WorldWideScience

Sample records for airbone trace metals

  1. Trace metals in urban soils

    OpenAIRE

    Linde, Mats

    2005-01-01

    Urban areas can be considered risk areas as regards trace metals and will continue to be so for a long time, according to predictions. The present work started as a sub-project in the urban part of the multifaceted research project Metals in Urban and Forest Environments.The overall aim of the work was to gain systematic knowledge about the amounts and behaviour of trace metals in urban soils, with Stockholm (the capital of Sweden) as the study area. The concentrations of trace metals (Cd, Cr...

  2. Trace metal transformations in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A. [and others

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  3. Controls of Trace Metals in Seawater

    Science.gov (United States)

    Bruland, K. W.; Lohan, M. C.

    2003-12-01

    Since the early 1970s, marine chemists have gained a first-order understanding of the concentrations, distributions, and chemical behaviors of trace metals in seawater. Important factors initiating this quantum leap in knowledge were major advances in modern analytical chemistry and instrumentation, along with the development and adoption of clean techniques. An instrumental development in the mid-1970s that spurred the early research on trace metals was the availability of the sensitive graphite furnace as the sample introduction system to an atomic absorption spectrometer. More recently, the appearance of inductively coupled plasma (ICP) mass spectrometers has provided an even more sensitive and powerful instrumental capability to the arsenal of marine chemists. In addition to these instruments back in shore-based laboratories, there has been the development of sensitive shipboard methods such as stripping voltammetry and flow injection analysis (FIA) systems with either chemiluminescence or catalytically enhanced spectrophotometric detection. Along with the development of these highly sensitive analytical techniques came a recognition and appreciation of the importance of handling contamination issues by using clean techniques during all phases of sampling and analysis. This is necessary due to low concentrations of trace metals in seawater relative to the ubiquitousness of metals on a ship or in a laboratory (e.g., dust, steel hydrowire, rust, paint with copper and zinc antifouling agents, brass fittings, galvanized material, sacrificial zinc anodes, etc.). As a result, seawater concentrations of most trace metals have now been accurately determined in at least some parts of the oceans, and their oceanic distributions have been found to be consistent with oceanographic processes.The concentrations and distributions of trace metals in seawater are controlled by a combination of processes. These processes include external sources of trace metals delivered by

  4. A New Generation of Thermal Desorption Technology Incorporating Multi Mode Sampling (NRT/DAAMS/Liquid Agent) for Both on and off Line Analysis of Trace Level Airbone Chemical Warfare Agents

    International Nuclear Information System (INIS)

    A multi functional, twin-trap, electrically-cooled thermal desorption (TD) system (TT24-7) will be discussed for the analysis of airborne trace level chemical warfare agents. This technology can operate in both military environments (CW stockpile, or destruction facilities) and civilian locations where it is used to monitor for accidental or terrorist release of acutely toxic substances. The TD system interfaces to GC, GCMS or direct MS analytical platforms and provides for on-line continuous air monitoring with no sampling time blind spots and within a near real time (NRT) context. Using this technology enables on-line sub ppt levels of agent detection from a vapour sample. In addition to continuous sampling the system has the capacity for off-line single (DAAMS) tube analysis and the ability to receive an external liquid agent injection. The multi mode sampling functionality provides considerable flexibility to the TD system, allowing continuous monitoring of an environment for toxic substances plus the ability to analyse calibration standards. A calibration solution can be introduced via a conventional sampling tube on to either cold trap or as a direct liquid injection using a conventional capillary split/splitless injection port within a gas chromatograph. Low level (linearity) data will be supplied showing the TT24-7 analyzing a variety of CW compounds including free (underivitised) VX using the three sampling modes described above. Stepwise changes in vapor generated agent concentrations will be shown, and this is cross referenced against direct liquid agent introduction, and the tube sampling modes. This technology is in use today in several geographies around the world in both static and mobile analytical laboratories. (author)

  5. Trace element geochemistry of CR chondrite metal

    CERN Document Server

    Jacquet, Emmanuel; Alard, Olivier; Kearsley, Anton T; Gounelle, Matthieu

    2015-01-01

    We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry of metal grains from 9 different CR chondrites, distinguishing grains from chondrule interior ("interior grains"), chondrule surficial shells ("margin grains") and the matrix ("isolated grains"). Save for a few anomalous grains, Ni-normalized trace element patterns are similar for all three petrographical settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All types of grains are interpreted to derive from a common precursor approximated by the least melted, fine-grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors presumably formed by incomplete condensation, with evidence for high-temperature isolation of refractory platinum-group-element (PGE)-rich condensates before mixing with lower temperature PGE-depleted condensates. The rounded shape of the Ni-rich, interior ...

  6. Factors Controlling the Distribution of Trace Metals in Macroalgae

    Institute of Scientific and Technical Information of China (English)

    王宝利; 刘丛强

    2004-01-01

    This paper presents the concentrations of trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) in macroalgae from five areas. Significant differences were noticed in trace metal concentration in macroalgae, and a large range of variations between the minimum and maximum concentrations of trace metals was found. Trace metals detected in macroalgae generally occur in adsorbed and absorbed forms. Environmental and biological factors jointly control the trace metal compositions and concentrations in macroalgae. The complexity and variation of these factors cause significant differences in trace metal concentrations in macroalgae. Environmental factors play a more important role in controlling trace metal compositions and concentrations when external available trace metals are beyond requirement for algal metabolism and growth, especially for non-essential trace metals; however, when the external available trace metals just satisfy the needs of algal metabolism and growth, biological factors would play a more important role, especially for essential trace metals. Interactions among the trace metals can also influence their compositions and concentrations in macroalgae. It is also discussed how to make macroalgae as an excellent biomonitor for trace metals.

  7. Trace metal fronts in European shelf waters

    Science.gov (United States)

    Kremling, K.

    1983-05-01

    The Hebrides shelf edge area is characterized by strong horizontal salinity gradients (fronts) which mark the boundary between Scottish coastal and oceanic waters1,2. The results presented here, obtained in summer 1981 on a transect between the open North Atlantic and the German Bight (Fig. 1), confirm that the hydrographical front is accompanied by dramatic increases in inorganic nutrients (phosphate, silicate) and dissolved trace elements such as Cd, Cu, Mn, and 226Ra (Figs 2 and 3). These data (together with measurements from North Sea regions) suggest that the trace metals are mobilized from partly reduced (organic-rich) sediments and vertically mixed into the surface waters3. The regional variations evident from the transect are interpreted as being the result of the hydrography prevailing in waters around the British Isles4.

  8. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    Science.gov (United States)

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  9. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    Science.gov (United States)

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources.

  10. Trace metals analysis in molybdenite mineral sample

    International Nuclear Information System (INIS)

    DC polarography and other related techniques, viz., DPP and DPASV have been successfully used for the simultaneous determination of trace metals in molybdenite mineral sample. The polarograms and voltammograms of sample solution have been recorded in 0.1 M (NH4)2 tartrate supporting electrolyte at two different pH values i.e., 2.7±0.1 and 9.0±0.1. The results indicate the presence of Cu2+, Mo6+, Cd2+, Ni2+, In3+, Fe3+ and W6+ metal ions in the sample. For the determination of tungsten(VI), 11 M HCl has been used as supporting electrolyte. Tungsten(VI) produces a well defined wave/peak with E1/2/Ep=-0.42V/-0.48V vs SCE in 11 M HCl. The quantitative analysis by the method of standard addition shows the mineral sample to have the following composition, Cu2+ ( 14.83), Mo6+ (253.70), Cd2+ (41.36), Ni2+ (16.08), In3+(3.06), Fe3+ (83.00)and W6+ (4.14 )mg/g of the sample. Statistical treatment of the observed voltammetric data reveals high accuracy and good precision of determination. The observed voltammetric results are comparable with those obtained using AAS method. (author)

  11. Arsenic and Associated Trace Metals in Texas Groundwater

    Science.gov (United States)

    Lee, L.; Herbert, B. E.

    2002-12-01

    The value of groundwater has increased substantially worldwide due to expanding human consumption. Both the quantity and quality of groundwater are important considerations when constructing policies on natural resource conservation. This study is focused on evaluating groundwater quality in the state of Texas. Historical data from the Texas Water Development Board and the National Uranium Resource Evaluation were collected into a GIS database for spatial and temporal analyses. Specific attentions were placed on arsenic and other trace metals in groundwater. Recent studies in the United States have focused on isolated incidences of high arsenic occurrence, ignoring possible connections between arsenic and other trace metals. Descriptive statistics revealed strong correlations in groundwater between arsenic and other oxyanions including vanadium, selenium and molybdenum. Arsenic and associated trace metals were clustered at three physiographic hotspots, the Southern High Plains, the Gulf Coastal Plains of Texas, and West Texas. A geologic survey showed that arsenic and other trace metals in Texas groundwater follow local geologic trends. Uranium deposits and associated mineralization were found to occur in the same physiographic locations. Uranium mineralization may be a significant natural source of arsenic and other trace metals in Texas groundwater. Recharge, evaporative concentration, and aquifer characteristics were also contributing factors to the occurrence of trace metals in Texas groundwater. Spatial statistics were used to delineate natural sources from anthropogenic inputs. Similarly, the natural background was estimated from the spatial distribution of trace metal observations in Texas groundwater.

  12. Trace metal enrichments in Lake Tanganyika sediments: Controls on trace metal burial in lacustrine systems

    Science.gov (United States)

    Poulson Brucker, Rebecca; McManus, James; Severmann, Silke; Owens, Jeremy; Lyons, Timothy W.

    2011-01-01

    We investigate the distributions of several key diagenetic reactants (C, S, Fe) and redox-sensitive trace metals (Mo, Cd, Re, U) in sediments from Lake Tanganyika, East Africa. This study includes modern sediments from a chemocline transect, which spans oxygenated shallow waters to sulfidic conditions at depth, as well as ancient sediments from a longer core (˜2 m) taken at ˜900 m water depth. Modern sediments from depths spanning ˜70-335 m are generally characterized by increasing enrichments of C, S, Mo, Cd, and U with increasing water depth but static Fe distributions. It appears that the sedimentary enrichments of these elements are, to varying degrees, influenced by a combination of organic carbon cycling and sulfur cycling. These modern lake characteristics contrast with a period of high total organic carbon (C org), total sulfur (S Tot), and trace metal concentrations observed in the 900 m core, a period which follows the most recent deglaciation (˜18-11 ky). This interval is followed abruptly by an interval (˜11-6 ky) that is characterized by lower C, S, U, and Mo. Consistent with other work we suspect that the low concentrations of S, Mo, and U may indicate a period of intense lake mixing, during which time the lake may have been less productive and less reducing as compared to the present. An alternative, but not mutually exclusive, hypothesis is that changes in the lake's chemical inventory, driven by significant hydrological changes, could be influencing the distribution of sedimentary trace elements through time.

  13. Bibliography on cycling of trace metals in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    LaRiviere, M.G.; Scott, A.J.; Woodfield, W.G.; Cushing, C.E.

    1978-07-01

    This bibliography is a listing of pertinent literature directly addressing the cycling of trace metals in freshwater ecosystems. Data on cycling, including the influences of environmental mediators, are included. 151 references.

  14. Bibliography on cycling of trace metals in freshwater ecosystems

    International Nuclear Information System (INIS)

    This bibliography is a listing of pertinent literature directly addressing the cycling of trace metals in freshwater ecosystems. Data on cycling, including the influences of environmental mediators, are included. 151 references

  15. Separation of traces of metal ions from sodium matrices

    Science.gov (United States)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  16. Evaluation of metal trace detachment from dosing pumps using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Omar, E-mail: omar.lozanogarcia@unamur.be [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Mejia, Jorge [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Laloy, Julie; Alpan, Lütfiye [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Toussaint, Olivier [Laboratory of Biochemistry and Cellular Biology (URBC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Dogné, Jean-Michel [Namur Thrombosis and Hemostasis Centre (NTHC), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Lucas, Stéphane [Research Centre for the Physics of Matter and Radiation (PMR), Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences - NARILIS, University of Namur - UNamur, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2014-07-15

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints)

  17. Assessment of Godavari estuarine mangrove ecosystem through trace metal studies

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, A.K.; Tripathy, S.C.; Patra, S.; Sarma, V.V.

    -Godavari estuary (GGE) and Coringa & Gaderu mangrove environments (CGME). High concentrations of trace metals in particulate matter and in sediments in the mangrove environment compared to the KKD bay and GGE region reveals the significance of mangrove environment...

  18. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    A seasonal analysis of particulate trace metals, viz. iron, manganese, zinc, copper, cobalt and nickel collected from 4 stations in Cochin backwaters are presented. The spatial trend for cobalt, iron and nickel was stationary at surface whereas...

  19. Evaluation of metal trace detachment from dosing pumps using PIXE

    Science.gov (United States)

    Lozano, Omar; Mejia, Jorge; Laloy, Julie; Alpan, Lütfiye; Toussaint, Olivier; Dogné, Jean-Michel; Lucas, Stéphane

    2014-07-01

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints).

  20. Influence of biochar amendments on marine sediment trace metal bioavailability

    Science.gov (United States)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  1. The biogeochemical cycles of trace metals in the oceans.

    Science.gov (United States)

    Morel, F M M; Price, N M

    2003-05-01

    Planktonic uptake of some essential metals results in extraordinarily low concentrations in surface seawater. To sequester or take up these micronutrients, various microorganisms apparently release strong complexing agents and catalyze redox reactions that modify the bioavailability of trace metals and promote their rapid cycling in the upper water column. In turn, the low availability of some metals controls the rate of photosynthesis in parts of the oceans and the transformation and uptake of major nutrients such as nitrogen. The extremely low concentrations of several essential metals are both the cause and the result of ultraefficient uptake systems in the plankton and of widespread replacement of metals by one another for various biochemical functions.

  2. Trace metal analysis in Withania somnifera

    Directory of Open Access Journals (Sweden)

    Dr. Jaya Gupta

    2013-12-01

    Full Text Available The stem and seeds of Withania somnifera were digested with HNO3 and HClO4 (4:1 and the contents of thirteen trace elements such as Zn, Fe,Ni, Mn ,K ,Ca, Mg, Co, Cr, Cu, Cd, Pb, and As from different parts were determined by atomic absorption spectroscopy. The experimental results confirmed the presence of Fe, Ca, Mg, Zn, Ni, Co and Mn which are beneficial to the human body is within the limit and K is not detected. The heavy trace element which are harmful to human body i.e., Cd, Pb, Cu within the limit but As is higher and Cr is not detected.

  3. Sedimentary input of trace metals from the Chukchi Shelf

    Science.gov (United States)

    Aguilar-Islas, A. M.; Seguré, M.; Rember, R.; Nishino, S.

    2014-12-01

    The distribution of trace metals in the Arctic Ocean has implications for their global cycles, yet until recently few trace metal observations were available from this rapidly changing ocean. Profiles of dissolved Fe from recent Japanese field efforts in the Western Canada Basin (2008, 2010) indicate the broad Chukchi Shelf as a source of Fe to the halocline of the Western Canada Basin. Here we present dissolved and particulate data for crustal (Al, Mn, Fe) and non-crustal elements (Co, Cu, Zn) from the productive Chukchi Sea to characterize the sedimentary input of these metals to shelf waters contributing to the halocline layer of the Canada Basin. Water column profiles were collected in late summer 2013 onboard the R/V Mirai at 10 stations from the Bering Strait to the slope, and at a time-series (10 days) station located over the outer shelf. A narrow and variable (5-10 m) benthic boundary layer was sampled at the time-series station with highly elevated dissolved and suspended particulate metal concentrations. High metal concentrations were also observed in the subsurface at a station over Barrow Canyon where mixing is enhanced. Reactivity of suspended particulate metals was determined by the leachable vs. refractory fractions. Metal concentrations were determined by ICP-MS. Trace metal transport from the shelf to the interior will be discussed in context with shelf mechanisms contributing to this export, and to expected future changes in the Arctic Ocean.

  4. Transcranial sonography in brain disorders with trace metal accumulation.

    Science.gov (United States)

    Walter, Uwe

    2010-01-01

    Transcranial sonography (TCS) can detect trace metal accumulation in deep brain structures with higher sensitivity than conventional MRI. Especially, increased iron content in the substantia nigra in Parkinson's disease, increased copper content in the lenticular nucleus (LN) in Wilson's disease and idiopathic dystonia, and increased manganese content in the LN in manganese-induced Parkinsonism were detected with TCS, even in subjects with normal MRI. TCS, therefore, might be useful to detect an increased risk of developing neurological symptoms in relatives of patients with Parkinson's or Wilson's disease. The exact mechanism of how an elevated trace metal content leads to an increased echogenicity needs to be further elucidated.

  5. Unexpected Consequences: Gold Mining in Peru and Trace Metal Mobilization

    Science.gov (United States)

    Wang, R. Z.; Pinedo-Gonzalez, P.; Clark, K. E.; West, A. J.

    2014-12-01

    Artisanal miners in the Peruvian Amazon, especially in the Madre de Dios region, are targeting fluvial deposits along riverbanks as part of a modern-day gold rush. These miners often use mercury, causing Hg pollution and ecological damage. Research on the environmental consequences of these mines has focused primarily on the fate of Hg, and to date little work has considered whether mining river sediments affects the release and cycling of other trace metals. This project measures trace metal concentrations in soil and vegetation samples developed on fluvial sediments at one mine site and two non-mine (control) sites across gradients in natural plant succession and riverbank composition. Some metals, including Pb and Mo, showed leachable metal concentrations (determined using EPA Method 2050B and ICP-MS analysis) that were lower in mine site soils than control site soils, but higher in mine site vegetation than control site vegetation. These results held across all gradients in natural plant succession and soil composition. This suggests that metals may be preferentially mobilized from the soil and taken up by surrounding vegetation as a result of mining activities. Soils were also treated with a sequential leach to separate metals that are exchangeable, bound to carbonates, bound to Fe and Mn oxides, bound to organic matter and in the residual phase. Initial data shows that trace metal concentrations are generally lower in all phases from mine soils vs. control soils, across all gradients in natural plant succession and soil composition. Trace metal mobilization due to mining is facilitated by changing pH or redox conditions - e.g., by exposing buried minerals to water and oxygen. Fluvial sediments at these studied sites were already exposed during their erosion and transport, but anoxic conditions following deposition may allow a build-up of metals that are mobilized once sediments are re-worked by mining. It is also possible that Hg affects the mobility of other

  6. Trace metals and cancer: The case of neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gouget, B. E-mail: gouget@drecam.cea.fr; Sergeant, C.; Llabador, Y.; Deves, G.; Vesvres, M.H.; Simonoff, M.; Benard, J

    2001-07-01

    N-myc oncogene amplification is one of the most established prognostic factors in neuroblastoma (NB), a young children solid tumor. Amounts of ferritin, an iron storage protein, are abnormally increased in serum of patients with advanced stage disease. N-myc amplified NB cells can synthesize zinc metalloenzymes allowing tumor invasion and metastases formation. The aim of this study was to find a relationship between N-myc amplification and trace metals in human neuroblasts. Coupling PIXE and RBS techniques, nuclear microprobe allowed to analyze elemental distributions and to determine trace metal concentrations within cultured neuroblasts characterized by various degrees of N-myc amplification. They were compared to trace metal distributions and concentrations in tumor xenograft models of human NB, after injection of cells from the same lines in athymic nude mice. Our data allowed to establish a relation between trace metal contents and mechanisms of NB oncogenesis, amplified cell lines representing more aggressive phenotypes of the disease. They should be confirmed by analysis of cultured neuroblasts and tumors issued from a non-amplified cell line transfected with the N-myc oncogene.

