a regional investigation of 1500 Norwegian lakes was performed as part of a programme on monitoring long-range transfrontier pollution and fallout deposits. This report presents the levels and regional distributions of about 50 trace metals in 473 statistically selected lakes. The concentrations of some of the metals fall off markedly from south to north. The high concentration in the south is probably due to long-range pollution. Some metals have high local concentrations, ascribed to point sources or local rock minerals. Acidification may lead to increased mobilization of certain metals. Lakes in coastal areas often have important quantities of trace metals from sea water, such as B and Sr. 15 refs., 6 figs., 1 table

  16. Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Allabaksh Murad Basha

    2014-01-01

    Full Text Available Vegetables (Tomato – Solanum lycopersicum, green chilli – Capsicum annum and bitter gourd – Momordica charantia and fruits (Banana – Musa acuminata colla, papaya – Carica papaya and mosambi – Citrus limetta from the cultivated areas around the Tummalapalle uranium mining site were analyzed for trace metals (Al, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Be, V, Co, Cd and U using inductively coupled plasma-mass spectrometer (ICP-MS. As per the estimated data, the concentrations of trace metals in vegetables and fruits are found in the range of 47.5–7.8 mg/kg for Al, 9.7–1.0 mg/kg for Cr, 3.8–1.0 mg/kg for Mn, 75.5–13.9 mg/kg for Fe, 1.4–0.2 mg/kg for Ni, 2.3–0.8 mg/kg for Cu, 9.2–3.1 mg/kg for Zn, 0.2–1.4 mg/kg for Pb, 19.2–1.9 μg/kg for Be, 96.1–15.8 μg/kg for V, 48.2–12.9 μg/kg for Co, 46.5–2.3 μg/kg for Cd and 16.4–2.7 μg/kg for U. The trace metals observed are compared to the literature reported values. Trace elemental data were subjected to statistical analysis to examine the interrelationship between the investigated trace elements and possible source identification of the trace metal contamination in vegetable and fruits. Daily intake of trace metals through ingestion of vegetables and fruits are also calculated.

  17. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  18. Linking Environmental Magnetism to Geochemical Studies and Management of Trace Metals. Examples from Fluvial, Estuarine and Marine Systems

    Directory of Open Access Journals (Sweden)

    Michael Scoullos

    2014-07-01

    Full Text Available Among the diverse research fields and wide range of studies encompassed by environmental magnetism, the present work elaborates on critical aspects of the geochemistry of trace metals that emerged through years of original research in a variety of environmental compartments. This review aims at sharing the insights gained on (a tracing metal pollution sources; and (b identifying processes and transport pathways from sources to depositional environments. Case studies on the Elefsis Gulf (Greece and the Gulf of Lions (France demonstrate the potential of combined magnetic measurements and chemical analysis to trace pollution signals resulting from land-based sources and atmospheric deposition. Case studies on estuarine environments, namely the Louros, Acheloos, and Asopos Estuaries (Greece, address modes of trace metal behavior under the influence of different hydrological regimes and elucidate in situ processes within the transitional estuarine zone, that define their ultimate fate. As sources, transport pathways, and processes of trace metals are fundamental in environmental management assessments, the involvement of magnetic measurements in the policy cycle could facilitate the development and implementation of appropriate regulatory measures for the integrated management of river basins, coastal, and marine areas.

  19. Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile.

    Science.gov (United States)

    Astorga-España, Maria Soledad; Calisto-Ulloa, Nancy Cristina; Guerrero, Sandra

    2008-02-01

    Samples of four different species of seaweed were collected monthly between October 2000 and March 2001 from the coast of the Strait of Magellan, Chile to establish baseline levels of trace metals (silver, total mercury, nickel, lead, antimony, vanadium and zinc) and to compare the accumulation capacity among species. The algae included in the study were Adenocystis utricularis (n=15); Enteromorpha sp. (n=11), Mazzaella laminarioides (n=12) and Porphyra columbina (n=6). The concentration range of each metal in microg g(-1) dry weight varied as follows: Ag=ND-0.3, Hg=ND-0.02, Ni=ND-12.6, Pb = ND-11.2, Sb=ND-1.97, V=ND-11.34 and Zn=14.10-79. Results showed that levels of Ag, Hg, Ni, Pb, Sb, V and Zn for all species were similar to those found in other studies for non-contaminated areas with very little influence from anthropogenic activity. Also among the four species studied macroalgae Enteromorpha sp. had the highest capacity for metal accumulation and could therefore be considered as a biomonitor for future studies in the area.

  20. Experimental design of an interlaboratory study for trace metal analysis of liquid fluids. [for aerospace vehicles

    Science.gov (United States)

    Greenbauer-Seng, L. A.

    1983-01-01

    The accurate determination of trace metals and fuels is an important requirement in much of the research into and development of alternative fuels for aerospace applications. Recognizing the detrimental effects of certain metals on fuel performance and fuel systems at the part per million and in some cases part per billion levels requires improved accuracy in determining these low concentration elements. Accurate analyses are also required to ensure interchangeability of analysis results between vendor, researcher, and end use for purposes of quality control. Previous interlaboratory studies have demonstrated the inability of different laboratories to agree on the results of metal analysis, particularly at low concentration levels, yet typically good precisions are reported within a laboratory. An interlaboratory study was designed to gain statistical information about the sources of variation in the reported concentrations. Five participant laboratories were used on a fee basis and were not informed of the purpose of the analyses. The effects of laboratory, analytical technique, concentration level, and ashing additive were studied in four fuel types for 20 elements of interest. The prescribed sample preparation schemes (variations of dry ashing) were used by all of the laboratories. The analytical data were statistically evaluated using a computer program for the analysis of variance technique.

  1. Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India.

    Science.gov (United States)

    Jayaprakash, M; Nagarajan, R; Velmurugan, P M; Sathiyamoorthy, J; Krishnamurthy, R R; Urban, B

    2012-12-01

    The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (I(geo)) class 4-6), whereas NBC sediments are enriched in Sn, Cu, Zn, and Hg (I(geo) class 4-6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metals found in these sediments. The calculated I(geo), Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai Metropolitan City have negatively influenced on the surrounding aquatic ecosystem.

  2. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    Science.gov (United States)

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.

  3. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities

    DEFF Research Database (Denmark)

    Awrahman, Zmnako; Rainbow, Philip S; Smith, Brian D;

    2016-01-01

    systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland....... This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination....

  4. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    Science.gov (United States)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  5. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses

    Science.gov (United States)

    Zhu, Zongmin; Sun, Guangyi; Bi, Xiangyang; Li, Zhonggen; Yu, Genhua

    2013-10-01

    In the present study, magnetic measurements were combined with geochemical analysis and stable Pb isotopic ratios to reveal the distribution and origination of trace metal pollutants in kindergarten dusts from a typical urban environment of Wuhan, central China. The geoaccumulation index (Igeo) of magnetic properties was more prominent than those of individual metals. The magnetic susceptibility (MS) and trace metals (Zn, Pb, and Cu) in this study together with published results from other Chinese cities formed a liner relationship, suggesting that metal contaminants in Chinese urban areas had similar MS to metal ratios, which could be used as an indicator for identification of pollution sources between Chinese cities and the other Asian cities. Stable Pb isotopic ratios (1.1125-1.1734 for 206Pb/207Pb and 2.4457-2.4679 for 208Pb/207Pb) in the urban dusts from Wuhan were characterized by higher 208Pb component in comparison with those from other Chinese cities. This result combined with principal component analysis (PCA) indicated that metal pollutants in the dusts were derived from industrial activities and coal combustion, whereas the traffic emissions were no longer a predominant pollution source in urban environment. Our study demonstrated that environmental magnetic methods could not only reveal the overall situation of trace metal contamination, but also prove evidence in the identification of pollution sources.

  6. Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS.

    Science.gov (United States)

    Ho, Tung-Yuan; Chien, Chia-Te; Wang, Bing-Nan; Siriraks, Archava

    2010-09-15

    A novel flow injection ion chromatograph (FI-IC) system has been developed to fully automate pretreatment procedures for multi-elemental analysis of trace metals in seawater by inductively coupled plasma mass spectrometer (ICPMS). By combining 10-port, 2 position and 3-way valves in the FI-IC manifold, the system effectively increase sample throughput by simultaneously processing three seawater samples online for: sample loading, injection, buffering, preconcentration, matrix removal, metal elution, and sample collection. Forty-two seawater samples can be continuously processed without any manual handing. Each sample pretreatment takes about 10 min by consuming 25 mL of seawater and producing 5 mL of processed concentrated samples for multi-elemental offline analysis by ICPMS. The offline analysis improve analytical precision and significantly increase total numbers of isotopes determined by ICPMS, which include the metals Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V, and Zn. The blank value and detection limits of trace metals using the system with ICPMS analysis all range from 0.1 to 10 parts per trillion (ppt), except Al, Fe, and Zn. The accuracy of the pretreatment system was validated by measuring open-ocean and coastal reference seawater, NASS-5 and CASS-4. Using the system with ICPMS analysis, we have obtained reliable trace metal concentrations in the water columns of the South China Sea. Possessing the features of full automation, high throughput, low blank, and low reagent volume used, the system automates and simplifies rigorous and complicated pretreatment procedures for multi-elemental analysis of trace metals in seawater and effectively enhances analytical capacity for trace metal analysis in environmental and seawater samples.

  7. Assessment of antioxidant responses and trace metal accumulation by digestive gland of ribbed mussel Aulacomya atra atra from Northern Patagonia.

    Science.gov (United States)

    Giarratano, Erica; Gil, Mónica N; Malanga, Gabriela

    2013-06-01

    Seasonal and spatial variability of trace metal concentrations and of a battery of antioxidant parameters were evaluated in digestive gland of the ribbed mussel Aulacomya atra atra. Fe, Al and Cu accumulated in tissue exhibited maximum values in winter, coinciding partially with the highest labile concentrations of Fe and Cu in sediment. Metals, as other pollutants, are known to influence the oxidative status of organisms and antioxidant enzymes have been often proposed as biomarkers of contaminant effects. Seasonal variations of trace metals did not appear to influence those of biochemical parameters, which generally showed an opposite trend with higher enzymatic activities in summer when trace metal concentrations were lower. Organisms from Punta Cuevas (control site) showed higher induction of reactive oxygen species production than those from both considered impacted sites, suggesting the possibility of some biochemical adaptation in organisms or a higher modulation of environmental and physiological factors on antioxidant responses than levels of trace metals. This study, which is the first in the area in this matter, showed that seasonal variations of potential biomarkers should be incorporated into interpretation of long-term biomonitoring studies in this marine coastal ecosystem.

  8. SOIL, BARK AND LEAF TRACE METAL LOADS RELATED TO THE WAR LEGACY (THE PRAŠNIK RAINFOREST, CROATIA

    Directory of Open Access Journals (Sweden)

    Ivana Mesić Kiš

    2016-06-01

    Full Text Available As a special forest vegetation reserve, the Prašnik rain forest is a highly protected area which owes its protection not only to a unique composition of trees, but also to its geographical position and, to an extent, historical events. It is situated on the Sava River left bank, north of the city of Stara Gradiška (cca. 3 km. The study area belongs to the southwestern part of Pannonian Basin, specifically the Sava Depression. The aim of this study was to assess a possible impact of war activities in Croatia (23 years ago when numerous mines were laid in this region and to establish a major and trace metal baseline concentrations for future investigations. Ten topsoil (S samples were taken randomly with adjacent vegetation (bark and leaves at each site. Major and trace metal concentrations were measured for all three types of samples using the ICP method. Analysed soils are composed of quartz, micaceous mineral, 14Å mineral, plagioclase and mixed layer minerals. All metal values in the sample taken from an ex-mine crater are 2-4 times higher compared to other. Generally, positive statistically significant Kendall’s Tau correlation coefficients of trace metals (Cd, Cr, Cu, Ni, and Zn were found for all combinations of the S (soil, B (bark, and L (leaf groups. Such results indicate that the war activity have played a certain role in a distribution pattern of soil as well as vegetative trace metal levels.

  9. Detection of Trace Heavy Metals Ions by Arrays of Titania Nanotubes Annealed in Nitrogen

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-man; XIAO Peng; CAO Guo-zhong

    2009-01-01

    Redox response of trace heavy metals ions(THMIs) has better performance on highly ordered vertically oriented titania nanotube arrays(TNA) annealed in nitrogen. Experimental data showed that different THMIs possess different reaction peak shapes and charge and discharge capacities. Therefore, the TNA will become an important tool used for environmental protection and facilitating the rapid determination of THMIs. THMIs of 5×10~(-4) mol/L concentration were measured at a scan rate of 100 mV/s. The analytical utility of TNA is demonstrated in a neutral 0.5 mol/L Na_2SO_4 solution. The results sufficiently show that titania nanotube arrays electrodes(TNAE) will be used to measure THMIs.

  10. Contamination of Potentially Trace Metals in Aqaba and Eshidiya Phosphogypsum in Jordan

    Directory of Open Access Journals (Sweden)

    M. S. AL-HWAITI

    2010-12-01

    Full Text Available Contamination of As, Cd, Cr, Cu, Hg, Pb, Se, Zn and V in Jordan phosphogypsum by product has been determined. The aim of this study is to assess the potential of trace metals contamination caused by production plant of Aqaba and Eshidiya. Arsenic, Cr, Hg, Pb, Se and V have exhibited normal abundances where Cd and U had the highest enrichment factors of 16 and 4, respectively in Aqaba phosphogypsum and 18 and 1, respectively in Eshidiya phosphogypsum. In addition, the elements geo-accumulation index factor were calculated and found that As, Cd, Cr, Cu, Hg, Pb, Se, Zn V are unpolluted to moderately polluted, with the exception of Cd, it shows highly polluted. Arsenic, Cd, Cr, Cu and Zn show immobility to low mobility, whereas Se exhibits intermediate to high mobility. The results obtained in this study can be not worrying from the point of view of environmental safe use of phosphogypsum.

  11. "Intelligent" reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    Katsuomi Takehira

    2009-01-01

    Trace amounts of noble metal-doped Ni/Mg(Al)O catalysts were pre-pared starting from Mg-Al hydrotalcites (HTs) and tested in daily start-up and shut-down (DSS) operation of steam reforming (SR) of methane or partial oxidation (PO) of propane. Although Ni/Mg(Al)O catalysts prepared from Mg(Ni)-Al HT exhibited high and stable activity in stationary SR,PO and dry reforming of methane and propane,the Ni/Mg(Al)O catalysts were drastically deactivated due to Ni oxidation by steam as purge gas when they were applied in DSS SR of methane. Such deactivation was effectively suppressed by dop-ing trace amounts of noble metal on the catalysts by using a "memory effect" of HTs. Moreover,the noble metal-doped Ni/Mg(Al)O cat-alysts exhibited "intelligent" catalytic behaviors,i.e.,self-activation and self-regenerative activity,leading to high and sustainable activity during DSS operation. Pt was the most effective among noble met-als tested. The self-activation occurred by the reduction of Ni2+ in Mg(Ni,Al)O periclase to Ni~0 assisted by hydrogen spillover from Pt (or Pt-Ni alloy). The self-regenerative activity was accomplished by self-redispersion of active Ni~0 particles due to a reversible reduction-oxidation movement of Ni between the outside and the inside of the Mg(Al)O periclase crystal;surface Ni~0 was oxidized to Ni~(2+) by steam and incorporated into Mg(Ni~(2+),Al)O periclase,whereas the Ni~(2+) in the periclase was reduced to Ni~0 by the hydrogen spillover and appeared as the fine Ni~0 particles on the catalyst surface. Fur-ther a "green" preparation of the Pt/Ni/[Mg3.5Al]O catalysts was ac-complished starting from commercial Mg3.5-Al HT by calcination,followed by sequential impregnation of Ni and Pt.

  12. Polytene chromosomes of Chironomidae (Diptera as a bioassay of trace-metal-induced genome instability

    Directory of Open Access Journals (Sweden)

    Paraskeva Vladimirova Michailova

    2012-10-01

    Full Text Available Chironomids are a ubiquitous group of aquatic insects that are very sensitive to environmental stress. Due to the presence of polytene (‘giant’ salivary gland chromosomes, it is possible to define the genome response of several Chironomid species to various stress agents. The aim of this study was to assess the genotoxic changes in populations of widely distributed chironomid species from aquatic basins in Bulgaria, Italy, Russia, U.K. and Poland, which were exposed to high concentrations of trace metals. We analyzed the structural and functional alterations of polytene chromosomes of the salivary glands of larvae belonging to three different cytocomplexes of the genus Chironomus (“thummi”, “lacunarius”, “pseudothummi”, and genera Glyptotendipes and Kiefferulus. Somatic structural chromosome rearrangements (para- and pericentric heterozygous inversions, deletions, deficiencies and amplifications were used to estimate a Somatic index (S for each population. The highest S indexes were detected in Chironomus riparius populations from locations with high concentrations of trace metals in the sediment. Each species showed specific genome responses to stress agents which we discussed in the light of the specific DNA structures and cytogenetic characteristics of the species. In larvae from polluted sediments two key structures of the salivary gland chromosomes (Balbiani Rings and Nucleolar Organizer sharply reduced their activity to levels below those observed under non-polluted conditions. It is concluded that polytene chromosomes can be used as tools for evaluating the genotoxicity of the aquatic environment. Structural and functional chromosome alterations provide cost-effective early-warning signals of genotoxic concentrations of environmental pollutants.doi: 10.5324/fn.v31i0.1355.Published online: 17 October 2012.

  13. Impact of mineral components and selected trace metals on ambient PM10 concentrations

    Science.gov (United States)

    Limbeck, Andreas; Handler, Markus; Puls, Christoph; Zbiral, Johannes; Bauer, Heidi; Puxbaum, Hans

    PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m -3 (Cd) and approximately 200 ng m -3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m -3 (Ca) to 16.3 μg m -3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called "urban impact", which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the "urban impacts" of individual elements varied between 25.5% (As) and 77.0% (Ba).

  14. Historical environmental pollution trend and ecological risk assessment of trace metals in marine sediments off Adyar estuary, Bay of Bengal, India.

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.; Ramkumar, T.

    .07. Based on AF, PLI, and sediment quality guidelines values for trace metals, significant metal enrichment and ecological risk were obtained in upper-most sediment layer. Multivariate statistical methods such as correlation matrix, principal component...

  15. Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2011-01-01

    Full Text Available Long term data series (1996 through 2009 for trace metals were analyzed from a large number of streams and rivers across Sweden varying in tributary watershed size from 0.05 to 48193 km2. The final data set included 139 stream sites with data for arsenic (As, cobalt (Co, copper (Cu, chromium (Cr, nickel (Ni, lead (Pb, zinc (Zn, and vanadium (V. Between 7% and 46% of the sites analyzed showed significant trends according to the seasonal Kendall test. However, in contrast to previous studies and depositional patterns, a substantial portion of the trends were positive, especially for V (100%, As (95%, and Pb (68%. Other metals (Zn and Cr generally decreased, were mixed (Ni and Zn, or had very few trends (Co over the study period. Trends by region were also analyzed and some showed significant variation between the north and south of Sweden. Regional trends for both Cu and Pb were positive (60% and 93%, respectively in the southern region but strongly negative (93% and 75%, respectively in the northern region. Kendall's τ coefficients were used to determine dependence between metals and potential in-stream drivers including total organic carbon (TOC, iron (Fe, pH, and sulphate (SO42−. TOC and Fe correlated positively and strongly with As, V, Pb, and Co while pH and SO42−generally correlated weakly, or not at all with the metals studied.

  16. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review

    Directory of Open Access Journals (Sweden)

    Afnan Mahmood Freije

    2015-04-01

    Full Text Available The Arabian Gulf environmental status was assessed based on studies conducted in Bahrain, Kuwait, Oman, Saudi Arabia, Qatar, and United Arab Emirates (UAE during 1983–2011. This review examines all sorts of pollutions in the Arabian Gulf area over the last three decades. Approximately 50 published studies were reviewed in order to determine the pollution status in the Arabian Gulf regarding heavy metals and organic substances. Three types of environmental pollutions including marine and coastal, soil, and air were addressed in this review as well as sources of pollutants and their effect on biological systems, marine organisms, and human health. Emphasis is placed on marine pollution, particularly toxic metal, and petroleum hydrocarbon contaminations. Major parts of this review discuss the consequences of the 1991 Gulf War on the environment, and the substantial changes associated with the marine habitats. The effects of oil field fires in Kuwait following the 1991 Gulf War were evaluated through studies that investigated hydrocarbons concentration and trace metals in samples of near shore sediments, bivalves, and fish collected from Kuwait, Saudi Arabia, Bahrain, UAE, and Oman. Total petroleum hydrocarbons (TPH and polycyclic aromatic hydrocarbons (PAHs were discussed in biota (fish and various bivalves and coastal sediments from six countries in the Gulf. The review has revealed different concentrations of pollutants, low, moderately, and chronically contaminated areas from oil and metals. It has also outlined effective sustainable management measures and goals as a first step in the evaluation of coastal, marine, soil, and air environment in the Arabian Gulf area.

  17. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay

    Science.gov (United States)

    Wang, Yan; Ling, Min; Liu, Ru-hai; Yu, Ping; Tang, Ai-kun; Luo, Xian-xiang; Ma, Qimin

    2017-02-01

    Rapid economic development in the Yellow River basin has inevitably resulted in increase of pollution in the estuary, and concern for both the environment and protection against pollutants is increasing. Contents of trace metals (Cu, Pb Zn, Cr, Cd, As, Hg), Fe, Al, total organic carbon (TOC), and their granulometry were determined in surface sediment samples from the Yellow River estuary and its adjacent areas. Metal contents were significantly correlated each other. Clay, TOC and heavy metal contents showed similar distribution characteristics, with concentrations increased from the land to the sea. The distribution of grain size plays an important role in influencing the distribution of trace metals. Heavy metal concentrations showed a significant relationship with Fe and Al content, while most heavy metals were not enriched. These results were also confirmed by the analysis of enrichment factors and principal component analysis of the metals. The metal content of the Yellow River Estuary sediments was similar to the content observed 20 years ago, but the concentrations of most metals in Laizhou Bay decreased. The decrease in the carrying sediment of the Yellow River might be responsible for this pattern.

  18. Mechanisms of trace metal sorption in Pseudomonas putida-birnessite assemblages

    Science.gov (United States)

    Peña, J.; Kwon, K. D.; Bargar, J. R.; Sposito, G.

    2012-04-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute strongly to the adsorption of nutrient and toxicant metals in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). The biogenic Mn(IV) oxide found in field settings, as well as that produced by model bacteria in laboratory culture, is typically layer-type hexagonal birnessite containing abundant cation vacancy sites and enmeshed in an organic matrix of bacterial cells and extracellular polymeric substances. In this talk I summarize the results from laboratory-scale research designed to investigate the mechanisms of metal sorption by the bacterial biomass-birnessite assemblages formed by Pseudomonas putida GB-1 when grown in the presence of 1 mM Mn(II) at circumneutral pH values. The goals of this research were first, to identify the structure of the surface complexes formed by trace metals (e.g., Ni, Cu and Zn) on biogenic birnessite and second, to determine the conditions under which the bacterial cell surfaces and extracellular polymeric substances contribute to metal sorption. Macroscopic and spectroscopic experiments were performed at varying pH values (6 - 8) and over a wide-range of metal concentrations. Extended X-ray absorption fine structure (EXAFS) spectroscopy and first-principles calculations based on density functional theory showed that cation vacancy sites in birnessite drive mineral reactivity, but that surface speciation varies from metal to metal. For, Ni we identified two species, Ni bonded to three surface oxygen atoms vacancy sites as a triple-corner-sharing (TCS) complex and Ni incorporated at vacancy sites, with surface speciation varying with pH and surface loading. Zinc formed TCS complexes at vacancy sites, with the proportion of Zn in tetrahedral or octahedral coordination geometry influenced

  19. Rapid determination of some trace metals in several oils and fats

    Directory of Open Access Journals (Sweden)

    Bhanger, M. I.

    2004-06-01

    Full Text Available An atomic absorption spectrophotometric method has been devised for the rapid determination of trace metals, found in several vegetable oils and fats. Samples were prepared using an ultrasonically assisted acid-extractive technique. The parameters of the analysis were optimized to improve the recovery of metals from the oil matrixes at an ultra trace level within the least possible time. The use of ultrasonic intensification, followed by centrifugation for phase separation reduced the conventional acid extraction time from 180 to only 10 minutes. The respective range of recovery of iron, copper, nickel and zinc was found to be 94.6-98.0 %, 93.6-100.4 %, 95.0-97.3 % and 96.0-101.2 % in a soybean oil which was fortified with 0.10, 0.25, 0.50, 0.75, 1.00 μg/gm of each of the metals using the standard addition method. The ranges of recovery of these metals as investigated by the proposed method were also found in close agreement with those of the wet digestion method. Most of the samples of commercial oils and fats were found to be contaminated with notable amounts of iron and nickel ranging from 0.13-2.48 and 0.027-2.38 ppm respectively. The contents of copper and zinc were also high in many brands, ranging from 0.01-0.15 ppm and zinc 0.03- 0.21 ppm respectively, which poses a threat to oil quality and to human health.Se ha establecido un método analítico rápido mediante espectroscopia de absorción atómica para determinar con rapidez trazas metálicos en algunos aceites y grasas. Las muestras se preparan mediante una técnica extractiva que utiliza ultrasonidos. Los parámetros del análisis han sido optimizados para mejorar la recuperación de metales a niveles de ultra-traza en el menor tiempo posible. El uso de ultrasonidos, seguido por centrifugación para la separación de fases, redujo el tiempo convencional de extracción de 180 a 10 min. Los rangos de recuperación de hierro, cobre, níquel y zinc fueron 94.6-98.0 %, 93

  20. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  1. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    Science.gov (United States)

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  2. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  3. Risks assessment concerning municipal solid wastes valorization: example of traces of metals; Etude des risques associes a la valorisation des dechets urbains: cas des metaux traces

    Energy Technology Data Exchange (ETDEWEB)

    Sens Zanetto, Ch.