  7. Trace metals and cancer: The case of neuroblastoma

    Science.gov (United States)

    Gouget, B.; Sergeant, C.; Llabador, Y.; Devès, G.; Vesvres, M. H.; Simonoff, M.; Bénard, J.

    2001-07-01

    N- myc oncogene amplification is one of the most established prognostic factors in neuroblastoma (NB), a young children solid tumor. Amounts of ferritin, an iron storage protein, are abnormally increased in serum of patients with advanced stage disease. N- myc amplified NB cells can synthesize zinc metalloenzymes allowing tumor invasion and metastases formation. The aim of this study was to find a relationship between N- myc amplification and trace metals in human neuroblasts. Coupling PIXE and RBS techniques, nuclear microprobe allowed to analyze elemental distributions and to determine trace metal concentrations within cultured neuroblasts characterized by various degrees of N- myc amplification. They were compared to trace metal distributions and concentrations in tumor xenograft models of human NB, after injection of cells from the same lines in athymic nude mice. Our data allowed to establish a relation between trace metal contents and mechanisms of NB oncogenesis, amplified cell lines representing more aggressive phenotypes of the disease. They should be confirmed by analysis of cultured neuroblasts and tumors issued from a non-amplified cell line transfected with the N- myc oncogene.

  8. Effect of trace metal availability on coccolithophorid calcification.

    Science.gov (United States)

    Schulz, K G; Zondervan, I; Gerringa, L J A; Timmermans, K R; Veldhuis, M J W; Riebesell, U

    2004-08-01

    The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.

  9. Resolving and modelling trace metal partitioning in a freshwater sediment

    International Nuclear Information System (INIS)

    Elevated concentrations of trace metals in sediments pose toxicological risks to biota and may impair water quality. the sediment-water interface is the site where gradients in physical, chemical and biological properties are the greatest. Both chemical and microbiological transformation processes are responsible for cycling elements between water and sediments. (Author)

  10. LASER-ENHANCED IONIZATION SPECTROMETRY FOR TRACE METAL ANALYSIS

    OpenAIRE

    Turk, G; Travis, J.; Devoe, J.

    1983-01-01

    Laser-enhanced ionization spectrometry is an application of optogalvanic spectroscopy for quantitative analysis of trace concentrations of metallic elements in flames. This paper reviews the scientific literature on this subject, and summarizes the performance of the method in its present state of development.

  11. Bioavailability of metals-trace in sediments: a review

    International Nuclear Information System (INIS)

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl2 (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution

  12. Comparative studies on trace metal geochemistry in Indian and Chinese rivers

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; Zhang, J.

    The trace metal geochemistry in Indian and Chinese rivers in the Asian region was studied to understand its variation on a global scale in terms of climate, geological conditions and anthropogenic impact. The average particulate trace metal...

  13. Trace metal speciation in natural waters: Computational vs. analytical

    Science.gov (United States)

    Kirk, Nordstrom D.

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  14. Trace Metal Source Terms in Carbon Sequestration Environments

    Energy Technology Data Exchange (ETDEWEB)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  15. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  16. Trace Metal Mercury Levels in Residential Homes in Kuwait

    OpenAIRE

    L. AL-Awadi; A R. Khan; R. Al-Kandari

    2008-01-01

    Kuwait is an oil rich state on the northeastern corner of Arabian Peninsula and has faced the unprecedented man made environmental disaster in early 1991 of igniting over 600 oil wells those continually burnt for a period of over six months. The use of crude and heavy fuel oil in the power generating facilities has aggravated the pollution due to particulate matters that carry trace metals. The climatic conditions in this part of the world result into very frequent dust storm transporting par...

  17. Lead isotopes and trace metals in dust at Yucca Mountain

    Science.gov (United States)

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  18. Radionuclides and trace metals in eastern Mediterranean Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S. E-mail: msmasri@aec.org.sy; Mamish, S.; Budier, Y

    2003-07-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that {sup 137}Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg{sup -1} dry weight) while the levels of naturally occurring radionuclides, such as {sup 210}Po and {sup 210}Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg{sup -1} dry weight) for {sup 210}Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate {sup 210}Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  19. Trace metal transport by marine microorganisms: implications of metal coordination kinetics

    Science.gov (United States)

    Hudson, Robert J. M.; Morel, François M. M.

    1993-01-01

    Marine microorganisms have transport systems capable of accumulating essential trace metals present at low oceanic concentrations—1 pM to 1 nM. In marine phytoplankton, Fe, Mn, Zn and Ni transport has been shown to involve complexation by membrane carriers. By analysing the kinetics of the transport process and accounting for the inherently slow coordination reactions of some of these metals, we predict optimum properties and minimum numbers of sites for the transport systems. Limits to trace metal uptake, and thereby to growth rates, may arise from finite space for these transport sites in the membrane, competition from other metals and the rate of diffusion to the cell. These types of nutrient limitation should exhibit different size dependencies and therefore be important in determining ecosystem structure. The concentrations of inorganically complexed species of nutrient metals remaining in the surface ocean appear to be correlated with predicted rates of metal complexation by trace metal transport sites, suggesting that kinetic liability controls the bioavailability of these metals and their rate of removal from the surface ocean.

  20. Modelling trace metal partitioning in forest floors of northern soils near metal smelters

    International Nuclear Information System (INIS)

    Trace metal (TM) mobility and toxicity varies with changing soil conditions. Geochemical models can account for the influence of soil characteristics on TM behaviour. We tested the effectiveness of the Stockholm humic model (SHM), and the NICA-Donnan model (NDM) to estimate partitioning coefficients (log Kd) in 26 forest floor horizons of podzolic soils enriched in trace metals from deposition by metal smelters. We wanted to know if a consistent approach could be applied to model metal partitioning in forest floors without optimizing each individual soil. When optimized, the SHM reproduced the partitioning of Cd, Cu and Zn but not Pb. It was necessary to revise the affinity constants for the NDM to simultaneously simulate the partitioning of the four metals. Revised affinity constants for the NDM model based on a fixed definition of soil organic carbon, i.e., a fixed ratio of fulvic and humic acids per unit carbon, reproduced metal partitioning more effectively in an independent data set of 16 soils than the use of generic affinity constants available for these models. From the perspective of the applicability of these models to risk assessment, this result suggests geochemical models using affinity constants that have been verified and/or modified against multiple soils from a region can provide good estimates of metal partitioning on a regional scale. - The solid-solution partitioning of trace metals in forest floors contaminated by smelter emissions can be modelled using a single set of model parameters for soil organic matter

  1. Trace Metal Mercury Levels in Residential Homes in Kuwait

    Directory of Open Access Journals (Sweden)

    L. AL-Awadi

    2008-01-01

    Full Text Available Kuwait is an oil rich state on the northeastern corner of Arabian Peninsula and has faced the unprecedented man made environmental disaster in early 1991 of igniting over 600 oil wells those continually burnt for a period of over six months. The use of crude and heavy fuel oil in the power generating facilities has aggravated the pollution due to particulate matters that carry trace metals. The climatic conditions in this part of the world result into very frequent dust storm transporting particulate matters short and long distance. Mercury in atmosphere is mainly due to burning of fossil fuel, incinerators, crematoriums, extraction of precious metals and salt-chlorine industries. This study has been initiated for mercury measurements from an old salt-chlorine industrial site that has been closed since 1984. To compare the mercury levels elsewhere, a comprehensive measurement program was devised and conducted to obtain mercury levels in most of the urban areas in Kuwait. Domestic dust samples from selected residences were collected for a period of a week. These samples were analyzed using KISR/T0-345 method especially developed for precise measurements of trace metals in particulate matter. It is required to identify the sources of mercury that resulted into such mercury levels in indoor air in the urban areas. For those areas where mercury levels are substantially high mitigation methods have been proposed to reduce the impact on to the residents.

  2. Trace metals in wine and vineyard environment in southern Ukraine.

    Science.gov (United States)

    Vystavna, Yuliya; Rushenko, Liliya; Diadin, Dmytro; Klymenko, Olga; Klymenko, Mykola

    2014-03-01

    The study was focused on measuring the concentration levels of trace metals in the environment, vines and wine within the wine-growing region of Ukraine and comparing the findings to the data from well known wine-growing areas. Analysis was carried out of Cr, Cu, Ni, Pb and Zn in irrigation water, grape juice and wine, Cu, Pb and Zn in soil (pseudo-total and acid-soluble fractions) and Vitis vinifera L. in leaves and grapes. The accumulation levels of Cu and Zn from soil to leaves were significantly higher than from soil to grapes. Pb had lower potential to accumulate in aerial parts than Cu and Zn. Higher contents of Cu and Zn were observed in Muscat white grape juice compared to Chardonnay. The concentration levels of Zn and Cu were higher in wine than in juice. Trace metals were regulated by the soil composition and biological specificity of cultivars. The data obtained from the study area did not exceed the international limits.

  3. Contribution to biomonitoring of some trace metals by deciduous tree leaves in urban areas.

    Science.gov (United States)

    Tomasević, M; Vukmirović, Z; Rajsić, S; Tasić, M; Stevanović, B

    2008-02-01

    Leaves of the deciduous tree species, horse chestnut (Aesculus hippocastanum L.) and Turkish hazel (Corylus colurna L.) were used as accumulative biomonitors of trace metal pollution in the urban area of Belgrade. Using differential pulse anodic stripping voltametry, trace metal concentrations (Pb, Cu, Zn, Cd) were determined at the single leaf level (ten leaves per species, per month), during two successive years with markedly different atmospheric level of trace metals. Increased trace metal concentrations in the leaves of A. hippocastanum reflected elevated atmospheric trace metal pollution, whereas C. colurna L. did not respond accordingly. The contents of Pb and Zn in soil over the same period also followed this trend. Anatomical analyses, in young as well as in old leaves of both species, indicated typical foliar injuries of plants exposed to stressful air conditions. Water relations that correspond to leaf age may have contributed to the considerable trace metal accumulation in leaves. PMID:17505898

  4. Monitoring trace metal contamination in salt marshes of the Westerschelde estuary

    OpenAIRE

    Beeftink, W.G.; Nieuwenhuize, J.

    1986-01-01

    Problems in monitoring trace metals in the soil subsystem are due to variations in the input of these metals, the type of estuarine circulation and the distribution of physical and chemical conditions in the salt-marsh deposits. The degree of metal enrichment and the spectrum of chemical speciation of the metals by means of a sequential extraction procedure is shortly discussed. Problems in monitoring trace metals in salt-marsh plants are discussed with respect to the bioavailability of these...

  5. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures

    OpenAIRE

    Amanda Jo Zimmerman; David C. Weindorf

    2010-01-01

    Quantification of heavy and trace metal contamination in soil can be arduous, requiring the use of lengthy and intricate extraction procedures which may or may not give reliable results. Of the many procedures in publication, some are designed to operate within specific parameters while others are designed for more broad application. Most procedures have been modified since their inception which creates ambiguity as to which procedure is most acceptable in a given situation. For this study, t...

  6. Special and seasonal variations of trace metals in PM10 in Chongqing

    Institute of Scientific and Technical Information of China (English)

    LUO Qingquan; XIAN Xuefu; CHEN Gangcai; YANG Qingling

    2005-01-01

    Nineteen trace metals in PM10 were measured by X-ray fluorescence spectroscopy (XRF) at three sites in Chongqing. The special and seasonal variations of trace metals in PM10 samples collected in the downtown were different from those in the background area of Jinyunshan. The source identification indicated that particulate materials were contributed mainly by two sources.

  7. Pathways of trace metal uptake in the lugworm Arenicola marina

    Energy Technology Data Exchange (ETDEWEB)

    Casado-Martinez, M.C. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)], E-mail: c.casado-martinez@nhm.ac.uk; Smith, B.D. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Valls, T.A. del [Unesco UNITWIN Wicop Chair, Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, C.P. 11510 Puerto Real, Cadiz (Spain); Rainbow, P.S. [Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2009-04-02

    Radiotracer techniques were used to determine the rates of trace metal (Ag, Cd and Zn) uptake and elimination (33 psu, 10 deg. C) from water and sediment by the deposit-feeding polychaete Arenicola marina, proposed as a test species for estuarine-marine sediments in whole-sediment toxicity tests. Metal uptake rates from solution increase with increasing dissolved metal concentrations, with uptake rate constants ({+-} SE) (l g{sup -1} d{sup -1}) of 1.21 {+-} 0.11 (Ag), 0.026 {+-} 0.002 (Zn) and 0.012 {+-} 0.001 (Cd). Assimilation efficiencies from ingested sediments were measured using a pulse-chase radiotracer feeding technique in two different lugworm populations, one from a commercial supplier (Blyth, Northumberland, UK) and the other a field-collected population from the outer Thames estuary (UK). Assimilation efficiencies ranged from 2 to 20% for Zn, 1 to 6% for Cd and 1 to 9% for Ag for the Northumberland worms, and from 3 to 22% for Zn, 6 to 70% for Cd and 2 to 15% for Ag in the case of the Thames population. Elimination of accumulated metals followed a two-compartment model, with similar efflux rate constants for Zn and Ag and lower rates of elimination of Cd from the slow pool. Efflux rate constants ({+-} SE) of Zn and Ag accumulated from the dissolved phase were 0.037 {+-} 0.002 and 0.033 {+-} 0.006 d{sup -1} whereas Cd was eliminated with an efflux rate constant one order of magnitude lower (0.003 {+-} 0.002 d{sup -1}). When metals were accumulated from ingested sediments, the efflux rate constants for the slow-exchanging compartment were of the same order of magnitude for the three metals, and of the same order of magnitude as those derived after the dissolved exposure for Zn and Ag (0.042 {+-} 0.004 and 0.056 {+-} 0.012 d{sup -1} for Zn and 0.044 {+-} 0.012 and 0.069 {+-} 0.016 d{sup -1} for Ag for the Northumberland and Thames populations, respectively). Cd accumulated from ingested sediments was eliminated with a rate constant not different from the

  8. Better performance with bone-anchored hearing aid than acoustic devices in patients with severe air-bone gap

    NARCIS (Netherlands)

    Wolf, M.J. de; Hendrix, S.; Cremers, C.W.R.J.; Snik, A.F.M.

    2011-01-01

    OBJECTIVES/HYPOTHESIS: A study performed in the 1990s with analogue linear hearing aids showed that in patients with mixed hearing loss and an air-bone gap that exceeded 25 to 30 dB, speech perception was better with a bone-anchored hearing aid (Baha) than with a conventional behind-the-ear (BTE) de

  9. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  10. Trace metals distribution in environmental samples from lake Naser, Egypt

    International Nuclear Information System (INIS)

    Distribution of heavy metals and trace elements from anthropogenic as well as lithopogenic origin in sediment, soil and water samples from lake Naser has been investigated. The study reviles information on the characteristic lake-typical mean, value and areal pattern of the investigated variables. Soil and sediment samples were analyzed using instrumental neutron activation analysis (INAA), whereas water samples analysis were carried out using inductively coupled plasma-mass spectrometry (Icp-Ms). The distribution Cd, Pb and Cu within water column profile - at surface, 5 m, and 40 m depth-along the lake shows proportional relation between the concentration of most of the investigated elements and the depth. The average concentrations of Cd, Pb and Cu in water from the previously selected depths along the lake were (0.13, 0.16, 0.51 ng/ml), (26, 22, 41 ng/ml) and (7.8, 19, 99 ng/ml) respectively. The most elevated elemental concentration was found in Argin bottom sediment, while the lowest concentration was found in Toshki shore sediment. The study provides a preliminary base-line data essential for the investigated area that is pre-industrialized area and represents the location of one of the greatest agricultural projects to be performed in Egypt

  11. Trace metal retention in mangrove ecosystems in Guanabara Bay, SE Brazil.

    Science.gov (United States)

    Machado, W; Silva-Filho, E V; Oliveira, R R; Lacerda, L D

    2002-11-01

    Along contrasting environmental conditions (e.g., degree of trace metal contamination and mangrove forest structural development), sediments of Laguncularia racemosa-dominated mangrove stands in Guanabara Bay (SE Brazil) presented a trend of trace metal accumulation in forms with low potential of remobilization and biotic uptake. Concurrently, a relatively low transfer of sediment-bound metals to L. racemosa leaves was observed, which may moderate the metal export from the forests via leaf litter transport and the metal availability to enter in food chains based on leaf consumption. PMID:12523527

  12. Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis

    NARCIS (Netherlands)

    Przytarska, J.E.; Sokolowski, A.; Wolowicz, M.; Hummel, H.; Jansen, J.M.

    2010-01-01

    Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporall

  13. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  14. A baseline study of trace metals in a coral reef sedimentary environment, Lakshadweep Archipelago

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Nair, S.M.; Kumar, N.C.; Jayalakshmi, K.V.; Pamalal, D.

    Surficial and core samples collected from the sedimentary microenvironments of Lakshadweep Archipelago were analysed for their trace metal contents. The synoptical relations in spatial distributions with respect to environmental conditions such as p...

  15. Trace Metal and Ancillary Data in Puget Sound, 1980 - 1986 (NODC Accession 9100153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In first of three data reports on the trace metal and ancillary data in Puget Sound and its watershed (Paulson et al., 1991a), all water column, sediment, and...

  16. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  17. Trace metal distribution in sediments of northern continental shelf of Crete Island, Eastern Mediterranean

    Science.gov (United States)

    Poulos, S. E.; Dounas, C. G.; Alexandrakis, G.; Koulouri, P.; Drakopoulos, P.

    2009-08-01

    The present study investigates the distribution of trace metals (Zn, Hg, Cd, Cu, and Pb), as indicators of pollution, in the surficial offshore shelf sediments along the northern coast of Heraklion Prefecture (Crete, Mediterranean Sea). The concentrations and the spatial distribution of the different trace metals, in relation to the sedimentological characteristics and the water circulation pattern of the entire continental shelf, are associated with human inshore sources of pollutants located along the coastline of the study area. Although the trace metal concentrations measured are higher than the background values, they are not considered to be dangerous to human health, as they are lower than the standard values given by the World Health Organisation, with only a few localised exceptions. Furthermore, results reveal the important role of local hydrodynamism that moves fine-grained material and associated trace metals offshore (seawards to wave breaking zone) and then transports them eastwards by entrapping them in the prevailing offshore shelf-water circulation.

  18. Portable Sensor for Rapid In Situ Measurement of Trace Toxic Metals in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a sensor to detect select trace toxic heavy metals (Ag, Cd, Mn, Ni, and Zn) in water is proposed. Using an automatic side-stream sampling technique,...

  19. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  20. Trace metal levels in nearshore sediments close to industrial discharges off Cuddalore (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, T.; Balachandran, K.K.; Nair, M.; Das, V.K.; Nair, K.K.C.; Paimpillii, J.S.

    Trace metals in the sediment and in the overlying water column along with texture characteristics in the vicinity of industrial discharges at Cuddallore were analyzed, covering the seasonal changes to identify probable anthropogenic influence...

  1. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France

    OpenAIRE

    Redon, Paul-Olivier; Bur, Thomas; Guiresse, Maritxu; Probst, Jean-Luc; Toiser, Aurore; Revel, Jean-Claude; Jolivet, Claudy; Probst, Anne

    2013-01-01

    International audience The trace metal (TM) content in arable soils has been monitored across a region of France characterised by a large proportion of calcareous soils. Within this particular geological context, the objectives were to first determine the natural levels of trace metals in the soils and secondly, to assess which sites were significantly contaminated. Because no universal contamination assessment method is currently available, four different methods were applied and compared...

  2. Teflon chemostat for studies of trace metal metabolism in Streptococcus mutans and other bacteria.

    OpenAIRE

    Strachan, R C; Aranha, H; Lodge, J S; Arceneaux, J E; Byers, B R

    1982-01-01

    A teflon chemostat constructed for studies of microbial trace metal metabolism is described. The utility of this continuous culture system was demonstrated with Streptococcus mutans, in which iron and manganese stimulated growth in ranges of 0.18 to 0.45 and 18 to 54 microM, respectively. This device should facilitate studies of the effect of trace metals on a variety of physiological functions.

  3. Assessment of diffuse trace metal inputs into surface waters - Combining empirical estimates with process based simulations

    Science.gov (United States)

    Schindewolf, Marcus; Steinz, André; Schmidt, Jürgen

    2015-04-01

    As a result of mining activities since the 13th century, surface waters of the German Mulde catchment suffer from deleterious dissolved and sediment attached lead (Pb) and zinc (Zn) inputs. The leaching rate of trace metals with drainage water is a significant criterion for assessing trace metal concentrations of soils and associated risks of ground water pollution. However, the vertical transport rates of trace metals in soils are difficult to quantify. Monitoring is restricted to small lysimeter plots, which limits the transferability of results. Additionally the solid-liquid-transfer conditions in soils are highly variable, primarily due to the fluctuating retention time of percolating soil water. In contrast, lateral sediment attached trace metal inputs are mostly associated with soil erosion and resulting sediment inputs into surface waters. Since soil erosion by water is related to rare single events, monitoring and empirical estimates reveal visible shortcomings. This gap in knowledge can only be closed by process based model calculations. Concerning these calculations it has to be considered, that Pb and Zn are predominantly attached to the fine-grained soil particles (leaching rates from contaminated top soils for standardised transfer conditions and a process based modelling approach for sediment attached trace metal inputs into surface waters. Pb and Zn leaching rates amounts to 20 Mg ha-1 yr-1 resp. 114 Mg ha-1 yr-1. Deviations to observed dissolved trace metal yields at the Bad Düben gauging station are caused by plant uptake and subsoil retention. Sediment attached Pb and Zn input rates amounts to 114 Mg ha-1 yr-1 and 173 Mg ha-1 yr-1 ,which increase measurements by 10 to 25 times. This can only be caused by an inappropriate sampling regime. Routine sampling seems to reflect base load of trace metals rather than total trace metal loads.

  4. A literature review and new data of trace metals fluxes from worldwide active volcanoes

    OpenAIRE

    Calabrese, S.; Università di Palermo, Dip. DiSTeM; Scaglione, S.; Università di Palermo, Dipartimento DiSTeM, Italy; D'Alessandro, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Brusca, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Bellomo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Parello, F.; Università di Palermo, Dipartimento CFTA

    2012-01-01

    Volcanic emissions are considered one of the major natural sources of several trace metals (e.g. As, Cd, Cu, Pb, and Zn) to the atmosphere [Nriagu, 1989], and the geochemical cycles of these elements have to be considered strongly influenced by volcanic input. However, the accurate estimation of the global volcanic emissions of volatile trace metals into the atmosphere is still affected by a high level of uncertainty. The latter depends on the large variability in the emission of ...

  5. Assessing Effects of Climate Change on Biogeochemical Cycling of Trace Metals in Alluvial and Coastal Watersheds

    OpenAIRE

    Lee, Ming-Kuo; Natter, Michael; Keevan, Jeff; Guerra, Kirsten; Saunders, James; Uddin, Ashraf; Humayun, Munir; Wang, Yang; Keimowitz, Alison R.

    2013-01-01

    Assessing the impacts of climate changes on water quality requires an understanding of the biogeochemical cycling of trace metals. Evidence from research on alluvial aquifers and coastal watersheds shows direct impacts of climate change on the fate and transformation of trace metals in natural environments. The case studies presented here use field data and numerical modeling techniques to test assumptions about the effects of climate change on natural arsenic contamination of groundwater in ...

  6. Flame atomic absorption spectrometric determinations of some trace metals after coprecipitation with gold-APDC

    International Nuclear Information System (INIS)

    Complete text of publication follows. For the determination of trace metals in various samples, preconcentration is an inevitable step to overcome interferences. Among various techniques for the separation of trace metals proposed until now, coprecipitation is one of the most useful ones. Many different coprecipitation procedures including use of organic and inorganic collectors have been developed. So far, in the literature, it is reported that APDC, NaDDTC, PAN, TAR, Oxine, etc. as chelating agent for metal-chelate collector have been extensively used for coprecipitation of trace metals. However, metal chelates, especially dithocarbamates, as collectors are ideal for their sensitivities, simplicities and tolerances to interferences.Therefore, in the present work, fundamental studies on the coprecipitation with gold/APDC chelate have been carried out for determination of trace metals in environmental samples by FAAS with microinjection. According to our literature survey, gold/APDC is not used for the coprecipitation of heavy metal ions, until now. In this work, the coprecipitation was carried out in a centrifuge tube. Firstly, the main factors, such as amount of coprecipitant reagent and carrier element, pH of the solution, standing time, sample volume and diverse ions, affecting the coprecipitation of some trace metals were evaluated. Under optimized conditions, the recoveries of Cu, Ni, Pb and Cd were ≥ 95 %. R.S.D. values for ten replicates were lower than 5.0 %. Preconcentration factors were found to be 20. The coprecipitation was applied to various water samples and non-alcoholic beverage.

  7. Effects of Trace Metal Concentrations on the Growth of the Coral Endosymbiont Symbiodinium kawagutii.

    Science.gov (United States)

    Rodriguez, Irene B; Lin, Senjie; Ho, Jiaxuan; Ho, Tung-Yuan

    2016-01-01

    Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirements of Symbiodinium is lacking. Here we show that the requirement of Symbiodinium kawagutii for antioxidant-associated trace metals exhibits the following order: Fe > Cu/Zn/Mn > Ni. In growth media with Cu, Zn, Mn, and varying Fe concentrations, we observed that Cu, Zn, and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn, and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal inter replacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment. PMID:26903964

  8. Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii

    Directory of Open Access Journals (Sweden)

    Irene Barra Rodriguez

    2016-02-01

    Full Text Available Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirement of Symbiodinium is lacking. Here we show that the requirement of S. kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn and varying Fe concentrations, we observed that Cu, Zn and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal interreplacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment.

  9. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution

    International Nuclear Information System (INIS)

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. - Highlights: • Trace metals measured in blood and feathers. • Arsenic, Mercury and Lead significantly higher at urban colony. • Correlations found between trace metals in feathers and blood. • Little Penguins are suitable bioindicators for coastal metal pollution. - This study confirms the suitability of the Little Penguin as a bioindicator of coastal metal pollution in coastal areas using non-destructive sampling methods

  10. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    Science.gov (United States)

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. PMID:23222691

  11. Assessment of diffuse trace metal inputs into surface waters - Combining empirical estimates with process based simulations

    Science.gov (United States)

    Schindewolf, Marcus; Steinz, André; Schmidt, Jürgen

    2015-04-01

    As a result of mining activities since the 13th century, surface waters of the German Mulde catchment suffer from deleterious dissolved and sediment attached lead (Pb) and zinc (Zn) inputs. The leaching rate of trace metals with drainage water is a significant criterion for assessing trace metal concentrations of soils and associated risks of ground water pollution. However, the vertical transport rates of trace metals in soils are difficult to quantify. Monitoring is restricted to small lysimeter plots, which limits the transferability of results. Additionally the solid-liquid-transfer conditions in soils are highly variable, primarily due to the fluctuating retention time of percolating soil water. In contrast, lateral sediment attached trace metal inputs are mostly associated with soil erosion and resulting sediment inputs into surface waters. Since soil erosion by water is related to rare single events, monitoring and empirical estimates reveal visible shortcomings. This gap in knowledge can only be closed by process based model calculations. Concerning these calculations it has to be considered, that Pb and Zn are predominantly attached to the fine-grained soil particles (soil erosion causes a preferential transport of these fine particles, while less contaminated larger particles remain on site. Consequently trace metals are enriched in the eroded sediment compared to the origin soil. This paper aims to introduce both, a new method that allows the assessment of trace metal leaching rates from contaminated top soils for standardised transfer conditions and a process based modelling approach for sediment attached trace metal inputs into surface waters. Pb and Zn leaching rates amounts to 20 Mg ha-1 yr-1 resp. 114 Mg ha-1 yr-1. Deviations to observed dissolved trace metal yields at the Bad Düben gauging station are caused by plant uptake and subsoil retention. Sediment attached Pb and Zn input rates amounts to 114 Mg ha-1 yr-1 and 173 Mg ha-1 yr-1 ,which

  12. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures

    Directory of Open Access Journals (Sweden)

    Amanda Jo Zimmerman

    2010-01-01

    Full Text Available Quantification of heavy and trace metal contamination in soil can be arduous, requiring the use of lengthy and intricate extraction procedures which may or may not give reliable results. Of the many procedures in publication, some are designed to operate within specific parameters while others are designed for more broad application. Most procedures have been modified since their inception which creates ambiguity as to which procedure is most acceptable in a given situation. For this study, the Tessier, Community Bureau of Reference (BCR, Short, Galán, and Geological Society of Canada (GCS procedures were examined to clarify benefits and limitations of each. Modifications of the Tessier, BCR, and GCS procedures were also examined. The efficacy of these procedures is addressed by looking at the soils used in each procedure, the limitations, applications, and future of sequential extraction.

  13. Bioconcentration of trace metals by Saccostrea cucullata (von Born 1778) from Andaman waters

    Digital Repository Service at National Institute of Oceanography (India)

    Abhilash, K.R.; Gireeshkumar, T.R.; Venu, S.; Raveendran, T.V.

    & Susila S, Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem, Ind J Mar Sci, 39 (2010) 85–91. 39 Kaladharan P, Nandakumar A & Valsala K K, Trace metals in the muscle tissue of nine...

  14. Volcano emissions of trace metals, atmospheric deposition, and supply to biogeochemical cycles

    Science.gov (United States)

    Hinkley, T.; Thornber, C. R.; Matsumoto, A.

    2003-12-01

    Quiescently degassing (not exploding) volcanoes inject into the troposphere plumes that have remarkably high concentrations of ordinarily-rare, volatile trace metals. In pre-industrial times, these emissions appear to have accounted for the strong "enrichments" (relative to concentrations in crustal material or in ocean solute) of many such trace metals in the material deposited from the atmosphere. This has been shown by measuring the source strength of the emissions of metals from volcanoes, and comparing that to the amounts of the metals (excess over amounts accounted for by rock dust and sea salt) deposited onto high-latitude ice sheets: volcano degassing outputs of metals and deposition masses of metals to ice are comparable, on the basis of the masses (fluxes) and proportions of the metals, and from the proportions of lead (Pb) isotopes. There is indication that in modern industrial times the elevated trace metal fractions in the atmospheric material that has small particle size and long atmospheric residence time is still more strongly influenced by volcano emissions than by industrial emissions. Throughout earth's history it is likely that volcano emissions were a major control on the environmental background levels of trace elements, in which plants and animals evolved their tolerances to these mostly-poisonous substances.

  15. Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.

    2005-01-01

    Trace metals are essential for anaerobic microorganisms, because they are present as cofactor in many of their enzymes. Therefore anaerobic wastewater treatment systems using these microorganisms to perform biological conversions are dependent on these metals for their (optimal) performance. In prac

  16. Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions

    NARCIS (Netherlands)

    Griethuysen, van C.; Luitwieler, M.; Joziasse, J.; Koelmans, A.A.

    2005-01-01

    Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a

  17. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.

    Science.gov (United States)

    Zhang, Chutian; Yang, Yong; Li, Weidong; Zhang, Chuanrong; Zhang, Ruoxi; Mei, Yang; Liao, Xiangsen; Liu, Yingying

    2015-09-01

    Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city.

  18. The determination of trace metals in lubricating oils by atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aucelio, Ricardo Q. [Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil)], E-mail: aucelior@rdc.puc-rio.br; Martins de Souza, Roseli; Calixto de Campos, Reinaldo; Miekeley, Norbert; Porto da Silveira, Carmem L. [Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil)

    2007-09-15

    The determination of trace metals in lubricating oils using atomic spectrometric methods is reviewed. The importance of such analyses for technical diagnostics as well as the specific sample characteristics related to the analyte form (metallo-organic and metal particles) is discussed. Problems related to sample pre-treatment for appropriate sample introduction and calibration are addressed as well as the strategies to overcome them. Recent trends aimed at simplifying sample manipulation are presented. The applications and scope of AAS, ICP OES and ICP MS techniques for the determination of trace metals in lubricating oil is individually discussed, as well as some present instrumental trends.

  19. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.

    Science.gov (United States)

    Wong, Vanessa N L; Johnston, Scott G; Burton, Edward D; Bush, Richard T; Sullivan, Leigh A; Slavich, Peter G

    2013-02-01

    Benthic sediments in coastal acid sulfate soil (CASS) drains can contain high concentrations (~1-5%) of acid volatile sulfide (AVS) as nano-particulate mackinawite. These sediments can sequester substantial quantities of trace metals. Because of their low elevation and the connectivity of drains to estuarine channels, these benthic sediments are vulnerable to rapid increases in ionic strength from seawater incursion by floodgate opening, floodgate failure, storm surge and seasonal migration of the estuarine salt wedge. This study examines the effect of increasing seawater concentration on trace metal mobilization from mackinawite-rich drain sediments (210-550 μmol g⁻¹ AVS) collected along an estuarine salinity gradient. Linear combination fitting of S K-edge XANES indicated mackinawite comprised 88-96% of sediment-bound S. Anoxic sediment suspensions were conducted with seawater concentrations ranging from 0% to 100%. We found that mobilization of some metals increased markedly with increasing ionic strength (Cu, Fe, Mn, Ni) whereas Al mobilization decreased. The largest proportion of metals mobilized from the labile metal pool, operationally defined as Σexchangeable + acid-extractable + organically-bound metals, occurred in sediments from relatively fresh upstream sites (up to 39% mobilized) compared to sediments sourced from brackish downstream sites (0-11% mobilized). The extent of relative trace metal desorption generally followed the sequence Mn > Ni ≈ Cu > Zn > Fe > Al. Trace metal mobilization from these mackinawite-rich sediments was attributed primarily to desorption of weakly-bound metals via competitive exchange with marine-derived cations and enhanced complexation with Cl⁻ and dissolved organic ligands. These results have important implications for trace metal mobilization from these sediments at near-neutral pH under current predicted sea-level rise and climate change scenarios.

  20. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis.

    Science.gov (United States)

    Díaz-de-Alba, Margarita; Huerta-Diaz, Miguel Angel; Delgadillo-Hinojosa, Francisco; Hare, Landis; Galindo-Riaño, M Dolores; Siqueiros-Valencia, Arturo

    2016-02-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) >80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20±0.13 to (0.30±0.56)×10(3) mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (sedimentary metals are preferentially accumulated by the polychaete, making it a useful biomonitor of sedimentary metal exposure.

  1. Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil).

    Science.gov (United States)

    e Silva, Carlos Augusto R; Smith, Brian D; Rainbow, Philip S

    2006-05-01

    Samples of 5 bivalve molluscs (Crassostrea rhizophorae, Mytella charruana, Anomalocardia brasiliana, Anadara ovalis, Phacoides pectinata), 2 barnacles (Fistulobalanus citerosum, Balanus amphitrite) and leaves of the mangrove tree Rhizophora mangle were collected from up to 11 sites in two estuaries in Natal, Brazil--the comparatively contaminated Potengi estuary and the comparatively uncontaminated Curimataú estuary. Specimens were analysed for the trace metals Zn, Cu, Cd, Fe, Mn and Ni, and a comparative assessment made of the power of the different species as trace metal biomonitors. Four of the 5 bivalves (not P. pectinata) take up metals from solution and suspended material (food source), while P. pectinata as a lucinid with symbiotic chemosynthetic bacteria takes up metals from dissolved sources only. The organisms with the strongest net accumulation of particular metals showed the greatest discrimination between trace metal bioavailabilities between sites. Barnacles (F. citerosum) showed the best discrimination, but oysters (C. rhizophorae) are particularly recommended as biomonitors given their strong accumulation patterns for many trace metals, their large size and their local abundance. PMID:16574213

  2. Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil

    International Nuclear Information System (INIS)

    Long-term applications of small concentrations of surfactants in soil via wastewater irrigation or pesticide application may enhance trace metal solubility. Mechanisms by which anionic surfactants (Aerosol 22, SDS and Biopower) affect trace metal solubility were assessed using batch, incubation and column experiments. In batch experiments on seven soils, the concentrations of Cu, Cd, Ni and Zn in the dissolved fraction of soils increased up to 100-fold at the high application rates, but increased less than 1.5-fold below the critical micelle concentration. Dissolved metal concentrations were less than 20% affected by surfactants in long-term incubations (70 days) up to the largest dose of 200 mg C kg-1 soil. Leaching soil columns with A22 (100-1000 mg C L-1) under unsaturated conditions increased trace metal concentrations in the leachates 2-4 fold over the control. Correlation analysis and speciation modelling showed that the increased solubility of metals upon surfactant application was more related to the solubilisation of soil organic matter from soil than to complexation of the metals with the surfactant. Organic matter from soil was solubilised in response to a decrease of solution Ca2+ as a result of Ca-surfactant precipitation. At environmentally relevant concentrations, surfactant application is unlikely to have a significant effect on trace metal mobility. - Graphical abstract: Display Omitted Research highlights: →Anionic surfactants increase metal mobility by solubilising soil organic matter. → Metal complexation with surfactants is relevant only at elevated surfactant doses. → Surfactants have little effect on metal mobility at environmentally relevant doses. - Anionic surfactants mobilise metals from soil through solubilisation of soil organic matter and direct complexation.

  3. Content of trace metals in medicinal plants and their extracts

    OpenAIRE

    Kostić Danijela; Mitić Snežana; Zarubica Aleksandra; Mitić Milan; Veličković Jasmina; Ranđelović Saša

    2011-01-01

    The heavy metals (Fe, Cu, Zn and Mn) contents of selected plant species, grown in Southeast region of Serbia, that are traditionally used in alternative medicine were determined. Among the considered metals, iron content was the highest one and varied from 137.53 up to 423.32 mg/kg, while the contents of Cu, Zn and Mn were remarkably lower, and ranged from 8.91 to 62.20 mg/kg. In addition, an analysis of plants extracts showed a significant transfer of heavy metals during extraction pro...