    1998-07-01

    Aerobic biological processes allow the transformation of organic wastes into compost. This compost is very useful but the presence of traces of metals limits its use. The migration and the pile up of these metals depend strongly on their chemical forms. Metal-soil-plant interactions have been studied in lysi-metrical columns and a scheme of sequential chemical extraction has been developed in order to follow the evolution of chemical forms in the soil. In this experimental study, the migration of metal carbonates through 2 kinds of recomposed soils has been investigated. Several months after the beginning of the experiment, metals appear to be more concentrated. Concerning gravitational transport, there is a strong influence of the nature of the mineral substrate on which the compost was scattered, this influence lasts several months. It is shown that it is during the period following the spreading of compost that the risk of transfer of metal from compost to water or to plants is the highest.

  4. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  5. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall

    Science.gov (United States)

    Gandois, L.; Tipping, E.; Dumat, C.; Probst, A.

    2010-02-01

    Atmospheric inputs of selected Trace Metals (TM: Cd, Cu, Ni, Pb, Sb, Zn, as well as Al, Fe and Mn) were studied on six forested sites in France. In order to evaluate canopy interaction with atmospheric inputs, TM were measured in both Open Field Bulk Deposition (BD) and Throughfall (TF). Anthropogenic contribution to BD composition is high for Zn, Cd and Sb, reflecting actual TM emissions trends. Canopy greatly influences precipitation composition, through different processes, including assimilation and leaching by canopy, complexation as well as accumulation/dissolution of dry deposition. TM and Dissolved Organic Carbon (DOC) physical fractionation between colloidal and truly dissolved phases was performed with ultrafiltration. Al, Fe, Pb and Cu are found in the colloidal fraction whereas Cd, Ni, Zn and Sb are mostly in the truly dissolved fraction. Chemical speciation predicted with WHAM-VI shows that in throughfall, Al, Fe, Pb and Cu are almost entirely complexed by DOC, whereas Ni, Cd and Zn are present in average 30% in the free metal ion form. TM present in labile forms (Cd, Ni, Zn) interact with the canopy, are cycled in the ecosystem, and their concentration is either slightly increased or even decreased in throughfall. Sb, Pb and Cu concentration are increased through canopy, as a consequence of dry deposition accumulation.

  6. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  7. Total petroleum hydrocarbons and trace metals in tropical estuary of Todos os Santos Bay, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Celino, Joil Jose; Oliveira, Olivia Maria Cordeiro de; Queiroz, Antonio Fernando de Souza [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Trigueis, Jorge Alberto [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Garcia, Karina Santos [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2008-07-01

    As part of the environmental assessment within Todos os Santos Bay, State of Bahia - Brazil, in summer of 2005, superficial water and sediments samples of the mangrove were collected at five locations to determine the spatial distribution of anthropogenic pollutants in the Dom Joao estuary at the Sao Francisco do Conde Region. Sandy sediments with low organic matter content dominate the studied area. Trace metal levels indicated that sediments were moderately polluted with Cu (overall mean: 21.48 +/- 4.76 {mu}g.g-1 dry sediment), but not with Pb (15 +/- 8), Zn (38 +/- 10), Cr (15 +/- 7), Ni (13 +/- 6) and Cd (0.4 +/- 0.2). Depending on location, total petroleum hydrocarbons ranged from 1.6 to 10.6 {mu}g.g-1. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the stations investigated and confirmed our analytical results. Principal components analysis confirmed two regions according to their environmental quality. The results pointed out that almost all the area presented some substances that can cause adverse biological effects, especially in the outermost region where some metals are above TEL level. (author)

  8. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    Science.gov (United States)

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.

  9. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  10. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France

    Energy Technology Data Exchange (ETDEWEB)

    Gandois, L. [Universite de Toulouse, UPS, INP, EcoLab - Laboratoire d' ecologie fonctionnelle, ENSAT, Avenue de l' Agrobiopole, F-31326 Castanet-Tolosan (France); CNRS, EcoLab, F-31326 Castanet-Tolosan (France); Nicolas, M. [ONF, Direction technique RENECOFOR, Bd de Constance 77300 Fontainebleau (France); VanderHeijden, G. [INRA, centre de Nancy, Equipe BEF, 54280 Champenoux (France); Probst, A., E-mail: anne.probst@ensat.fr [Universite de Toulouse, UPS, INP, EcoLab -Laboratoire d' ecologie fonctionnelle, ENSAT, Avenue de l' Agrobiopole, F-31326 Castanet-Tolosan (France); CNRS, EcoLab, F-31326 Castanet-Tolosan (France)

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.

  11. Temporal and spatial variability of trace metals in suspended matter of the Mandovi estuary, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Kessarkar, P.M.; Rao, T.G.

    of the estuary. SPM is consistently low at all stations during the post-monsoon. Trace metals (Cu, Ni, Zn, Cr, and Pb) show strong inter-relationships. They correlate well with Fe and Mn only during the monsoon. The concentrations of Cr, Cu, and Pb are high...

  12. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    J.A.O. Oyekunle

    2014-01-01

    Full Text Available Bread loaves randomly sampled from nine outlets and bakeries within Ile-Ife were analysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determination was carried out via spectrophotometric method while trace metals in the digested bread samples were profiled using Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the trace metal levels were of the order: 0.03–0.10 μg/g Co = 0.03–0.10 μg/g Pb < 0.23–0.46 μg/g Cu < 2.23–6.63 μg/g Zn < 25.83–75.53 μg/g Mn. This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples contained both essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.

  13. In-situ measurement of free trace metal concentrations in a flooded paddy soil using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Pan, Y.; Koopmans, G.F.; Bonten, L.T.C.; Song, J.; Luo, Y.; Temminghoff, E.J.M.; Comans, R.N.J.

    2015-01-01

    The field Donnan Membrane Technique (DMT) has been used successfully to measure in-situ free trace metal concentrations in surface waters. However, it has not been applied previously in submerged soil systems including flooded paddy rice fields.Wetested this technique in a columnexperimentwith a flo

  14. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Science.gov (United States)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  15. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations

    NARCIS (Netherlands)

    Sweere, T.; Van den Boorn, S.; Dickson, A.J.; Reichart, G.-J.

    2016-01-01

    Trace metal enrichments in sedimentary deposits are of prime interest because they are governed by processes that also control the production and preservation of organic matter. Consequently, trace metals have been used in reconstructions of the (palaeo)depositional environment of organic-rich depos

  16. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    Science.gov (United States)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  17. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health.

  18. Determination of the side-reaction coefficient of desferrioxamine B in trace-metal-free seawater

    Directory of Open Access Journals (Sweden)

    Johan Schijf

    2016-07-01

    Full Text Available Electrochemical techniques like adsorptive cathodic stripping voltammetry with competitive ligand equilibration (ACSV-CLE can determine total concentrations of marine organic ligands and their conditional binding constants for specific metals, but cannot identify them. Individual organic ligands, isolated from microbial cultures or biosynthesized through genomics, can be structurally characterized via NMR and tandem MS analysis, but this is tedious and time-consuming. A complementary approach is to compare known properties of natural ligands, particularly their conditional binding constants, with those of model organic ligands, measured under suitable conditions. Such comparisons cannot be meaningfully interpreted unless the side-reaction coefficient (SRC of the model ligand in seawater is thoroughly evaluated.We conducted series of potentiometric titrations, in non-coordinating medium at seawater ionic strength (0.7 M NaClO4 over a range of metal:ligand molar ratios, to study complexation of the siderophore desferrioxamine B (DFOB with Mg and Ca, for which it has the highest affinity among the major seasalt cations. From similar titrations of acetohydroxamic acid in the absence and presence of methanesulfonate (mesylate, it was determined that Mg and Ca binding to this common DFOB counter-ion is not strong enough to interfere with the DFOB titrations. Stability constants were measured for all DFOB complexes with Mg and Ca including, for the first time, the bidentate complexes. No evidence was found for Mg and Ca coordination with the DFOB terminal amine. From the improved DFOB speciation, we calculated five SRCs for each of the five (deprotonated forms of DFOB in trace-metal-free seawater, yet we also present a more convenient definition of a single SRC that allows adjustment of all DFOB stability constants to seawater conditions, no matter which of these forms is selected as the 'component' (reference species. An example of Cd speciation in

  19. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  20. Chemcatcher and DGT passive sampling devices for regulatory monitoring of trace metals in surface water.

    Science.gov (United States)

    Allan, Ian J; Knutsson, Jesper; Guigues, Nathalie; Mills, Graham A; Fouillac, Anne-Marie; Greenwood, Richard

    2008-07-01

    This work aimed to evaluate whether the performance of passive sampling devices in measuring time-weighted average (TWA) concentrations supports their application in regulatory monitoring of trace metals in surface waters, such as for the European Union's Water Framework Directive (WFD). The ability of the Chemcatcher and the diffusive gradient in thin film (DGT) device sampler to provide comparable TWA concentrations of Cd, Cu, Ni, Pb and Zn was tested through consecutive and overlapping deployments (7-28 days) in the River Meuse (The Netherlands). In order to evaluate the consistency of these TWA labile metal concentrations, these were assessed against total and filtered concentrations measured at relatively high frequencies by two teams using standard monitoring procedures, and metal species predicted by equilibrium speciation modeling using Visual MINTEQ. For Cd and Zn, the concentrations obtained with filtered water samples and the passive sampling devices were generally similar. The samplers consistently underestimated filtered concentrations of Cu and Ni, in agreement with their respective predicted speciation. For Pb, a small labile fraction was mainly responsible for low sampler accumulation and hence high measurement uncertainty. While only the high frequency of spot sampling procedures enabled the observation of higher Cd concentrations during the first 14 days, consecutive DGT deployments were able to detect it and provide a reasonable estimate of ambient concentrations. The range of concentrations measured by spot and passive sampling, for exposures up to 28 days, demonstrated that both modes of monitoring were equally reliable. Passive sampling provides information that cannot be obtained by a realistic spot sampling frequency and this may impact on the ability to detect trends and assess monitoring data against environmental quality standards when concentrations fluctuate.

  1. Assessment of contamination, distribution and chemical speciation of trace metals in water column in the Dakar coast and the Saint Louis estuary from Senegal, West Africa.

    Science.gov (United States)

    Diop, Cheikh; Dewaelé, Dorothée; Diop, Mamadou; Touré, Aminata; Cabral, Mathilde; Cazier, Fabrice; Fall, Mamadou; Diouf, Amadou; Ouddane, Baghdad

    2014-09-15

    The water column from Dakar coast and Saint Louis estuary in Senegal, West Africa, was sampled in order to measure the contamination level by trace metals. The speciation of metals in water allowed performing a distribution between dissolved and particulate trace metals. For the dissolved metals, the metallic concentration and repartition between the organic fraction and the inorganic fraction were performed. The results show that the pollution of the estuary was more serious than in Dakar coast for Co, Cr, Ni, Pb and Zn; while, Cd and Cu were higher in Dakar coast. A strong affinity between metals and suspended particles has been revealed. Dissolved metals that have a tendency to form organic metal complexes are in decreasing order: Cd, Zn, Pb, Co=Cr=Mn, Cu and Ni. The results showed that the mobility of trace metals in estuary is controlled by dissolved organic carbon, while in coast it depends on chlorides.

  2. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    Science.gov (United States)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  3. DOWNSIZED CHELATING RESIN-PACKED MINICOLUMN PRECONCENTRATION FOR MULTIELEMENT DETERMINATION OF TRACE METALS BY ICP-MS

    Directory of Open Access Journals (Sweden)

    Dwinna Rahmi

    2010-11-01

    Full Text Available Chelating resin-packed minicolumn preconcentration was used for multielement determination of trace metals inseawater by inductively coupled plasma mass spectrometry (ICP-MS. The chelating resin-packed minicolumn wasconstructed with two syringe filters (DISMIC 13HP and Millex-LH and an iminodiacetate chelating resin (Chelex 100,200-400 mesh, with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 Mnitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution wassubjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-samplingintroduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 Mammonium acetate for elimination of matrix elements and the amount of 2 M nitric acid for eluting trace metals wasoptimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co,Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, andNASS-5 agreed well with their certified values. The observed values of rare earth elements (REEs in the aboveseawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for theconcentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and referencedata for REEs in these CRMs

  4. Colloids and organic matter complexation control trace metal concentration-discharge relationships in Marshall Gulch stream waters

    Science.gov (United States)

    Trostle, Kyle D.; Ray Runyon, J.; Pohlmann, Michael A.; Redfield, Shelby E.; Pelletier, Jon; McIntosh, Jennifer; Chorover, Jon

    2016-10-01

    This study combined concentration-discharge analyses (filtration at 0.45 μm), cascade filtrations (at 1.2, 0.4, and 0.025 μm) and asymmetrical flow field flow fractionation (AF4) to probe the influence of colloidal carriers (dissolved organic matter and inorganic nanoparticles) on observed concentration-discharge relationships for trace metals in a 155 ha forested catchment of the Santa Catalina Mountains Critical Zone Observatory (SCM CZO), Arizona. Many major elements (Na, Mg, Si, K, Ca) show no colloidal influence, and concentration-discharge relationships for these species are explained by previous work. However, the majority of trace metals (Al, Ti, V, Mn, Fe, Cu, Y, REE, U) show at least some influence of colloids on chemistry when filtered at the standard 0.45 μm cutoff. Concentration-discharge slopes of trace metals with modest colloidal influence are shallow (˜0.3) similar to that measured for dissolved organic carbon (DOC, 0.24), whereas elements with greater colloidal influence have steeper concentration-discharge slopes approaching that of Al (0.76), the element with the largest colloidal influence in this study (on average 68%). These findings are further supported by AF4 measurements that show distinct and resolvable pools of low hydrodynamic diameter DOC-sized material coexistent with larger diameter inorganic colloids, and the ratio of these carriers changes systematically with discharge because the DOC pool has a concentration-discharge relationship with shallower slope than the inorganic colloidal pool. Together these data sets illustrate that positive concentration-discharge slopes of trace metals in stream waters may be explained as the relative partitioning of trace metals between DOC and inorganic colloids, with contributions of the latter likely increasing as a result of increased prevalence of macropore flow.

  5. Historical changes in trace metals and hydrocarbons in nearshore sediments, Alaskan Beaufort Sea, prior and subsequent to petroleum-related industrial development: Part I. Trace metals.

    Science.gov (United States)

    Naidu, A Sathy; Blanchard, Arny L; Misra, Debasmita; Trefry, John H; Dasher, Douglas H; Kelley, John J; Venkatesan, M Indira

    2012-10-01

    Concentrations of Fe, As, Ba, Cd, Cu, Cr, Pb, Mn, Ni, Sn, V and Zn in mud (drilling effluents. In Prudhoe Bay, concentration spikes of metals in ∼1988 presumably reflect enhanced metals deposition following maximum oil drilling in 1980s. In summary, the Alaskan Arctic nearshore has remained generally free of metal contamination despite petroleum-related activities in past 40 years.

  6. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...... with the other adsorbents and to low availability of the mobile trace metals in the system. Correlation between trace metals and clay minerals may therefore be used as an indicator in environmental assessment. Fine grain fractions of the sediment increased markedly after salt marsh invasion in about 1931......To understand the behavior of trace metals in the salt marsh at Skallingen, Danish Wadden Sea, we investigated a profile from surface to 25 cm depth of the salt marsh sediment, focusing primarily on clay mineralogy and grain size distribution of the sediments and their relationship with trace...

  7. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    Science.gov (United States)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2015-07-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant (P salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  8. Trace metal analysis in sea grasses from Mexican Caribbean Coast by particle induced X-ray emission (PIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Solis, C.; Issac O, K. [Instituto de Fisica, Departamento de Fisica Experimental, UNAM, Apartado Postal 20-364, 01000 Mexico D. F. (Mexico); Martinez, A.; Lavoisier, E.; Martinez, M. A. [Instituto de Investigaciones en Materiales, UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2008-02-15

    The growing urban and tourist activity in the Mexican Caribbean coasts has resulted in an increase of chemical substances, metals in particular, discharged to the coastal waters. In order to reach an adequate management and conservation of these marine ecosystems it is necessary to perform an inventory of the actual conditions that reflect the vulnerability and the level of damage. Sea-grasses are considered good biological indicators of heavy metal contamination in marine systems. The goal of this preliminary work is to evaluate the concentrations of trace metals such as Cr, Mn, Fe, Co, Cu, Zn, and Pb in Thalassia testudinum, a very common sea-grass in the Mexican Caribbean Sea. Samples were collected from several locations in the coasts of the Yucatan Peninsula: Holbox, Blanquizal and Punta Allen, areas virtually uninfluenced by anthropogenic activities. Trace elements in different part plants were determined by particle induced X-ray emission (PIXE). This is a very suitable technique since it offers a fast, accurate and multi-element analysis. Also, the analysis by PIXE can be performed directly on powdered leaves without a laborious sample preparation. The trace metal concentration determined in sea-grasses growing in Caribbean generally fall in the range of the lowest valuables reported for sea grasses from the Gulf of Mexico. The results indicate that the studied areas do not present contamination by heavy metals. (Author)

  9. Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia.

    Science.gov (United States)

    Ayari, J; Agnan, Y; Charef, A

    2016-07-01

    An extensive spatial survey was conducted on trace metal content in stream sediments from Oued El Maadene basin, northern Tunisia. Our objectives were to evaluate the level of trace metal pollution and associated ecological risk and identify the major sources of metal pollution. A total of 116 stream sediment samples were collected and analysed for total As, Cd, Cr, Cu, Ni, Pb, V, Zn, and Zr concentrations. The results showed that concentrations of Cr, Ni, V, and Zr were close to natural levels. In contrast, As, Cd, Cu, Pb, and Zn had elevated concentrations and enrichment factors compared to other contaminated regions in northern Tunisia. Ecological risk to aquatic ecosystems was highlighted in most areas. Principal component analysis showed that Cr, Ni, V, and Zr mainly derived from local soil and bedrock weathering, whilst As, Cd, Pb, and Zn originated from mining wastes. Trace metals could be dispersed downstream of tailings, possibly due to surface runoff during the short rainy season. Surprisingly, Cu, and to a lesser extent As, originated from agricultural activities, related to application of Cu-based fungicides in former vineyards and orchards. This study showed that, despite the complete cessation of mining activities several decades ago, metal pollution still impacts the local environment. This large pollution, however, did not mask other additional sources, such as local agricultural applications of fungicides.

  10. Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide

    Science.gov (United States)

    Matsumoto, A.; Hinkley, T.K.

    2001-01-01

    Trace metals are more abundant in atmospheric load and deposition material than can be due to rock and soil dusts and ocean salt. In pre-industrial ice from coastal west Antarctica, dust and salt account for only a few percent of the lead, cadmium, and indium that is present in most samples, less than half in any sample. For these trace metals, the deposition rate to the pre-industrial ice is approximately matched by the output rate to the atmosphere by quiescent (non-explosive) degassing of volcanoes worldwide, according to a new estimate. The basis of the match is the masses and proportions of the metals, and the proportions of Pb isotopes, in ice and in volcano emissions. The isotopic compositions of Pb in ice are similar to those of a suite of ocean island volcanoes, mostly in the southern hemisphere. The natural baseline values for pre-industrial atmospheric deposition fluxes of trace metal suites at Taylor Dome, and the worldwide quiescent volcano emissions fluxes to which they are linked, constitute a reasonably well-constrained baseline component for deposition fluxes of metals in modern times. ?? 2001 Elsevier Science B.V. All rights reserved.

  11. Trace Elements, Heavy Metals and Vitamin Levels in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Aysegul Cebi, Yuksel Kaya, Hasan Gungor, Halit Demir, Ibrahim Hakki Yoruk, Nihat Soylemez, Yilmaz Gunes, Mustafa Tuncer

    2011-01-01

    Full Text Available Aim: In the present study, we aimed to assess serum concentrations of zinc (Zn, copper (Cu, iron (Fe, cadmium (Cd, lead (Pb, manganese (Mn, vitamins A (retinol, D (cholecalciferol and E (α-tocopherol in patients with coronary artery disease (CAD and to compare with healthy controls.Methods: A total of 30 CAD patients and 20 healthy subjects were included in this study. Atomic absorption spectrophotometry (UNICAM-929 was used to measure heavy metal and trace element concentrations. Serum α-tocopherol, retinol and cholecalciferol were measured simultaneously by high performance liquid chromatography (HPLC.Results: Demographic and baseline clinical characteristics were not statistically different between the groups. Serum concentrations of retinol (0.3521±0.1319 vs. 0.4313±0.0465 mmol/I, p=0.013, tocopherol (3.8630±1.3117 vs. 6.9124±1.0577 mmol/I, p<0.001, cholecalciferol (0.0209±0.0089 vs. 0.0304±0.0059 mmol/I, p<0.001 and Fe (0.5664±0.2360 vs. 1.0689±0,4452 µg/dI, p<0.001 were significantly lower in CAD patients. In addition, while not statistically significant serum Cu (1.0164±0.2672 vs. 1.1934±0.4164 µg/dI, p=0.073 concentrations were tended to be lower in patients with CAD, whereas serum lead (0.1449±0.0886 vs. 0.1019±0.0644 µg/dI, p=0.069 concentrations tended to be higher.Conclusions: Serum level of trace elements and vitamins may be changed in patients with CAD. In this relatively small study we found that serum levels of retinol, tocopherol, cholecalciferol, iron and copper may be lower whereas serum lead concentrations may be increased in patients with CAD.

  12. Atmospheric input of N, P, Fe and trace metals to north Indian Ocean

    Science.gov (United States)

    Sarin, Manmohan; Srinivas, Bikkina

    2016-04-01

    The air-sea deposition of chemical constituents to the north Indian Ocean is influenced by seasonal continental outflow during the late NE-monsoon (December-April). Our recent studies have focused on deposition of mineral dust, nutrients (N, P and Fe) and toxic trace metals to the Arabian Sea (ARS) and Bay of Bengal (BoB), two important limbs of the north Indian Ocean. The chemical composition of PM2.5 in the continental outflow to the marine atmospheric boundary layer reveals dominance of nss-SO42- (as high as 25 μg m-3) and abundance of dust varies from 3 to 20 μg m-3. A striking similarity in the temporal variability of total inorganic acidity (TIA = NO3- + nss-SO42-) and fractional solubility of aerosol-Fe (FeTot: 60 - 1145 ng m-3) provides evidence for chemical processing of mineral dust during atmospheric transport. The enhanced solubility of Fe has implications to further increase in the deposition of this micro-nutrient to ocean surface. The mass ratio of nutrients (NInorg/NTot, Norg/NTot and PInorg/nss-Ca2+) also suggests further increase in their air-sea deposition to the surface BoB. The dry-deposition flux of PInorgto BoB varies by one order of magnitude (0.5 - 5.0 μmol-P m-2 d-1; Av: 0.02 Tg P yr-1). Based on atmospheric deposition of P and Fe, C-fixation in BoB (˜1 Pg yr-1) is dominated by anthropogenic sources and that in ARS (0.3 Pg yr-1) is limited by P and Fe. This is attributed to poor fractional solubility (˜1%) of mineral dust over the Arabian Sea. However, N-fixation by diazotrophs in the two oceanic regions is somewhat similar (0.03 Pg yr-1). Our estimate of N-deposition (0.2 Tg yr-1) to the northern Indian Ocean is significantly lower than the model results (˜800 - 1200 mg-N m-2 yr-1 ≈ 5.7 - 8.6 Tg yr-1 by Duce et al. (2008); ˜4.1 Tg yr-1 by Okin et al. (2011); and ˜0.8 Tg yr-1 by Kanakidou et al. (2012). The increase in aerosol toxicity is also evident from high enrichment factors of anthropogenic trace metal (Pb, Cd, Cr, Cu and

  13. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  14. Trace Metal Record of a 200-Year-Old Deep-Sea Bamboo Coral (Isidella sp.)

    Science.gov (United States)

    Hornung, J. P.; Mix, A. C.; Tepley, F. J.; Kent, A. J.; Wakefield, W. W.

    2009-12-01

    High resolution records of past oceanic conditions can be constructed from the annually secreted calcite laminations of deep-sea gorgonian corals. Previous research has shown that deep-sea gorgonians incorporate both surface organic matter and nutrients from the surrounding water into their coral skeleton, making them ideal recorders of long-term ocean variability of surface and intermediate water. In this study we examined a 200-year-old bamboo coral (Isidella sp.) that was live collected by bottom trawl in the summer of 2000 on the Oregon continental margin at a water depth of 1148m. We explored how annual changes in upwelling strength, circulation and surface productivity are reflected in the trace metal concentrations recorded in the carbonate skeleton of the bamboo coral. To determine trace metal concentrations, laser ablation inductively coupled plasma mass spectrometry was employed at a resolution of 10microns on multiple radial transects of the coral cross section. Minor element abundances were determined on the same transects by electron microprobe (EMP) analysis. We constructed an age model by counting peaks in the ratio of magnesium to calcium abundances obtained from the EMP. Uranium series dating methods were then used to verify the age model. The concentrations of phosphorus (P), barium (Ba) and cadmium (Cd) showed considerable variation through time. Initial time series data of phosphorus to calcium (P/Ca) ratios indicates strong variability at the decadal scale, potentially reflecting varying nutrient availability. Cadmium to calcium (Cd/Ca) ratios also showed strong variability at the decadal scale. However, periods of increased P/Ca did not always correspond to elevated Cd/Ca, suggesting that P and Cd concentrations were not controlled by the same processes. The record of barium to calcium (Ba/Ca) ratios was poorly correlated to both P/Ca and Cd/Ca and showed irregular episodes of increased Ba/Ca. These irregular episodes may indicate disturbance

  15. Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

    Science.gov (United States)

    Jaffe, P. R.; Komlos, J.; Brown, D. G.; Lovley, D. R.

    2002-05-01

    The design and operation of a trace-metal or radionuclide bioremediation scheme requires that specific redox conditions be achieved at given zones of an aquifer for a predetermined duration. Tools are therefore needed to identify and quantify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer, and that this is done at a high spatial resolution. Hydrogen holds the promise of being a key parameter that may be used to identify TEAPs. Theoretical analysis have shown that steady-state hydrogen levels in the subsurface are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, and that hydrogen concentrations increase as each successive TEAP yields less energy for bacterial growth. The assumptions for this statement may not hold during a bioremediation scheme in which an organic substrate is injected into the subsurface and where organisms may consume hydrogen and carbon simultaneously. The objective of the research is to gain a basic understanding of the hydrogen dynamics in an aquifer during a trace metal/radionuclide bioremediation scheme. For this purpose, a series of batch studies have been conducted during the first year of this project. In these studies the utilization of acetate and hydrogen by geobacter sulfurreducens were studied. In all cases Fe(III) was the electron acceptor. Microcosms were set up to investigate the utilization of hydrogen and acetate when either of them is the sole electron donor and when both are present and utilized simultaneously as electron donor. These experiments were conducted for varying initial conditions of the hydrogen and acetate concentration, and the disappearance of these compounds plus the evolution of Fe(II) as well as biomass was monitored over time. The results of these studies indicate that the biokinetic coefficients describing the rate of hydrogen utilization are not affected by the simultaneous utilization of acetate. While

  16. Labile trace metal contribution of the runoff collector to a semi-urban river.

    Science.gov (United States)

    Villanueva, J D; Granger, D; Binet, G; Litrico, X; Huneau, F; Peyraube, N; Le Coustumer, P

    2016-06-01

    In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r (2) > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04-1.75 g/day), Co (0.08-05.42 g/day), Ni (0.06-1.45 g/day), and Pb (0.08-9.89 g/day); (2) moderate

  17. Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic

    Science.gov (United States)

    Monien, Patrick; Lettmann, Karsten Alexander; Monien, Donata; Asendorf, Sanja; Wölfl, Anne-Cathrin; Lim, Chai Heng; Thal, Janis; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2014-09-01

    Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the

  18. Tracing industrial heavy metal inputs to topsoils using using cadmium isotopes

    Science.gov (United States)

    Huang, Y.; Ma, L.; Ni, S.; Lu, H.; Liu, Z.; Zhang, C.; Guo, J.; Wang, N.

    2015-12-01

    Anthropogenic activities have dominated heavy metal (such as Cd, Pb, and Zn) cycling in many environments. The extent and fate of these metal depositions in topsoils, however, have not been adequately evaluated. Here, we utilize an innovative Cadmium (Cd) isotope tool to trace the sources of metal pollutants in topsoils collected from surrounding a Vanadium Titanium Magnetite smelting plant in Sichuan, China. Topsoil samples and possible pollution end-members such as fly ashes, bottom ashes, ore materials, and coal were also collected from the region surrounding the smelting plant and were analyzed for Cd isotope ratios (d114Cd relative to Cd NIST 3108). Large Cd isotope fractionation (up to 3 ‰) was observed in these industrial end-members: fly ashes possessed higher δ114Cd values ranging from +0.03 to +0.19‰; bottom fly ashes have lower δ114Cd values ranging from -0.35 to -2.46‰; and unprocessed ore and coal samples has δ114Cd value of -0.40‰. This fractionation can be attributed to the smelting processes during which bottom ashes acquired lighter Cd isotope signatures while fly ashes were mainly characterized by heavy isotope ratios, in comparison to the unprocessed ore and coal samples. Indeed, δ114Cd values of topsoils in the smelting area range from 0.29 to -0.56‰, and more than half of the soils analyzed have distinct δ114Cd values > 0‰. Cd isotopes and concentrations measured in topsoils suggested that processed materials (fly and bottom ashes from ore and coal actually used by the smelting plant) were the major source of Cd in soils. In a δ114Cd vs 1/Cd mixing diagram, the soils represent a mixture of three identified end members (fly ash, bottom ash and deep unaffected soil) with distinct Cd isotopic compositions and concentrations. Deep soils have the same δ114Cd values range as the unprocessed ore and coal, which indicated the Cd isotope fractionation did occur during evaporation and condensation processes inside the smelting plant

  19. Trace metals distribution in synodontis membranaceus, sediments, Asystasia Gangetica and Platostoma Africanium from Ofuafor River around Delta Glass Factory in Ughelli North Local Government Area, Delta State Nigeria

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The trace metals analysis in synodontis membranaceus (Head and Tail), Bottom sediments, Asystasia Gangetica and Platostoma Africanium were carried out using atomic absorption spectrometer of model perkin Elmer 3110. Metals analysed were copper, nickel, mangenese, chromium, iron lead and cobalt. These metals were detected in the above samples. Vegetation samples concentration in copper, manganese, Chromium, iron and Cobalt were higher than those obtained in bottom sediments. The tail part of the fish contents of trace metals were also higher than those of the head. The results obtained in this work exceeded the results of water analysis carried out by Omoregha on the same river. Metals such as copper, nickel, manganese and chromium were below detection limit in the water from the same river. The bioaccumulation of these trace metals in these samples were traced to activities of Delta Glass factory.

  20. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    Science.gov (United States)

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy.

  1. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Michael Shull, J. [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: michael.shull@colorado.edu, E-mail: danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0

  2. Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain.

    Science.gov (United States)

    Rubio, C; Jalilli, A; Gutiérrez, A J; González-Weller, D; Hernández, F; Melón, E; Burgos, A; Revert, C; Hardisson, A

    2011-11-01

    The aim of this study was to determine the levels of metals (Ca, K, Na, Mg) and trace metals (Ni, Fe, Cu, Mn, Zn, Pb, Cd) in two fish species (gilthead bream [Sparus aurata] and sea bass [Dicentrarchus labrax]) collected from fish farms located along the coast of Tenerife Island. Ca, K, Na, Mg, Fe, Cu, Zn, and Mn were measured by flame atomic absorption spectrometry, whereas Pb, Cd, and Ni were determined using graphite furnace atomic absorption spectrometry. Mean Fe, Cu, Mn, and Zn contents were 3.09, 0.59, 0.18, and 8.11 mg/kg (wet weight) in S. aurata and 3.20, 0.76, 0.24, and 10.11 mg/kg (wet weight) in D. labrax, respectively. In D. labrax, Ca, K, Na, and Mg levels were 1,955, 2,787, 699.7, and 279.2 mg/kg (wet weight), respectively; in S. aurata, they were 934.7, 3,515, 532.8, and 262.8 mg/kg (wet weight), respectively. The Pb level in S. aurata was 7.28 ± 3.64 μg/kg (wet weight) and, in D. labrax, 4.42 ± 1.56 μg/kg (wet weight). Mean Cd concentrations were 3.33 ± 3.93 and 1.36 ± 1.53 μg/kg (wet weight) for D. labrax and S. aurata, respectively. All Pb and Cd levels measured were well below the accepted European Commission limits, 300 and 50 μg/kg for lead and cadmium, respectively.

  3. Ground water discharge and the related nutrient and trace metal fluxes into Quincy Bay, Massachusetts

    Science.gov (United States)

    Poppe, L.J.; Moffett, A.M.

    1993-01-01

    Measurement of the rate and direction of ground water flow beneath Wollaston Beach, Quincy, Massachusetts by use of a heat-pulsing flowmeter shows a mean velocity in the bulk sediment of 40 cm d-1. The estimated total discharge of ground water into Quincy Bay during October 1990 was 1324-2177 m3 d-1, a relatively low ground Water discharge rate. The tides have only a moderate effect on the rate and direction of this flow. Other important controls on the rate and volume of ground water flow are the limited thickness, geographic extent, and permeability of the aquifer. Comparisons of published streamflow data and estimates of ground water discharge indicate that ground water makes up between 7.4-12.1% of the gaged freshwater input into Quincy Bay. The data from this study suggest the ground water discharge is a less important recharge component to Quincy Bay than predicted by National Urban Runoff Program (NURP) models. The high nitrate and low nitrite and ammonia concentrations in the ground water at the backshore we]l sites and low nitrate and high nitrite and ammonia concentrations in the water flowing from the foreshore suggests that denitrification is active in the sediments. The low ground water flow rates and low nitrate concentrations in the foreshore samples suggest that little or no nitrate is surviving the denitrification process to affect the planktonic community. Similarly, oxidizing conditions in the aquifer and low trace metal concentrations in the ground water samples suggest that the metals may be precipitating and binding to sedimentary phases before impacting the bay.

  4. Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China

    Science.gov (United States)

    Fu, Jun; Tang, Xiao-Liang; Zhang, Jing; Balzer, Wolfgang

    2013-04-01

    Wenchang/Wenjiao river estuary significant trace metal contamination was observed.

  5. Trace metal accumulations in tissues of goats fed silage produced on sewage sludge-amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Bray, B.J.; Dowdy, R.H.; Goodrich, R.D.; Pamp, D.E.

    Studies were conducted to document the impact of sewage sludge-fertilized corn (Zea mays L.) on the feed and food chain under controlled experimental conditions that eliminated any direct ingestion of sewage sludge by animals. Accumulations of trace metals were measured in various tissues of dairy goats (Capra hircus) consuming corn silage that contained up to 5.3 mg Cd/kg and 113 mg Zn/kg, for 3 consecutive years. The Cd concentrations in goat livers increased as the amount of silage-borne Cd increased and reached a high concentration of 2.94 mg/kg. Kidney Cd concentrations were approximately 10 times greater than those observed in liver, ranging from 3 mg/kg for animals fed control corn silage to 22 mg/kg for those consuming silage grown on soil amended with the highest rate of sewage sludge. However, this concentration is an order of magnitude less than the critical level suggested for induction of renal dysfunction. Kidney Zn ranged from 76.6 to 91.8 mg/kg with animals fed control silage having less Zn than animals fed sludge-fertilized corn silage. Concentrations of Zn in livers did not differ among treatments. Copper concentrations in livers and kidneys were significantly lower (approximately 2 mg/kg) in animals receiving sludge-fertilized silage than in animals fed control silage. The reduced Cu absorption may have been caused by a Cd and/or Zn metabolic interference. The elemental concentrations of 12 other metals and minerals in goat liver and kidney were not affected by treatment. Similarly, elemental concentrations in heart and muscle were not affected by treatment.

  6. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    Directory of Open Access Journals (Sweden)

    I. Antcibor

    2013-02-01

    Full Text Available Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N–69.5° N representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe, arsenic (As, manganese (Mn, zinc (Zn, nickel (Ni, copper (Cu, lead (Pb, cadmium (Cd, cobalt (Co and mercury (Hg in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were

  7. Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany

    Science.gov (United States)

    Scheinhardt, Sebastian; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2013-08-01

    The complexation of trace metal ions (TMI) was studied in size-segregated ambient aerosol particles collected at nine sites in Germany (urban, rural and coastal). Samples were analysed in terms of TMI (Fe, Mn, Cu), potential inorganic and organic ligands and pH. Using a thermodynamic model (E-AIM III), the concentrations of these compounds in the particle liquid phase were estimated. The resulting liquid phase concentrations were then used as input parameters for a speciation model (Visual MINTEQ) and the equilibrium complexation was calculated under realistic conditions. The complexation was found to be controlled by the availability of strong organic ligands, especially oxalate, whose occurrence in turn was governed by the formation of insoluble Ca-oxalate. Likewise, the pH influenced oxalate availability because it alters the concentrations of the chelating mono- and dianions. As a qualitative result, Fe3+ was found to be mainly complexed by oxalate, while Fe2+ and Mn2+ were rather associated with nitrate. Cu2+ showed mixed organic and nitrate complexation. Complexation by HULIS was only significant for Fe3+ and Cu2+ and was generally less important than other ligands like oxalate and nitrate. Oxalate was found to exist mainly in the solid phase while higher dicarboxylic acids mostly did not form complexes due to protonation. Complexation was shown to be influenced by season, air mass origin, particle size and sampling site.

  8. A novel recovery technology of trace precious metals from waste water by combining agglomeration and adsorption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel and efficient technology for separating and recovering precious metals from waste water containing traces of Pd and Ag was studied by the combination of agglomeration and adsorption. The recovery process and the impacts of operating conditions such as pH value of waste water, adsorption time, additive quantity of the flocculant and adsorbent on the recovery efficiency were studied experimentally. The results show that Freundlich isothermal equation is suitable for describing the behavior of the recovery process, and the apparent first-order adsorption rate constant k at 25 ℃ is about 0.233 4 h-1 The optimum technology conditions during the recovery process are that pH value is 8-9; the volume ratio of flocculant to waste water is about 1 :(2 000-4 000); the mass ratio of adsorbent to waste water is 1 :(30-40); and processing time is 2-4 h. Finally, the field tests were done at the optimum technology conditions, which show that the total concentration of Pd and Ag in the waste water below 11 mg/L can be reduced to be less than 1 mg/L.

  9. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Eduardo P.; Favaro, Deborah I.T., E-mail: ducamorim@yahoo.com.b, E-mail: defavaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Berbel, Glaucia; Braga, Elisabete S., E-mail: edsbraga@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos (LABNUT)

    2009-07-01

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  10. The analytical measurement of fluorescein, quinine and trace metal concentrations in solution using single bubble sonoluminescence

    Science.gov (United States)

    Wallace, P.; McCallum, K.; Barnard, C. L. R.; Clement, C.; Marshall, J.; Carroll, J.

    2007-03-01

    A single bubble was generated and levitated in a high-intensity sound field within a spherical flask excited in its fundamental mode. Under optimum experimental conditions the bubble was observed to emit light in the form of short flashes. This phenomenon is known as single bubble sonoluminescence (SBSL). Using this process, the emitted light from the bubble was monitored when solutions containing fluorescein, quinine and sodium, potassium and copper salts were placed in the cell. The results obtained indicated that reproducible signals related directly to the concentration of the species present in solution could be achieved using single bubble sonoluminescence. The results for the molecular species were compared with those obtained by fluorescence spectroscopy and, in the case of quinine, parallel determinations of concentration in a test solution were performed with consistent results. SBSL signals were also observed to exhibit a linear correlation with the concentration of several trace metal salts introduced to the solution in the measurement cell. However, it was not possible to demonstrate that the SBSL signals were derived from stimulated atomic emission or fluorescence, and it was concluded that the effect may result from an indirect effect involving the bubble excitation mechanism.

  11. Assessing trace metal contamination and organic matter in the brackish lakes as the major source of potable water.

    Science.gov (United States)

    Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Strmečki, Slađana; Plavšić, Marta

    2017-03-14

    On small and medium karstic coastal islands in the Adriatic Sea, brackish lakes are often the only source of freshwater. Therefore, it is important to adequately evaluate the biogeochemical processes occurring in these complex water systems, as well as to determine the origin of contaminants present. In this study, the distribution and origin of trace metals (Tl, Hg, Cd, Pb, Cu, Zn, Ni, Co) and organic matter in the water column, sediment, and surrounding soil of the brackish lakes on Mljet Island, South Adriatic Sea, Croatia, were evaluated. Thallium and mercury concentrations in the lake water were up to two orders of magnitude higher compared to ranges found in the adjacent coastal sea water. Elevated thallium concentrations were of anthropogenic origin resulting from previous use of rodenticide, while elevated mercury content was naturally enhanced. Levels for the other metals were characteristic of uncontaminated water systems. Speciation modelling showed that dissolved trace metals such as Cu, Pb, and Zn were mostly associated with organic matter, while Tl, Co, and Ni were present predominantly as free ions and inorganic complexes. The presence of organic matter (OM) clearly influenced the speciation and distribution of some trace metals. OM was characterised by the determination of the complexing capacity for Cu ions (CuCC), surface active substances, and catalytically active compounds. Reduced sulphur species (glutathione and other thiols) representing significant Cu-binding ligands were determined and discussed as well.

  12. Assessment of Trace Metals in Groundwater of Jammalamadugu and Yerraguntla Areas of YSR Kadapa Dt., AP, India

    Directory of Open Access Journals (Sweden)

    Haribabu Bollikolla

    2016-08-01

    Full Text Available Ground water is the only primary source of drinking water in the study area. So, a comprehensive study has been carried out with respect to heavy metals like Arsenic, Cadmium, Chromium, Copper, Iron, Mercury, Manganese, Molybdenum, Nickel, Lead, Selenium and Zinc in ground water sources of Jammalamadugu (JMD and Yerraguntla (YGL areas of YSR Kadapa district, Andhra Pradesh. Ten groundwater samples from each area were collected and analyzed for trace metals by ICP-OES method. The results showed that the mean concentration level of various heavy metals in the JMD area followed the sequence: Zn > Fe > Mn > Se > Cu > Cd>Mo~ Pb > Ni > Cr > As~Hg where as in YGL area the mean concentration of heavy metals was in the order: Zn> Fe> Se> Mn> Ni> Mo> Cd> Pb> Cr> As~ Hg ~Cu. The concentration of eleven heavy metals, except cadmium, in both areas was detected within the permissible limits of WHO. The Concentration of Cadmium in 40% of samples of JMD area and 30% samples of YGL area was detected above WHO guidelines. Cadmium (Cd is an extremely toxic industrial and environmental pollutant. Drinking water with high Cadmium levels severely irritates the stomach, leading to vomiting, diarrhea, kidney damage, osteoporosis and osteomalacia. Some of the groundwater sources are safe for drinking, but proactive measures should take to check the levels of trace metals periodically.

  13. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  14. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  15. Trace metal concentrations in acidic, headwater streams in Sweden explained by chemical, climatic, and land use variations

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2012-02-01

    Full Text Available Long term data series (1996–2009 for eleven acidic, headwater streams (<10 km2 in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr, lead (Pb, and zinc (Zn. Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance and iron related positively to Pb and Cr while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr, 52% (Zn, and 72% (Pb of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10 and Zn (8, only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude, chemical (sulfate, and land use (silvaculture influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long term increases (Pb or decreases (Zn for trace metal concentrations at these sites.

  16. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.

    Science.gov (United States)

    Klink, Agnieszka

    2017-02-01

    The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

  17. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China.

    Science.gov (United States)

    Li, Cheng; Li, Fangbai; Wu, Zhifeng; Cheng, Jiong

    2015-11-01

    Based on multiple geo-accumulation indices and correlation and partial redundancy analyses, we examined the spatial patterns of agricultural soil contaminations for As, Pb, Cd, Cr, and Ni in the Pearl River Delta, South China and their relations with landscape heterogeneity at small, medium and large spatial scales. We found that the concentrations of trace elements were slightly elevated, and most trace metals had a geogenic origin. Landscape variables explained 21-53% of the variation of elevated trace metal concentrations with an increasing explanatory power from the small to the large scale. The three variable groups representing parent materials, distance density characteristics and land use had different contributions to the elevated trace metals among scales. Both the distance density variables and land use pattern had a stronger influences on trace metal concentrations at a small scale than at a larger scale, while the parent materials was important at all the scales.

  18. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  19. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  20. Potential ecological impacts of trace metals on aquatic biota within the Upper Little Tennessee River Basin, North Carolina

    Directory of Open Access Journals (Sweden)

    Jerry R. Miller

    2016-06-01

    Full Text Available The Upper Little Tennessee River (ULTR possesses one of the most diverse assemblages of aquatic biota in North America, including the endangered Appalachian elktoe mussel (Alasmidonta raveneliana. Populations of the Appalachian elktoe significantly declined along with other species following an extreme flood in 2004. This paper examines the potential role that four toxic trace metals (Cu, Cr, Ni, and Zn played in the population declines. Dissolved and total-recoverable concentrations of Cr and Ni measured during three flood events were below USEPA and North Carolina freshwater guidelines for potential impacts on aquatic biota, respectively. In contrast, 58% of the samples exceeded NC guideline values for total-recoverable concentrations of Cu and Zn. In general, metal concentrations increased with increasing discharge and suspended sediment concentrations (SSC. These relationships, combined with sequential extraction data from sediments, suggest that most metals were transported in the particulate form and were not readily bioavailable. During individual events, metal concentrations for a given discharge were influenced by a “first flush” hysteresis effect. Rapid increases in metal concentrations during the early stages of an event appear to be related to the entrainment of fine sediment, including particulate Fe to which the metals are sorbed. Instantaneous metal loads calculated for nine tributaries to the ULTR, combined with previously collected data, suggest that the majority of the metals were derived from the erosion of sediment and particulate Fe from subsurface soil horizons developed in bedrock containing sulfidic layers. The erosion was particularly pronounced in tributary basins in poor to moderate ecological condition. While a fraction of the Cu may have been derived from Cu-based pesticides and was periodically elevated above guideline values in river waters, the data in total suggest that toxic trace metals were unlikely to

  1. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Fadong, E-mail: lifadong@igsnrr.ac.cn; Liu, Qiang; Zhang, Yan

    2014-02-01

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup −}, SO{sub 4}{sup 2−}, and HCO{sub 3}{sup −}) and stable isotopic composition (δ{sup 18}O and δ{sup 2}H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are

  2. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea: use as a biological monitor?

    Directory of Open Access Journals (Sweden)

    Gosselin Marc

    2006-09-01

    Full Text Available Abstract Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1 the spatial and 2 temporal variations of these metals in these areas and 3 to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue and in sheaths (dead tissue demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades, seem to be less sensitive to variations in the metal concentration in the environment

  3. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals

    Science.gov (United States)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.

    2013-05-01

    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  4. Extent and bioavailability of trace metal contamination due to acid rock drainage in Pennask Creek, British Columbia, Canada

    Science.gov (United States)

    Walls, L. D.; Li, L. Y.; Hall, K. J.

    2010-05-01

    Pennask Creek is one of the most important rainbow trout producing streams in British Columbia (BC). Much of the Pennask Creek watershed is located within a BC Parks Protected Area, which was set aside to protect the spawning and rearing habitat of this wild rainbow trout population. Construction of Highway 97C, which bisects the Pennask Creek watershed, resulted in the exposure of a highly pyritic rock formation, which began releasing acid rock drainage and causing metals to be leached into Highway Creek, a tributary of Pennask Creek. Previous studies commissioned by the BC Ministry of Transportation and Infrastructure indicate that Highway Creek yields fewer invertebrates and elevated levels of some metals in the water when compared with downstream sites in Pennask Creek. This study examines the impacts of this acid rock drainage and metal leaching by determining the extent of trace metal contamination in the water and sediments of the Pennask Creek watershed and determining the bioavailability of these trace metals. Preliminary results indicate concentrations of Al, Cu, and Zn in the water as well as levels of total As, Cu, Fe, Ni, and Zn in the sediments that are above the BC Water and Sediment Quality Guidelines for the Protection of Aquatic Life. The highest level of trace metal contamination is found in Highway Creek, downstream of Highway 97C, with concentrations generally returning to near background levels downstream of the confluence with Pennask Creek. Levels of Cu in the water and Zn in the sediments appear to be of greatest concern in areas furthest from the highway.

  5. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    Energy Technology Data Exchange (ETDEWEB)

    Audry, Stephane, E-mail: audry@lmtg.obs-mip.fr [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France)] [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [Universite de Toulouse, UPS (OMP), LMTG, 14 Av., Edouard Belin, F-31400 Toulouse (France); Grosbois, Cecile [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [Universite Francois-Rabelais de Tours, CNRS/INSU, Universite d' Orleans, UMR 6113 ISTO, FST, Parc Grandmont, F-37200 Tours (France); Bril, Hubert [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France); Schaefer, Joerg [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France); Kierczak, Jakub [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [University of Wroclaw, Institute of Geological Sciences, Cybulskiego 30, 50-205 Wroclaw (Poland); Blanc, Gerard [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France)

    2010-06-15

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO{sub 4} promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a

  6. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment.

    Science.gov (United States)

    Raknuzzaman, Mohammad; Ahmed, Md Kawser; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Tokumura, Masahiro; Sekine, Makoto; Masunaga, Shigeki

    2016-09-01

    Trace metals contamination in commercial fish and crustaceans have become a great problem in Bangladesh. This study was conducted to determine seven trace metals concentration (Cr, Ni, Cu, Zn, As, Cd, and Pb) in some commercial fishes and crustaceans collected from coastal areas of Bangladesh. Trace metals in fish samples were in the range of Cr (0.15 - 2.2), Ni (0.1 - 0.56), Cu (1.3 - 1.4), Zn (31 - 138), As (0.76 - 13), Cd (0.033 - 0.075), and Pb (0.07 - 0.63 mg/kg wet weight (ww)), respectively. Arsenic (13 mg/kg ww) and Zn (138 mg/kg ww) concentrations were remarkably high in fish of Cox's Bazar due to the interference of uncontrolled huge hatcheries and industrial activities. The elevated concentrations of Cu (400), Zn (1480), and As (53 mg/kg ww) were also observed in crabs of Cox's Bazar which was considered as an absolutely discrepant aquatic species with totally different bioaccumulation pattern. Some metals in fish and crustaceans exceeded the international quality guidelines. Estimated daily intake (EDI) and target cancer risk (TR) revealed high dietary intake of As and Pb, which was obviously a matter of severe public health issue of Bangladeshi coastal people which should not be ignored and concentrate our views to solve this problem with an integrated approaches. Thus, continuous monitoring of these toxic trace elements in seafood and immediate control measure is recommended.

  7. Distribution of trace metals and methylmercury in soft tissues of the freshwater eel Anguilla marmorata in Vietnam.

    Science.gov (United States)

    Le, Dung Quang; Nguyen, Duc Cu; Harino, Hiroya; Kakutani, Naoya; Chino, Naoko; Arai, Takaomi

    2010-08-01

    This study investigated trace metals in water, sediment, and various organs of the mature eel Anguilla marmorata in the Ba River, Vietnam. The metal concentrations in water and sediment did not exceed the Vietnam water criteria and sediment background concentration, except for Mn and Pb in sediment. The results of metal analysis in eel specimens indicated that the liver and kidney were the dominant organs for almost all trace metals, whereas muscle tended to accumulate high levels of Hg and approximately 87.4-100% of Hg was methylmercury. A strong positive correlation between mercury levels in muscle and age were found, but there was no correlation between mercury and body size. Interestingly, a high concentration of Zn was found in the gonad and liver; this indicated that high levels of Zn in the liver might play a physiologically important role in the eel's biological mechanisms during gonadal maturation. Though almost none of the metal concentrations in the muscle exceeded the reference doses of the U.S. EPA, approximately 80% of eels from the river contained mercury exceeding the recommended levels (0.30 microg/g) of the U.S. EPA and might present a risk for human consumption.

  8. Reach Scale Studies of Trace Metal Transport in Mountain Streams: Do Wetlands Act as a Sink or a Source?

    Science.gov (United States)

    McKnight, D. M.; August, E.; Duren, S.; Wong, J.