  4. Speciation of trace metals and their uptake by rice in paddy soils

    OpenAIRE

    Pan, Y.

    2015-01-01

    Rice (Oryza sativa L.) is the most important staple food in South and Southeast Asia and plays a crucial role in food security. However, with fast urbanization and industrialization and economic growth in these parts of the world, the production and quality of rice has become an increasing concern, because contamination of paddy soils with trace metals in industrialized areas can lead to yield reduction of rice, a decline in the nutritional quality of the rice, and an accumulation of trace me...

  5. Enhancing the electrochemical and electronic performance of CVD-grown graphene by minimizing trace metal impurities.

    OpenAIRE

    Iost, R.; Crespilho, F.; Zuccaro, L.; Yu, H; Wodtke, A.; Kern, K; Balasubramanian, K.

    2014-01-01

    The presence of unwanted impurities in graphene is known to have a significant impact on its physical and chemical properties. Similar to carbon nanotubes, any trace metals present in graphene will affect the electrocatalytic properties of the material. Here, we show by direct electroanalysis that traces of copper still remain in transferred CVD (chemical vapor deposition)-grown graphene (even after the usual copper etching process) and strongly influence its electrochemical properties. Subse...

  6. Trace Metals Affect Early Maternal Transfer of Immune Components in the Feral Pigeon.

    Science.gov (United States)

    Chatelain, M; Gasparini, J; Haussy, C; Frantz, A

    2016-01-01

    Maternal early transfers of immune components influence eggs' hatching probability and nestlings' survival. They depend on females' own immunity and, because they are costly, on their physiological state. Therefore, trace metals, whether toxic and immunosuppressive (e.g., lead, cadmium, etc.) or necessary and immunostimulant (e.g., zinc, copper, iron, etc.), are likely to affect the amount of immune components transferred into the eggs. It may also vary with plumage eumelanin level, which is known to be linked to immunity, to transfer of antibodies, and to metal detoxification. In feral pigeons (Columba livia) injected with an antigen and experimentally exposed to lead and/or zinc (two highly abundant trace metals in urban areas), we measured specific antibody transfer and concentrations of two antimicrobial proteins (lysozyme and ovotransferrin) in eggs. As expected, lead had negative effects on specific antibody transfer, while zinc positively affected lysozyme egg concentrations. Moreover, eggs from lead-exposed females exhibited higher ovotransferrin concentrations; because it binds metal ions, ovotransferrin may enable egg detoxification and embryo protection. Finally, eggs' lysozyme concentrations increased with plumage darkness of females not exposed to zinc, while the relation was opposite among zinc-exposed females, suggesting that benefits and costs of plumage melanism depend on trace metal environmental levels. Overall, our study underlines the potential ecotoxicological effects of trace metals on maternal transfers of immune components and the role of plumage melanism in modulating these effects. PMID:27153130

  7. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    Science.gov (United States)

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  8. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae.

    Science.gov (United States)

    Mapolelo, M; Torto, N

    2004-09-01

    Sorption properties of baker's yeast cells, characterised as Saccharomyces cerevisiae were evaluated for trace enrichment of metal ions: Cd(2+), Cr(3+), Cr(6+), Cu(2+), Pb(2+) and Zn(2+) from aqueous environments. Metal concentration was determined by flame atomic absorption spectrometry (FAAS). Parameters affecting metal uptake such as solution pH, incubation time, amount of yeast biomass and effect of glucose concentration (energy source) were optimised. Further studies were carried out to evaluate the effects on metal uptake after treating yeast with glucose as well as with an organic solvent. The results showed that trace enrichment of the metals under study with yeast, depends upon the amount of yeast biomass, pH and incubation time. Treatment of yeast cells with 10-20mM glucose concentration enhanced metal uptake with exception to Cr(6+), whose metal enrichment capacity decreased at glucose concentration of 60mM. Of the investigated organic solvents THF and DMSO showed the highest and lowest capacity, respectively, to enhance metal uptake by yeast cells. Trace enrichment of metal ions from stream water, dam water, treated wastewater from a sewage plant and wastewater from an electroplating plant achieved enrichment factors (EF) varying from 1 to 98, without pre-treatment of the sample. pH adjustment further enhanced the EF for all samples. The results from these studies demonstrate that yeast is a viable trace metal enrichment media that can be used freely suspended in solution to achieve very high EF in aquatic environments. PMID:18969566

  9. Trends of labile trace metals in tropical urban water under highly contrasted weather conditions.

    Science.gov (United States)

    Villanueva, J D; Le Coustumer, P; Denis, A; Abuyan, R; Huneau, F; Motelica-Heino, M; Peyraube, N; Celle-Jeanton, H; Perez, T R; Espaldon, M V O

    2015-09-01

    The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: transition from winter to summer, winter, and summer monsoons, respectively. The distinction of each period is defined by their specific hydrological and physico-chemical conditions. Substantial concentrations of the trace metals were detected. The distribution and trend of the trace metals under the challenge of a tropical climate were able to follow using DGT as a sensitive in situ sampler. In order to identify the differences among periods, statistical analyses were performed. This allowed discriminating period 2 (oxic water) as significantly different compared to other periods. The spatio-temporal analysis was then applied in order to distinguish the trend of the trace metals. Results showed that the trend of trace metals can be described according to their response to (i) seasonal variations (Cd and Cr), (ii) spatio-temporal conditions (Co, Cu, Ni, and Pb), and (iii) neither (i) nor (ii) meaning exhibiting no response or having constant change (Zn). The correlation of the trace metals and the physico-chemical parameters reveals that Cd, Co, Cu, and Cr are proportional to the dissolved oxygen (DO), Cd and Ni are correlated pH, and Zn lightly influenced by salinity.

  10. Comparative analysis of trace metal accumulation in forest ecosystems

    International Nuclear Information System (INIS)

    Wet- and dry-deposition inputs and streamflow outputs of Cd, Mn, Pb, and Zn were measured at four forested watersheds in the southeastern United States. Atmospheric inputs to each site were similar, varying by a factor of 1.1 to 2.2. Dry deposition dominated input of Mn, while wet deposition was the major process for the other metals (54 to 85% of total). Except for Mn, the metals were strongly retained by each system: only 2% of the Pb, 8 to 29% of the Cd, and 8 to 34% of the Zn inputs were transported in annual streamflow. Metal export is related to stream pH, dissolved organic carbon, and bedrock geology at each site

  11. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  12. Seasonal variation and sources of dissolved trace metals in Maó Harbour, Minorca Island.

    Science.gov (United States)

    Martínez-Soto, Marly C; Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Rodellas, Valentí; Garcia-Orellana, Jordi; Basterretxea, Gotzon

    2016-09-15

    The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem. PMID:27163484

  13. Effect of trace metals on growth of Streptococcus mutans in a teflon chemostat.

    Science.gov (United States)

    Aranha, H; Strachan, R C; Arceneaux, J E; Byers, B R

    1982-02-01

    Correlations between the presence of certain trace metals in dental enamel or in drinking water and the incidence of human dental caries have been demonstrated; therefore, the effects of several trace metals on growth of the cariogenic organism Streptococcus mutans OMZ176 were determined. For continuous growth in a chemically defined medium (treated with Chelex-100 to lower trace metal contamination and supplemented with high-purity trace metal salts) used in a chemostat constructed of Teflon, S. mutans required input of carbon dioxide and supplementation with magnesium (126 microM) and manganese (18 to 54 microM). Addition of iron (3.6 microM) increased the level of steady-state growth by a factor of 2.8 (stimulation index [SI]); zinc at 0.4 microM nearly doubled equilibrium growth (SI = 0.9). Higher concentrations of iron and zinc (5.4 and 0.8 microM, respectively) were less stimulatory (SI values of 1.95 and 0.3, respectively). Small (but statistically significant) increases in steady-state growth were effected by cobalt (SI = 0.3 at 5.1 to 20.4 microM) and tin (SI = 0.4 at 5.1 to 10.2 microM). These data suggest nutritional requirements for these metals. Copper at a concentration of 0.16 microM was inhibitory. These results show significant effects of these metals on growth of S. mutans and may confirm epidemiological evidence suggesting a role for certain trace metals in the incidence of dental caries. PMID:7035364

  14. QUANTITATIVE AAS STIMATION OF HEAVY METALS AND TRACE ELEMENTS IN MARKETED AYURVEDIC CHURNA PREPARATIONS IN INDIA

    Directory of Open Access Journals (Sweden)

    Munish Garg* and Jaspreet Singh

    2012-05-01

    Full Text Available Churna preparations are an important and widely used form of Ayurvedic herbal formulations in India. These are prepared by mixing powdered form of single or mixture of several crude drugs meant to be dispensed as such. Since the quality of raw material plays an important role in the overall quality of a herbal formulation due to common practice of collecting and processing medicinal plants from different geographical sources and the fact presence of certain trace elements and heavy metals have a great significance in this matter, the present study is based on the screening of 19 popular herbal Churna preparations sold in the Indian market for the quantitative analysis of essential trace and toxic heavy metals by atomic absorption spectrometry. Heavy metals like Pb, Cd and trace metals like Ca, Mg, Al, Cu, Zn were determined using flame atomic absorption spectrometer (FAAS and heavy metals such as As and Hg were determined by hydride generation technique (cold vapour atomic absorption spectrometery. The results reveal that among the trace (micronutrients metals Ca and Mg were found in highest amount. Sixteen samples for Hg content and eight for Pb content were exceeding the WHO permissible limits. Arsenic was found below the permissible limit while Cd was above the permissible limit in all the tested samples. In conclusion, the quality of herbal Churna preparations sold in India market is questionable and need to be regulated efficiently before launching in to the market. Besides, the present paper provides a simple, convenient and reliable AAS method for the quantitative analysis of trace and heavy metals in herbal products which can be utilized for industrial purpose.

  15. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  16. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  17. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland

    Science.gov (United States)

    Klassen, R.A.

    1998-01-01

    In central Newfoundland (NTS 12A/10, 15, 16, 2H/1), As, Pb, and Zn concentrations in the clay-sized ( 1000 ppm), exceeding levels commonly set for purposes of environmental protection. Near Pb-Zn mines at Buchans, geochemical variation with depth reflects the dispersal of detritus from mineralized bedrock, and differences in sediment type and provenance. There, surface sediments are rich in granitic debris derived from the Topsails igneous terrane 5 km north of Buchans and contain low concentrations of trace metals. These sediments are compositionally unrelated to either Buchans Group volcanic rock or an underlying, older till enriched in sulphide minerals and trace metals. Metal-rich till extending up to 10 km southwest of Buchans results from combined glacial and debris flow transport related to two distinct geological events. Trace metals are enriched (two- to fourfold) in the clay-sized fraction of till compared to the silt and clay-sized, and are associated with Al- and Mg-bearing minerals that preferentially concentrate in the clay fraction. The geochemistry of the silt and clay-sized fraction can approximate that of the < 2-mm fraction. Background variations in till illustrate the important role of a geological framework to the interpretation of geochemical surveys and the origins of trace metals in the environment.

  18. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    Science.gov (United States)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  19. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    , the majority of the boilers are currently equipped with the old precipitators. The results of the study show remarkably high concentrations of toxic heavy metals in the flue gases (e.g., Pb, Zn, Mn and As: >200 μg/m3 each) and clear accumulation of Pb, Cd, Zn, Tl and As on the fly ash. Additionally...

  20. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2015-01-01

    Full Text Available Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al, cadmium (Cd, cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb, and zinc (Zn from natural aerosol samples in seawater over a 7 day period to (1 evaluate the role of extraction time in trace metal dissolution behavior and (2 explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples, to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples. Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples. Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.

  1. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  2. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection.

  3. Determination of some trace metals in elsaraf dam (GEDAREF)

    International Nuclear Information System (INIS)

    In this study the part of the plant analyzed was the root, while by the soil we mean the soil which is in direct contact with the plant root. This analysis was carried to find the relation between the concentrations of the free ions in water, the mobile ions in the soil in contact with the root of the plant and the ions uptake by the plant as well as the movement of these ions between different reservoirs. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd). Because of its natural abundance, iron has the highest concentration (54900/56600, 33580/36800), manganese has shown the second highest concentration, followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations, while cadmium has shown the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant and then water. Cyperus rotandus has shown high affinity towards most of the metal ions, while the rest of plants have shown almost similar affinity. Because of the generally low concentration of metal ions in water, preconcentration was used using 8-hydroxyquinoline (oxine) and ammonium pyrolidine dithiocarbamate APDC to extract (pre concentrate) the metal ions at the optimum parameters before measurement in AAS.(Author)

  4. Preliminary comparison of trace metals in coastal aerosols between Qingdao and Liverpool

    Institute of Scientific and Technical Information of China (English)

    LIU Changling; ZHANG Jing; Roy CHESTER

    2008-01-01

    Aerosol samples were collected at two coastal suburban stations,Qingdao (China) in 1995-1996 and Liverpool (U.K.) in 1995,respectively.The samples were analyzed to determine the concentrations of trace metals (Cr,Zn,Cu,Co,Ni,Pb,V,and Cd) as well as Al,Fe and Mn.Data were examined to understand the difference of trace metals in aerosols between coastal zones downwind the developing area (near the Yellow Sea) and developed region (near the Irish Sea).The results show that most elements at Qingdao have levels 4-5 times higher than those at Liverpool,particularly for the crust-dominated elements (e.g.Al,Fe and Mn).Moreover,the aerosol composition at Qingdao is higher in spring than in summer,underlying the influence of westerlies and local emissions in combination,whereas seasonal change of aerosol composition is not significant at Liverpool.The enrichment factors for the crustal source elements (EFcrust) at Liverpool axe much higher than those at Qingdao.The contributions from the pollutant source (Rp) for some trace metals like Cu,Pb,Zn and Cd are 90% at Qingdao and Liverpool,suggesting overwhelming anthropogenic contributions to these metals.The contributions from crustal source (Rc) for trace metals tend to increase with higher aerosol levels and Al concentration at Qingdao,indicating a good correlation between the crust-dominated component and the air mass.At Liverpool,the Rc values for trace metals are positively correlated with Al concentrations instead of with aerosol mass,suggesting that Al in aerosols represents the crustal component even though the aerosols come from different sources.

  5. Atmospherically deposited trace metals from bulk mineral concentrate port operations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m{sup 2}/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m{sup 2}/day). Maximum loading values after a 10-minute play period were 3012 μg/m{sup 2}, more than seven times the goal of 400 μg/m{sup 2} used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m{sup 2}) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m{sup 2}/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ({sup 208}Pb/{sup 207}Pb and {sup 206}Pb/{sup 207}Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear — even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. - Graphical abstract: Post-play hand wipe, Headland Park, Townsville, Australia. - Highlights: • Bulk mineral port

  6. Trace metal levels in fruit juices and carbonated beverages in Nigeria.

    Science.gov (United States)

    Williams, Akan B; Ayejuyo, Olusegun O; Ogunyale, Adekunle F

    2009-09-01

    Trace metal levels in selected fruit juices and carbonated beverages purchased in Lagos, Nigeria were determined using atomic absorption spectrophotometer (Unicam model 969) equipped with SOLAAR 32 windows software. Fruit juices analysed were grape, pineapple, apple, orange, lemon juices and their brand names were used. Some carbonated drinks were also evaluated for metal levels. Trace metals investigated were Cr, Cu, Pb, Mn, Ni, Zn, Sn, Fe, Cd and Co. Trace metal contents of fruit juices were found to be more than the metallic contents of carbonated beverages. Pb level in the fruit juices ranged from 0.08 to 0.57 mg/l but was not detected in the carbonated drinks. Concentrations of Pb in lemon juice and Mn in pineapple juice were relatively high. Cd and Co were not detected in the selected juices and beverages. Additionally, Pb, Cu, Cr and Fe were not detected in canned beverages but were present in bottled beverages. However, the metal levels of selected fruit juices and carbonated beverages were within permissible levels except for Mn in pineapple juice and Pb in lemon juice. PMID:18704729

  7. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively.

  8. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    Science.gov (United States)

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. PMID:27100002

  9. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; DineshKumar, P.K.; Nair, M.; Muraleedharan, K.R.

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance...

  10. Petroleum hydrocarbons and trace metals in Visakhapatnam harbour and Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; VaraPrasad, S.J.D.; Gupta, G.V.M.; Sudhakar, U.

    High concentrations of PHC were observed in the inner channels (viz. South lighter canal, Northern arm, North Western arm and Western arm) of Visakhapatnam Harbour, Andhra Pradesh, India. The estimation of trace metals (Cu, Zn, Pb, Cd, Co, Ni and Cr...

  11. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  12. Impact of spherical diffusion on labile trace metal speciation by electrochemical stripping techniques

    NARCIS (Netherlands)

    Pinheiro, J.P.; Domingos, R.F.

    2005-01-01

    The impact of the spherical diffusion contribution in labile trace metal speciation by stripping techniques was studied. It was shown that the relative error in the calculation of the stability constants caused by assuming linear diffusion varies with the efficiency of stirring, the diffusion coeffi

  13. Evaluation of toxic trace metals Cd and Pb in Arabian Sea waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.; SenGupta, R.

    An attempt has been made to present a picture of the distribution of toxic trace elements Cd and Pb in the Northern Arabian Sea by applying an improved analytical technique for the detection of dissolved forms of the metals at nanogram levels...

  14. Distribution of particulate trace metals in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Satyanarayana, D.; Murty, P.V.S.P.; Sarma, V.V.

    : 4734.) 112 ~ATYANARAYANAet al significaJ1t positive correlations observed among; particulate Zn,TSM and other trace metals(Fe, and Ni, Table II). Slight increase ofparticulate Zninthedeep~rwaters can be atributed to its scavenging by the hydrous oxides...

  15. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique

    Energy Technology Data Exchange (ETDEWEB)

    Janaki-Raman, D. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Jonathan, M.P. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico)]. E-mail: mp_jonathan7@yahoo.com; Srinivasalu, S. [Department of Geology, Anna University, Chennai - 600 025 (India); Armstrong-Altrin, J.S. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico); Mohan, S.P. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Ram-Mohan, V. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India)

    2007-01-15

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO{sub 3}, organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO{sub 3} indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources. - Natural and anthropogenic trace metals afeecting mangrove sediments.

  16. Microbial Activity Indices: Sensitive Soil Quality Indicators for Trace Metal Stress

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Tao; T.BECQUER; C.QUANTIN; M.BENEDETTI; P.LAVELLE; DAI Jun

    2005-01-01

    Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251,250, 171, and 2.4mg kg-1 respectively. DTPA-extractable metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, total Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C mineralization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some "linked" microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.

  17. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  18. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities. PMID:27107989

  19. The concentrations of trace metals in plants from phosphogypsum waste heap in Wiślinka, northern Poland

    Directory of Open Access Journals (Sweden)

    Boryło A.