    2007-12-01

    In the Rocky Mountains, there are many watersheds containing streams impacted by acid rock and acid mine drainage. These streams typically have high concentrations of dissolved metals and copious amounts of iron and aluminum oxides deposited on the streambed. Remediation of these contaminated streams is challenging because of the remote locations of the abandoned mines and the large amounts of metal oxides potentially generated in treatment of the drainage. Wetlands have the potential to attenuate trace metal transport. We examined retention of metals in an iron-oxide rich wetland near Leadville, CO, which had been receiving mine drainage for almost a century. We found that in the summer, the wetland did have a net retentive effect for most metals studied, limiting input into the adjacent stream, whereas, the wetland was a net source of metals during the winter. Furthermore, during spring snowmelt, the wetland did not retain the large pulse of zinc and iron leached by melting snow on the surrounding tailings piles. In another stream system receiving acid rock drainage, we found that riparian wetlands become sources of metals to the stream under drought conditions, which further exacerbated the metal enrichment associated with lesser snowmelt dilution.

  9. Bioavailability of metals-trace in sediments: a review; Biodisponibilidade de metais-traco em sedimentos: uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rafaela E. de A.V.; Souza, Vivianne Lucia Bormann; Lima, Vanessa Lemos de; Hazin, Clovis Abrahao, E-mail: rafaelarodriguesss@hotmail.com, E-mail: vlsouza@cnen.gov.br, E-mail: lemos.nessa@yahoo.com.br, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl{sub 2} (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution.

  10. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  11. The quality control of fruit juices by using the stable isotope ratios and trace metal elements concentrations

    Science.gov (United States)

    Magdas, D. A.; Dehelean, A.; Puscas, R.; Cristea, G.; Tusa, F.; Voica, C.

    2012-02-01

    In the last years, a growing number of research articles detailing the use of natural abundance light stable isotopes variations and trace metal elements concentration as geographic "tracers" to determine the provenance of food have been published. These investigations exploit the systematic global variations of stable hydrogen, oxygen and carbon isotope ratios in (combination) relation with trace metal element concentrations. The trace metal elements content of plants and also their light stable isotopic ratios are mainly related to the geological and pedoclimatic characteristics of the site of growth. The interpretation of such analysis requires an important number of data for authentic natural juices regarding the same seasonal and regional origin, because the isotopic analysis parameters of fruit juices show remarkable variability depending on climatologically factors. In this work was mesured H, C, O stable isotope ratios and the concentrations of 16 elements (P, K, Mg, Na, Ca, Cu, Cr, Ni, Zn, Pb, Co, As, Cd, Mn, Fe and Hg) from 12 single strength juices. The natural variations that appear due to different environmental and climatic conditions are presented and discussed.

  12. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    Science.gov (United States)

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  13. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses.

    Science.gov (United States)

    Natali, Marco; Zanella, Augusto; Rankovic, Aleksandar; Banas, Damien; Cantaluppi, Chiara; Abbadie, Luc; Lata, Jean -Christophe

    2016-12-01

    Mosses are useful, ubiquitous accumulation biomonitors and as such can be used for biomonitoring surveys. However, the biomonitoring of atmospheric pollution can be compromised in urban contexts if the targeted biomonitors are regularly disturbed, irregularly distributed, or are difficult to access. Here, we test the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled mosses growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. We focused on Grimmia pulvinata (Hedwig) Smith, a species abundantly found in all studied cemeteries and very common in Europe. The concentration of Al, As, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, Mn, Ni, V, P, Pb, Rb, S, Sr, Ti, and Zn was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method (slurry-TXRF). This method avoids a digestion step, reduces the risk of sample contamination, and works even at low sample quantities. Elemental markers of road traffic indicated that the highest polluted cemeteries were located near the highly frequented Parisian ring road and under the influence of prevailing winds. The sites with the lowest pollution were found not only in the peri-urban cemeteries, adjoining forest or farming landscapes, but also in the large and relatively wooded cemeteries located in the center of Paris. Our results suggest that (1) slurry-TXRF might be successfully used with moss material, (2) G. pulvinata might be a good biomonitor of trace metals air pollution in urban context, and (3) cemetery moss sampling could be a useful complement for monitoring urban areas. Graphical abstract We tested the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled 110 moss cushions (Grimmia pulvinata) growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. The concentration of 20

  14. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    Science.gov (United States)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  15. Statistical significance of biomonitoring of marine algae for trace metal levels in a coral environment

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Muraleedharan, N.S.; Chandramohanakumar, N.; Jayalakshmy, K.V.

    the ability of algae to accumulate a particular metal from among the metals studied. To show the similarity between species and metal uptake, a group linkage clustering technique was used and the results were depicted using dendrogram. The marked similarities...

  16. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow.

    Science.gov (United States)

    Bichet, Coraline; Scheifler, Renaud; Cœurdassier, Michaël; Julliard, Romain; Sorci, Gabriele; Loiseau, Claire

    2013-01-01

    Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.

  17. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow.

    Directory of Open Access Journals (Sweden)

    Coraline Bichet

    Full Text Available Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.

  18. “PRISTINE”, a new high volume sampler for ultraclean sampling of trace metals and isotopes

    NARCIS (Netherlands)

    Rijkenberg, M.J.; de Baar, H.J.W.; Bakker, K.; Gerringa, L.J.A.; Keijzer, E.; Laan, M.; Laan, P.; Middag, R.; Ober, S.; van Ooijen, J.; Ossebaar, S.; van Weerlee, E.M.; Smit, M.

    2015-01-01

    Many trace elements like Mn, Fe, Co, Ni, Cu and Zn are essential for marine life, some trace elements are of concern as pollutants, e.g. Pb and Hg, while others, together with a diverse array of isotopes, are used to assess modern-ocean processes and the role of the ocean in past climate change. GEO

  19. "PRISTINE", a new high volume sampler for ultraclean sampling of trace metals and isotopes

    NARCIS (Netherlands)

    Rijkenberg, Micha J.A.; de Baar, Hein J.W.; Bakker, Karel; Gerringa, Loes J.A.; Keijzer, Edwin; Laan, Martin; Laan, Patrick; Middag, Rob; Ober, Sven; van Ooijen, Jan; Ossebaar, Sharyn; Weerlee, Evaline M. van; Smit, Marck G.

    2015-01-01

    Many trace elements like Mn, Fe, Co, Ni, Cu and Zn are essential for marine life, some trace elements are of concern as pollutants, e.g. Pb and Hg, while others, together with a diverse array of isotopes, are used to assess modern-ocean processes and the role of the ocean in past climate change. GEO

  20. Assessment of the contamination of riparian soil and vegetation by trace metals--A Danube River case study.

    Science.gov (United States)

    Pavlović, P; Mitrović, M; Đorđević, D; Sakan, S; Slobodnik, J; Liška, I; Csanyi, B; Jarić, S; Kostić, O; Pavlović, D; Marinković, N; Tubić, B; Paunović, M

    2016-01-01

    The aim of this study was to assess the spatial distribution of arsenic and heavy metals (Cd, Cr, Cu Hg, Ni, Pb and Zn) in a riparian area influenced by periodical flooding along a considerable stretch of the Danube River. This screening was undertaken on soil and plant samples collected from 43 sites along 2386 km of the river, collected during the international Joint Danube Survey 3 expedition (ICPDR, 2015). In addition, data on the concentration of these elements in river sediment was used in order to describe the relationship between sediment, riparian soil and riparian plants. A significant positive correlation (Spearman r, for psoil (r=0.817). A significant correlation between soil and plants (r=0.438) and sediment and plants (r=0.412) was also found for trace metal concentrations. Elevated levels of Cd, Cr, Cu, and Ni were found at certain sites along the Serbian stretch, while elevated concentrations of Hg were also detected in Hungary, of Pb along the Romanian stretch and of As along the Bulgarian stretch (the Lower Danube). These results point to the presence of naturally-occurring metals derived from ore deposits in the Danube River Basin and anthropogenic metals, released by mining and processing of metal ores and other industrial facilities, which are responsible for the entry of metals such as Cu, Ni and Zn. Our results also indicated toxic Cd and Zn levels in plant samples, measured at the Hercegsznato site (Middle Danube, Hungary), which highlighted these elements as a potential limiting factor for riparian vegetation in that area. The distribution of the analysed elements in plant material also indicates the species-specific accumulation of trace metals. Based on our results, the Lower and Middle Danube were found to be more polluted in terms of the analysed elements.

  1. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    Science.gov (United States)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops.

  2. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  3. Trace metals in seawater, sediments and some fish species from Marsa Matrouh Beaches in north-western Mediterranean coast, Egypt

    Directory of Open Access Journals (Sweden)

    Safaa A. Abdel Ghani

    2015-01-01

    Full Text Available The concentrations of trace metals (V, Al, Sn, As, and Se were measured in seawater, sediments, and muscles of fish species collected from beaches of Marsa Matrouh, North West coast of Egypt. The decreasing trend of metals was observed in water as Al > Sn > As > V > Se and in sediment as Al > Sn > V > As > Se. The levels of dissolved V, Se and As were lower than the typical natural trace element concentration of seawater while, Al surpassed. Dissolved Sn concentration was higher than the background concentration (0.01 μg/l but it is still lower than the toxic concentration for organisms. Pollution load index (PLI recorded values >1 indicate progressive deterioration of the sediment quality. Enrichment factor (EF, contamination factor (CF and geoaccumulation index (Igeo demonstrated that most of the sediment samples were moderately to heavily contaminated by Sn which surpassed the threshold limit value (TLV. Metal bioaccumulation in the muscles of fish species was in the decreasing order of Al > Sn > V > Se, while As was not detected in all species. Calculated metal pollution indices (MPI were lower than 1 except in Saurida undosquamis with 1.43 indicating that it is safe for human consumption.

  4. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Yaowen, E-mail: yqiu@scsio.ac.cn [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Yu Kefu [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Wenxiong [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-06-15

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 {mu}g g{sup -1}, whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 {mu}g g{sup -1}, respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  5. Assessment of trace metals using lichen transplant from automobile mechanic workshop in Ile-Ife metropolis, Nigeria.

    Science.gov (United States)

    Odiwe, Anthony I; Adesanwo, Adeyemi T J; Olowoyo, Joshua O; Raimi, Idris O

    2014-04-01

    The level of air pollution around the automobile mechanic workshops has been generally overlooked. This study, examined the level of trace metals in automobile mechanic workshops and the suitability of using transplanted lichen thalli of Lepraria incana for measuring air pollution in such areas. Samples of the lichen thalli were transplanted into seven different sites and were attached to the bark of trees at each site. The samples were harvested from the sites after 3-month exposure. Concentrations of Pb, Cu, Cd, Fe, Zn, and S content were determined using an atomic absorption spectrophotometer. Results showed that there was a significant difference in the trace metals concentrations across the sites (p < 0.05). The analyzed lichen samples showed a range of 91.26-119.35 ppm for Fe, 30.23-61.32 ppm for Zn, 1.25-2.45 ppm for Cu, 0.017-0.043 ppm for Cd, 0.018-0.051 ppm, and 0.37-0.42 ppm for S. From the study, sites 6 and 7 presented higher concentrations of Cd, Pb, and Zn than other sites. The enrichment factor calculated showed that Zn, Cd, and Pb were greatly enriched from the workshops. The trend in the concentration of these heavy metals suggests that activities in these workshops might become a major source of certain heavy metals in the environment and if the pollution activities persist, it might become worrisome over time.

  6. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhijiang; Li Hongkun; Liu Ming [School of Physics, South China University of Technology, Guangzhou 510641 (China); Li Runhua [School of Physics, South China University of Technology, Guangzhou 510641 (China)], E-mail: rhli@scut.edu.cn

    2008-01-15

    To perform fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy (LIBS) based on only one single-pulse laser system, a wood slice has been used as a liquid absorber to transform liquid sample analysis to solid sample analysis using LIBS. High detection sensitivity and good reproducibility can be achieved with this approach. Calibration curves for five metal elements, Cr, Mn, Cu, Cd, and Pb under trace concentrations, have been obtained, and the limits of their detection were determined to be in the range of 0.029-0.59 mg L{sup -1}, 2-3 orders better than those obtained by directly analyzing liquid samples where the laser was focused on a liquid surface. The wood slice was very easy to handle and thus, the whole analysis process took only 4-5 min for each sample. This approach provides a more practical approach for fast and sensitive metal element analysis in aqueous solutions using LIBS, which is especially useful for monitoring toxic heavy metals in water.

  7. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates

    Science.gov (United States)

    Chen, Zhijiang; Li, Hongkun; Liu, Ming; Li, Runhua

    2008-01-01

    To perform fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy (LIBS) based on only one single-pulse laser system, a wood slice has been used as a liquid absorber to transform liquid sample analysis to solid sample analysis using LIBS. High detection sensitivity and good reproducibility can be achieved with this approach. Calibration curves for five metal elements, Cr, Mn, Cu, Cd, and Pb under trace concentrations, have been obtained, and the limits of their detection were determined to be in the range of 0.029-0.59 mg L - 1 , 2-3 orders better than those obtained by directly analyzing liquid samples where the laser was focused on a liquid surface. The wood slice was very easy to handle and thus, the whole analysis process took only 4-5 min for each sample. This approach provides a more practical approach for fast and sensitive metal element analysis in aqueous solutions using LIBS, which is especially useful for monitoring toxic heavy metals in water.

  8. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    Science.gov (United States)

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity.

  9. An Automated Electronic Tongue for In-Situ Quick Monitoring of Trace Heavy Metals in Water Environment

    Science.gov (United States)

    Cai, Wei; Li, Yi; Gao, Xiaoming; Guo, Hongsun; Zhao, Huixin; Wang, Ping

    2009-05-01

    An automated electronic tongue instrumentation has been developed for in-situ concentration determination of trace heavy metals in water environment. The electronic tongue contains two main parts. The sensor part consists of a silicon-based Hg-coated Au microelectrodes array (MEA) for the detection of Zn(II), Cd(II), Pb(II) and Cu(II) and a multiple light-addressable potentiometric sensor (MLAPS) for the detection of Fe(III) and Cr(VI). The control part employs pumps, valves and tubes to enable the pick-up and pretreatment of aqueous sample. The electronic tongue realized detection of the six metals mentioned above at part-per-billion (ppb) level without manual operation. This instrumentation will have wide application in quick monitoring and prediction the heavy metal pollution in lakes and oceans.

  10. Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area.

    Science.gov (United States)

    Jović, Mihajlo; Stanković, Slavka

    2014-08-01

    Considering the growing concern due to different levels of anthropogenic loadings, the main purpose of this study was to identify the levels of trace metals (Fe, Mn, Cu, Zn, Co, Ni, Cd, Pb and Hg) in the mussels Mytilus galloprovincialis sampled along the marine coast of Boka Kotorska Bay, Montenegro. In comparison with the permissible limits set by the EU and the US FDA, all trace metal concentrations found in the mussels from the coastal area of Boka Kotorska Bay were lower than the prescribed limits. Generally, the trace metal concentrations found in Montenegrin mussels are within the range of trace metal concentrations determined in low to moderately polluted Adriatic areas. Based on these and other available literature data published by other authors for Adriatic region, the public health risks associated with the consumption of mussels in relation to reported trace metal concentrations were evaluated. In terms of the obtained trace metals concentrations in mussels and the provisional tolerable weekly intake prescribed by the JECFA and oral reference doses by the US EPA, the Pb and Cd concentrations and the Co and Cd concentrations were recognized as the limiting factor for the consumption of mussels from some Adriatic areas, respectively.

  11. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes

    Energy Technology Data Exchange (ETDEWEB)

    Hlawatsch, S.; Garbe-Schonberg, C.D.; Lechtenberg, F.; Manceau, A.; Tamura, N.; Kulik, D.A.; Suess, E.; Kersten, M.

    2002-03-12

    Trace element profiles in ferromanganese nodules from the western Baltic Sea were analyzed with laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and synchrotron-based micro-X-ray radiation techniques (fluorescence: mSXRF, and diffraction: mXRD) at high spatial resolution in growth direction. Of the trace elements studied (Zn, Cu, Cd, Ni, Co, Mo, Ba), Zn showed the most significant enrichment, with values in the outermost surface layers of up to six-fold higher than those found in older core parts. The high-resolution Zn profiles provide the necessary temporal resolution for a dating method analogous to dendrochronology. Profiles in various samples collected during two decades were matched and the overlapping sections used for estimation of the accretion rates. Assuming a continuous accretion of these relatively fast growing nodules (on average 20 mm a-1) over the last century, the Zn enrichment was thus assessed to have commenced around 1860/70 in nodules from the Kiel Bight and in 1880/90 from Mecklenburg Bight, reflecting the enhanced heavy metal emissions with rising industrialization in Europe. Apart from the obvious success with Zn, only As and Co show significant but only 1.5-fold enrichments in the most recent growth layers of the nodules. Other anthropogenic trace metals like Cu and Cd are not at all enriched, which, together with the distinct early-diagenetic Fe/Mn banding, weakens the potential of the nodules for retrospective monitoring.

  12. Evaluation of Trace Metal Content by ICP-MS Using Closed Vessel Microwave Digestion in Fresh Water Fish

    Directory of Open Access Journals (Sweden)

    Sreenivasa Rao Jarapala

    2014-01-01

    Full Text Available The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS. Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO.

  13. Intelligent Simultaneous Quantitative Online Analysis of Environmental Trace Heavy Metals with Total-Reflection X-Ray Fluorescence

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2015-05-01

    Full Text Available Total-reflection X-ray fluorescence (TXRF has achieved remarkable success with the advantages of simultaneous multi-element analysis capability, decreased background noise, no matrix effects, wide dynamic range, ease of operation, and potential of trace analysis. Simultaneous quantitative online analysis of trace heavy metals is urgently required by dynamic environmental monitoring and management, and TXRF has potential in this application domain. However, it calls for an online analysis scheme based on TXRF as well as a robust and rapid quantification method, which have not been well explored yet. Besides, spectral overlapping and background effects may lead to loss of accuracy or even faulty results during practical quantitative TXRF analysis. This paper proposes an intelligent, multi-element quantification method according to the established online TXRF analysis platform. In the intelligent quantification method, collected characteristic curves of all existing elements and a pre-estimated background curve in the whole spectrum scope are used to approximate the measured spectrum. A novel hybrid algorithm, PSO-RBFN-SA, is designed to solve the curve-fitting problem, with offline global optimization and fast online computing. Experimental results verify that simultaneous quantification of trace heavy metals, including Cr, Mn, Fe, Co, Ni, Cu and Zn, is realized on the online TXRF analysis platform, and both high measurement precision and computational efficiency are obtained.

  14. Intelligent simultaneous quantitative online analysis of environmental trace heavy metals with total-reflection X-ray fluorescence.

    Science.gov (United States)

    Ma, Junjie; Wang, Yeyao; Yang, Qi; Liu, Yubing; Shi, Ping

    2015-05-06

    Total-reflection X-ray fluorescence (TXRF) has achieved remarkable success with the advantages of simultaneous multi-element analysis capability, decreased background noise, no matrix effects, wide dynamic range, ease of operation, and potential of trace analysis. Simultaneous quantitative online analysis of trace heavy metals is urgently required by dynamic environmental monitoring and management, and TXRF has potential in this application domain. However, it calls for an online analysis scheme based on TXRF as well as a robust and rapid quantification method, which have not been well explored yet. Besides, spectral overlapping and background effects may lead to loss of accuracy or even faulty results during practical quantitative TXRF analysis. This paper proposes an intelligent, multi-element quantification method according to the established online TXRF analysis platform. In the intelligent quantification method, collected characteristic curves of all existing elements and a pre-estimated background curve in the whole spectrum scope are used to approximate the measured spectrum. A novel hybrid algorithm, PSO-RBFN-SA, is designed to solve the curve-fitting problem, with offline global optimization and fast online computing. Experimental results verify that simultaneous quantification of trace heavy metals, including Cr, Mn, Fe, Co, Ni, Cu and Zn, is realized on the online TXRF analysis platform, and both high measurement precision and computational efficiency are obtained.

  15. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    Science.gov (United States)

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  16. Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W

    2007-07-01

    database used in Swiss radioactive waste disposal projects. Within the scope of this TDB project I reviewed extensively thermodynamic data for Th, Pd, Al, and solubility and metal complexation of silicates, the review considering not only U, Np, Pu, Am, Tc, Ni, Se and Zr, but also the major constituents of ground and surface waters, i.e. H, Na, K, Mg and Ca. The decision to evaluate the organic ligands oxalate, citrate, ethylenediaminetetraacetate (edta) and {alpha}-isosaccharinate (isa) was based on two aspects, namely the importance of the ligands in radioactive waste problems, and the availability of experimental data. (ii) In many case studies involving inorganic and simple organic ligands a serious lack of reliable thermodynamic data is encountered. There, a new modeling approach to estimate the effects of these missing data was applied. This so called 'backdoor approach' begins with the question: 'What total concentration of a ligand is necessary to significantly influence the speciation, and hence the solubility, of a given trace metal?' Radioactive waste contains substantial amounts of ion-exchange resins from decontamination procedures. Degradation of these organic waste forms by radiolysis in a repository is a source of concern in radioactive waste management. Radiolytic degradation experiments with strong acidic ion exchange resins resulted in the formation of the complexing ligands oxalate and ligand X, whose structure could not be identified. In the case of anion exchange resins, ammonia and methylamines were detected. I assessed the influence of these ligands on radionuclide speciation in groundwater and cement pore water of a repository using the 'backdoor approach'. Prussian Blue, Fe{sup III}{sub 4} [Fe{sup II}(CN){sub 6}]{sub 3}, and structurally related transition metal compounds like Ni{sub 2}[Fe(CN){sub 6}] are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers

  17. Seasonal Fluxes and Cycling of Trace Metals in Semi-Arid Fluvial Systems: Leichhardt River, Queensland, Australia

    Science.gov (United States)

    Mackay, A. K.; Taylor, M. P.

    2007-12-01

    This paper examines the storage and transfer of trace metal contaminants in water and sediment within the upper Leichhardt River Catchment (1,113 km2), Mount Isa, north-west Queensland. The Leichhardt River runs adjacent to Mount Isa City and the Cu and Pb-Zn-Ag Mount Isa Mine and smelter (MIM) and feeds Lake Moondarra, Mount Isa's potable water supply. The river flows only during the monsoonal wet season (December- March) and for the remainder of the year is characterised by a series of disconnected temporary and permanent pools ranging in length from 10 m to 1 km. These pools are significant because they act as storage zones for water-soluble and sediment-associated metals and serve as refugia for native and domestic fauna during protracted intervals between wet season flows. To recognise seasonal fluxes and cycling patterns of trace metal contaminants in the Leichhardt River system this study investigates the physico-chemical water quality of the wet season flows and the subsequent seasonal variations in the dry season pool water. In January 2007 two floods were studied using sixteen rising stage water quality samplers along the Leichhardt River. The samplers were placed above and below MIM, and within selected tributaries draining MIM to ascertain the specific impacts from mining activities on water quality. Grab samples were also collected during the floods and on the falling stages of flow within the river system. Following this, dry season water quality sampling commenced on eleven remnant pools over a period of 8 months. Overall 60 wet season and 34 dry season water samples were collected and analysed for physico-chemical (pH, EC, DO, TDS, SS) variables in the field and total and water soluble cations, trace elements of concern (Cd, Cu, Pb, Zn) and anions via ICP-MS and ion chromatography, respectively. In addition, mineralogical and geochemical analysis was undertaken on 34 bottom sediment samples collected from the pools. Analysis of the temporal metal

  18. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    Science.gov (United States)

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P  liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.

  19. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    Science.gov (United States)

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were amended plots, in spite of increased soil organic matter, factor of metal retention. Indeed, DOC, also increased by amendments, favours the

  20. Trace metals in harbour and slipway sediments from the island of Malta, central Mediterranean.

    Science.gov (United States)

    Huntingford, Emily J; Turner, Andrew

    2011-07-01

    Sediment samples collected from large harbours and public slipways on the island of Malta have been analysed for geochemically important metals (Al, Ca, Fe, Mn) and contaminant metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) following fractionation (Malta.

  1. Trace metal concentrations in marine zooplankton from the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Balachandran, K.K.; Nair, M.; Joseph, T.

    -availabilities in seawater and hence an increased uptake of metals by zooplankton from coastal areas than offshore areas. The zooplankton species examined showed great accumulations of metals, with bioaccumulation factors in the range greater than 15,000 to 40...

  2. Crabs tell the difference--Relating trace metal content with land use and landscape attributes.

    Science.gov (United States)

    Álvaro, Nuno V; Neto, Ana I; Couto, Ruben P; Azevedo, José M N; Rodrigues, Armindo S

    2016-02-01

    Heavy metal concentration in a given locality depends upon its natural characteristics and level of anthropogenic pressure. Volcanic sites have a different heavy metal footprint from agriculture soils and both differ from urban centres. Different animal species absorb heavy metals differently according to their feeding behaviour and physiology. Depending on the capability to accumulate heavy metals, some species can be used in biomonitoring programs for the identification of disturbed areas. Crabs are included in these species and known to accumulate heavy metals. The present study investigates the potential of Pachygrapsus marmoratus (Fabricius, 1787), a small crab abundant in the Azores intertidal, as an indicator of the presence of heavy metals in Azorean coastal environments, comparing hydrothermal vent locations, urban centres and locations adjacent to agricultural activity. Specimens were collected in the same period and had their hepatopancreas removed, dried and analysed for heavy metals. Results revealed differences in concentration of the studied elements between all sampling sites, each one revealing a distinct heavy metal content. Fe, Cu, Mn, Zn and Cd are the metals responsible for separating the various sites. The concentration levels of the heavy metals recorded in the present study reflect the environmental available metals where the organisms live. This, associated to the large availability of P. marmoratus specimens in the Azores, and to the fact that these animals are easy to capture and handle, suggests this species as a potential bioindicator for heavy metal concentration in Azorean coastal areas, both humanized and naturally disturbed.

  3. Polychlorinated biphenyls, organochlorine pesticides and trace metals in cultured and harvested bivalves from the eastern Adriatic coast (Croatia).

    Science.gov (United States)

    Milun, Vesna; Lušić, Jelena; Despalatović, Marija

    2016-06-01

    Polychlorinated biphenyls, organochlorine pesticides and trace metals were determined in tissues of bivalve molluscs (Mytilus galloprovincialis, Ostrea edulis, Venus verrucosa, Arca noae and Callista chione), collected from 11 harvesting and 2 cultured locations along the eastern Adriatic coast, in May and November 2012. Concentrations (ng g(-1) dry weight) of organochlorines ranged from 1.53 to 21.1 for PCBs and 0.68 to 5.21 for p,p'-DDTs. HCB, lindane, heptachlor and aldrin-like compounds were found in lower levels or were not detected. Metal concentrations (mg kg(-1) dry weight) ranged from 0.23 to 4.03 for Cd, 0.87-3.43 for Cr, 3.69-202.3 for Cu, 0.06-0.26 for HgT, 0.62-9.42 for Ni, 0.95-4.64 for Pb, and 55.76-4010.3 for Zn. Established organochlorine and trace metal levels were lower than the maximum allowable levels in seafood set by the European Commission.

  4. Leach tests on grouts made with actual and trace metal-spiked synthetic phosphate/sulfate waste

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; LeGore, V.L.; Lindenmeier, C.W.; McLaurine, S.B.; Martin, P.F.C.; Lokken, R.O.

    1989-10-01

    Pacific Northwest Laboratory conducted experiments to produce empirical leach rate data for phosphate-sulfate waste (PSW) grout. Effective diffusivities were measured for various radionuclides ({sup 90}Sr, {sup 99}Tc, {sup 14}C, {sup 129}I, {sup 137}Cs, {sup 60}Co, {sup 54}Mn, and U), stable major components (NO{sub 3}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 3}BO{sub 3}, K and Na) and the trace constituents Ag, As, Cd, Hg, Pb, and Se. Two types of leach tests were used on samples of actual PSW grout and synthetic PSW grout: the American Nuclear Society (ANS) 16.1 intermittent replacement leach test and a static leach test. Grout produced from both synthetic and real PSW showed low leach rates for the trace metal constituents and most of the waste radionuclides. Many of the spiked trace metals and radionuclides were not detected in any leachates. None of the effluents contained measurable quantities of {sup 137}Cs, {sup 60}Co, {sup 54}Mn, {sup 109}Cd, {sup 51}Cr, {sup 210}Pb, {sup 203}Hg, or As. For those trace species with detectable leach rates, {sup 125}I appeared to have the greatest leach rate, followed by {sup 99}Tc, {sup 75}Se, and finally U, {sup 14}C, and {sup 110m}Ag. Leach rates for nitrate are between those for I and Tc, but there is much scatter in the nitrate data because of the very low nitrate inventory. 32 refs., 6 figs., 15 tabs.

  5. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece.

    Science.gov (United States)

    Aloupi, M; Koutrotsios, G; Koulousaris, M; Kalogeropoulos, N

    2012-04-01

    The objectives of this survey were (1) to assess for the first time the Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn contents in wild edible mushrooms (Russula delica, Lactarius sanguifluus, Lactarius semisanguifluus, Lactarius deliciosus, Suillus bellinii) from the island of Lesvos, (2) to investigate the metals' variability among the species, as well as in relation to the chemical composition of the underlying soil, comparing mushrooms collected from volcanic and serpentine substrates and (3) to estimate metal intake by the consumption of the mushrooms under consideration. The trace metals in 139 samples were determined by flame or flameless atomic absorption spectroscopy. The median metal concentrations were as follows: Cd: 0.14; Cr: 0.10; Cu: 8.51; Fe: 30.3; Mn: 5.26; Ni: 0.34; Pb: 0.093 and Zn: 64.50, all in mgkg(-1) dry weight. The observed concentrations are among the lowest reported for mushrooms from Europe or Turkey, while Pb and Cd values did not exceed the limits set by the European Union. Significant species- and substrate-related differences in the metal contents were found, but the variability did not follow a uniform pattern for all the metals in all mushroom species. As a general trend, the mushrooms growing in serpentine sites contained higher Cd, Cr and Ni than those from volcanic sites. The calculated bioconcentration factors (BCFs) showed that none of the mushrooms can be regarded as a metal bioaccumulator, although BCF values slightly above unity were found for Zn in the three Lactarius species, and for Cu in R. delica. The studied mushrooms could supply considerable amounts of essential metals such as Zn and Cr. On the other hand, the consumption of R. delica collected from volcanic soils could provide 12% of the Cd daily tolerable intake and as high as 53% when collected from serpentine soils. Nonetheless, our results indicate that the regular consumption of wild edible mushrooms from Lesvos is quite safe for human health.

  6. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Science.gov (United States)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  7. The red mud accident in ajka (hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil.

    Science.gov (United States)

    Ruyters, Stefan; Mertens, Jelle; Vassilieva, Elvira; Dehandschutter, Boris; Poffijn, André; Smolders, Erik

    2011-02-15

    The red mud accident of October 4, 2010, in Ajka (Hungary) contaminated a vast area with caustic, saline red mud (pH 12) that contains several toxic trace metals above soil limits. Red mud was characterized and its toxicity for plants was measured to evaluate the soil contamination risks. Red mud radioactivity (e.g., (238)U) is about 10-fold above soil background and previous assessments revealed that radiation risk is limited to indoor radon. The plant toxicity and trace metal availability was tested with mixtures of this red mud and a local noncontaminated soil up to a 16% dry weight fraction. Increasing red mud applications increased soil pH to maximally 8.3 and soil solution EC to 12 dS m(-1). Shoot yield of barley seedlings was affected by 25% at 5% red mud in soil and above. Red mud increased shoot Cu, Cr, Fe, and Ni concentrations; however, none of these exceed toxic limits reported elsewhere. Moreover, NaOH amended reference treatments showed similar yield reductions and similar changes in shoot composition. Foliar diagnostics suggest that Na (>1% in affected plants) is the prime cause of growth effects in red mud and in corresponding NaOH amended soils. Shoot Cd and Pb concentrations decreased by increasing applications or were unaffected. Leaching amended soils (3 pore volumes) did not completely remove the Na injury, likely because soil structure was deteriorated. The foliar composition and the NaOH reference experiment allow concluding that the Na salinity, not the trace metal contamination, is the main concern for this red mud in soil.

  8. Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HUANG Xiaoping

    2012-01-01

    Concentrations of the trace metals Cu,Cd,Pb,and Zn were measured in seawater,rhizosphere sediments,interstitial water,and the tissues of three tropical species of seagrasses (Thalassia hemprichii,Enhalus acoroides and Cymodocea rotundata) from Xincun Bay of Hainan Island,South China.We analyzed different environmental compartments and the highest concentrations of Pb and Zn were found in the interstitial and seawater.The concentrations of Cd and Zn were significantly higher in blades compared with roots or rhizomes in T.hemprichii and E.acoroides,respectively.A metal pollution index (MPI) demonstrated that sediment,interstitial water,and seagrasses in the sites located nearest anthropogenic sources of pollution had the most abundant metal concentrations.There was obvious seasonal variation of these metals in the three seagrasses with higher concentrations of Cu,Pb and Zn in January and Cd in July.Furthermore,the relationships between metal concentrations in seagrasses and environmental compartments were positively correlated significantly.The bioconcentration factors (BCF) demonstrated that Cd from the tissues of the three seagrasses might be absorbed from the sediment by the roots.However,for C.rotundata,Zn is likely to be derived from the seawater through its blades.Therefore,the blades of T.hemprichii,E.acoroides and C.rotundata are potential bio-indicators to Cd content in sediment,and additionally Zn content (C.rotundata only) in seawater.

  9. Recent advances and perspectives in analytical methodologies for monitoring the bioavailability of trace metals in environmental solid substrates

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity...... and the eventual impact of anthropogenic TE in environmental solids are addressed. The potential of passive dosimeters based on microdialysis sampling for on-site, real-time monitoring of chemical contaminants in pore soil solution is thoroughly discussed and critically compared with active microsamplers. Recent...

  10. Features of trace metal distribution in the components of the ecosystem of the Lost City hydrothermal vent field (North Atlantic)

    Science.gov (United States)

    Demina, L. L.; Lein, A. Yu.; Galkin, S. V.; Lisitzin, A. P.

    2015-12-01

    The biogeochemical features of the microelement distribution in the components of the ecosystem of the Lost City low-temperature field of the Mid-Atlantic Ridge are determined by the processes of serpentinization in ultrabasic rocks. In the Lost City biotope water, the concentration of trace metals (Fe, Mn, Zn, Cu, Cd, Ni, Cr, Pb, and As) is from n × 10 to 104 times higher than in the ocean water. The microelement content demonstrates a similar character of distribution in both types of calcite biominerals forming the carbonate matrix of the bivalve mussels Bathymodiolus and the scleractinian corals Anthozoa.

  11. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Vethamony, P.; ManiMurali, R.; Fernandes, B.

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores...

  12. Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea

    Directory of Open Access Journals (Sweden)

    Kongtae Ra

    2013-06-01

    Full Text Available Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.

  13. Studies of trace metals in the leaves of Phyllanthus emblica(L

    Directory of Open Access Journals (Sweden)

    Jaya Gupta

    2014-01-01

    Full Text Available The leaves of Phyllanthus emblica were digested with HNO3 and HClO4 (4:1 and the contents of trace elements such as Zn, Fe,Ni, Mn ,K ,Ca, Mg, Co, Cr, Cu, Cd, Pb, and As were determined by atomic absorption spectroscopy. The experimental results confirmed the presence of Ca, Fe, Zn, Mg, K, Co and Mn which is beneficial to the human body is within the limit but concentration of Ni is high. The heavy trace element which are harmful to human body i.e., Cd, As, within the limit but concentration Cu, Cr, Pb is high.

  14. Trace-metal sources and their release from mine wastes: examples from humidity cell tests of hardrock mine waste and from Warrior Basin coal

    Science.gov (United States)

    Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.

    2003-01-01

    To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.

  15. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014.

    Science.gov (United States)

    Kumar, Alok; Ramanathan, Al; Prasad, M B K; Datta, Dilip; Kumar, Manoj; Sappal, Swati Mohan

    2016-05-01

    The distribution, enrichment, and ecotoxicity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. A total of eleven surficial sediment samples were collected along a vertical transect along the freshwater-saline water gradient. The sediment samples were digested using EPA 3051 method and were analyzed on ICP-MS. Geo-accumulation index suggests moderately polluted sediment quality with respect to Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As, and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co, and Cd, moderate by Fe, Mn, Cu, and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb, and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co, and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  16. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions.

    Science.gov (United States)

    Zhang, Zhihong; Ji, Hongfei; Song, Yingpan; Zhang, Shuai; Wang, Minghua; Jia, Changchang; Tian, Jia-Yue; He, Linghao; Zhang, Xiaojing; Liu, Chun-Sen

    2017-03-07

    A new core-shell nanostructured composite composed of Fe(III)-based metal-organic framework (Fe-MOF) and mesoporous Fe3O4@C nanocapsules (denoted as Fe-MOF@mFe3O4@mC) was synthesized and developed as a platform for determining trace heavy metal ions in aqueous solution. Herein, the mFe3O4@mC nanocapsules were prepared by calcining the hollow Fe3O4@C that was obtained using the SiO2 nanoparticles as the template, followed by composing the Fe-MOF. The Fe-MOF@mFe3O4@mC nanocomposite demonstrated excellent electrochemical activity, water stability and high specific surface area, consequently resulting in the strong biobinding with heavy-metal-ion-targeted aptamer strands. Furthermore, by combining the conformational transition interaction, which is caused by the formation of the G-quadruplex between a single-stranded aptamer and high adsorbed amounts of heavy metal ions, the developed aptasensor exhibited a good linear relationship with the logarithm of heavy metal ion (Pb(2+) and As(3+)) concentration over the broad range from 0.01 to 10.0nM. The detection limits were estimated to be 2.27 and 6.73 pM toward detecting Pb(2+) and As(3+), respectively. The proposed aptasensor showed good regenerability, excellent selectivity, and acceptable reproducibility, suggesting promising applications in environment monitoring and biomedical fields.

  17. Benthic flux of nutrients and trace metals in the northern component of San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Parcheso, Francis; Engelstad, Anita C.; Greene, Valerie E.

    2009-01-01

    Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 sites Tiburon Center for Environmental Studies, provides information to assist in developing and refining management strategies for the Bay/Delta system and supports efforts to monitor changes in food-web structure associated with regional habitat modifications directed by the California Bay-Delta Authority. On July 7, 2008, and August 5, 2008, pore-water profilers were successfully deployed at six North Bay sites per trip to measure the concentration gradient of dissolved macronutrients and trace metals near the sediment-water interface. Only two of the sites (433 and SSB009 within Honker Bay) were sampled in both series of profiler deployments. At each sampling site, profilers were deployed in triplicate, while discrete samples and dataloggers were used to collect ancillary data from both the water column and benthos to help interpret diffusive-flux measurements. Benthic flux of dissolved (0.2-micron filtered) inorganic phosphate (that is, soluble reactive phosphorus (SRP)) ranged from negligible levels (-0.003?0.005 millimole per square meter per day (mmole m-2d-1) at Site 4.1 outside Honker Bay) to 0.060?0.006 mmole m-2d-1 near the northern coast of Brown?s Island. Except for the elevated flux at Browns Island, the benthic flux of soluble reactive phosphorus (SRP) was consistently: (1) lower than previously reported for South Bay sites, (2) an order of magnitude lower than oligotrophic Coeur d?Alene Lake, (3) two orders of magnitude lower than determined for eutrophic Upper Klamath Lake, and (4) an order of magnitude or more lower than the estimated summer riverine inputs for SRP (900 to 1,300 kilograms of phosphorous per day (kg-P d-1)). In contrast to fluxes reported for the South Bay, nitrate fluxes were consistently negative (that is, drawn from the water column into the sediment

  18. Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash river, Ethiopia

    Directory of Open Access Journals (Sweden)

    Gelaneh Woldemichael

    2016-03-01

    Full Text Available We report about testing a new mobile and sustainable water sample digestion method in a preliminary field trial in Ethiopia. In order to determine heavy metals at the ultra-trace level by stripping voltammetric techniques in water samples from Awash River, we applied our new method of solar UV-assisted sample pretreatment to destroy the relevant interfering dissolved organic matter. The field tests revealed that 24 h of solar UV irradiation were sufficient to achieve the same sample pretreatment results as with classic digestion method based on intense and hard UV. Analytical results of this study suggest that both a hydroelectric power station and agrichemical applications at Koka Lake have increased the levels of the investigated metals zinc, cadmium, lead, copper, cobalt, nickel, and uranium.

  19. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    Science.gov (United States)

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  20. Heavy and trace metal concentrations in three rockpool shrimp species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from Tenerife (Canary Islands).

    Science.gov (United States)

    Lozano, Gonzalo; Herraiz, Elena; Hardisson, Arturo; Gutiérrez, Angel J; González-Weller, Dailos; Rubio, Carmen

    2010-09-01

    Trace metal concentrations (Fe, Cu, Co, Zn, Ni and V) were investigated in three rockpool shrimp species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from six littoral sampling sites (polluted and non-polluted) of Tenerife in the Canary Islands (Central Eastern Atlantic), Spain. Sex ratio for all three species has been determined: females predominate over males in all species and significant differences in total length and cephalothorax length was detected between sexes, being females larger than males. By other side, concentrations of trace metals were determined in whole specimens. Higher mean values for every metal were observed in P. adspersus. In males, higher values were observed in P. elegans and P. serratus, whereas in P. adspersus, mean values are higher in females. Finally, mean concentrations of trace metals studied were higher, in general terms, in the two clearly polluted stations: Santa Cruz of Tenerife commercial harbour and its fishery dock dependency.

  1. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India.

    Science.gov (United States)

    Veerasingam, S; Vethamony, P; Mani Murali, R; Fernandes, B

    2015-02-15

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores showed enrichment of trace metals in the upper part of core sediments and decrease in concentration with depth, suggesting excess of anthropogenic loading (including mining activities) occurred during the recent past. Scanning electron microscope (SEM) images distinguished the shape, size and structure of particles derived from lithogenic and anthropogenic sources in core sediments. The geo-accumulation index (I(geo)) values indicate that Mandovi estuary is 'moderately polluted' with Pb, whereas 'unpolluted to moderately polluted' with Fe, Mn, Cu, Cr, Co and Zn. The comparative analysis of trace metals revealed that Fe and Mn were highly enriched in the Mandovi estuary compared to all other Indian estuaries.

  2. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  3. Speciation and Fate of Trace Metals in Estuarine Sediments Under Reduced and Oxidized Conditions, Seaplane Lagoon, Alameda Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, S A; Day, P A; Esser, B; Randall, S

    2002-10-18

    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60-year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60-year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  4. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  5. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    extracted by means of concentrated HNO{sub 3}, estuarine freshwaters and waters of two different salinities (S=15 and S=31). Analysis of trace elements was carried out by means of quadrupole inductively coupled plasma-mass spectrometry. Furthermore, single particles from road sediments were characterised with scanning electron microscopy (SEM). Results: SEM analysis clearly showed that some particles contained fairly high concentrations of potentially toxic trace elements. Extractions of materials investigated by varying acidities and salinities documented that the potentially bioavailable fractions extracted by concentrated HNO{sub 3} may cover wide concentration ranges. Natural estuarine waters of various salinities (S=0.5; S=15; S=31) extracted high proportions of Co, Ni, Cu, Zn and Cd from urban particles, especially for high-salinity water (S=31). Extractions with freshwater revealed the lowest concentrations of desorbed trace elements. Particulate Mo, Pb and V showed similar or lower mobility in saline water compared with freshwater, depending on the sample type. Discussion: Trace element mobility in estuarine waters varied according to the type of urban particles and depended on salinity for Co, Ni, Cu, Zn and Cd. This is of high importance for towns located directly at the coast or for cities like Bordeaux, where water courses crossing the agglomerations are connected to saline water masses. Since trace elements desorbed from particles in saline waters may become highly bioavailable, they bear a potential risk for organisms. Comprehensive studies on the behaviour of urban particles in estuarine waters and the related potential environmental impact are still missing. Conclusions: Saline waters mobilise relatively high amounts of Co, Ni, Cu, Zn and Cd from urban particles suggesting considerable metal fluxes from riverine urban systems into coastal waters. Although estimates of trace metal inputs by urban bulk deposition (urban dust) and other types of urban particles

  6. Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica--spatial variability and possible anthropogenic contributions.

    Science.gov (United States)

    Thamban, Meloth; Thakur, Roseline C

    2013-04-01

    To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.

  7. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    Science.gov (United States)

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  8. Trace metal dynamics in fishes from the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Nair, M.; Joseph, T.

    metals, with highest bioaccumulation for the essential element iron and lowest bioaccumulation for the non-essential element lead. Among the demersal species, C. melampygus and N. japonicus had high concentration factors for the metals Fe (280,268 to 322...

  9. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations.

    Science.gov (United States)

    Song, Yinxian; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Shi, Qi; Zhang, Huiling; Ayoko, Godwin A; Frost, Ray L

    2014-02-01

    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities.

  10. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment.

    Science.gov (United States)

    Payán, M Cruz; Verbinnen, Bram; Galan, Berta; Coz, Alberto; Vandecasteele, Carlo; Viguri, Javier R

    2012-03-01

    One of the main risks of CCS (Carbon Capture and Storage) is CO(2) leakage from a storage site. The influence of CO(2) leakage on trace metals leaching from contaminated marine sediment in a potential storage area (Northern Spain) is addressed using standardized leaching tests. The influence of the pH of the leaching solution on the leachates is evaluated using deionized water, natural seawater and acidified seawater at pH = 5, 6 and 7, obtained by CO(2) bubbling. Equilibrium leaching tests (EN 12457) were performed at different liquid-solid ratios and the results of ANC/BNC leaching test (CEN/TS 15364) were modeled using Visual Minteq. Equilibrium tests gave values of the final pH for all seawater leachates between 7 and 8 due to the high acid neutralization capacity of the sediment. Combining leaching test results and geochemical modeling provided insight in the mechanisms and prediction of trace metals leaching in acidified seawater environment.

  11. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  12. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    Science.gov (United States)

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  13. Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy

    Directory of Open Access Journals (Sweden)

    A. DI LEO

    2013-04-01

    Full Text Available Distribution of metals (Hg, Pb, Sn, Cu, Cd and Zn was determined in sediments and in different tissues of Posidonia oceanica collected from San Pietro Island, Taranto Gulf (Ionian Sea, Southern Italy. In seagrass, results, compared with metal concentrations in sediments, showed that the highest concentrations of Hg, Pb, Sn and Cu were found in the roots, while in the green leaves were found the highest levels of Cd and Zn. Instead the lowest metal concentrations were found in the basal part of the leaf. Levels of  metals in the leaves were similar to those found by other authors in uncontaminated areas of the Mediterranean Sea. Mercury levels in roots were correlated to levels in sediments. This could demonstrate the plant memorizes sediments contamination . This study reinforces the usefulness and the relevance of Posidonia oceanica as an indicator of spatial metal contamination and an interesting tool for environmental quality evaluation.

  14. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    Science.gov (United States)

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.

  15. Trace matrix analysis in high Purex refractory metals with matrix separation. Analisis de trazas metalicas en metales refractarios de alta pureza con separacion de la matriz

    Energy Technology Data Exchange (ETDEWEB)

    Vivas Duarte Kittel, N.E.; Seuvert, A.; Wunsch, G. (Institut fur anorganische Chemie der Universitat Hannover, Hannover (Germany))

    1994-01-01

    Microelectronics industry demands refractory metals (Ti, Ni, Ta, Cr, Mo, W) and some of their silicides in extremely high purity. Direct analysis by ICP-AES or ICP.MS is limited by different spectral interferences and unspecific matrix effects of different kind. Trace-matrix-separation including a preconcentration of the analytes is the best way to overcome these problems and to achieve the required detection limits. Fundamentals and practice of batch, column and HPLC procedures are discussed in detail. Adsorption on cellulose, precipitation with chelating agents, and cation or chelating exchange resins can be used. The analyte tracers are collected in a small volume of sample, wich can be analyzed by ICP-AES. HPLC with a nucleosil column allows a trace-matrix-separation with a direct coupling to the spectrometer. The collected traces can alternatively be separated on an additional column and determined by photometry. The procedures describe the determination of Ba, Ca, Fe, Mg, Co, Cd, Cu, Ni, Pb and Mn, Mg, Ca, Sr, Ag, In, Tl and Zn in Ta and Nb; of Co, Cd, Cu, Ni, Pb, Mn, Mg, Ca and Sr in Ti. (Author) 15 refs.

  16. Trace metals in bulk precipitation and throughfall in a suburban area of Japan

    Science.gov (United States)

    Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.

    Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).

  17. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.

  18. The Mollusk Gastropod Lanistes carinatus (Olivier, 1804 as Abiomonitor for Some Trace Metals in the Nile River

    Directory of Open Access Journals (Sweden)

    S.S.I. Abd El Gawad

    2009-01-01

    Full Text Available The fresh water gastropod Lanistes carinatus was tested to be used as potential biomonitor for the trace metals, Copper, Cadmium and Lead. Some chemical and biological measurements were sampled and measured in two consecutive years 2005 and 2006 in different stations from Damietta Branch of Nile River. Cu level in water not detected in all investigated sites, while concentrations of Cd and Pb in water and the concentrations of Cu, Cd and Pb in sediment varied in different stations. It was found, metals concentrations were higher in sediment than those of water because sediments are important sinks for various pollutants like pesticides and heavy metals. The levels found for determined metals in water and sediment in the area are below of the permissible limits that set by the United States Environmental Protection Agency (EPA except some deviations in managements of water especially at Kafr Saad. Concentrations of these metals in soft tissues of gastropod Lanistes carinatus were higher than those of sediment and vary widely in different sites suggesting that this gastropod accumulate these metals and consequently would be of use for monitoring. The population density of Lanistes carinatus decreased sharply opposite to discharge point of Electric Plant of Talkha and Kafr Saad. This may be due to thermal pollution of the plant. The study suggested the use of Lanistes carinatus as Cu, Cd and Pb biomonitor in nature and also recommended a construction of closed cycle for cooling water of the power stations to prevent heated water from being discharged into the River and also controlling the discharge of wastes and industrial effluents into Nile.

  19. Lac Dufault sediment core trace metal distribution, bioavailability and toxicity to Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Nowierski, Monica [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dixon, D. George [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Borgmann, Uwe [National Water Research Institute, Canada Centre for Inland Waters, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 (Canada)]. E-mail: uwe.borgmann@ec.gc.ca

    2006-02-15

    To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization. - Toxicity and bioaccumulation tests with sediment cores provide more information on biological effects of metals than surface sediment tests.

  20. Trace Metal Pollution From Traffic in Denizli-Turkey During Dry Season

    Institute of Scientific and Technical Information of China (English)

    UMIT DIVRIKLI; DURALI MENDIL; MUSTAFA TUZEN; MUSTAFA SOYLAK; LATIF ELCI

    2006-01-01

    To determine the metal contents of date palm (Pheonix dactylifera) samples in dry season from Denizli-Turkey for investigation of heavy metal-polluted traffic. Method The levels of iron, copper, zinc, lead, cadmium,nickel, chromium, and manganese ions in the leaves of thirty five date palm (Pheonix dactylifera) samples collected from various levels of traffic in the streets of Denizli-Turkey were determined by graphite furnace or flame atomic absorption spectrometry. The wet, dry, and microwave digestion procedures for the date palm (Pheonix dactylifera) leaves were compared.The accuracy of the digestion procedures was checked using a standard reference material (IAEA-336 Lichen, SRM). Results Microwave digestion procedure for the leaves was preferred because it was more proper with respect to both time and recovery than dry and wet digestion. The levels of the heavy metal ions investigated were the highest on the samples from high traffic level. Also correlations between metal levels and traffic volume for all the metals were investigated. Conclusion In the light of our findings, the date palm (Phoenix dactylifera) leaves are suitable as a biomonitor for atmospheric heavy metal-polluted traffic. Significant correlations can be obtained between traffic levels and heavy metal concentrations.