    2013-04-01

    Full Text Available The aim of this work was determination of trace metals (Pb, Zn, Ni, Cu and Fe in different plants collected in the vicinity of phosphogypsum waste heap in Wiślinka (northern Poland. The concentrations of trace metals were determined by two methods: AAS (atomic absorption spectrometry and OES-ICP (atomic emission spectrometry with inductively coupled plasma. Enhanced levels of iron were observed in all the analyzed samples. This fact can be explained by the higher content of iron in the groundwaters of Žuławy Wiślane, where concentration of iron was 60 mg/l. The trace metals concentrations in plant samples from phosphogypsum waste heap recorded in this study are generally higher than in control sites. In this study the relationship is shown between atmospheric trace metals deposition and elevated trace metals element concentrations in plants and topsoils, especially in the vicinity of phoshpogypsum waste heap.

  20. Biochemical normalization of trace metals in Arctocephalus australis

    Directory of Open Access Journals (Sweden)

    Besnik Baraj

    2009-03-01

    Full Text Available Initially, the heart concentration data does not seem relevant for use as a bioindicator, mainly due to its low concentration level. After applying a normalizing procedure, the heart results were a better Hg bioindicator (preconcentration coefficient 43.1 than those of the kidney (preconcentration coefficient 8.6. Cadmium preconcentration coefficients were 128.1, 195.3 and 5.2 for liver, kidney and heart, respectively, demonstrating the high accumulative capacity especially for the liver and kidneys. Iron is proposed as a normalizing element for the definiton of the regional natural biochemical population of the metals. In general, positive correlation coefficients were found between Fe and other metals.Arctocephalus australis foi usado como organismo indicador para concentrações de metal traço na costa do Rio Grande do Sul. Metais foram analisados em tecidos extraídos do coração, rins e fígado. Os baixos teores encontrados no coração inicialmente poderiam indicar que este órgão não traria resultados relevantes. Porém, mediante a aplicação de um procedimento de normalização, foram encontrados coeficientes de pré-concentração de 43.1 e de 8.6 para o coração e para os rins, respectivamente, indicando o tecido do coração como o melhor bioindicador para Hg. Para Cd, os coeficientes de pré-concentração foram 128.1, 195.3 e 5.2 para fígado, rins e coração, respectivamente, demonstrando alta capacidade acumulativa especialmente para fígado e rins. Foram encontradas altas correlações positivas entre o Fe e os metais Zn, Cu, Cd, Hg, Ag, Mn, Ni, Cr e Pb, indicando ser este elemento normalizante para definição da concentração bioquímica natural de metais na população de Arctocephalus australis no extremo sul do Brasil.

  1. Modelling trace metal extractability and solubility in French forest soils by using soil properties

    OpenAIRE

    Gandois, Laure; Probst, Anne; Dumat, Camille

    2010-01-01

    Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2-extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > ...

  2. Trace metals in atmospheric particulates characterized of aerosol emitted by industrial and urban sources

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, A.; Solisio, C.; Zilli, M.; Del Borghi, M. [Genoa University, Genoa (Italy). Chemical and Process Engineering Institute G.B. Bonino

    1998-12-31

    The results of a year`s study in the Savona area (Italy) for dust deposition have been analyzed in order to characterize the emission sources. The contribution of the major pollutant sources has been determined by tracer metals and their enrichment factors. The selected metals were Cd, Cu, Pb, An, Cr, and Ni. The obtained results show four types of emission sources responsible for airborne trace metals; traffic, industrial plants a large oil and coal fired power station, resuspension of soil particles and residential heating. 9 refs., 9 figs., 1 tab.

  3. Trace metals and otolith defects in mocha mice.

    Science.gov (United States)

    Rolfsen, R M; Erway, L C

    1984-01-01

    Mocha mice with pigment anomalies of the coat, eyes, and inner ears also have congenital otolith defects, and they exhibit progressive cochlear degeneration. Mocha mice were first reported to exhibit otolith defects comparable to those of pallid mice. Since manganese supplementation is effective in preventing the otolith defects in pallid mice and in pastel mink, we sought to establish whether or not manganese also might be effective in mocha mice. The otolith defects of mocha mice were prevented or reduced by supplementing the pregnant dams with manganese and/or zinc. The mocha mice also exhibited high perinatal mortality that was not reduced by the supplementary metals. Surviving mocha mice have behavioral anomalies associated with their inner ear defects. Preliminary observations of auditory-evoked brainstem responses and of cochlear degeneration in the mocha mice are discussed. PMID:6736600

  4. Transplanted aquatic mosses for monitoring trace metal mobilization in acidified streams of the Vosges Mountains, France

    Energy Technology Data Exchange (ETDEWEB)

    Mersch, J.; Guerold, F.; Rousselle, P.; Pihan, J.C. (Univ. of Metz (France))

    1993-08-01

    As a result of acid depositions, trace metals are mobilized from the soils to the aquatic environment. Especially in poorly mineralized waters, elevated metal concentrations may rapidly have adverse effects on aquatic organisms. In particular, it has been shown that aluminium, a key element in the acidification process, is a toxic cofactor for fish and other biota. An accurate assessment of this specific form of water pollution may not be possible when only based on analyses of single water samples. On the one hand, water metal concentrations are often close to the detection limit of usual analytical techniques, and on the other hand, levels in acidified streams undergo strong temporal variations caused by acid pulses following meteorological events such as heavy rainfall and snowmelt. Compared to water analyses, indirect monitoring methods provide undeniable advantages for assessing water contamination. Aquatic bryophytes, in particular, have been regarded as interesting indicator organisms for trace metal pollution. However, their use has mainly been restricted to the lower course of streams for evaluating the impact of industrial discharges. The purpose of this study was to test the suitability of transplanted aquatic mosses for monitoring aluminium and four other trace metals (copper, iron, lead and zinc) in the particular context of acidifed streams draining a forested headwater catchment. 15 refs., 2 figs., 2 tabs.

  5. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  6. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  7. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  8. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    Science.gov (United States)

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (farms within the watershed.The Florida Geological Survey/US Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. The data are intended to provide a benchmark for comparison with metal concentration data measurements. Seventy nine short cores were collected from 66 sample locations and analyzed. Metal concentrations were

  9. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    Science.gov (United States)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2016-04-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  10. Trace metals in Antarctica related to climate change and increasing human impact.

    Science.gov (United States)

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals

  11. Trace metals in Antarctica related to climate change and increasing human impact.

    Science.gov (United States)

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals

  12. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination

    Directory of Open Access Journals (Sweden)

    Congiu A.

    2013-04-01

    Full Text Available A mineralization method HCl-free for heavy metals analysis in sediments and soils by DRC-ICP-MS was developed. The procedure, which uses concentrated nitric, hydrofluoric acid and hydrogen peroxide, was applied for the analysis of arsenic, cadmium, chromium, nickel and vanadium. The same samples were then analyzed, as pressed pellets, by wavelength dispersive X ray fluorescence (WD-XRF using the dedicated PANalytical Pro Trace solution for the determination of trace elements. Comparison of ICP and XRF data showed good agreement for the elements under investigation, unless for chromium in soils, which recovery was not complete.

  13. Modeling of the distribution of heavy metals and trace elements in argan forest soil and parts of argan tree.

    Science.gov (United States)

    Mohammed, Faez A E; Bchitou, Rahma; Boulmane, Mohamed; Bouhaouss, Ahmed; Guillaume, Dominique

    2013-01-01

    The transfer of heavy metals and trace elements from argan forest soil into the wood, leaves, almonds, and argan oil was studied. Analyzed metals were: chromium, cadmium, copper, zinc, lead, calcium, phosphorus, potassium, and magnesium. Correlations linking different behaviors of the studied heavy metals and trace elements observed by multidimensional analysis were attributed to partial-spatial variations. Whereas the RV-coefficient of wood, leaf, almond and oil groups was high, the soil group correlated poorly with the other groups.

  14. Trace Metal Levels in Lichen Samples From Roadsides in East Black Sea Region, Turkey

    Institute of Scientific and Technical Information of China (English)

    OZGUR DOGAN ULUOZLU; KADIR KINALIOGLU; MUSTAFA TUZEN; MUSTAFA SOYLAK

    2007-01-01

    Objective To determine the metal contents of lichen species from East Black Sea region of Turkey for investigation of trace metal pollution sourced traffic.Methods The levels of copper,cadmium,lead,zinc,manganese,iron,chromium,nickel,cobalt,palladium in lichen samples collected from East Black Sea region of Turkey were determined by flame and graphite furnace atomic absorption spectrometry after microwave digestion method.The accuracy of the method was corrected by standard reference material(NIST SRM IAEA-336 Lichen). Results The contents of investigated trace metals in lichen samples were 7.19-22.4 μg/g for copper,0.10-0.64 μg/g for cadmium,4.03-44.6 μg/g for lead,14.5-41.8 1.μg/g for zinc,25.8-208 μg/g for manganese,331-436 μg/g for iron,1.20-3.01 μg/g for chromium,1.48-3.90 μg/g for nickel,0.20-3.55 μg/g for cobalt.0.11-0.64 μg/g for palladium.The results were compared with the literature values.Conclusion Some lichen species such as Xanthoparmelia conspersa,Xanthoria calcicola,Peltigera membranacea,and Physcia adscendens are accumulated trace metals at a high ratio.

  15. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  16. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    Science.gov (United States)

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods. PMID:20658661

  17. Trace metal concentrations in menhaden larvae Brevoortia patronus from the northern Gulf of Mexico

    Science.gov (United States)

    Hanson, Peter J.; Hoss, Donald E.

    1986-09-01

    Whole body concentrations of Cu, Zn, Mn and Fe were measured in individual gulf menhaden larvae, Brevoortia patronus (11-18 mm standard length) from coastal waters of the northern Gulf of Mexico as part of a continuing project investigating the mechanisms of biological interaction and effect of trace metals in marine food webs. Larvae were collected at three different times between February 1981 and 1982 at two locations, offshore of Southwest Pass of the Mississippi River and offshore of Galveston, Texas. Fish at the Mississippi location had significantly ( P≤0·05) greater concentrations of all metals compared with those from the Galveston location. No significant ( P>0·05) differences in concentration were detected among the three sampling periods. Menhaden larvae had metal conentrations comparabe to other species of larval fish and zooplankton from the Gulf of Mexico and other coastal waters. Differences in metal concentrations in larvae from the two locations appear to be a subtle response of the fish to differences in the trace metal chemistries of the two coastal areas. Processes influencing metal concentrations are discussed.

  18. Characterization of trace metals on soot aerosol particles with the SP-AMS: detection and quantification

    Science.gov (United States)

    Carbone, S.; Onasch, T.; Saarikoski, S.; Timonen, H.; Saarnio, K.; Sueper, D.; Rönkkö, T.; Pirjola, L.; Häyrinen, A.; Worsnop, D.; Hillamo, R.

    2015-11-01

    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas / RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas / RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.

  19. Transfer and mobility of trace metallic elements in the sedimentary column of continental hydro-systems

    International Nuclear Information System (INIS)

    In freshwater systems, trace metal pollutants are transferred into water and sedimentary columns under dissolved forms and/or fixed onto solid particles. Accumulated in the sedimentary areas, these latter ones can constitute important stocks of materials and associated pollutants and may impair water quality when environmental changes lead to increase their mobility. The mobility of the stocks of pollutants is mainly depending on the erosion, on the interstitial diffusion of the mobile phases (dissolved and colloidal) and on the bioturbation. In this context, this study involves the analysis of the mobility by interstitial diffusion. This topic consists in studying trace metal fractionation between their mobile (dissolved and colloidal) and non mobile (fixed onto the particles) forms. This point is governed by sorption/desorption processes at the particle surfaces. These processes are regulated by physico-chemical parameters (pH, redox potential, ionic strength...) and are influenced by biogeochemical reactions resulting from the oxidation of the organic matter by the microbial activity. These reactions generate vertical profiles of nutrients and metal concentrations along the sedimentary column. To understand these processes, this work is based on a mixed approach that combines in situ, analysis and modelling. In situ experimental part consists in sampling natural sediments cores collected at 4 different sites (1 site in Durance and 3 sites on the Rhone). These samples are analyzed according to an analytical protocol that provides the vertical distribution of physicochemical parameters (pH, redox potential, size distribution, porosity), nutrients and solid - liquid forms of trace metals (cobalt, copper, nickel, lead, zinc). The analysis and interpretation of these experimental results are based on a model that was developed during this study and that includes: 1) model of interstitial diffusion (Boudreau, 1997), 2) biogeochemical model (Wang and Van Cappellen

  20. Sensitive neutron activation method for determination of trace impurities in Cr metal

    International Nuclear Information System (INIS)

    Many chromium metal samples from a considerable number of suppliers were analyzed for 13-15 trace element impurities by neutron activation analysis. By use of suitable γ-ray absorber between sample and detector the overwhelming intensity of lower energy γ radiation (320 keV) produced from the matrix was reduced to a satisfactory level. In this work the (n,γ) products from the trace elements of interest have characteristic γ rays with energies above 680 keV, and the sensitivity levels were in the range of 1-100 ppb. The tabulated results show wide variations in the pattern of impurities but the powdered samples generally had considerably higher levels of iron and trace elements

  1. BCO-DMO: Supporting the Management and Sharing of Marine Trace Metal Data

    Science.gov (United States)

    Rauch, S.; Allison, M. D.; Chandler, C. L.; Copley, N. J.; Gegg, S. R.; Groman, R. C.; Kinkade, D.; Shepherd, A.; Glover, D. M.; Wiebe, P. H.

    2015-12-01

    The U.S. GEOTRACES program seeks to identify processes controlling the distribution of trace elements and isotopes in the world's oceans. Quantifying marine trace elements and understanding their role in biogeochemical cycles is important for predicting the ocean's response to environmental changes, such as a changing climate and the release of elements into the ocean due to human activities. This research program is collaborative in nature and only one component within the broader International GEOTRACES program. An important part of the collaborative scientific process is having access to trustworthy, well-documented data from colleagues. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) serves as the U.S. GEOTRACES Data Assembly Center, and facilitates the management, sharing, and long-term preservation of trace element and isotope data not only from U.S. GEOTRACES researchers, but from marine biogeochemists across the United States. The BCO-DMO data managers work closely with investigators contributing their data to ensure quality and completeness of documentation to foster data discovery and re-use by potential collaborators. The BCO-DMO system provides free and open access to data and tools for discovery, mapping, visualization, and download. Trace element and isotope datasets from the recent U.S. GEOTRACES North Atlantic Transect and Eastern Pacific Zonal Transect cruises, as well as other GEOTRACES-related projects are now available from BCO-DMO. Related data from legacy programs, including the U.S. Joint Global Ocean Flux Study (JGOFS), are also freely available for use by investigators seeking to further the understanding of trace metal cycling in the oceans. This presentation will highlight relevant trace metal data managed by BCO-DMO as well as the tools and features that aid in data discovery, access, and visualization.

  2. Degree of trace metal pyritization in sediments from the Pacific coast of Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nava Lopez, Carmen; Huerta Diaz, Miguel Angel [Instituto de Investigaciones Oceanologicas, Ensenada, Baja California (Mexico)

    2001-06-01

    We analyzed sediments from a core collected on the Pacific coast of Baja California, 45 km off the city of Tijuana and at 1257 m water depth (32 Celsius degrees 9.5N , 117 Celsius degrees 8.3W), for trace metal content in two operationally-defined fractions, HCl and pyrite. Our results indicate transference of Cu>Ni>Zn>>Hg y Ag from the HCl to the pyrite fraction. Sediments have degrees of pyritization (DOP) that average 7.2{+-} 4.9% with a maximum value of 18.5%. Average degrees of trace metal pyritization (DTMP) range from 6.2 {+-}2.1% to 83{+-} 8% for Mn and Hg, respectively, although maximum values for some metals were closed to 100%. This transference is apparently a function of the solubility products of metal sulfides and the relative abundances of metals in the HCl fraction, as suggested by the significant correlation (p<0.001) observed between these two parameters and the DTMP of a number of trace metals. A similar correlation was obtained from published data of two cores collected in the Gulf of Mexico. [Spanish] Se analizaron sedimentos de un nucleo recolectado en la costa del Pacifico de Baja California 45 km de la costa de la ciudad de Tijuana y a 1257 m de profundidad del agua (32 grados Celsius 9.5N, 117 grados Celsius 8.3W), para determinar su contenido de metales traza en dos fracciones operacionales definidas HCl y pirita. Los resultados indican una transferencia de Cu>Ni>Zn>>Hg y Ag de la fraccion de HCl a la fase piritica. Los grados de piritizacion (DOP) en los sedimentos promediaron 7.2{+-} 4.9%, con un valor maximo de 18.5%. Los valores promedio de los grados de piritizacion de metales traza (DTMP) abarcaron el intervalo de 6.2 {+-}2.1% a 83{+-}18% para Mn y Hg, respectivamente, aunque los valores maximos para algunos metales estuvieron cercanos al 100%. Esta transferencia aparentemente es funcion de los productos de solubilidad de los sulfuros metalicos y de la abundancia relativa de metales en la fraccion HCl, como sugiere la correlacion

  3. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  4. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-06-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  5. Aerosol Organic Matter-Trace Metal Relationships Revealed by Ultra-High Resolution Mass Spectrometry

    Science.gov (United States)

    Wozniak, A. S.; Sleighter, R. L.; Morton, P. L.; Landing, W. M.; Shelley, R. U.; Hatcher, P. G.

    2011-12-01

    Atmospheric delivery of aerosols is important for the biogeochemical cycling of organic matter (OM) and trace elements in marine environments. Aerosols over marine environments can be derived from marine sources or transported from continental regions of variable vegetative cover and anthropogenic influence. These different sources are key determinants of aerosol OM composition, as well as trace metal amounts and characteristics. Dust-influenced aerosols typically contain higher amounts of Fe than anthropogenic-influenced aerosols but have lesser % of soluble Fe (%FeS), believed to be the bioavailable form of Fe for marine phytoplankton. Four samples from the 2008 GEOTRACES intercalibration experiments (Miami, FL, USA) were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and related to both air mass back trajectories and %FeS. Three samples showed aerosol sources from the east consistent with Saharan dust inputs, while the fourth sample was derived in part from air masses to the north, influenced by the North American continent. This North American-influenced sample was collected following the 3 day period with the highest %FeS (1.3-1.7%) of the 11 day intercalibration experiment (mean = 0.4-1.1%). FT-ICR mass spectra showed 795 peaks common to the dust-influenced samples but absent from the North American-influenced sample. These peaks were assigned molecular formulas characterized by CHO and CHON compounds with lower H/C and O/C ratios than the 1257 formulas common to all 4 samples, suggesting that the dust-influenced aerosols carry OM that is less oxygenated and more condensed in structure along with Fe of lesser solubility. Air mass trajectory analyses revealed samples collected during a 2010 cruise in the North Atlantic Ocean to be characterized by European-influenced (anthropogenic), African-influenced (dust), and primarily marine air masses, making them ideal for further exploration of the

  6. Soluble Nutrient and Trace Metal Fluxes from Aerosol Dry Deposition to Elkhorn Slough, CA

    Science.gov (United States)

    Gray, E. T.; Paytan, A.; Haskins, J.

    2009-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances in aerosols. These components can come from both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources. These pollutants may affect ecosystem health and water quality with environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. In this study we focus on dry deposition to Elkhorn Slough, California. Size fractionated aerosol samples (PM 2.5 and PM 10) collected continuously over a seven day period using a cascade impactor are used along with a deposition model to determine the soluble nutrient and trace metal fluxes on the Elkhorn Slough ecosystem. Atmospheric deposition inputs will be compared to other sources and their potential impact evaluated.