  1. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  2. Metallothioneins and trace metals in the dogwhelk Nucella lapillus (L.) collected from Icelandic coasts

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kenneth M.Y. [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland)]. E-mail: kmyleung@hkucc.hku.hk; Dewhurst, Rachel E. [School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Halldorsson, Halldor [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland); Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik (Iceland); Svavarsson, Joerundur [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland); Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik (Iceland)

    2005-07-01

    Different sizes of the dogwhelk Nucella lapillus were collected from eight locations along the southwest and north coasts of Iceland. Concentrations of total metallothioneins (MTs) and heavy metals (Cd, Cu, Cr, Mn, Ni, and Zn) were analysed using the silver saturation method and inductively coupled plasma-atomic emission spectrometry. The level of tributyltin (TBT) contamination was also assessed using imposex indices, the vas deferens stage index (VDSI) and relative penis size index (RPSI). Gufunes N. lapillus presented the highest values of VDSI (4.0) and RPSI (11.1), followed by Grenivik individuals (VDSI = 3.0; RPSI = 0.9), while the Strandakirkja population showed the lowest VDSI (0.3) and zero RPSI. At a standardised size (0.25 g dry soft-body weight), Grenivik N. lapillus exhibited significantly higher concentrations of all metals whereas overall metal concentrations were significantly lower in individuals from Strandakirkja and Garoskagi compared to other study sites. Partial correlation analyses with size correction indicated that MT concentrations were better correlated with Cd and Cu concentrations than with other metals. At the standard size, the pattern of MT concentrations in N. lapillus from different sites was, however, very different from those of metal profiles. Such discrepancies between the patterns of MT and metals in N. lapillus might be explained by the fact that MT induction could be influenced by various factors such as temperature, dietary metal intake, growth rate and co-existence of other MT-inducing chemicals.

  3. Dissolved trace metals in the water column of Reloncaví Fjord, Chile Metales trazas disueltos en la columna de agua en el fiordo Reloncaví, Chile

    Directory of Open Access Journals (Sweden)

    Ramón Ahumada

    2011-11-01

    Full Text Available We analyzed the concentration of dissolved trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb in the water column of Reloncaví Fjord. Sampling was performed during the CIMAR 12 Fiordos cruise in 2006. A total of 36 passive samplers or DGTs (diffusion gradient in thin films were anchored at four stations along the longitudinal axis of the fjord. The DGTs were deployed at three depths per station and left there for 48 h. The metal contents on each thin film were analyzed using inductively coupled plasma atomic emission spectroscopy. Concentrations were highest in the surface layer at the head of the estuary, which is directly influenced by Petrohué River. Characteristic sequences of the studied metals were defined in the area with the greatest continental influence (Z(5-25m = Cu >Mn> Fe > Ni >Pb> Cr > Cd > Co and in the area with a marine or coastal influence (Z(5-25m = Fe > Cu>Mn> Ni >Pb> Cr > Cd > Co. A similar metal sequence was found in the deepest layer: Z(40-m = Fe >Mn> Cu >Pb> Ni > Cd > Cr > Co. The passive sampling technique using DGTs to determine dissolved trace metals in the sea water provided robust information on the concentrations of the ten metals analyzed.Se analiza la concentración de metales trazas disueltos (Cd, Co, Cr, Cu, Fe, Mn, Ni y Pb, en la columna de agua del fiordo Reloncaví. El muestreo se realizó durante la campaña CIMAR 12 Fiordos, 2006. Para ello se fondeó en cuatro estaciones y en tres profundidades, un total de 36 muestreadores pasivos o DGT (láminas de gradiente de difusión a lo largo del eje longitudinal del fiordo, durante 48 h. El contenido de metales en cada lámina fue analizado mediante espectroscopía de emisión atómica con acoplamiento inductivo de plasma. Las mayores concentraciones se observaron en la superficie de la columna de agua, en la cabeza del estuario, directamente influenciada por el río Petrohué. Se definió para el área una secuencia de los metales estudiados característica, para la

  4. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  5. Trace metals in soils of the main geomorphological units in the southwestern part of Western Siberia

    Science.gov (United States)

    Konstantinova, E. Yu

    2016-09-01

    Total concentrations of Ti, Cr, Mn, Ni, Cu, Zn, Rb, Sr, and Pb as well as soil granulometric texture were studied for three plot sites representing different geomorphologic units of the southwestern part of Western Siberia: periphery of the upland Tobolsky Mainland, Ishim plain, Turinskaya plain. Interregional difference in the relationship by and among the content of trace elements and particle size distribution of soil horizons is established. Thus, for the soils of Turinskaya plain such interrelations are not observed. For the soils of Ishim Plain moderate negative correlation between Pb concentrations and medium silt, as well as average positive correlations between Zn and fine sand, coarse sand and Pb are found. For the soils of the high terraces of the Irtish and periphery of Tobolsky Mainland interface zone moderate positive correlations between contents of Ti, Zn, Sr and fine sand, weak positive ones between Rb and medium sand, moderate negative ones between Zn and clay, Ti, Ni, Cu, Zn, Rb, Sr, and fine dust, Ti, Cu, Zn, Rb, Sr and medium silt are observed. Consequently, properties and genesis of local parent rocks are significant factors for distribution and accumulation of trace elements in the soils of the southern taiga; at the same time, the processes of bioaccumulation in thick humus horizons of dark gray soils and chernozems apparently play an important part in accumulation and migration of trace elements in forest-steppe soils of Ishim and Turinskaya plains.

  6. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Adele M.; Xue, Youjia [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kinsela, Andrew S. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Wilcken, Klaus M. [Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Collins, Richard N., E-mail: richard.collins@unsw.edu.au [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values < 3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with {sup 55}Fe and {sup 26}Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (> 70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO{sub 4}){sub 2}{sup −} and/or Me–NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. - Highlights: • CLASS discharge large amounts of metals and their speciation is poorly

  7. Progress in the biosensing techniques for trace-level heavy metals.

    Science.gov (United States)

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization.

  8. The Cosmic Evolution of the Metallicity Distribution of Ionized Gas Traced by Lyman Limit Systems

    Science.gov (United States)

    Lehner, Nicolas; O'Meara, John M.; Howk, J. Christopher; Prochaska, J. Xavier; Fumagalli, Michele

    2016-12-01

    We present the first results from our KODIAQ Z survey aimed at determining the metallicity distribution and physical properties of the z≳ 2 partial and full Lyman limit systems (pLLSs and LLSs; 16.2≤slant {log}{N}{{H}{{I}}}\\lt 19), which are probed of the interface regions between the intergalactic medium (IGM) and galaxies. We study 31 H i-selected pLLSs and LLSs at 2.3\\lt z\\lt 3.3 observed with Keck/HIRES in absorption against background QSOs. We compare the column densities of metal ions to H i and use photoionization models to assess the metallicity. The metallicity distribution of the pLLSs/LLSs at 2.3\\lt z\\lt 3.3 is consistent with a unimodal distribution peaking at [{{X}}/{{H}}]≃ -2. The metallicity distribution of these absorbers therefore evolves markedly with z since at z≲ 1 it is bimodal with peaks at [{{X}}/{{H}}]≃ -1.8 and -0.3. There is a substantial fraction (25%-41%) of pLLSs/LLSs with metallicities well below those of damped Lyα absorbers (DLAs) at any studied z from z≲ 1 to z˜ 2-4, implying reservoirs of metal-poor, cool, dense gas in the IGM/galaxy interface at all z. However, the gas probed by pLLSs and LLSs is rarely pristine, with a fraction of 3%-18% for pLLSs/LLSs with [{{X}}/{{H}}]≤slant -3. We find C/α enhancement in several pLLSs and LLSs in the metallicity range -2≲ [{{X}}/{{H}}]≲ -0.5, where C/α is 2-5 times larger than observed in Galactic metal-poor stars or high-redshift DLAs at similar metallicities. This is likely caused by preferential ejection of carbon from metal-poor galaxies into their surroundings.

  9. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of Stronthium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W

    2003-06-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for recapture in a more stable solid phase (co-precipitation rather than adsorption). Our specific research objectives include: * Elucidation of the mechanisms and rates for the release of sorbed trace metals and their subsequent sequestration by co-precipitation in calcite induced by urea hydrolysis. * Evaluation at the field scale of the influence of

  10. Trace metals in primary feathers of the Barn Owl (Tyto alba guttatus) in The Netherlands.

    Science.gov (United States)

    Denneman, W D; Douben, P E

    1993-01-01

    The number of Barn Owls in The Netherlands has been reduced substantially over the last few decades. Death as a result of poisoning seems unlikely, but the pathology of all bird species found dead in The Netherlands between 1975 and 1988 (n = 15 422) shows that 21% of all the birds were contaminated. However, the most important factor responsible for the decline in Barn Owl numbers in The Netherlands has not yet been established. As a part of a new national protection plan for the Barn Owl, the role of heavy metals has been investigated. Concentrations of heavy metals in the primary feathers of the Barn Owl varied according to their position in the wing; especially As, Sb, Fe and Zn whose concentrations depended on the place of the primary feather in the wing and the part of the vane which is used for the monitoring. The HS7 feather vane appears to provide a good estimate, even though the metal concentrations of this feather are always slightly lower than the concentrations in mixed samples of all ten primaries. It is recommended that they are used as a standard. Many factors affect metal concentrations. Increasing levels with age are found, presumably because metals are stored during growth at the end of the feathers as a method of reducing possible harmful effects. No significant correlations were found between the metal concentrations in the organs and those in the feather. Kidney and liver concentrations are always lower than the generally accepted levels for pathological damage of these organs. Even though metal concentrations in Barn Owl feathers are high compared with those reported for other birds in the Netherlands, it is concluded that Barn Owls are not adversely affected by current levels of heavy metal contamination in The Netherlands.

  11. Characterizing trace metal impurities in optical waveguide materials using x-ray absorption

    Energy Technology Data Exchange (ETDEWEB)

    Citrin, P.H.; Northrup, P.A.; Atkins, R.M.; Niu, L.; Marcus, M.A.; Jacobson, D.C. [Lucent Technologies, Murray Hill, NJ (United States). Bell Labs.; Glodis, P.F. [Lucent Technologies, Norcross, GA (United States). Bell Labs.

    1998-12-31

    X-ray absorption measurements are described for identifying metal impurities in silica preforms, the rod-like starting materials from which hair-like optical fibers are drawn. The results demonstrate the effectiveness of this approach as a non-destructive, quantitative, element-selective, position-sensitive, and chemical-state-specific means for characterizing transition metals in the concentration regime of parts per billion.

  12. Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R. Jaffe, John Komlos, Derick Brown

    2005-09-27

    Trace-metal and/or radionuclide bioremediation schemes require that specific redox conditions be achieved at given zones of an aquifer. Tools are therefore needed to identify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer. Dissolved hydrogen (H2) concentrations have been shown to correlate with specific TEAPs during bioremediation in an aquifer. Theoretical analysis has shown that these steady-state H2 levels are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, with H2 concentrations increasing as each successive TEAP yields less energy for bacterial growth. The objective of this research was to determine if H2 can still be used as an indicator of TEAPs during a uranium bioremediation scheme where an organic substrate is injected into the subsurface and organisms may consume H2 and carbon simultaneously. In addition, the effect of iron bioavailability on H2 concentrations during iron reduction was observed. The first phase of research determined the effect of a competing electron donor (acetate) on the kinetics of H2 utilization by Geobacter sulfurreducens in batch cultures under iron reducing conditions. The results indicate that, though the Monod kinetic coefficients describing the rate of H2 utilization under iron-reducing conditions correlate energetically with the coefficients found in previous experiments under methanogenic and sulfate-reducing conditions, conventionally measured growth kinetics do not predict the steady state H2 levels typical for each TEAP. In addition, with acetate and H2 as simultaneous electron donors, there is slight inhibition between the two electron donors for G. sulfurreducens, and this can be modeled through competitive inhibition terms in the classic Monod formulation, resulting in slightly higher H2 concentrations under steady state conditions in the presence of acetate. This dual-donor model indicates that the steady state H

  13. The Cosmic Evolution of the Metallicity Distribution of Ionized Gas Traced by Lyman Limit Systems

    CERN Document Server

    Lehner, Nicolas; Howk, J Christopher; Prochaska, J Xavier; Fumagalli, Michele

    2016-01-01

    We present the first results from our KODIAQ Z survey aimed to determine the metallicity distribution and physical properties of the partial and full Lyman limit systems (pLLSs and LLSs; 16.22, which probe gas in the interface regions between the intergalactic medium and galaxies. We study 31 HI-selected pLLSs and LLSs at 2.3metal-ions to N(HI) and use photoionization models to assess the total H column density and the metallicity. The metallicity distribution function (MDF) of the pLLSs/LLSs at 2.3metallicities well below those of damped Lyman alpha absorbers (DLAs) at any given z, and this fraction remains relatively constant from z<1 to z~2-4. There is therefore a reservoir of metal-poor cool gas at all z that ma...

  14. Trace metal concentration in different Indian tobacco products and related health implications.

    Science.gov (United States)

    Verma, S; Yadav, S; Singh, I

    2010-01-01

    Concentrations of seven heavy metals, viz. Cd, Ni, Pb, Cr, Cu, Fe and Zn were determined in 30 samples of various brands of five different tobacco product types easily available in Indian markets. Three product types cigarettes, cigars and biri (tobacco rolled in dry leaf and smoked without filter) are consumed by smoking while chewing tobacco and snuff are consumed by chewing and sniffing, respectively. The metal content showed smoking and non-smoking type, brand and element specific variations. In the non-smoking type, chewing tobacco samples contained more heavy metals compared to snuff samples. Biri showed minimum metal content compared to cigarettes and cigars among the smoking types. This could be due to the metal enrichment during both chemical and physical processing in finished product; biri being the most raw and cheap product. The intra brand variations also indicate the same as the processing technologies are exclusive and different for each brand. The results are nearly comparable to the existing data with limited exceptions. We suggest that the smoke and ash produced could be significant contributor to metal load in the soil, air and water systems in addition to the adverse human health effects via direct tobacco consumption.

  15. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    Science.gov (United States)

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  16. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    Science.gov (United States)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  17. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  18. Bioaccumulation of polonium (210Po, uranium (234U, 238U isotopes and trace metals in mosses from Sobieszewo Island, northern Poland

    Directory of Open Access Journals (Sweden)

    Boryło A.

    2013-04-01

    Full Text Available The objective of this study was determination of the polonium (210Po, uranium (234U and 238U radionuclides and trace metals (Pb, Fe, Zn, Cu, Ni, Cd, Hg concentrations in mosses samples from Sobieszewo Island near the phosphogypsum waste dump in Wiślinka (northern Poland. The obtained results revealed that the concentrations of 210Po, 234U, and 238U in the two analyzed kinds of mosses: Pleurozium schreberi and Dicranum scoparium were similar. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk.

  19. Subcellular partitioning of non-essential trace metals (Ag, As, Cd, Ni, Pb, and Tl) in livers of American (Anguilla rostrata) and European (Anguilla anguilla) yellow eels

    Energy Technology Data Exchange (ETDEWEB)

    Rosabal, Maikel [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Pierron, Fabien [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Couture, Patrice [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Baudrimont, Magalie [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Hare, Landis [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2015-03-15

    Highlights: • Handling of hepatic metals consistently involved cytosolic, thermostable ligands. • Granule-like fractions are also involved in the detoxification of Ni, Pb, and Tl. • Despite these sequestration mechanisms, metal detoxification is incomplete. • Along the metal gradient, concentrations increase in metal-sensitive fractions. • This increase could represent a toxicological risk for the yellow eels. - Abstract: We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative “sensitive” fractions (heat-denatured proteins, mitochondria and microsomes + lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in “sensitive” subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes + lysosomes. Among these “sensitive” fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in “sensitive” fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments.

  20. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    Science.gov (United States)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing

  1. Analytical evaluation of a cup-horn sonoreactor used for ultrasound-assisted extraction of trace metals from troublesome matrices

    Science.gov (United States)

    De La Calle, Inmaculada; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2009-09-01

    In this work, a sample preparation method based on ultrasound-assisted extraction of trace metals from a variety of biological and environmental matrices using a cup-horn sonoreactor is described. Diluted acids (HNO 3, HCl and HF) and oxidants (H 2O 2) were tried for extraction, the extracts being directly analyzed by electrothermal-atomic absorption spectrometry. The cup-horn sonoreactor combines the advantages of probe and bath sonicators, allowing a variety of conditions to be used for metal extraction from troublesome matrices. This system facilitates the use of HF to destroy the silicate lattice, application of simultaneous treatments of up to six samples and short treatment times. Quantitative metal recoveries are achieved from different matrices (animal and vegetal tissues, soil, sediment, fly ash, sewage sludge) under a set of extraction conditions ranging from the use of 3 min sonication time and 3% volume/volume HNO 3 for some animal tissues to 40 min sonication time along with 5% volume/volume HNO 3 + 20% volume/volume HF for sediment. Vegetal matter required the use of 5% volume/volume HNO 3 + 5% volume/volume HF for extraction of some elements. Ultrasound-assisted extraction of Cd, Mn, Pb, Ni and Cr from 16 certified reference materials representing a variety of biological and environmental matrices using the cup-horn sonoreactor is evaluated. Cd, Pb and Mn are more easily extracted from most certified reference materials (CRMs) than Cr and Ni and less stringent conditions can be chosen for the former metals. Metal extractability follows the order of difficulty: animal tissue sludge < sediment.

  2. Investigation of trace metal binding properties of lignin by diffusive gradients in thin films.

    Science.gov (United States)

    Hojaji, Elahe

    2012-09-01

    The binding behavior of lignin for Pb, Cu, Co, Mn, Cd and Ni was studied using the diffusive gradients in thin films technique (DGT). Samplers with different structures of diffusive gel were used in the well-stirred systems containing known concentrations of metals along with (a) 10, 20 and 40 μM lignin and; (b) 0.64 and 6.47 μM Suwannee river fulvic acid+40 μM lignin at an ionic strength of 0.01 M (NaNO(3)) and pH=7. Diffusion coefficients of lignin complexes in acrylamide gels were estimated and found to be less than 5% of the equivalent coefficients for the uncomplexed metal ions. These values were used to calculate concentrations of labile metals from DGT measurements in solutions, where lignin could discriminate metals in the order of Pb(+2)>Cu(+2)>Cd(+2)>Ni(+2)>Co(+2)>Mn(+2). Stability constants (LogK) were calculated using Visual MINTEQ II and WHAM V software. The K values were compared with the stability constants from titration of Pb and Cd with 10 μM lignin aqueous samples and with those of humic substances in natural waters. The constants obtained from measurement of complexing capacities might bias the real corresponding values unless two line regression analyses on titration data are considered. The DGT study of fractionation of metal species at varying ratios indicated that the proportion of organic complexes decreased with increasing ratios and gradually more metals were exchanged with inorganic phases. Speciation of Pb and Cd is affected by the concentrations of FA, Cd is dominantly bound with FA while Pb is evenly partitioned between the ligands. The comprehensive knowledge of metal-lignin complexes sheds some light on in situ operational speciation information that can be achieved by DGT.

  3. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  4. Influence of pH shocks on trace metal dynamics and performance of methanol fed granular sludge bioreactors.

    Science.gov (United States)

    Zandvoort, Marcel H; van Hullebusch, Eric D; Peerbolte, Annemarie; Golubnic, Svetlana; Lettinga, Gatze; Lens, Piet N L

    2005-12-01

    The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1 mM Co, Ni and Fe; 30 degrees C; 96 h) at an organic loading rate (OLR) of 5 g COD 1 reactor(-1) d(-1). One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30 h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30 h pH shock, but a second 4 day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30 h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4 day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out

  5. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    K. Wuttig

    2013-04-01

    Full Text Available The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem. Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn, iron (Fe and aluminum (Al concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In

  6. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    K. Wuttig

    2012-10-01

    Full Text Available The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently however their behavior after atmospheric deposition is poorly constrained, principally because of the difficulty in following natural dust events in-situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths deployed in the surface waters of the Northwestern Mediterranean, close to the coast of Corsica in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem. Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (dMn, iron (dFe and aluminium (dAl concentrations were followed immediately and over the following week and their inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dMn, dAl and dFe. Even though the mixing conditions differed from one seeding to the other, dMn and dAl showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, dAl concentrations decreased as a consequence of scavenging on sinking particles. dAl appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. For dFe concentrations, the first dust addition decreased the

  7. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    Science.gov (United States)

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed.

  8. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China

    Energy Technology Data Exchange (ETDEWEB)

    Li Siyue, E-mail: lisiyue@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2010-09-15

    Surface water samples were collected from 42 sampling sites throughout the upper Han River during the time period of 2005-2006. The concentrations of trace metals were determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) for the seasonal variability and preliminary risk assessment. The results demonstrated that concentrations of 11 heavy metals showed significant seasonality and most variables exhibited higher levels in the rainy season. Principal component analysis (PCA) and factor analysis (FA) revealed that variables governing water quality in one season may not be important in another season. Risk of metals on human health was then evaluated using Hazard Quotient (HQ) and carcinogenic risk, and indicated that As with HQ >1 and carcinogenic risk >10{sup -4}, was the most important pollutant leading to non-carcinogenic and carcinogenic concerns, in particular for children. The first five largest elements to chronic risks were As, Pb, V, Se and Sb, in the dry season, while they were As, V, Co, Pb and Sb in the rainy season. This assessment would help establish pollutant loading reduction goal and the total maximum daily loads, and consequently contribute to preserve public health in the Han River basin and develop water conservation strategy for the interbasin water transfer project.

  9. The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination.

    Science.gov (United States)

    Dogru, Mehmet; Gul-Guven, Reyhan; Erdogan, Sait

    2007-10-01

    The present work proposes the use of Bacillus subtilis immobilized on Amberlite XAD-4 as new biosorbent in trace metal determination. The procedure is based on the biosorption of Cu and Cd ions on a column of Amberlite XAD-4 resin loaded with dried, dead bacterial components prior to their determination by flame AAS. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH values of quantitative sorption for Cu and Cd were found to be 7.0 and 7.5, respectively. These metal ions can be desorbed with 1M HCl (recovery, 96-100%). The sorption capacity of the resin was 0.0297 and 0.035 mmol g(-1) for Cu(2+) and Cd(2+), respectively. The tolerance limit of some electrolytes were also studied. This procedure was applied to Cu(2+) and Cd(2+) determination in aqueous solutions, including river and well water systems. In order to evaluate the accuracy of the proposed procedure, the certified reference materials, NRCC-SLRS-4 Riverine water and LGC7162 Strawberry leaves were analyzed.

  10. Role of estuarine natural processes in removal of trace metals under emergency situations

    Directory of Open Access Journals (Sweden)

    A.R. Karbassi

    2016-01-01

    Full Text Available Estuaries are well known for their potential in removing metal from fresh water to provide micro-nutrients to aquatic life. In the present investigation, we have tried to bring out the metal removal potential of estuaries during accidental spills. For this purpose artificial river water containing high concentration of Mn, Cu, Zn, Ni and Pb were mixed with sea water at different salinity regimes. Water samples were taken from a station on the main branch of Tajan River that flows in to the Caspian Sea. For this purpose, solutions with a concentration of 5 mg/L of each studied metal (Mn,Cu, Zn, Pb were prepared in Tajan River water. The salinity regimes include 3, 6, 8, 10 and 11 ppt. It was noted that metal concentration decreased by increasing salinity. Metals were flocculated at different rates: Cu (88% > Ni (86% > Pb (84% > Mn (74%.Thus, as average about 80% of total elemental content flocculates. Hence, it was concluded that a large amount of micro nutrients is carried by the river and flocculated in the estuary where the river water mixes with the sea water which may play a vital role in supplying nutrients to the aquatic animals. Cluster analyses have shown that Mn and Ni are governed by EC, pH and salinity.

  11. Trace metals in sediments of two estuarine lagoons from Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo-Figueroa, D. [Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico); Center for Environmental and Toxicological Research, Medical Sciences Campus, University of Puerto Rico, P.O. Box 365067, San Juan 00936-5067 (Puerto Rico); Jimenez, B.D. [Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico); Center for Environmental and Toxicological Research, Medical Sciences Campus, University of Puerto Rico, P.O. Box 365067, San Juan 00936-5067 (Puerto Rico); Rodriguez-Sierra, C.J. [Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico)]. E-mail: crodriguez@rcm.upr.edu

    2006-05-15

    Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San Jose Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in {mu}g/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.

  12. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    Science.gov (United States)

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  13. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower 4066, QLD (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Simpson, Stuart L. [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia)

    2014-07-01

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  14. The Activity of Trace Metals in Aqueous Systems and the Effect of Corrosion Control Inhibitors

    Science.gov (United States)

    1975-10-01

    corrosion product on metallic zinc 49 Uncombined slilica as quartz or cristobalite forms by the hydrothermal alteration of solid zilicates or by direct...175ml vol. pH K, umhos/cm 8. Polymer JB **Stein, Hall, and Co., 0.05 g 6.83 12.3 Inc; 3-D gel formation which plugs or diverts addati ves. 9. Polymer F...it aids in the formation of acids (Eq. 31) or it may oxidize any metallic material pre- sent in solution. 3. Water Correction. The proper method of

  15. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    Science.gov (United States)

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  16. Kinetics as a tool to assess the immobilization of soil trace metals by binding phase amendments for in situ remediation purposes

    Energy Technology Data Exchange (ETDEWEB)

    Varrault, Gilles, E-mail: varrault@u-pec.fr [Universite Paris-Est, Leesu, UMR-MA102-AgroParisTech, 61 avenue du General de Gaulle, 94010 Creteil Cedex (France); Bermond, Alain [AgroParisTech, Laboratoire de Chimie Analytique, 16 rue Claude Bernard, 75231 Paris Cedex 05 (France)

    2011-08-30

    Highlights: {yields} Assessment of the efficiency of soil remediation method by binding phase amendment. {yields} Use of a kinetic fractionation method to assess trace metal mobility in amended soils. {yields} Vernadite amendments are effective for lead and cadmium remediation. {yields} IHA amendments are only effective for copper remediation. {yields} Advantages of kinetic fractionation vs. extraction schemes performed at equilibrium. - Abstract: Many soil remediation techniques consist in decreasing the mobility of trace metals by means of adding trace metal binding phases. For this study, whose aim is to assess the efficiency of soil remediation method by binding phase amendment, a kinetic fractionation method that provides the labile and slowly labile trace metal amounts in soil has been introduced. Manganese oxides (vernadite) and insolubilized humic acids (IHA) have been used as binding phases for the remediation of four heavily polluted soils. Vernadite amendments are effective for lead and cadmium remediation, whereas IHA amendments are only effective for copper remediation. In most cases, the labile metal fractions decrease dramatically in amended soils (up to 50%); on the other hand, the amounts of total extracted metal near the point of thermodynamic equilibrium often show no significant difference between the amended soil and the control soil. These results highlight the utility of kinetic fractionation in assessing the efficiency of soil remediation techniques and, more generally, in evaluating trace metal mobility in soils and its potential advantages compared to extraction schemes performed under equilibrium conditions. In the future, this kinetic method could be considerably simplified so as to consume much less time allowing its routine use.