  7. Geochemical Baseline and Trace Metal Pollution of Soil in Panzhihua Mining Area

    Institute of Scientific and Technical Information of China (English)

    滕彦国; 倪师军; 等

    2002-01-01

    A total of 31 topsoil samples were systematically collected from the Panzhihuaminingarea including steel smelting,coal mining ,urban and rural districts.A normalization procedure was adopted to establish the environmental geochemical baseline models for this area.By using the above baseline models,the regional geochemical baseline values of As,Cr,Cu,Ni,Pb and Zn were determined.On the basis of the baselines,the enrichment factors were used to analyze the mechanism of trace metal pollution in topsoil from anthropogenic sources,and the results showed that the serious trace metal pollution is caused by human activities in coal mine,iron mine,smelting factory,tailing dam and other industrial districts in the Panzhihua area.

  8. Geochemical Baseline and Trace Metal Pollution of Soil in Panzhihua Mining Area

    Institute of Scientific and Technical Information of China (English)

    滕彦国; 倪师军; 庹先国; 张成江; 马玉孝

    2002-01-01

    A total of 31 topsoil samples were systematically collected from the Panzhihua mining area including steel smelting, coal mining, urban and rural districts. A normalization procedure was adopted to establish the environmental geochemical baseline models for this area. By using the above baseline models, the regional geochemical baseline values of As, Cr, Cu, Ni, Pb and Zn were determined. On the basis of the baselines, the enrichment factors were used to analyze the mechanism of trace metal pollution in topsoil from anthropogenic sources, and the results showed that the serious trace metal pollution is caused by human activities in coal mine, iron mine, smelting factory, tailing dam and other industrial districts in the Panzhihua area.

  9. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  10. Feedback interactions between trace metal nutrients and phytoplankton in the ocean

    Directory of Open Access Journals (Sweden)

    William eSunda

    2012-06-01

    Full Text Available In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon the productivity and species composition of marine phytoplankton communities are affected by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium. Of these, iron exerts the greatest limiting influence on carbon fixation rates and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2 fixation rates, and thus exerts an important influence on ocean inventories of biologically available fixed nitrogen. Because of these effects, iron is thought to play a key role in controlling the biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 levels and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese have a lesser effect on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among algal species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals affect the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and regeneration processes, downward flux of biogenic particles, cellular release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution marine and terrestrial biology over geologic history.

  11. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    Science.gov (United States)

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  12. Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia.

    Science.gov (United States)

    Al-Taani, Ahmed A; Batayneh, Awni; Nazzal, Yousef; Ghrefat, Habes; Elawadi, Eslam; Zaman, Haider

    2014-09-15

    The Gulf of Aqaba (GoA) is of significant ecological value with unique ecosystems that host one of the most diverse coral communities in the world. However, these marine environments and biodiversity have been threatened by growing human activities. We investigated the levels and distributions of trace metals in surface seawater across the eastern coast of the Saudi GoA. Zn, Cu, Fe, B and Se in addition to total dissolved solids and seawater temperature exhibited decreasing trends northwards. While Mn, Cd, As and Pb showed higher average levels in the northern GoA. Metal input in waters is dependent on the adjacent geologic materials. The spatial variability of metals in water is also related to wave action, prevailing wind direction, and atmospheric dry deposition from adjacent arid lands. Also, water discharged from thermal desalination plants, mineral dust from fertilizer and cement factories are potential contributors of metals to seawater water, particularly, in the northern GoA.

  13. Changes in Trace Metal Species and Other Components of the Rhizosphere During Growth of Radish

    DEFF Research Database (Denmark)

    Hamon, R. E.; Lorenz, S. E.; Holm, Peter Engelund;

    1995-01-01

    Changes in the properties of soil solution in the rhizosphere of developing radish plants were investigated. Variations in these properties were expected to affect the distribution and speciation of metals in the soil and soil solution. Applications of essential nutrients were linked to plant...... control of fertilizer additions led to the maintenance of a relatively low ionic strength in the soil solution, and under such conditions trace metal solubility appeared to be highly influenced by the concentration of DOC. A chemical speciation analysis was performed which showed that, while dissolved Cd...... existing in the uncomplexed state. Changes in the concentrations of uncomplexed Cd and Zn with time gave the best correlations with changes in plant uptake of these metals over time, supporting the hypothesis that plants mainly absorb the free metal ion from soil solution....

  14. Atomic-absorption spectrometric determination of trace metals in zirconium and zircaloy by discrete sample nebulization

    International Nuclear Information System (INIS)

    A discrete sample nebulization technique was employed to determine trace metals in nuclear grade zirconium and Zircaloy by flame atomic-absorption spectrometry. With 10% (w/v) sample solutions, detection limits for Cd, Cu, Mn, Ni and Pb were 0.6, 2, 1, 3, and 10 μg/g. Micro standard-addition procedures and background correction were employed to minimize matrix interferences produced by the high salt content of the aspirated solutions. (author)

  15. Study of trace metals concentration and antimicrobial properties of tropical Aloe vera plant from southern India

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available This study was carried out with an objective to investigate the antibacterial and antifungal potentials and trace metals concentrations in Aloe vera (Linn plant leaves. Fresh leaves of Aloe vera were collected from Tiruchirappalli district of Tamil Nadu during the period of February - March 2014. The 100 g of shade dried A. vera leave power was used to collect the methanol extraction of the test plant by the soxhlet apparatus. The extracted solutions were dried by hot air oven at 60 °C for 48-72 h for further analysis. The antimicrobial activity of Aloe vera methanol extract was examined with six various pathogenic microorganisms such as gram positive, gram negative and fungal strains using the disk diffusion test. The two tested concentrations such as 0.60 and 1.20 mg/disc produce zone of inhibition on muller hinton agar (MHA and potato dextrose agar (PDA plates for bacteria and fungi, respectively. In this study, higher (1.20 mg concentration got greater sensitivity than lower (0.60 mg concentration against all strains. All the microbial strains depict higher sensitivity to the higher concentration (1.2 mg / disc for the test sample when compared to the positive control except bacterial strains such as Aeromonas liquefaciens MTCC 2645 (B1. The trace metal analyses of the plants were also carried out. The mean concentration of trace metals such as cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, nickel (Ni, lead (Pb and zinc (Zn were 0.04, BDL, 0.06, 0.08, BDL, 0.02 and 0.22 mg kg-1, respectively. Therefore, it is signified that Aloe vera plant extract is safe to be used as an antimicrobial agent. Hence, throughout impoundment is needed to verify the trace metal levels in plants.

  16. Trace metals, anions and polybromodiphenyl ethers in settled indoor dust and their association.

    Science.gov (United States)

    Kefeni, Kebede K; Okonkwo, Jonathan O

    2013-07-01

    Contaminants in settled indoor dust are potentially health hazardous to human. Thus, identification and quantification of toxic chemicals in settled indoor dust is of great concern. In this study, the levels of major anions ([Formula: see text]), trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, As and Pb) and polybromodiphenyl ethers (PBDEs) in settled office and home dust were determined and correlations between the contaminants investigated. Depending on the available materials in both microenvironments, the most possible sources were identified. The results showed that the settled office dusts (n = 6 pooled samples from 85 offices) were more contaminated than home dusts (n = 8 homes). For anions, [Formula: see text] and Cl(-) accounted for 87 and 97% of the total office and home dust contaminants, respectively. For trace metals, Fe, Cu, Zn and Mn, accounted for 98% of the contaminants in both office and home dust samples. Fe exhibited the highest percentage of 76.7 and 87.3% in office and home dust samples, respectively. For PBDEs, the mean concentrations detected in office and home dust ranged between 5.8-86.3 and 1.5-20.6 ng g(-1), respectively. The log-transformed correlation between the total concentrations of trace metals and major anions detected in offices and homes was positive for offices and negative for homes with a statistically significant values (r = 0.73, p < 0.01; r = -0.22, p < 0.01, respectively). The daily exposure rates determined for the most hazardous such as As, Cd, Pb and PBDEs congeners, relative to the individual concentrations reported in the literature in settled indoor dust, were found very lower. Therefore, maybe it is possible to expect less potential health risk. Investigation of formation of coordination compounds between trace metals and PBDEs congeners is possible; however, this requires further study.

  17. Trace metal effects on ectomycorrhizal growth, diversity, and colonization of host seedlings

    OpenAIRE

    Belling Abler, Rebecca Alicia

    2004-01-01

    Ectomycorrhizal fungi are essential to seedling establishment in disturbed sites. This dissertation examines the effects of trace metals and soil disturbance on ectomycorrhizal fungi in the laboratory and the field. The first experiment assessed Cu and Zn impact on growth of three ectomycorrhizal species in pure culture. Suillus granulatus and Pisolithus tinctorius were more tolerant to Cu than Paxillus involutus, however, none of the species grew at 250 ppm Cu. Suillus granulatus had th...

  18. Contrasting behaviour of trace metals in the Scheldt estuary in 1978 compared to recent years

    OpenAIRE

    Nolting, R.F.; Helder, W.; De Baar, H. J. W.; Gerringa, L.J.A.

    1999-01-01

    Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevaile...

  19. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    Science.gov (United States)

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. PMID:26653478

  20. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    Science.gov (United States)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots.

  1. Trends of labile trace metals in tropical urban water under highly contrasted weather conditions

    OpenAIRE

    Villanueva, J.D.; Le Coustumer, Philippe; Denis, A; Abuyan, A; Huneau, Frederic; Motelica-Heino, Mikael; Peyraube, Nicolas; Celle-Jeanton, Hélène; Perez, T.R.; Espaldon, M.V.O

    2015-01-01

    International audience; The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: t...

  2. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    International Nuclear Information System (INIS)

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment

  3. Trace metal and mineral speciation of remediated wastes using electron microscopy.

    Science.gov (United States)

    Klich, I; Wilding, L P; Drees, L R

    2002-02-01

    Electron microscopic techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalyses (EPMA), were used to evaluate metal species and mineralogical phases associated with metal-bearing contaminated soil and industrial wastes that have been solidified and stabilized with Portland cement. Metals present in the wastes included arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc. In addition, mineral alterations and weathering features that affect the durability and containment of metals in aged remediated wastes were analyzed microscopically. Physical and chemical alteration processes identified included: freeze-thaw cracking; cracking caused by the formation of expansive minerals, such as ettringite and thaumasite; carbonation; and the movement of metals from waste aggregates into the surrounding cement matrix. Preliminary results show that although the extent of degradation after 6 years is considered slight to moderate, evaluations of durability and permanence of metals containment cannot be based on leaching and bulk chemistry analyses alone. The use of electron microscopic analyses is vital in studies that evaluate trace metal and mineral species and that attempt to predict the long-term performance of metal containment in solidified and stabilized wastes. PMID:11939530

  4. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.

  5. Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India

    Directory of Open Access Journals (Sweden)

    Harikumar P.S,

    2010-05-01

    Full Text Available A study was carried out to invstigate the concentrations and spatial distribution of trace metals in the sediments of Kottuli Wetland,whuich is in the south west coast of India Eight stations were strategically positioned along the length of wetland and sampled for trace metals (Cu, Mn, Cd, Ni, Pb, Zn &Cr content. From the analysis, it was observed that the mean concentration of all the analysed trace metals exceeded the average world wide shale concentrations and average Japanese river sediment values. Pollution load index value (PLI of the studied area ranged from 0.10 to 58.78 which indicated that the wetland sediments were polluted. From the study, PLI of the downstream area of the wetland had the highest values of Cu, Mn, Cd, Zn & Cr. According to the index of Geoaccumulation, Igeo, all the sampling stations may face a severe trace metal pollution contamination problem in the future.

  6. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  7. An exposure and risk assessment for fluoride and trace metals in black tea

    Energy Technology Data Exchange (ETDEWEB)

    Sofuoglu, Sait C. [Izmir Institute of Technology, Department of Chemical Engineering and Environmental Research Center, Guelbahce, Urla 35430 Izmir (Turkey)], E-mail: cemilsofuoglu@iyte.edu.tr; Kavcar, Pinar [Izmir Institute of Technology, Department of Chemical Engineering and Environmental Research Center, Guelbahce, Urla 35430 Izmir (Turkey)], E-mail: pinarkavcar@iyte.edu.tr

    2008-10-30

    Exposure and associated health risks for fluoride and trace metals in black tea were estimated. Fifty participants were randomly recruited to supply samples from the tea that they drink, and self-administer a questionnaire that inquired about personal characteristics and daily tea intake. Analyzed trace metals included aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, manganese, nickel, strontium, and zinc. Fluoride and four metals (Al, Cr, Mn, Ni) were detected in all samples while barium was detected only in one sample. The remaining metals were detected in >60% of the samples. Fluoride and aluminum levels in instant tea bag samples were greater than in loose tea samples (p < 0.05) while the differences in elemental concentrations of loose and pot bag tea samples were not significant. Median and 90th percentile daily tea intake rates were estimated as 0.35 and 1.1 l/day, respectively. Neither fluoride nor aluminum levels in black tea were found to associate with considerable risks of fluorosis and Alzheimer's disease, respectively. However, carcinogenic risk levels for arsenic were high; R > 1.0 x 10{sup -6} even at the median level. According to sensitivity analysis, daily tea intake was the most influencing variable to the risk except for arsenic for which the concentration distribution was of more importance.

  8. Trace metals in water and fish (Unga species, Pungu maclareni, catfish Clarias maclareni) from Lake Barombi Mbo, Cameroon

    OpenAIRE

    Sone, Brice Nkwelle

    2012-01-01

    Lake Barombi Mbo is an isolated oligotrophic lake situated in the volcanic range of West Cameroon and home to several endangered endemic cichlids. A fieldwork was carried out at the lake where water and fish samples were collected as part of an investigation. The aim of this study was to investigate (i) whether studied trace metals were present at levels exceeding ambient water criteria, (ii) link uptake of trace metals in gills and liver of fish to water chemistry, (iii) ac...

  9. Sex-associated differences in trace metals concentrations in and on the plumage of a common urban bird species

    OpenAIRE

    Frantz, Adrien; Federici, Pierre; Legoupi, Julie; Jacquin, Lisa; Gasparini, Julien

    2016-01-01

    Urban areas encompass both favorable and stressful conditions linked with human activities and pollution. Pollutants remain of major ecological importance for synanthropic organisms living in the city. Plumage of urban birds harbour trace metals, which can result from external deposition or from internal accumulation. External and internal plumage concentrations likely differ between specific trace metals, and may further differ between males and females because of potential sex-linked differ...

  10. Epiphytic lichen Flavoparmelia caperata as a sentinel for trace metal pollution

    Directory of Open Access Journals (Sweden)

    Mitrović Tatjana

    2012-01-01

    Full Text Available Widely spread lichen specie Flavoparmelia caperata is used in a biomonitoring study for atmospheric trace metal pollution in natural ecosystems in Southeastern Serbia. The concentration and distribution pattern of 21 metals in lichens were determined by inductively coupled plasma atomic emission spectrometry. The difference observed between metal deposition in peripheral and central parts of lichen thalli reflected air quality changes in the last and previous years. These findings were confirmed with principal component analysis. Our study demonstrated the accumulation of Ba, K, Mg, Na, Tl and Zn in peripheral parts of thalli, while As, B, Cd, Cr, Cu, Fe, Ga, In, Li, Ni, Pb and Se were concentrated in central parts of thalli.

  11. Sources and areal distribution of trace metals in recent sediments of Middle Loch, Pearl Harbor (Hawaii)

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.

    1989-05-01

    The primary objective of this project was to determine whether current operations of the Naval Inactive Ships Maintenance Facility contribute significant trace metal contamination to Middle Loch of Pearl Harbor. Secondary objectives were (1) to identify and quantify all major sources of trace metal contamination in Middle Loch and (2) to determine if trace metal concentrations in Middle Loch have declined following termination of direct discharges from the Pearl City Sewage Treatment Plant. Sediment samples from ten locations within Middle Loch and from two locations in each of the two major streams entering the loch were analyzed for radioisotopes and metals. Major elements (aluminum and calcium) as well as organic and inorganic carbon were used to help characterize sediment composition and source. High aluminum-to-calcium ratios and high organic carbon concentrations are associated with terrigenous material carried into Middle Loch by the streams. The presence of the natural, short-lived (53-d half-life) radioisotope /sup 7/Be was used to identify sites where the sedimentary material was recently deposited (i.e., within the past 3 months) and to identify patterns of recent sediment accumulation. Beryllium-7 was detected at eight of the ten sample sites within Middle Loch and in all stream samples. High /sup 7/Be inventories beneath the ships and at the mouths of the streams suggest that these are areas of rapid sediment accumulation, or sediment focusing. The concentrations of /sup 7/Be closely match the expected input based on rain-bucket data. This suggests that Middle Loch effectively traps all the /sup 7/Be through adsorption onto suspended matter and deposition to the sediments. 14 refs., 10 figs., 8 tabs.

  12. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    Science.gov (United States)

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management.

  13. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    Science.gov (United States)

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning. PMID:25412892

  14. The role of Spartina maritima and Sarcocornia fruticosa on trace metals retention in Ria Formosa, Portugal

    Science.gov (United States)

    Moreira da Silva, Manuela; Duarte, Duarte; Isidoro, Jorge; Chícharo, Luís

    2013-04-01

    Over the last years, phytoremediation has become an increasingly recognized pathway for contaminant removal from water and shallow soils. Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season and water chemistry. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. Saltmarsh plants can sequestrate and inherently tolerate high metal concentrations found in saltmarsh sediments. An increasing number of studies have been carried out to understand the role of halophyte vegetation on retention, biovailability and remediation of the pollutants in coastal areas (estuaries and lagoons). It is already known that the accumulation capacity and the pattern of metal distribution in the plant tissues vary among plant species, namely monocotyledonous and dicotyledonous, and with sediment characteristics. During the last decades, there has been a large increase in urbanization and industrialization of the area surrounding Ria Formosa. Due to this reality, anthropogenic contaminants, including trace metals, are transported via untreated sewage and agricultural effluents to several parts of the lagoon. The dominant producers are Spartina maritima (Poales: Poaceae) and Sarcocornia fruticosa (Caryophyllales: Chenopodiaceae), appearing in pure stands respectively in the lower and in the upper saltmarshes. The aim of this work was to survey, comparatively, the role of S. maritima and S. fruticosa on minor and trace element (Ag, Cd, Cu, Cr, Mo, Ni, Pb and Zn), contents and distribution amongst sediment and plant tissues. Both S. maritima and S. fruticosa could fix metals from the surrounding belowground environment and accumulate metals, mainly in roots (also in rhizomes in the case of the former). Metal translocation to aerial parts of the plants was, in general, residual.

  15. Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Griethuysen, Corine van [Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 8080, 6700 DD Wageningen (Netherlands); Luitwieler, Marloes [Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 8080, 6700 DD Wageningen (Netherlands); Joziasse, Jan [TNO-MEP, P.O. Box 342, 7300 AH Apeldoorn (Netherlands); Koelmans, Albert A. [Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 8080, 6700 DD Wageningen (Netherlands)]. E-mail: bart.koelmans@wur.nl

    2005-09-15

    Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a severe winter inundation and a dramatic water level drop during summer. Temporal changes were interpreted using multivariate analysis and chemical equilibrium calculations. Metal concentrations in sediment increased with depth, indicating a gradual improvement of sediment quality. In contrast, dissolved metal concentrations were highest in top layers due to mobilization from oxyhydroxides and precipitation with sulfides in deeper layers. Inundation had a mobilizing effect as it stimulated resuspension and oxygenation of sediment top layers. Water table lowering combined with organic matter decomposition led to immobilization due to sulfide formation. The chemistry of the sediments was consistent with model calculations, especially for macro-elements. The results illustrate the importance of seasonality for metal risk assessment. - There is strong seasonal variation in degree of metal mobilization from lake sediments.

  16. Enrichment of trace metals in water utilizing the coagulation of soybean protein

    International Nuclear Information System (INIS)

    An enrichment of trace metals in water with a coagulated soybean protein and the complex-forming character of heavy metal ions with the soybean protein were investigated by means of emission spectrography. Fixed amounts of soybean milk (collector) and delta-gluconic lactone (coagulant) were added to a sample solution containing various metal ions, and then the mixture was heated to boiling in order to coagulate the protein. The coagulum (soybean curd) separated from the suspension with a centrifuge was burned to ashes with a low temperature plasma asher. Then metals enriched in the soybean curd were determined by means of emission spectrography. The pH of the solution was adjusted to 4.4--5.0 by adding suitable amounts of delta-gluconic lactone for the complete coagulation of the soybean protein. The proposed method can be applied to the collection and enrichment of various metal ions such as gold, silver, mercury, platinum, cadmium, beryllium, palladium, antimony, gallium, indium, cerium, lanthanum, thorium, yttrium, zirconium, etc. Those metals are not detectable in the original soybean. (auth.)

  17. Research of trace metals as markers of entry pathways in combined sewers.

    Science.gov (United States)

    Gounou, C; Varrault, G; Amedzro, K; Gasperi, J; Moilleron, R; Garnaud, S; Chebbo, G

    2011-01-01

    Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.

  18. Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions

    International Nuclear Information System (INIS)

    Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a severe winter inundation and a dramatic water level drop during summer. Temporal changes were interpreted using multivariate analysis and chemical equilibrium calculations. Metal concentrations in sediment increased with depth, indicating a gradual improvement of sediment quality. In contrast, dissolved metal concentrations were highest in top layers due to mobilization from oxyhydroxides and precipitation with sulfides in deeper layers. Inundation had a mobilizing effect as it stimulated resuspension and oxygenation of sediment top layers. Water table lowering combined with organic matter decomposition led to immobilization due to sulfide formation. The chemistry of the sediments was consistent with model calculations, especially for macro-elements. The results illustrate the importance of seasonality for metal risk assessment. - There is strong seasonal variation in degree of metal mobilization from lake sediments

  19. Towards field trace metal speciation using electroanalytical techniques and tangential ultrafiltration.

    Science.gov (United States)

    Monteiro, Adnívia Santos Costa; Parat, Corinne; Rosa, André Henrique; Pinheiro, José Paulo

    2016-05-15

    In this work we propose a trace metal speciation methodology to determine the total, free and ultrafiltered (methods (SCP and AGNES) and tangential ultrafiltration (UF) experiments that can easily be carried out on-site. We tested our methodology spiking Cadmium ions into two natural waters samples from Itapanhau and Sorocabinha rivers in Sao Paulo State, Brazil. The limits of detection (LOD) was 1.6×10(-9) M for the total Cd(2+) determination performed by Stripping Chronopotentiometry (SCP) in the source and acidified ultrafiltered solution and 1.9×10(-9) M for the free Cd(2+) determination using Absence of gradients and Nernstian equilibrium stripping (AGNES), using a thin mercury film electrode. The total metal determination was performed by SCP in acidified samples and the results compared with graphite furnace atomic absorption spectroscopy (GF-AAS). The SCP results were adequate with a 96% of recovery from the known metal spike for the 12 samples tested. For the Itapanhau sample the free metal determined by AGNES and the ultrafiltered fraction are identical, while for the Sorocabinha the free metal in the source is significantly smaller than the ultrafiltered fraction, indicating that this sample must be rich in metal complexes with small inorganic ligands that are able to permeate the 1kDa membrane. The proposed metal speciation methodology validated in the laboratory combining UF and SCP/AGNES is able to be used in on-site experiments providing valid information regarding the total and free metal concentrations and additionally some insight on the role of small inorganic ligands to the metal complexation.

  20. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness.

    Science.gov (United States)

    Carter, J F; Tinggi, U; Yang, X; Fry, B

    2015-03-01

    This research has explored the potential of stable isotope and trace metal profiles to distinguish Australian prawns from prawns imported from neighbouring Asian countries. Australian prawns were collected mostly from the Brisbane area. Strong differences in Australian vs. imported prawns were evident from both the isotope and trace element data, with the differences most likely occurring because imported prawns are typically reared in aquaculture facilities and frozen prior to sale in Australia. The aquaculture origins are characterised by comparatively; low δHVSMOW, δ(13)CVPDB values, low concentrations of arsenic, zinc and potassium, and high water contents (>80%). Relatively high arsenic and cadmium contents were found within Australian prawns, but the concentrations did not exceed local human health guidelines.

  1. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues

    Institute of Scientific and Technical Information of China (English)

    Mehmet Yaman; Gokce Kaya; Hayrettin Yekeler

    2007-01-01

    AIM: To assess whether trace metal concentrations (which influence metabolism as both essential and non-essential elements) are increased or decreased in cancerous tissues and to understand the precise role of these metals in carcinogenesis.METHODS: Concentrations of trace metals including Cd,Ni, Cu, Zn, Fe, Mg and Ca in both cancerous and noncancerous stomach tissue samples were determined by atomic absorption spectrometry (AAS). Tissue samples were digested using microwave energy. Slotted tube atom trap was used to improve the sensitivity of copper and cadmium in flame AAS determinations.RESULTS: From the obtained data in this study,the concentrations of nickel, copper and iron in the cancerous human stomach were found to be significantly higher than those in the non-cancerous tissues, by using t-test for the paired samples. Furthermore, the average calcium concentrations in the cancerous stomach tissue samples were found to be significantly lower than those in the non-cancerous stomach tissue samples by using t-test. Exceedingly high Zn concentrations (207-826 mg/kg) were found in two paired stomach tissue samples from both cancerous and non-cancerous parts.CONCLUSION: In contrast to the literature data for Cu and Fe, the concentrations of copper, iron and nickel in cancerous tissue samples are higher than those in the non-cancerous samples. Furthermore, the Ca levels are lower in cancerous tissue samples than in non-cancerous tissue samples.

  2. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  3. Determination of trace metallic impurities in plutonium bearing mixed oxide nuclear fuel using atomic emission spectrometry

    International Nuclear Information System (INIS)

    Presently AFFF is engaged in fabrication of PFBR MOX fuel with nominal composition of (U0.79Pu0.21)O2 and (U0.72Pu0.28)O2. Chemical characterization of these fuels for trace metallic impurities is one of the pre-requisite for their use inside the reactor as trace metallic elements influence the fuel integrity and neutron economy significantly. B, Cd, Dy, Eu, Gd and Sm have large neutron absorption cross-section; their presence results in loss of neutrons. Refractory elements such as W, Mo, Ta etc. cause creep resistance resulting in clad damage. Low melting elements such as Zn may cause liquid metal embrittlement altering the fuel structure and consequently failure. Presence of alkali and alkaline earth changes the density and reduces the fissile content. Fe, Cr, Ni, Cu and Pb are the indicators for the process pickup and condition (wear/tear) of process equipment. Overall high impurity content leads to fuel dilution and deterioration of chemical and metallurgical properties of fuel

  4. SEASONAL VARIATIONS OF TRACE METAL ACCUMULATION ON CORAL REEF IN GULF OF MANNAR, INDIA

    Directory of Open Access Journals (Sweden)

    J.S. Yogesh Kumar

    2012-08-01

    Full Text Available Investication of trace metal occumulation on coral and reef environment (sediment and water of the Gulf of Mannar biosphere reserve was studied during July 2007 to June 2008. The samples were collected for analyzing from Thoothukudi and Vembar group of Islands, Gulf of Mannar. The concentration of trace metal in the water are in the order of Fe > Pb > Zn > As > Mn > Cd > Cu and in sediment in the order of Fe > Mn > Pb > Zn > Cu >Cd and in coral rubbles in the order of Fe > Mn > Pb > Zn > Cu > Cd. In the waters the iron ranks first and copper ranks last; in the sediment iron ranks first in concentration and cadmium ranks the last. In corals the iron ranks first and cadmium ranks the last in concentration and during the entire study periods. SPSS two tailed Correlation coefficients between the months and the temporal variablilities of heavy metals were assessed using the monthly data for each component in all stations and analysis of variances (f values for the water, sediment and coral rubbles between the stations and month during the study period. Conclude that the values recorded at Thoothukdi group of islands were little higher than the Vembar group of islands, and it might be due to discharges pumped from the industrial belt of Thoothukudi, domestic sewages from Thoothukudi town, harbour activities and thermal power plant operation along the southern side of the Gulf of Mannar.

  5. Size-dependent concentrations of trace metals in four Mediterranean gastropods.

    Science.gov (United States)

    Cubadda, F; Conti, M E; Campanella, L

    2001-11-01

    In order to gain more information on the possible use of four gastropod species as metal biomonitors for the Mediterranean area, the influence of body weight upon Cd, Cr, Cu, Pb and Zn concentrations was studied in specimens collected at locations with different degrees of environmental pollution. The selected species were the marine snails Monodonta turbinata Born and Monodonta mutabilis Philippi, and the limpets Patella caerulea L. and Patella lusitanica Gmelin. Significant differences between metal concentrations in individuals from different stations were tested by ANCOVA on log-transformed data with log body weight as covariate. For all species a positive correlation between metal concentrations and body weight was observed, which means that the largest individuals contained the highest levels of metals. The inclusion of body weight as covariate in the statistical analysis explained from 81% to 99% of the metal variability within the organisms and enabled the achievement of improvements in the detection of differences among sites. The four selected species provided a rather univocal picture of bioavailable metal loads at the different stations of the experimental area. Except for Cd, the metal concentrations recorded at the clean stations were found to lie in the range of the lowest values reported in the literature and can be employed as useful background levels which can be referred to for intraspecific comparison within the Mediterranean area. It is concluded that in view of its distribution, unambiguous identification, resistance to pollution and accumulation patterns M. turbinata has considerable potential as a biomonitor of trace metals over the Mediterranean. PMID:11680752

  6. Understanding Changes to Interrelated Hydrologic and Trace Metal Cycles in Mountain Pine Beetle Infested Watersheds

    Science.gov (United States)

    Bearup, L.; Maxwell, R. M.; Clow, D. W.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    Changing climate in the Rocky Mountain West and worldwide has led to insect infestation and resultant tree mortality at epidemic levels. This unprecedented change in land cover is known to impact tree-scale hydrologic processes in forested watersheds, with possible implications for water quality. In this work, soil and streamwater samples from a mountain pine beetle (MPB) infested watershed were analyzed for metals and stable isotopes to understand how the loss of forest cover over large spatial and temporal extent changes interrelated hydrologic and metal transport processes. An increase in trace metal fluxes from pine forest soils is a potential result of increases in organic matter and alterations in pH. To understand the implication for MPB-infested forests, the mobility of eight metals of interest (Al, Ba, Cd, Cu, Fe, Mn, Ni and Zn) were compared from soils beneath impacted and living trees. Preliminary results from this study found significant decreases in solid - liquid partitioning coefficients among the majority of metals analyzed, particularly in organic horizon samples. These results suggest an increase in potential mobilization from deposited litter and underlying soil horizons after beetle attack. Differences were also observed between aspects, with more pronounced mobility increases on south facing slopes. Sequential extractions are underway to better elucidate the important mechanisms and possible change in metal fractionation under different tree phases. In addition to increased metal release, changes in transport processes are also possible. Stable isotopes (∂18O and ∂D) and streamwater chemistry were analyzed to distinguish potential changes of water sources. Observed increases in soil moisture under impacted trees suggest possible increases in flow through the shallow subsurface that could have implications for contaminant transport. Clarifying important metal release mechanisms at the tree scale and changes in flow processes at the watershed

  7. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    Science.gov (United States)

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  8. Metals and trace elements in tissues of Common Eiders (Somateria mollissima) from the Finnish archipelago

    Science.gov (United States)

    Franson, J.C.; Hollmen, T.; Poppenga, R.H.; Hario, Martti; Kilpi, Mikael

    2000-01-01

    We sampled Common Eiders (Somateria mollissima) at five locations near coastal Finland in 1997 and 1998 for evidence of exposure to arsenic, cadmium, chromium, copper, iron, mercury, magnesium, manganese, molybdenum, lead, selenium, and zinc. Livers and kidneys were collected from adult males and females found dead and hunter-killed males, and livers were collected from ducklings. Two adult females, one of which had an ingested lead shot in its gizzard, were poisoned by lead. The concentrations of metals and trace elements that we found in tissues of eiders, other then the two lead poisoned birds, were not high enough to have independently caused mortality.

  9. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    Directory of Open Access Journals (Sweden)

    Cristina Yacoub

    2012-01-01

    Full Text Available This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL. The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES. The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  10. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment

    Science.gov (United States)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2013-03-01

    Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.

  11. Remobilization of trace metals from contaminated marine sediment in a simulated dynamic environment.

    Science.gov (United States)

    Xu, Weihai; Li, Xiangdong; Wai, Onyx W H; Huang, Weilin; Yan, Wen

    2015-12-01

    In this study, release and redistribution of sediment bound trace metals due to resuspension were investigated by a lid-driven elongated annular flume (LEAF). The total suspended particulate matters (SPMs) increased significantly in quantity with the raised resuspension energies and varied distinctively in particle size and mineral composition. Except for Cu, Ni, Cd, Pb, and Zn showed an increase in dissolved phase as the resuspension energy increased. Relatively low Cu was observed in dissolved phase whereas it owned the highest original concentration in the sediment. This is primarily due to the very low solubility of Cu sulfide. In comparison to sediment, all metals were evidently enriched in SPMs which primarily contributed to the much more fine particles (silt/clay fraction) contained in the SPMs. Metals enrichment followed the Irving-Williams order of complex stability. However, metals content varied indistinctively in the SPMs among the three selected resuspension levels. The distribution coefficients (K d) exhibited opposite trend with the increasing resuspension level with the exception of Cu. It indicated that physical and chemical characters of sediment such as grain composition, Fe/Mn, and organic matter content may also act as major factors in the release of metals and control their phase distribution in the water column. PMID:26289335

  12. Effects of northeast monsoon on trace metal distribution in the South China Sea off Peninsular Malaysia.

    Science.gov (United States)

    Adiana, G; Shazili, N A M; Marinah, M A; Bidai, J

    2014-01-01

    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments. PMID:23974537

  13. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge.

    Science.gov (United States)

    Wang, Wenhao; Wang, Wen-Xiong

    2016-07-01

    Severe trace metal pollution due to industrial effluents releases was found in Jiulong River Estuary, Southern China. In this study, water samples were collected during effluent release events to study the dynamic changes of environmental conditions and metal partitioning among dissolved, particulate and colloidal phases controlled by estuarine mixing. Intermittent effluent discharges during low tide caused decreasing pH and dissolved oxygen, and induced numerous suspended particulate materials and dissolved organic carbon to the estuary. Different behaviors of Cu, Zn, Ni, Cr and Pb in the dissolved fraction against the conservative index salinity indicated different sources, e.g., dissolved Ni from the intermittent effluent. Although total metal concentrations increased markedly following effluent discharges, Cu, Zn, Cr, Pb were predominated by the particulate fraction. Enhanced adsorption onto particulates in the mixing process resulted in elevated partitioning coefficient (Kd) values for Cu and Zn, and the particle concentration effect was not obvious under such anthropogenic impacts. Colloidal proportion of these metals (especially Cu and Zn) showed positive correlations with dissolved or colloidal organic carbon, suggesting the metal-organic complexation. However, the calculated colloidal partitioning coefficients were relatively constant, indicating the excess binding capacity. Overall, the intermittent effluent discharge altered the particulate/dissolved and colloidal/soluble phase partitioning process and may further influence the bioavailability and potential toxicity to aquatic organisms. PMID:27061473

  14. Spatial/Temporal Characterization and Risk Assessment of Trace Metals in Mangla Reservoir, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Saleem

    2015-01-01

    Full Text Available Composite water samples were collected from different sites of Mangla reservoir, Pakistan, in premonsoon, monsoon, and postmonsoon seasons. The physicochemical parameters and trace/heavy metals were determined in all water samples. The results manifested significant seasonal variations among Co, Cr, Ni, and Pb and the metals exhibited highest contribution in premonsoon season except Mn. Principal component analysis (PCA and cluster analysis (CA revealed considerable anthropogenic intrusions in the reservoir. Probable risk associated with the metals levels on human health was also evaluated using hazard quotients (HQ by ingestion and dermal routes for adults and children. It was noted that Cd, Co, Cr, Ni, and Pb (HQing>1 were the most important pollutants leading to noncarcinogenic concerns. The HQderm levels of all metals were below unity, suggesting that these metals posed no hazards via dermal absorption, while the oral intake was the major exposure pathway. The largest contributors to chronic risks were Cd, Co, Cr, Ni, and Pb in all the seasons. Therefore, immediate measures should be taken for sustaining the healthy aquatic ecosystem.

  15. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean.

    Science.gov (United States)

    Campanella, L; Conti, M E; Cubadda, F; Sucapane, C

    2001-01-01

    The concentrations of Cd, Cr, Cu, Pb and Zn were measured in specimens of four marine organisms--the seagrass Posidonia oceanica (L.) Delile, the brown algae Padina pavonica (L.) Thivy, and the two gastropod molluscs Monodonta turbinata Born and Patella caerulea L.--selected as possible cosmopolitan biomonitors of trace metals in the Mediterranean area. The organisms were collected at five coastal sites in Favignana Island (Sicily, Italy), an area virtually uninfluenced by anthropogenic activities. In order to gain a more complete picture of both the environmental conditions of the experimental area and the bioaccumulation patterns of the selected organisms, soluble and total metal concentrations were determined in coastal water samples collected at the same stations. The picture of bioavailable metal loads in the different sites of the selected area provided by the four species was rather univocal. An overall trend of increased metal concentrations at the station in which the local harbour is located was clear. On the other hand, the metal concentrations recorded at the 'clean' stations generally fall in the range of the lowest values available in the literature and may be considered as useful background levels to which to refer for intraspecific comparison within the Mediterranean area. Implications in biomonitoring of the observed accumulation patterns, especially in the different tissues of Posidonia oceanica, are discussed. PMID:11202705

  16. Concentrations and solubility of selected trace metals in leaf and bagged black teas commercialized in Poland

    Directory of Open Access Journals (Sweden)

    L. Polechońska

    2015-09-01

    Full Text Available The objective of this study was to determine the concentrations of heavy metals in bagged and leaf black teas of the same brand and evaluate the percentage transfer of metals to tea infusion to assess the consumer exposure. Ten leaf black teas and 10 bagged black teas of the same brand available in Poland were analyzed for Zn, Mn, Cd, Pb, Ni, Co, Cr, Al, and Fe concentrations both in dry material and their infusion. The bagged teas contained higher amounts of Pb, Mn, Fe, Ni, Al, and Cr compared with leaf teas of the same brand, whereas the infusions of bagged tea contained higher levels of Mn, Ni, Al, and Cr compared with leaf tea infusions. Generally, the most abundant trace metals in both types of tea were Al and Mn. There was a wide variation in percentage transfer of elements from the dry tea materials to the infusions. The solubility of Ni and Mn was the highest, whereas Fe was insoluble and only a small portion of this metal content may leach into infusion. With respect to the acceptable daily intake of metals, the infusions of both bagged and leaf teas analyzed were found to be safe for human consumption.