  17. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China

    Science.gov (United States)

    Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing

    2016-01-01

    Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956

  18. Archaeological reconstruction of medieval lead production: Implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Sandrine, E-mail: baron@lmtg.obs-mip.fr [Laboratoire des Travaux et Recherches Archeologiques sur les Cultures, les Espaces et les Societes, Universite Toulouse 2 Le Mirail, CNRS UMR 5608, Maison de la Recherche, 5 allee Antonio-Machado, 31 058 Toulouse Cedex 09 (France); Centre de Recherches Petrographiques et Geochimiques, Nancy Universite, CNRS UPR 2300, BP 20, 15 rue Notre Dame des Pauvres, 54 501 Vandoeuvre-les-Nancy (France); Le-Carlier, Cecile [Centre de Recherche en Archeologie, Archeosciences, Histoire, Universite Rennes 1, CNRS UMR 6566, Bat 24-25, Campus de Beaulieu 35042 Rennes, Cedex (France); Carignan, Jean; Ploquin, Alain [Centre de Recherches Petrographiques et Geochimiques, Nancy Universite, CNRS UPR 2300, BP 20, 15 rue Notre Dame des Pauvres, 54 501 Vandoeuvre-les-Nancy (France)

    2009-11-15

    The identification of metal provenance is often based on chemical and Pb isotope analyses of materials from the operating chain, mainly ores and metallic artefacts. Such analyses, however, have their limits. Some studies are unable to trace metallic artefacts or ingots to their ore sources, even in well-constrained archaeological contexts. Possible reasons for this difficulty are to be found among a variety of limiting factors: (i) problems of ore signatures, (ii) mixing of different ores (alloys), (iii) the use of additives during the metallurgical process, (iv) metal recycling and (v) possible Pb isotopic fractionation during metal production. This paper focuses on the issue of Pb isotope fractionation during smelting to address the issue of metal provenance. Through an experimental reconstruction of argentiferous Pb production in the medieval period, an attempt was made to better understand and interpret the Pb isotopic composition of ore smelting products. It is shown that the measured differences (outside the total external uncertainties of 0.005 (2*sd) for {sup 206}Pb/{sup 204}Pb ratios) in Pb signatures measured between ores, slag and smoke are not due to Pb mass fractionation processes, but to (1) ore heterogeneity ({Delta}{sup 206}Pb/{sup 204}Pb{sub slag-ores} = 0.066) and (2) the use of additives during the metallurgical process ({Delta}{sup 206}Pb/{sup 204}Pb{sub slag-ores} = 0.083). Even if these differences are due to causes (1) and/or (2), smoke from the ore reduction appears to reflect the ore mining area without a significant disturbance of its Pb signature for all the isotopic ratios ({Delta}{sup 206}Pb/{sup 204}Pb{sub smokes-ores} = 0.026). Thus, because the isotopic heterogeneity of the mining district and additives is averaged in slags, slag appears as the most relevant product to identify ancient metal provenance. Whereas aiming at identifying a given mine seems beyond the possibilities provided by the method, searching for the mining district

  19. Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes

    Science.gov (United States)

    Zhang, Lu-Hua; Li, Wen-Cui; Yan, Dong; Wang, Hua; Lu, An-Hui

    2016-07-01

    The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A clear correlation between the contact points and the electron transfer resistance has been established, which fits well with the quadratic function model and is dependent on the size of HCSs. To our knowledge, this is the first clear function that expresses the structure-sensing activity relationship of carbon-based electrodes. The prepared carbon electrode is capable of sensing Pb(ii) with a sensitivity of 0.160 μA nM-1, which is much higher than those of other electrodes reported in the literature. Its detection limit of 0.6 nM is far below the guideline value (72 nM) given by the US Environmental Protection Agency. In addition, the carbon electrode could be a robust alternative to various heavy metal sensors.The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A

  20. Trace Metals in Surface Soil Contaminated by Release of Phosphate Industry in the Surroundings of Sfax-Tunisia

    Directory of Open Access Journals (Sweden)

    Ahmed Wali

    2013-10-01

    Full Text Available There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.The aim of the present work is to assess the level of trace elements content in soil around stocked solid waste “a phosphogypsum” derived from a former phosphate fertilizers factory and to investigate their factors of variation. Twenty soil samples were collected at the depths of 20 cm and analyzed for their physicochemical properties, the content of their major elements (Ca, Mg, K, Na, Al, Fe, Mn, and some trace elements such as Zn, Pb, Cr, Cu, Co and Ni. Data were processed with multivariate statistical analysis in order to investigate relationships among the trace elements and the factors controlling their distribution in the phosphogypsum surrounding environment. Enrichment factors (EF were calculated to assess either natural and/or anthropogenic origins. The results indicate moderate levels of contamination and big differences in variability among elements. The maximal and mean concentrations found in soil, except the soil sample S5.1, were 95.2 and 36.5 mg Kg-1 for Zn, 75.2 and 30.23 mg Kg-1 for Pb, 28.4 and 17.5 mg Kg-1 for Cr, 61.9 and 15.6 mg Kg-1 for Cu, 5.28 and 2.7 mg Kg-1 for Co, and 13.2 and 6.4 mg Kg-1

  1. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation.

    Science.gov (United States)

    Ibrahim, Wan Aini Wan; Nodeh, Hamid Rashidi; Sanagi, Mohd Marsin

    2016-07-03

    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.

  2. In Situ Determination of Siderophile Trace Elements in Metals and Sulfides in Enstatite Achondrites

    Science.gov (United States)

    vanAcken, D.; Humayun, M.; Brandon, A. D.; Peslier, A.

    2010-01-01

    Enstatite meteorites are identified by their extremely reduced mineralogy (1) and similar oxygen isotope composition (2). The enstatite meteorite clan incorporates both EH and EL chondrites, as well as a wide variety of enstatite achondrites, such as aubrites or anomalous enstatite meteorites (e.g. Mt. Egerton, Shallowater, Zaklodzie, NWA 2526). The role of nebular versus planetary processes in the formation of enstatite meteorites is still under debate (e.g. 3-5). Past studies showed a significant influence of metal segregation in the formation of enstatite achondrites. Casanova et al. (6) suggested incomplete metal-silicate segregation during core formation and attributed the unfractionated siderophile element patterns in aubrites metals to a lack of fractional crystallization in a planetary core. Recent studies suggest a significant role of impact melting in the formation of primitive enstatite chondrites (7) and identified NWA 2526 as a partial melt residue of an enstatite chondrite (8). To understand the nature of siderophile element-bearing phases in enstatite achondrites, establish links between enstatite achondrites and enstatite chondrites (9), and constrain planetary differentiation on their respective parent bodies and their petrogenetic histories, we present laser ablation ICP-MS measurements of metal and sulfide phases in Shallowater, Mt. Egerton, and the aubrites Aubres, Cumberland Falls, and Mayo Belwa.

  3. Temporal evolution of pollution by trace metals and plants analysis in Apipucos reservoir, Recife, PE, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Fonseca, Cassia K.L.; Santos, Suzana O.; Paiva, Ana C. de; Silva, Waldecy A. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Recife, PE (Brazil)

    2015-07-01

    Water and sediments may reflect the current quality of an aquatic system and the historical behavior of certain hydrological and chemical parameters. Analysis of metals in sediment profiles are used to determine anomalies in their concentrations, as well as sources of pollution. This study was performed in Apipucos Reservoir in the city of Recife, Brazil. Samples of water, plants and sediments were collected in the study area and their metals content (extract by adding acids) were determined a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The {sup 210}Pb activity concentration in each sediment layer was determined through the beta counting of {sup 210}Bi after lead precipitation as lead chromate. The results showed the metals' behavior in sediments: iron and manganese concentrations in sediments increase proportionately with the ages of the sediments. In general, cobalt, copper and zinc were also their concentrations increased over the years. These same elements in water are similar from the blank samples, however the roots of 'Eichhornia crassipes' assimilated higher concentrations of metals than the stems and leaves of this species. (author)

  4. Evaluation of toxic trace metals Cd and Pb in Arabian Sea waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.; SenGupta, R.

    . Depthwise profiles of both the metals have been examined and attempt has been made to correlate these with the general nutrient profiles of the region. Dissolved Pb is higher at surface and decreases deeper down while dissolved Cd shows elevated intermediate...

  5. Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water

    Energy Technology Data Exchange (ETDEWEB)

    Clem, R.G.; Park, F.W.; Kirsten, F.A.; Phillips, S.L.; Binnall, E.P.

    1981-04-01

    The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentrated into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.

  6. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach.

    Science.gov (United States)

    Roosa, Stéphanie; Prygiel, Emilie; Lesven, Ludovic; Wattiez, Ruddy; Gillan, David; Ferrari, Benoît J D; Criquet, Justine; Billon, Gabriel

    2016-06-01

    The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of "bioavailability." Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates.

  7. Sorption of trace metals on calcite: Applicability of the surface precipitation model

    NARCIS (Netherlands)

    Comans, R.N.J.; Middelburg, J.J.

    1987-01-01

    Published Sorption isotherm data of Cd2+, Mn2+, Zn2+, and Co2+ on calcite are adequately described by the surface precipitation model which was originally developed by FArley et al. (1985) for the sorption of cations on metal oxides. In addition to monolayer adsorption, the model accounts for the fo

  8. Baseline trace metals in gastropod mollusks from the Beagle Channel, Tierra del Fuego (Patagonia, Argentina).

    Science.gov (United States)

    Conti, Marcelo Enrique; Stripeikis, Jorge; Finoia, Maria Grazia; Tudino, Mabel Beatriz

    2012-05-01

    With the aim to evaluate the mollusk Nacella (P)magellanica as biomonitor of elemental pollution in seawater of the Beagle Channel, more than one hundred individuals of the gastropod were sampled, separated in viscera and muscle, and then examined with respect to the accumulation of Cd, Cr, Cu, Ni, Pb and Zn. Collection was performed in seven strategic locations along 170 km of the coastal area of the Beagle Channel (Tierra del Fuego, Argentina) in two campaigns during 2005 and 2007. Samples of surrounding seawater in the different sites were obtained and tested for the same metals as well. The accumulation capacity of Nacella (P)magellanica and thus its aptitude as biomonitor, was evaluated through the calculus of the preconcentration factors of the metals assayed. A discussion involving the comparison with other mollusks previously tested will be given. Several statistical approaches able to analyze data with environmental purposes were applied. Non parametric univariate tests such as Kruskal-Wallis and Mann-Whitney were carried out to assess the changes of the metal concentrations with time (2005 and 2007) in each location. Multivariate methods (linear discriminant analysis on PCA factors) were also applied to obtain a more reliable site classification. Johnson's probabilistic method was carried out for comparison between different geographical areas. The possibility of employing these results as heavy metals' background levels of seawater from the Beagle Channel will be debated.

  9. Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Thomas K. [Southern Research Inst., Birmingham, AL (United States); Walsh, Pete M. [Southern Research Inst., Birmingham, AL (United States)

    2007-03-21

    Effective syngas cleanup is one of the remaining major technical challenges yet to be resolved and one that will provide the most benefit to the suite of bio-thermochemical process technologies. Beyond tars and acid gases, which are themselves a significant detriment to reforming catalysts and associated equipment, semi-volatile metals can also damage cleanup systems, catalysts, and contaminate the fungible products. Metals are a difficult challenge to deal with whether using hot-gas filtration or low-temperature processing. Even though most of the metal tends to condense before the barrier filter of hot-gas cleanup systems, some small percentage of the metal (large enough to damage syngas-reforming catalysts, the candle filters themselves, and gas turbine blades) does pass through these barrier filters along with the clean syngas. Low-temperature processing requires expensive measures to remove metals from the process stream. Significant costs are required to remove these metals and if they are not removed before contacting the catalyst, they will significantly reduce the life of the catalyst. One approach to solving the metals problem is to use high-temperature sorbents to capture all of the semi-volatile metals upstream of the barrier filter, which would prevent even small amounts of metal from passing through the filter with the clean syngas. High Temperature sorbents have already been developed that have been shown to be effective at capturing semi-volatile metals from vitiated combustion effluent, i.e., high-temperature flue gas. The objective on this project was to evaluate these same sorbents for their ability to scavenge metals from inert, reducing, and real syngas environments. Subsequently, it was the objective of this project to develop designer sorbents and an injection technology that would optimize the effectiveness of these sorbents at capturing metals from syngas, protecting the barrier filters from damage, and protecting the catalysts and other

  10. Influence of trace metals on carbon dioxide evolution from a Yolo soil

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.-H.; Broadbent, F.E.

    1982-01-01

    We measured carbon dioxide production in Yolo silt loam amended with alfalfa meal and sewage sludge after the addition of solutions of chromium, cadmium, copper, lead, manganese, and zinc at concentrations ranging from 0 to 400 parts per million. Quantities of these metals extractable with water, KNO/sub 3/, DTPA, and HNO/sub 3/ were determined at the end of the experiment. Threshold concentrations of metals, defined as the concentration required for 10 percent inhibition of CO/sub 2/ production, were in the sequence Pbmetal was calculated from the slope of the curve obtained by plotting percentage of inhibition of CO/sub 2/ production against concentration of metal extractable with DTPA or HNO/sub 3/. Toxicities at the point of 50 percent inhibition of respiration were in the order Cr>>Cd>Cu>Mn = Zn. An addition of only 8.6 ppm of Cr to this soil is sufficient to inhibit CO/sub 2/ evolution by 10 percent, whereas the addition of about 27 ppm of Pb would be required to produce the same effect.

  11. Comparative studies on trace metal geochemistry in Indian and Chinese rivers

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; Zhang, J.

    concentration of Indian rivers (~300–1000 µg g–l) is higher than that of Chinese rivers (~150–300 µg g–l) and the global average (~170–350 µg g–l). Molar ratios of alkaline and alkaline earth metals to Fe and Al (i.e. segregation factor, SF) were calculated...

  12. Enrichment factor and geoaccumulation index applied to sediment samples from the Guarapiranga reservoir, Brazil, for metal and trace element assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Guilherme M.; Figueiredo, Ana M.G.; Silva, Paulo S.C.; Favaro, Deborah I., E-mail: defavaro@ipen.b, E-mail: anamaria@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica; Franklin, Robson L., E-mail: robsonf@cetesbnet.sp.gov.b [Companhia de Tecnologia de Saneamento Ambiental (EAAI/CETESB), Sao Paulo, SP (Brazil). Lab. de Quimica Inorganica e Radioatividade

    2011-07-01

    This study aims to assess sediment contamination by metals and other trace elements in five sampling points of the Guarapiranga Reservoir. Two collection campaigns were undertaken and the samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in order to determine the following elements: major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb , Sc, Ta, Tb, Th, U and Zn) and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu). Soil samples were collected in the Guarapiranga Park, located next to the reservoir. Composite top soil samples (0-20 cm) were collected in lines across the park at every 30m and were also analyzed by INAA. EF values was calculated using Sc as the conservative element for normalization purposes and soil from Guarapiranga region was used as background levels for the elements analyzed. EF > 1.5 were obtained for the elements As, Sb and Zn, with highest values for Zn (1.6

  13. Trace metals and organometals in selected marine species and preliminary risk assessment to human beings in Thane Creek area, Mumbai.

    Science.gov (United States)

    Mishra, S; Bhalke, S; Saradhi, I V; Suseela, B; Tripathi, R M; Pandit, G G; Puranik, V D

    2007-10-01

    Trace metals and organometals were estimated in different types of marine organisms (fish, bivalve, crab and prawn) collected from the Trans-Thane Creek area, Mumbai. Thane Creek area is considered as most polluted area due to industrial discharges. Potential risks associated with consumption of marine organisms collected from this particular area to human beings were assessed. Concentrations of ten trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) in the edible part of marine organisms were analysed by atomic absorption spectrometer and differential pulse anodic stripping voltametric technique. Methyl mercury and tributyl tin were estimated using gas chromatograph-mass spectrometer in combination with solid phase micro extraction (SPME). An assessment of the risk on human beings due to consumption of marine organism was undertaken using toxic reference benchmark, namely the reference dose (RfD). The hazard index (HI), sum of hazard quotients calculated for all the pollutant showed that the risks from consumption of fish and marine organisms as a whole were generally low and are within safe limits.

  14. Solubility of ion and trace metals from stabilized sewage sludge by fly ash and alkaline mine tailing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongling; SUN Lina; SUN Tieheng

    2008-01-01

    Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil,to be applied on the ecological rehabilitation at mining junkyards,offers a potentially viable utilization of the industrial by-product,as well as solves the shortage of soil resource in the mine area.An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge.Results showed that fly ash offset a decrease in pH value of sewage sludge.The pH of (C) treatment (FA:SS=1:1) was stable and tended to neutrality.The SO42- and Cl- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing,compared to the single SS treatment.Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%.The Cr,Ni,and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days,for all treatments over the duration of the incubation.Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility.The final Cr,Cu,and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5,15,and 50 μg/L,respectively.

  15. Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California

    Science.gov (United States)

    Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.

    2004-12-01

    Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely

  16. A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas.

    Science.gov (United States)

    Conti, Marcelo Enrique; Cecchetti, Gaetano

    2003-09-01

    Marine organisms were evaluated as possible biomonitors of heavy metal contamination in marine coastal areas. Concentrations of Cd, Cr, Cu, Pb, and Zn were measured in the green algae Ulva lactuca L., the brown algae Padina pavonica (L.) Thivy, the bivalve mollusc Mytilus galloprovincialis Lamarck, and the two gastropod molluscs Monodonta turbinata Born and Patella cerulea L. collected at six coastal stations in the area of the Gulf of Gaeta (Tyrrhenian Sea, central Italy). The coastal area of the Regional Park of Gianola and Monte di Scauri (a "Protected Sea Park" area) was chosen as a control site. Seawater samples were also collected in each site to assess soluble and total metal concentrations and to gain additional information on both the environmental conditions of the area and possible bioaccumulation patterns. Metal concentrations detected in algae and molluscs did not show significant differences among all stations studied. Moreover, statistical analyses (ANOVA, multiple comparison tests, cluster analysis) showed that the Sea Park station was not significantly different from the others. The hypothesis that the Protected Sea Park would be cleaner than the others must therefore be reconsidered. Data from this study were also compared with those previously obtained from uncontaminated sites in the Sicilian Sea, Italy. The results show clearly differences between these two marine ecosystems. The species examined showed great accumulations of metals, with concentration factors (CFs) higher than 10,000 with respect to the concentrations (soluble fractions) in marine waters. Metal concentrations recorded in this area may be used for background levels for intraspecific comparison within the Tyrrhenian area, a body of water about which information is still very scarce.

  17. The effect of mustard gas on salivary trace metals (Zn, Mn, Cu, Mg, Mo, Sr, Cd, Ca, Pb, Rb.

    Directory of Open Access Journals (Sweden)

    Elham Zamani Pozveh

    Full Text Available We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00-11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1; the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2; and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3. Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45 (p.p.b., patients (group 2 45.77±13.65, and patients (Salbutamol spray; group 3 29 ±8.51 (P <0.02. In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03 (p.p.b., patients (group 2 12.2 ± 3.56, and patients (Salbutamol spray; group 3 20.6 ±10.01 (P < 0.01. It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs.

  18. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle

    Science.gov (United States)

    Owens, Jeremy D.; Reinhard, Christopher T.; Rohrssen, Megan; Love, Gordon D.; Lyons, Timothy W.

    2016-09-01

    Understanding the global redox state of the oceans and its cause-and-effect relationship with periods of widespread organic-carbon deposition is vital to interpretations of Earth's climatic and biotic feedbacks during periods of expanded oceanic oxygen deficiency. Here, we present a compilation of new and published data from an organic-rich locality within the proto-North Atlantic Ocean during the Cenomanian-Turonian boundary event that shows a dramatic drawdown of redox-sensitive trace elements. Iron geochemistry independently suggests euxinic deposition (i.e., anoxic and sulfidic bottom waters) for the entire section, thus confirming its potential as an archive of global marine metal inventories. In particular, depleted molybdenum (Mo) and vanadium (V) concentrations effectively record the global expansion of euxinic and oxygen-deficient but non-sulfidic waters, respectively. The V drawdown precedes the OAE, fingerprinting an expansion of oxygen deficiency prior to an expansion of euxinia. Molybdenum drawdown, in contrast, is delayed with respect to V and coincides with the onset of OAE2. Parallel lipid biomarker analyses provide evidence for significant and progressive reorganization of marine microbial ecology during the OAE in this region of the proto-North Atlantic, with the smallest relative eukaryotic contributions to total primary production occurring during metal-depleted intervals. This relationship may be related to decreasing supplies of enzymatically important trace elements. Similarly, box modeling suggests that oceanic drawdown of Mo may have approached levels capable of affecting marine nitrogen fixation. Predictions of possible nitrogen stress on eukaryotic production, locally and globally, are consistent with the low observed levels of Mo and a rise in 2-methylhopane index values during the peak of the OAE. At the same time, the environmental challenge presented by low dissolved oxygen and euxinia coincides with increased turnover rates of

  19. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Gonzalo M.A., E-mail: gbermudez@com.uncor.edu [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina); Jasan, Raquel; Pla, Rita [Tecnicas Analiticas Nucleares, Comision Nacional de Energia Atomica (CAE), Presbitero Gonzalez y Aragon N Degree-Sign 15 (B1802AYA), Ezeiza (Argentina); Pignata, Maria L. [Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET (Argentina); Catedra de Quimica General, FCEFyN, Universidad Nacional de Cordoba, Avda. Velez Sarsfield 1611, Ciudad Universitaria (X5016 GCA), Cordoba (Argentina)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Metal and trace element deposition rates and concentrations in bulk samples. Black-Right-Pointing-Pointer Anthropogenic vs. natural sources were identified using enrichment factors and PCA. Black-Right-Pointing-Pointer Anthropogenic sources for Ca, Cd, Cu, Fe, Mn, Ni, Pb, Sb, U, Zn and lanthanides. Black-Right-Pointing-Pointer Main sources were a cement plant, chemical-mechanical industries, cities and mining. Black-Right-Pointing-Pointer Metals in wheat grain were predicted by soil and bulk deposition composition. - Abstract: The objectives of this study were to determine the average concentrations and deposition rates of 28 elements in atmospheric bulk deposition and to elucidate associations among topsoil, bulk deposition and wheat element composition. The fluxes of arsenic (As), copper (Cu), lead (Pb) and zinc (Zn) deposition in Cordoba were higher than in other agro-ecosystems, which reflects both natural (geochemistry and topsoil removal) and anthropogenic sources. High lanthanide, uranium (U) and thorium (Th) concentrations revealed the impact of an open cast uranium mine. The highest enrichment factors (EF) were those of Cu, Pb, Zn and nickel (Ni), with calcium (Ca) being the most prominent in the surroundings of a cement plant. Industries and the transport of airborne urban pollutants were the main anthropogenic sources for Ca, Cu, Ni, Pb, Zn, cadmium (Cd), iron (Fe), manganese (Mn) and antimony (Sb). The concentrations of metals in wheat grain were predicted using the topsoil and atmospheric fall-out composition with R{sup 2} = 0.90, with the latter being the best explanatory variable. The present study highlights the potential health hazards of wheat consumption (Environmental Protection Agency) by the assessment of heavy metals in bulk atmospheric deposition.

  20. Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600)

    Energy Technology Data Exchange (ETDEWEB)

    Quevauviller, P. [European Commission, Standards, Measurements and Testing Programme, Brussels (Belgium); Lachica, M.; Barahona, E. [Estacion Experimental del Zaidin, Granada (Spain); Gomez, A. [Institut Nacional de Recherche Agronomique, Station d`Agronomie, Villenave d`Ornon (France); Rauret, G. [Universidad de Barcelona, Dept. de Quimica Analitica, Barcelona (Spain); Ure, A. [University of Strathclyde, Dept. of Pure and Applied Chemistry, Glasgow (United Kingdom); Muntau, H. [European Commission, Joint Research Centre, Environment Institute, Ispra (Italy)

    1998-03-01

    Single extraction tests are commonly used to study the eco-toxicity and mobility of metals in soils, e.g. to assess the bioavailable metal fraction (and thus to estimate the related phyto-toxic and nutritional deficiency effects) and the environmentally accessible trace metals upon disposal of e.g. sediment on to a soil (e.g. contamination of ground waters). However, the lack of uniformity in the different procedures does not allow the results to be compared worldwide nor the procedures to be validated. This paper describes the interlaboratory testing of EDTA- and DTPA-extraction procedures for soil analysis, followed by the preparation of a calcareous soil reference material (CRM 600), the homogeneity and stability studies and the analytical work performed for the certification of the EDTA- and DTPA- extractable contents of some trace metals (following the standardized extraction procedures). (orig.) With 2 figs., 7 tabs., 14 refs.

  1. Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India

    Science.gov (United States)

    Sharma, S. K.; Mandal, T. K.; Saxena, Mohit; Rashmi; Sharma, A.; Datta, A.; Saud, T.

    2014-06-01

    Variation of organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSIC) and major and trace elements of particulate matter (PM10) were studied over Delhi, an urban site of the Indo Gangatic Plain (IGP), India in 2010. Strong seasonal variation was noticed in the mass concentration of PM10 and its chemical composition with maxima during winter (PM10: 213.1±14.9 μg m-3; OC: 36.05±11.60 μg m-3; EC: 9.64±2.56 μg m-3) and minima during monsoon (PM10: 134.7±39.9 μg m-3; OC: 14.72±6.95 μg m-3; EC: 3.35±1.45 μg m-3). The average concentration of major and trace elements (Na, Mg, Al, P, S, Cl, K, CA, Cr, Ti, Fe, Zn and Mn) was accounted for ~17% of the PM10 mass. Average values of K+/EC (0.28) and Cl-/EC (0.59) suggest the influences of biomass burning in PM10, whereas, higher concentration of Ca2+ suggests the soil erosion as possible source from the nearby agricultural field. Fe/Al ratio (0.34) indicates mineral dust as a source at the sampling site, similarly, Ca/Al ratio (2.45) indicates that aerosol over this region is rich in Ca mineral compared to average upper continental crust. Positive matrix factorization (PMF) analysis quantifies the contribution of soil dust (20.7%), vehicle emissions (17.0%), secondary aerosols (21.7%), fossil fuel combustion (17.4%) and biomass burning (14.3%) to PM10 mass concentration at the observational site of Delhi.

  2. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom.

    Science.gov (United States)

    Pokrovsky, O S; Shirokova, L S

    2013-02-01

    This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O₂ measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO₄, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element

  3. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-03-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu, Ag, and of Cd display nutrient-like profiles similar to silicic acid, and phosphate, respectively. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water-masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs appeared to have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However uptake by dino- and nano-flagelattes may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd/P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd-uptake induced by iron-limiting conditions in these High

  4. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals.

    Science.gov (United States)

    Lin, Yu-Chi; Hsu, Shih-Chieh; Chou, Charles C-K; Zhang, Renjian; Wu, Yunfei; Kao, Shuh-Ji; Luo, Li; Huang, Chao-Hao; Lin, Shuen-Hsin; Huang, Yi-Tang

    2016-01-01

    Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM2.5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10(-4) on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days.

  5. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of 90Strontium & Other Divalent Metals & Radionuclides at Arid West DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant; Cosgrove, Donna M.; Colwell, Rick S.

    2004-06-01

    Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  6. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.

    2004-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  7. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of Stronthium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.

    2005-06-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center [INTEC] at the Idaho National Laboratory [INL]). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate (primarily calcite) in groundwater and vadose zone systems. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by (a) increasing pH and alkalinity and (b) liberating cations from the aquifer matrix by cation exchange reactions. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which is produced in situ by native urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long term. We are currently conducting field based activities at both the INL Vadose Zone Research Park (VZRP), an uncontaminated surrogate site for the strontium-90 contaminated vadose zone at INTEC and at the strontium-90 contaminated aquifer of 100-N area of the Hanford site.

  8. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons

    Directory of Open Access Journals (Sweden)

    Simone Hagmeyer

    2015-01-01

    Full Text Available Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD. Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.

  9. Trace metal levels in Prochilodus lineatus collected from the La Plata River, Argentina.

    Science.gov (United States)

    Lombardi, Paula E; Peri, Silvia I; Verrengia Guerrero, Noemí R

    2010-01-01

    Most of the industrial, urban and sewage discharges are released into the La Plata River, Argentina without any previous treatment. However, few works have investigated the extent of metal contamination. The aim of this study was to assess the levels of cadmium, copper, lead and zinc in liver and gills of adults Prochilodus lineatus collected from three sampling stations along the coast of the La Plata River: Berazategui, Berisso and Atalaya (from north to south). Samplings were performed during 2002 and 2004. Berazategui and Berisso were located nearby the main ducts that discharge the urban and domestic waste disposal from the cities of Buenos Aires and La Plata, respectively. The third station, Atalaya, was free of sewage discharges. Levels of cadmium and copper in liver were always higher than those found in gills. Instead, for lead and zinc, high levels were observed either in liver or gills, depending on the sampling station and the sampling period. In both tissues, the concentrations of metals did not differ significantly between male and female fish. In liver samples, the concentrations of cadmium, copper and zinc tended to increase from north to south. Instead, the levels of lead followed an opposite pattern. No clear tendencies were observed in gill samples. The data may be useful as reference levels of metal contaminants in P. lineatus, the most important fish species in the La Plata River system.

  10. Characterization and source identification of trace metals in airborne particulates of Bangkok, Thailand.

    Science.gov (United States)

    Rungratanaubon, Thitima; Wangwongwatana, Supat; Panich, Noppaporn

    2008-10-01

    Airborne particulate samples were collected in Bangkok, Thailand, using high-volume air samplers from March 2006 to March 2007. The sampling sites were the Huay-Khwang Community Housing (HCH) and the Ratburana Post Office (RPO), represented as residential and industrial areas, respectively. The samples collected were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for elemental analysis. The study reveals that total suspended particulate (TSP) concentrations are higher in the RPO (144.47 microg/m(3)) than at the HCH (110.93 microg/m(3)) site. The results also indicate that most of the metals were highest in winter and lowest in the rainy season. Na, Al, K, and Fe are the elements mostly found in the study. High-correlation coefficients of Al-K, K-Zn, and Al-Zn are observed at the HCH (R=-0.99, -0.97, and -0.97) and the RPO (R=-0.94, -0.92, and -0.83), respectively. Most of the measured metallic elements show weak correlation with meteorological parameters. Principal component analysis (PCA) indicates that soil, construction, vehicular emission, and biomass burning are the major pollutant sources of both sampling site. The HCH site is influenced by the domestic activities like vehicular emission, construction, and biomass burning. The sources of airborne metals found in the RPO come from both domestic and industrial activities.

  11. Trace metals in algae and sediments from the North-Eastern Tunisian lagoons.

    Science.gov (United States)

    Hellal, M El Ati; Hellal, Fayçal; El Khemissi, Z; Jebali, R; Dachraoui, M

    2011-02-01

    The mean concentrations of copper, zinc, plomb, nickel and chrome were determined in algae and sediments collected from three aquatic areas of the Tunisian North-East (Sebkhet Sijoumi and Radès and Bizerte lagoon). The recorded metal levels, ranging (in μg g⁻¹) from 1.58 to 68.56 for macroalgae and from 8.70 to 234.40 for sediment samples, were low in most of the sampling locations and similar to those of sites qualified as «slightly polluted». However, certain locations showed significant differences with the remaining sites indicating some degree of contamination (ANOVA, p chrome metals and in Sebkhet Sijoumi for plomb in algae. The study of the correlation between metal contents in algae and sediments showed highly significant positive values for zinc and plomb (p < 0.01). A significant correlation was also noticed for Cr (p < 0.05). However, there was no clear relationship between copper and nickel levels in both matrices.

  12. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems; Transferts et mobilite des elements traces metalliques dans la colonne sedimentaire des hydrosystemes continentaux

    Energy Technology Data Exchange (ETDEWEB)

    Devallois, V.

    2009-02-15

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  13. Trace-metal concentrations in sediment and water and health of aquatic macroinvertebrate communities of streams near Park City, Summit County, Utah

    Science.gov (United States)

    Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.

    2001-01-01

    The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals. Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that

  14. Chemometric exploration of the abundance of trace metals and ions in desalinated and bottled drinking water in Kuwait.

    Science.gov (United States)

    Al-Mudhaf, Humood F; Astel, Aleksander M; Al-Hayan, Mohammad N; Abu-Shady, Abdel-Sattar I

    2014-01-01

    Chemometric exploration of desalinated and bottled water in Kuwait was employed to interpret the spatial variation in the physicochemical parameters. The data set consisted of the concentrations of principal macronutrient elements, ions, trace elements, temperature, pH, electrolytic conductivity, and total dissolved solids measured in indoor, outdoor, and bottled water samples. Quantitative assessment of the Cd, Hg, and Sb contents revealed rare cases of elevated concentrations; however, these concentrations were always below international health agency standards. Two general clusters of similar parameters were discovered in the variables mode and were associated with "natural" water characteristics or "conditions" of the pipeline system. We found that an increase in temperature facilitates the leaching of metals from the metallic equipment in the system. Spatial variation in the water quality was discovered, which indicates that residential areas fed from the Az-Zoor plant are supplied with water that contains lower concentrations of Ca, Cr, Mg, Mo, Ni, Na, TDS, and SO4 (2-) than the desalinated water produced and fed from the Doha plant. However, on the basis of the aluminum concentration in the water, cement mortar lining is assumed to be prevalent in the pipeline systems of the Mubarak Al-Kabeer, Ahmadi, Umm Al-Haiman, and Sorra areas.

  15. Trace element distributions in surficial sediments of the northern Tyrrhenian Sea: Contribution to heavy-metal pollution assessment

    Science.gov (United States)

    Leoni, Leonardo; Sartori, Franco; Damiani, Vincenzo; Ferretti, Ornella; Viel, Monique

    1991-03-01

    The trace element distributions in surficial sediment of Tyrrhenian Sea have been investigated as a part of a series of studies on the environmental quality of the area off the Tuscany coast (west-central Italy). This research has focused on the presence of possible contaminated zones; it also provides data for the identification and future monitoring and control of pollution sources. The study of numerous surface sediments and core samples has made it possible to distinguish between heavy-metal enrichments related to natural sources and other anomalies caused by anthropogenic contamination. Over much of the basin, the surface Pb, Cu, Zn, and As contents appear considerably enriched relative to those below 15 cm; among these metals, Pb shows the highest and most widespread enrichment. Only in the case of some coarse-grained sediments close to the mouth of Cecina River it is possible to relate anomalously high Zn contents to natural sources. In all other sampling stations, the enrichments of Pb, Cu, Zn, and As are ascribed to man's influence. The sediment distributions of Co, Cr, and Ni do not seem to be related to anthropogenic activities; rather they mirror influx of materials derived from sources of ophiolitic rock. The distribution of barium shows only two significant positive anomalies, and both are related to natural causes. Concentrations of vanadium are high in a zone close to an important smelting plant; these are thought to be of anthropogenic origin.

  16. Trace element distributions in surficial sediments of the northern Tyrrhenian Sea: Contribution to heavy-metal pollution assessment

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, L.; Sartori, F. (Univ. of Pisa, (Italy)); Damiani, V.; Ferretti, O.; Viel, M. (ENEA, La Spezia (Italy))

    The trace element distributions in surficial sediments of Tyrrhenian Sea have been investigated as a part of a series of studies on the environmental quality of the area off the Tuscany coast (west-central Italy). This research has focused on the presence of possible contaminated zones; it also provides data for the identification and future monitoring and control of pollution sources. The study of numerous surface sediments and core samples has made it possible to distinguish between heavy-metal enrichments related to natural sources and other anomalies caused by anthropogenic contamination. Over much of the basin, the surface Pb, Cu, Zn, and As contents appear considerably enriched relative to the those below 15 cm; among these metals. Pb shows the highest and most widespread enrichment. Only in the case of some coarse-grained sediments close to the mouth of Cecina River it is possible to relate anomalously high Zn contents to natural sources. In all other sampling stations, the enrichments of Pb, Cu, Zn, and As are ascribed to man's influence. The sediment distributions of Co, Cr, and Ni do not seem to be related to anthropogenic activities; rather they mirror influx of materials derived from sources of ophiolitic rock. The distribution of barium shows only two significant positive anomalies, and both are related to natural causes. Concentrations of vanadium are high in a zone close to an important smelting plant; these are thought to be of anthropogenic origin.

  17. Level of contamination by metallic trace elements and organic molecules in the seagrass beds of Guadeloupe Island.

    Science.gov (United States)

    Bouchon, Claude; Lemoine, Soazig; Dromard, Charlotte; Bouchon-Navaro, Yolande

    2016-01-01

    Seagrass bed ecosystems occupy the most important part of coastal shelf in the French West Indies. They also constitute nurseries for many invertebrates and fishes harvested by local fisheries. In Guadeloupe, coastal fish stocks are declining meanwhile several agroecosystems revealed to be heavily contaminated by pollutants (agricultural lands, rivers, mangroves, seagrass beds, and coral reefs). Considering these facts, a study of the contamination of seagrass beds (8000 ha) of the Grand Cul-de-Sac Marin (GCSM) bay was conducted on their sediments and marine phanerogams. The analyses concerned six metals (Cd, Cu, Hg, Pb, V, Zn), tributyltin, 18 polycyclic aromatic hydrocarbons (PAHs), eight polybrominated diphenyl ethers (PBDEs), 38 polychlorobiphenyls (PCBs), dithiocarbamates (CS2 residues), and 225 pesticide molecules.Overall, the level of contamination of the seagrass beds was low for both sediments and phanerogams. Metallic trace elements were the main pollutants but with higher concentrations recorded in coastal sites, and their distribution can be explained by the proximity of river mouths and current patterns. The level of contamination was lower in plants than in sediments. However, the level of contamination between these two compartments was significantly correlated. The conclusion of this study is that, unlike other coastal ecosystems of Guadeloupe such as mangroves, the seagrass beds in the GCSM present a low degree of pollution. The observed level of contaminants does not seem to threaten the role of nursery played by the seagrass beds and does not likely present a risk for the reintroduction of manatees.

  18. Trace metals adhered to urban sediments. Results from fieldwork in Poços de Caldas, Brazil

    Science.gov (United States)

    Isidoro, Jorge; Silveira, Alexandre; Júnior, José; Poleto, Cristiano; de Lima, João; Gonçalves, Flávio; Alvarenga, Lívia

    2016-04-01

    The urbanization process has consequences such as the introduction of new sources of pollution and changes in the natural environment, like increase of impervious areas that accumulate pollutants between rainfall events. The pollution caused by the washing of accumulated sediment on the gutters, ultimately carried to water bodies through the stormwater drainage system, stands out in this process. This study aimed to quantify and characterize the sediments accumulated in the gutters of roads in an urban area of Poços de Caldas (MG), Brazil. Fieldwork took place during the period of 21.05.2013 to 27.08.2013. Main goal was to investigate the process of accumulation of dry sediments on impervious surfaces and find how this process relates with the urban occupation. More specific goals were to quantify the average mass and characterize the granulometric distribution of accumulated sediments, and identify the occurrence of trace metals Zn, Cu, Ni, Cd, Cu and Pb in the fraction of sediments with diameter smaller or equal to 63μm. The samples were weighed to find the aggregate mass and then sieved through meshes of 63μm, 125μm, 250μm, 600μm, 1180μm, and 2000μm for the granulometric analysis. Samples of the sediment fraction smaller than 63μm of diameter were subjected to analysis by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for the identification of trace metals. We found that the aggregate mass of accumulated sediments varies in time and space and is particularly influenced by the land use of the sampling areas. Areas under construction produced more sediments than built areas or areas without construction. This study may serve as an input for creating diffuse pollution control and mitigation strategies towards the reduction of accumulated pollutants in the urban environment of Poços de Caldas. Pb and Zn shown the highest concentrations. The heavy metal concentration decreases after wet

  19. Seasonal variation of major elements (Ca, Mg) and trace metals (Fe, Cu, Zn, Mn) and cultured mussel Perna viridis L. and seawater in the Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rivonker, C.U.; Parulekar, A.H.

    The major elements and trace metals were analysed from nussel tissue and the seawater taken from three depths (0, 5 and 9 meters) from the culture site. Range of variation in Ca, Mg, Fe, Cu, Zn and Mn were 226-399; 708-1329; 0.005-0.084; BDL-0...

  20. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  1. Bioindication of atmospheric trace metals--with special references to megacities.

    Science.gov (United States)

    Markert, Bernd; Wuenschmann, Simone; Fraenzle, Stefan; Graciana Figueiredo, Ana Maria; Ribeiro, Andreza P; Wang, Meie

    2011-01-01

    After considering the particular problems of atmospheric pollution in megacities, i.e. agglomerations larger than 5 mio. inhabitants, with urbanization of World's population going on steadily, possibilities of active biomonitoring by means of green plants are discussed. Based on specific definitions of active and passive bioindication the chances of monitoring heavy metals in Sao Paulo megacity were demonstrated (first results published before). This is to show that there is need for increased use of bioindication to tackle the particular problems of megacities concerning environmental "health", the data to be processed according to the Multi-Markered-Bioindication-Concept (MMBC). Comparison to other work shows this approach to be reasonable.

  2. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  3. Organohalogen contaminants and trace metals in North-East Atlantic porbeagle shark (Lamna nasus).

    Science.gov (United States)

    Bendall, Victoria A; Barber, Jonathan L; Papachlimitzou, Alexandra; Bolam, Thi; Warford, Lee; Hetherington, Stuart J; Silva, Joana F; McCully, Sophy R; Losada, Sara; Maes, Thomas; Ellis, Jim R; Law, Robin J

    2014-08-15

    The North-East Atlantic porbeagle (Lamna nasus) population has declined dramatically over the last few decades and is currently classified as 'Critically Endangered'. As long-lived, apex predators, they may be vulnerable to bioaccumulation of contaminants. In this study organohalogen compounds and trace elements were analysed in 12 specimens caught as incidental bycatch in commercial gillnet fisheries in the Celtic Sea in 2011. Levels of organohalogen contaminants were low or undetectable (summed CB and BDE concentrations 0.04-0.85 mg kg(-1)wet weight). A notably high Cd concentration (7.2 mg kg(-1)wet weight) was observed in one mature male, whereas the range observed in the other samples was much lower (0.04-0.26 mg kg(-1)wet weight). Hg and Pb concentrations were detected only in single animals, at 0.34 and 0.08 mg kg(-1)wet weight, respectively. These contaminant levels were low in comparison to other published studies for shark species.

  4. Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives.

    Science.gov (United States)

    Cao, Anping; Zhu, Wei; Shang, Jin; Klootwijk, Johan H; Sudhölter, Ernst J R; Huskens, Jurriaan; de Smet, Louis C P M

    2017-01-11

    Surface-modified silicon nanowire-based field-effect transistors (SiNW-FETs) have proven to be a promising platform for molecular recognition in miniature sensors. In this work, we present a novel nanoFET device for the sensitive and selective detection of explosives based on affinity layers of metal-organic polyhedra (MOPs). The judicious selection of the geometric and electronic characteristics of the assembly units (organic ligands and unsaturated metal site) embedded within the MOP cage allowed for the formation of multiple charge-transfer (CT) interactions to facilitate the selective explosive inclusion. Meanwhile, the host-stabilized CT complex inside the cage acted as an effective molecular gating element to strongly modulate the electrical conductance of the silicon nanowires. By grafting the MOP cages onto a SiNW-FET device, the resulting sensor showed a good electrical sensing capability to various explosives, especially 2,4,6-trinitrotoluene (TNT), with a detection limit below the nanomolar level. Importantly, coupling MOPs-which have tunable structures and properties-to SiNW-based devices may open up new avenues for a wide range of sensing applications, addressing various target analytes.

  5. Trace metal composition of and accumulation rates of sediments in the Upper Gulf of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Windom, H.L.; Silpipat, S.; Chanpongsang, A.; Smith, R.G. Jr.; Hungspreugs, M.

    1984-08-01

    Sediment cores and grab samples were collected in the Upper Gulf of Thailand to determine sedimentation rates and to determine if metal concentrations reflect anthropogenic inputs. Accumulation rates of sediments in the Upper Gulf measured using the Pb-210 method, appear to vary from about 4 to 11 mm/year. Sediment budgets suggest that little of the sediment delivered to the Upper Gulf by the major rivers is ultimately transported to the Lower Gulf. Sediment discharge by the Chao Phraya River, the largest of the four rivers emptying into the Upper Gulf, is about 3,400,000 metric tons per year. The Gulf annually receives about 7,000,000 metric tons. Sediment transported by the Chao Phraya, Mae Klong, Ta Chin and Bang Pakong Rivers are for the most part deposited in the northern part of the Upper Gulf of Thailand. Metal concentrations in Upper Gulf sediments appear to be dominantly controlled by natural inputs, except for iron and manganese. 7 references, 5 figures, 2 tables.

  6. Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area.

    Science.gov (United States)

    Jerez, Silvia; Motas, Miguel; Benzal, Jesús; Diaz, Julia; Vidal, Virginia; D'Amico, Verónica; Barbosa, Andrés

    2013-05-01

    The presence of metals in the Antarctic environment is principally a natural phenomenon caused by geochemical characteristics of the region, although some anthropogenic activities can increase these natural levels. Antarctic penguins present several of the characteristics of useful sentinels of pollution in Antarctica such as they are long-lived species situated at the top of food web. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, and Pb were determined by inductively coupled plasma-mass spectrometry in samples of liver, kidney, muscle, bone, feather, and stomach contents of gentoo, chinstrap, and Adélie penguin (12 adults, five juveniles) from carcasses of naturally dead individuals collected opportunistically in the Antarctic Peninsula area. The obtained results showed that accumulation and magnification of several elements can be occurring, so that Cd and Se reached levels potentially toxic in some specimens. The presence of human activities seems to be increasing the presence of toxic metals such as Mn, Cr, Ni, or Pb in penguins.

  7. Essential trace metal excretion from rats with lead exposure and during chelation therapy.

    Science.gov (United States)

    Victery, W; Miller, C R; Goyer, R A

    1986-02-01

    Urinary excretion of lead, zinc, calcium, magnesium, iron, copper, sodium, and potassium was measured in rats daily for 1 week after a 6-week exposure to 10,000 micrograms/ml lead in drinking water. Beginning on the third day, half of the lead-exposed and control rats were injected intraperitoneally with calcium disodium ethylenediaminetetraacetate (EDTA) daily for 3 days. Whole blood, plasma, and kidney metal concentrations were determined from samples obtained at the end of the experiment. Exposure to lead increased urinary excretion, not only of lead, but also of calcium, magnesium, zinc, copper, and iron. Excretion of sodium and potassium was not altered. Chelation therapy further increased excretion of lead, zinc, copper, and iron, but not magnesium. The increase in calcium excretion during chelation treatment (beyond that resulting from lead exposure per se) was accounted for by the Ca content of CaNa2-EDTA. EDTA treatment increased renal concentration of zinc but lowered renal concentration of lead, copper, and iron. These multimetal alterations may have implications for essential metal supplementation, particularly zinc, in persons being given chelation agents for excess lead exposure and in infants and children with low-level lead exposure not necessarily requiring chelation therapy.

  8. Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum.

    Science.gov (United States)

    Becerra-Castro, C; Monterroso, C; García-Lestón, M; Prieto-Fernández, A; Acea, M J; Kidd, P S

    2009-08-01

    In this study we determine culturable microbial densities (total heterotrophs, ammonifiers, amylolytics and cellulolytics) and bacterial resistance to Co, Cr, and Ni in bulk and rhizosphere soils of three populations of the Ni-hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum and the excluder Dactylis glomerata from ultramafic sites (two populations in Northeast (NE) Portugal (Samil (S), Morais (M)) and one population in Northwest (NW) Spain (Melide (L)). The relationship between bioavailable metal concentrations (H2O-soluble) and microbial densities were analysed. Significant differences in microbial densities and metal-resistance were observed between the two species and their three populations. The hyperaccumulator showed higher microbial densities (except cellulolytics) and a greater rhizosphere effect, but this was only observed in S and M populations. These populations of A. serpyllifolium also showed selective enrichment of Ni-tolerant bacteria at the rhizosphere where Ni solubility was enhanced (densities of Ni-resistant bacteria were positively correlated with H2O-soluble Ni). These rhizobacteria could solubilise Ni in the soil and potentially improve phytoextraction strategies.

  9. Chemiluminescence system for direct determination and mapping of ultra-trace metal impurities on a silicon wafer.

    Science.gov (United States)

    Kim, Romertta; Sung, Y I; Lee, J S; Lim, H B

    2010-11-01

    A highly sensitive chemiluminescence (CL) system which consumed low sample and reagent volumes in the microlitre range was developed for direct determination and mapping of ultra-trace metal contaminants on solid surfaces, such as silicon wafers or flat display panels. The analytical result of the system was confirmed with ICP-MS. The system was composed of a scanner, sensor and a wafer moving stage. The scanner, with a scanning tip made of 0.03'' i.d. PTFE tubing, was used to collect metal impurities on the wafer surface with 5 μL of scanning solution. A coaxial sensing head of about 13 mm o.d. and 110 mm height was designed both to inject a luminescent reagent of luminol-H(2)O(2) mixture and to collect the luminescence light resulting from the reaction with metal ions of Co(2+), Fe(2+), Cu(2+), and Ni(2+). Due to the almost zero background, an extremely low limit of detection of 20.8 pg/mL for Co(2+) in 1% hydrofluoric acid (HF) was obtained from the calibration curve. In order to map the spatial distribution of the impurities, 11 cross sections of a Co-contaminated wafer were selected and scanned individually with a diluted HF solution. A contaminant level of 1.45-7.11 × 10(11) atoms cm(-2) was obtained for each section with an average of 4.21 × 10(11) atoms cm(-2), which was similar to the analytical result of 5.48 × 10(11) atoms cm(-2) obtained from vapor phase deposition-inductively coupled plasma-mass spectrometry (VPD-ICP-MS). Although this CL system does not have selectivity for each specific metal ion, its high sensitivity facilitates the monitoring and mapping of metal impurities of Co, Fe, Cu, etc. on the wafer directly and it can be used as an on-line inspection sensor for the first time in the semiconductor industry.

  10. Metals and trace elements in giant garter snakes (Thamnophis gigas) from the Sacramento Valley, California, USA

    Science.gov (United States)

    Wylie, G.D.; Hothem, R.L.; Bergen, D.R.; Martin, L.L.; Taylor, R.J.; Brussee, B.E.

    2009-01-01

    The giant garter snake (GGS; Thamnophis gigas) is a federally listed threatened species endemic to wetlands of the Central Valley of California. Habitat destruction has been the main factor in the decline of GGS populations, but the effects of contaminants on this species are unknown. To contribute to the recovery of these snakes, the U.S. Geological Survey (USGS) began studies of the life history and habitat use of GGSs in 1995. During a series of investigations conducted from 1995 to the present, specimens of dead GGSs were opportunistically collected from the Colusa National Wildlife Refuge (CNWR), the Natomas Basin, and other sites in northern California. Whole snakes were stored frozen for potential future analysis. As funding became available, we analyzed tissues of 23 GGSs to determine the concentrations of total mercury (Hg) and other trace elements in livers and conce