  17. Accumulation of Selenium and Trace Metals on Plant Litter in a Tidal Marsh

    Science.gov (United States)

    Zawislanski, P. T.; Chau, S.; Mountford, H.; Wong, H. C.; Sears, T. C.

    2001-05-01

    Research in a San Francisco Bay intertidal marsh has shown the accumulation of Se and trace metals (Cu, Ni, Zn, Pb, Cd, Fe) on bagged litter of five common estuarine marsh plant species, over periods of months to a year. Metal concentrations increased as much as 150-fold relative to plant tissue initially placed in mesh litter bags. Concentrations of metals increased with the amount of time litter was submerged, though mass accumulation was moderated by the concomitant decay of the litter. The association of very fine particulate matter with the litter, as determined based on Si concentrations, was the main mechanism for enrichment. Further accumulation occurs during winter months via the sorption onto or precipitation with Fe-rich phases, particularly in lower marsh plants. The resultant annual fluxes of Se and most metals to sediments via litter were estimated to be equivalent to between 1 and 16% of the primary flux on suspended particulate matter and may be an important mechanism for scavenging dissolved and colloid-associated metals. Previous studies, which ignored the particulate contribution, may have incorrectly assumed the predominance of sorption and co-precipitation mechanisms. The degree to which litter bags enhance fine sediment trapping over natural conditions needs to be evaluated.

  18. Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands

    NARCIS (Netherlands)

    Pižeta, I.; Sander, S.G.; Hudson, R.J.M.; Omanovic, D.; Baars, O.; Barbeau, K.A.; Buck, K.N.; Bundy, R.M.; Carrasco, G.; Croot, P.L.; Garnier, C.; Gerringa, L.J.A.; Gledhill, M.; Hirose, K.; Kondo, Y.; Laglera, L.M.; Nuester, J.; Rijkenberg, M.J.A.; Takeda, S.; Twining, B.S.; Wells, M.

    2015-01-01

    With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods u

  19. Study of Trace and Heavy Metals Content of Soft Drinks in the State of Kuwait

    Directory of Open Access Journals (Sweden)

    H. M. Alzaid

    2016-05-01

    Full Text Available The levels of 25 trace and heavy metals were determined in 29 brands of soft drinks collected from supermarkets and grand stores in Kuwait using an Agilent ICP/MS. Comparison of the elemental concentrations in the soft drinks samples with the international maximum allowable limits showed that the mean values as well as the ranges of all the investigated elements in all the samples analyzed were below both US-EPA and WHO regulatedlimits of drinking water. It was found that there is no significant effect on the material of the containers on the levels of the studied metals. In addition, these levels were found much lower than those found in other countries.

  20. Solid-phase extraction of trace metal ions with magnetic nanoparticles modified with 2,6-diaminopyridine

    International Nuclear Information System (INIS)

    We have modified silica-coated Fe3O4 nanoparticles with 2,6-diaminopyridine and used these for selective magnetic solid-phase extraction of trace amounts of metal ions. The nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Quantitative extraction of trace amounts of Cu(II) and Zn(II) from mixed-ion solutions was accomplished at an optimal pH value of 6 within less than 10 min. The metal ions were eluted from the sorbent with hydrochloric acid. Common electrolytes and chemically related metal ions do not interfere. The relative standard deviations of the method are <4 %. It was successfully applied to the separation and preconcentration of trace metal ions from the certified reference materials GBW 08301 (river sediment) and GBW 08607 (water solution), in natural water, and in samples of vegetable with satisfying results. (author)

  1. Trace metal concentrations in post-hatching cuttlefish Sepia officinalis and consequences of dissolved zinc exposure.

    Science.gov (United States)

    Le Pabic, Charles; Caplat, Christelle; Lehodey, Jean-Paul; Milinkovitch, Thomas; Koueta, Noussithé; Cosson, Richard Philippe; Bustamante, Paco

    2015-02-01

    In this study, we investigated the changes of 13 trace metal and metalloid concentrations (i.e. Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V, Zn) and their subcellular fractionation in juvenile cuttlefish Sepia officinalis reared in controlled conditions between hatching and 2 months post-hatching. In parallel, metallothionein concentrations were determined. Our results highlighted contrasting changes of studied metals. Indeed, As and Fe concentrations measured in hatchlings suggested a maternal transfer of these elements in cuttlefish. The non-essential elements Ag and Cd presented the highest accumulation during our study, correlated with the digestive gland maturation. During the 6 first weeks of study, soluble fractions of most of essential trace metals (i.e. Co, Cr, Cu, Fe, Se, Zn) slowly increased consistently with the progressive needs of cuttlefish metabolism during this period. In order to determine for the first time in a cephalopod how metal concentrations and their subcellular distributions are impacted when the animals are trace metal-exposed, we studied previously described parameters in juveniles exposed to dissolved Zn at environmental (i.e. 50 μg l(-1)) and sublethal (i.e. 200 μg l(-1)) levels. Moreover, oxidative stress (i.e. glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase activities, and lipid peroxidation (LPO)) was assessed in digestive gland and gills after 1 and 2 months exposures. Our results highlighted no or low ability of this stage of life to regulate dissolved Zn accumulation during the studied period, consistently with high sensitivity of this organism. Notably, Zn exposures caused a concentration-dependent Mn depletion in juvenile cuttlefish, and an increase of soluble fraction of Ag, Cd, Cu without accumulation modifications, suggesting substitution of these elements (i.e. Mn, Ag, Cd, Cu) by Zn. In parallel, metallothionein concentrations decreased in individuals most exposed to Zn. Finally, no

  2. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Science.gov (United States)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  3. Sediments of the Lagoa Olho D'Agua: geochronology and accumulation of trace metals

    International Nuclear Information System (INIS)

    An assessment of the environmental impact of anthropic activities in the Lagoa Olho D'Agua, located in Jaboatao dos Guararapes County, Brazil, was carried out by assessing the vertical distribution of some trace metals (Cd, Cr, Fe, Hg, Ni, U, Zn and Zr) in dated sediment samples. Sediment cores were collected from thirteen locations at the northern, central and southern sections of the lagoon. The metal content in the samples was determined by Instrumental Neutron Activation Analysis (INAA). Its organic carbon content was also determined and used to characterize the environment as, either oxic or anoxic environments can bias the trace element content of sediment samples. The influence of the hydrodynamic characteristics in the sedimentation process was also studied. The results obtained for the geochronology of sediments showed a pronounced increase in sedimentation rates in the period of 1970 - 1980 and 1980 - 1990 in the sampling stations ST-09, ST-10, ST-11, ST-12 e ST-13 (ca.480% in the 80's to 90's ) compared to ca. 90% increase observed in other sampling stations. This increase can be associated to the demographic growth of ca. 500% that occurred in Jaboatao dos Guararapes County in the 80's to 90's predominantly along the shoreline. The geochemistry analyses of sediment samples, on the other hand, showed that the severe degradation process the occurred in the lagoon in the last 30 years was caused by the release of pollutants from industrial facilities as well as by the discharge of untreated domestic sewage. These domestic sewage favorable the increase of the concentration of organic material in the lagoon, accentuating the adsorption process of the metals on the sediments, mainly Fe and Zr in the suspense particles. The accentuated increase observed in both Fe and Zr concentrations is compatible with period of built industries basic steel works foundries and painting, indicating the anthropogenic origin these metals. (author)

  4. Environmental Assessments of Trace Metals in Sediments from Dongting Lake, Central China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To examine the degree of contamination in the Dongting Lake (洞庭湖) area, surface sediments samples were collected and investigated in this study.This lake lies in the south of the middle Yangtze River, and it is the second largest fresh-water lake in China.These samples were analyzed for the concentrations of the following 6 elements (Cd, Cr, Cu, Ni, Pb and Zn) collected from 46 locations.The index of geo-accumulation was used to assess the degree of contamination of the total trace elements and the assessments showed that the contamination of Cd reached strong to very strong pollution.The speciation of metal in sediments was analyzed using the modified BCR (Community Bureau of Reference) sequential extraction technology and the water column-contamination risk was evaluated by the calculated contamination factors.The results of the speciation of metal indicated that more easily mobilized forms(exchangeable, water soluble, and acid soluble) were predominant for Cd, especially in the samples from East Dongting Lake.In contrast, the largest amount of lead was associated with the iron and manganese oxide fractions, and Cu, Zn, Cr, and Ni analyzed were mainly distributed in residual phase at an average percentage higher than 60 % of the total metals.The potential risk to the lake's water contamination was the highest in East Dongting Lake based on the calculated contamination factors.The assessment results using geo-accumulation index were compared with the information obtained by trace metal speciation and both results were consistent.

  5. Transport studies through peritoneal membrane: Effect of alteration in concentration of Trace Metal Ion

    International Nuclear Information System (INIS)

    The effect of trace metals on thermodynamic properties of peritoneum has been examined. Membrane potential across peritoneal membrane of buffalo (Bof. Bubalis) for various 2:1, 3:1 and 1:2 electrolytes solutions have been measured with a view to examine the transport number of ions, effective fixed charge density and permselectivity of electrolyte systems. The transport number of co-ions decreased as the concentration of electrolyte is decreased. The applicability of different theories of membrane given by Kobatake et al. based on non-equilibrium thermodynamics have been tested. It has been observed that in biological systems also the fixed charged density is a constant quantity and does not vary with the concentrations of electrolytes as in the case of artificial membranes. Equations for 3:1 and 2:1 electrolytes have been derived, which will be essential for evaluating the transport number of trace material ions. This experimental model can be used to study and calculate the transport to study and calculate the transport number across biological membrane using Benventa's equation. The result of this study is valuable in understanding the influence of alteration in trace elements milieu on electrophysical behavior of all membranes. (author)

  6. Influence of Trichodesmium red tides on trace metal cycling at a coastal station in the Great Barrier Reef Lagoon

    OpenAIRE

    Jones, G.; Burdon-jones, C; Thomas, F.

    1982-01-01

    Investigations carried out at a coastal station in the Great Barrier Reef lagoon (GBRL) at Townsville, Australia have shown that the cycling of several trace metals (Fe, Mn, Zn, Cu, Ni, Cd, and Pb) was significantly influenced by the presence of Trichodesmium , a blue-green alga, which throughout the year, frequently forms red tide densities along much of the Queensland coral coast. Whilst decomposition of large masses of Trichodesmium significantly affected metal concentrations, metal specia...

  7. Trace metal concentrations and lead isotopic composition in surface waters of the Northeast Pacific along the United States - Mexico boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S. (Inst. of Marine Science, Santa Cruz, CA (United States))

    1990-01-09

    To evaluate the magnitude of heavy metal contamination along the United States - Mexico boundary, trace metal concentrations (Pb, Cd, Mn, Fe, and Zn) and lead isotopic composition ([sup 204]Pb, [sup 206]Pb, [sup 207]Pb, and [sup 208]Pb) were measured along four surface water transects across the continental shelf off the Baja California Coast. The stations were located between 2 to 45 km offshore, including both coastal and open ocean locations. All the metal distributions along the transects were characterized by offshore concentration gradients. The highest trace metal concentrations occurred in coastal waters in association with high salinities and nutrient concentrations. There was also a longshore gradient in trace metal concentrations. Trace element concentrations were lower in the southern locations than along the United States - Mexico boundary, and were comparable to typical open ocean values. The relative enrichment of metals in surface waters off the northern part of Baja California was primarily associated with advection/upwelling processes, not with anthropogenic inputs. Mass balance calculations indicated that about 1% of Cd and 13% of Zn were from urban discharges. The low metal levels measured in coastal waters off the central part of Baja California were attributed to the intrusion of open ocean waters, based on hydrographic data, satellite images and lead isotopic compositions.

  8. Physical characteristics, inorganic constituents and trace metals determination in the street-vended samples of heroin

    International Nuclear Information System (INIS)

    Sample of heroin collected from different parts of NWFP (North-West Frontier Province, Pakistan) were analyzed for physical characteristics, inorganic constituents (Na, K, Mg, Fe), and quantification of trace metals such as pb, Cd, Cr, Zn, Co, Mn, Ni, Ag and Al. The analytical results of the samples were compared with those of a pure heroin sample taken as standard (marked as P). The sodium content was much higher than other inorganic adulterants in almost all the samples, which might be due to the adulteration by common salt (NaCI) and other sodium bearing materials. The calcium and magnesium contents were noted to be higher in the sample from the D. I. Khan (D-I, D-2, D-3), which is an indication of the addition of marble, dolomite and calcite as the heroin adulterants. All the samples contained trace metals in varying concentrations. Samples collected from Peshawar city were found to be highly contaminated and, therefore, contained the least quantity of heroin being 84.97% and 54.54% for samples P-2 and P-3, respectively. (author)

  9. Airborne trace metals in snow on the Japan Sea side of Japan

    Science.gov (United States)

    Ecker, Franz-Josef; Hirai, Eiji; Chohji, Tetsuji

    Prevailing seasonal weather patterns produce a homogeneous distribution of snow from the coast to the mountains in the Hokuriku region on the Japan Sea (west) side of Japan. Daily snowfall was collected on polyethylene foils at six sites along the coast, in city areas and in the inland mountains. The samples were analyzed for pH and the soluble and insoluble fractions of Al, Cd, Cr, Cu, Fe, Mn, Pb and Zn. Comparison of the data from the various sites allowed an estimate of the regional background concentration of the trace metals. The contribution of trace metals derived from sea spray and Kosa-loess particles was found to be of minor importance to the regional background. The pH values of melted snow averaged around 4.6 over a range of 3 pH units, with the greatest fluctuations at the seaside and mountain sites. In the cities, these pH fluctuations occurred within a narrower and generally lower pH spectrum.

  10. Trace elements and heavy metals in hair of stage III breast cancer patients.

    Science.gov (United States)

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer. PMID:21660533

  11. Soluble trace metals in aerosols over the tropical south east Pacific offshore of Peru

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2015-10-01

    Full Text Available Bulk aerosol samples collected during cruise M91 of FS Meteor off the coast of Peru in December 2012 were analysed for their soluble trace metal (Fe, Al, Mn, Ti, Zn, V, Ni, Cu, Co, Cd, Pb, Th and major ion (including NO3− and NH4+ content. These data are among the first recorded for trace metals in this relatively poorly studied region of the global marine atmosphere. To the north of ∼ 13° S, the concentrations of several elements (Fe, Ti, Zn, V, Ni, Pb appear to be related to distance from the coast. At the south of the transect (∼ 15–16° S, elevated concentrations of Fe, Cu, Co and Ni were observed. These may be related to the activities of the large smelting facilities in the south of Peru or northern Chile. Calculated dry deposition fluxes (3370–17 800 and 16–107 nmol m−2 d−1 for inorganic nitrogen and soluble Fe respectively indicated that atmospheric input to the waters of the Peru upwelling system contains an excess of Fe over N, with respect to phytoplankton requirements. This may be significant as primary production in these waters has been reported to be limited by Fe availability, but atmospheric deposition is unlikely to be the dominant source of Fe to the system.

  12. Determination of Trace Metals and Essential Minerals in Selected Fruit Juices in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    A. I. Ajai

    2014-01-01

    Full Text Available Levels of trace metals and essential minerals in selected fruit juice samples purchased from Minna were determined using atomic absorption spectrophotometer (AAS and Flame photometer. From the obtained result, Cu, Fe, Mn, Na, and Zn were present in all the samples, while Cd, Pb, and Cr were not detectable in all the samples. Concentrations of K range between 1.31 ± 0.10 and 41.20 ± 0.10 mg/100 mL, Na between 15.47 ± 0.15 and 3.50 ± 0.20 mg/100 mL, Mn between Nd and 0.27 ± 0.08 mg/100 mL, Fe between Nd and 0.90 ± 0.05 mg/100 mL, Cu between Nd-0.60 ± 0.00 mg/100 mL, and Zn between Nd-0.09 ± 0.01 mg/100 mL, respectively. The trace metal levels in all the samples were within permissible limit as recommended by WHO for edible foods and drinks and could therefore be taken to compliment the deficiency of these essential minerals from other food sources.

  13. Multielement trace determination in high purity advanced ceramics and high purity metals

    Indian Academy of Sciences (India)

    R Matschat; H-J Heinrich; M Czerwensky; S Kuxenko; H Kipphardt

    2005-07-01

    In the field of advanced ceramics two CRMs were developed in the last few years by the Federal Institute for Materials Research and Testing, one for silicon nitride and one for silicon carbide. Besides their application by industry they are appropriate to be used for the validation of special methods used for trace determination in accordance with high purity materials. This is demonstrated, for example, on ultrapure silicon carbide which was analysed by solid sampling electrothermal atomic absorption spectrometry (SS ET AAS). BAM is also certifying primary pure reference materials used as the National Standards for inorganic analysis in Germany. The crucial point of this project is the certification of the total purity of high purity materials, each representing one element of the periodic table. A variety of different analytical methods was necessary to determine the trace contents of metallic and non-metallic impurities from almost the whole periodic table in the high purity materials. The primary CRMs of copper, iron and molybdenum are used as examples to demonstrate the modus operandi, analytical effects observed by using high resolution ICP mass spectrometry (HR ICP–MS) and the results.

  14. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines.

    Science.gov (United States)

    Fry, Brian; Carter, James F; Tinggi, Ujang; Arman, Ali; Kamal, Masud; Metian, Marc; Waduge, Vajira Ariyaratna; Yaccup, Rahman Bin

    2016-12-01

    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites.

  15. Redox and trace metal regulation of ion channels in the pain pathway.

    Science.gov (United States)

    Evans, J Grayson; Todorovic, Slobodan M

    2015-09-15

    Given the clinical significance of pain disorders and the relative ineffectiveness of current therapeutics, it is important to identify alternative means of modulating nociception. The most obvious pharmacological targets are the ion channels that facilitate nervous transmission from pain sensors in the periphery to the processing regions within the brain and spinal cord. In order to design effective pharmacological tools for this purpose, however, it is first necessary to understand how these channels are regulated. A growing area of research involves the investigation of the role that trace metals and endogenous redox agents play in modulating the activity of a diverse group of ion channels within the pain pathway. In the present review, the most recent literature concerning trace metal and redox regulation of T-type calcium channels, NMDA (N-methyl-D-aspartate) receptors, GABAA (γ-aminobutyric acid A) receptors and TRP (transient receptor potential) channels are described to gain a comprehensive understanding of the current state of the field as well as to provide a basis for future thought and experimentation.

  16. Screening of phyto-chemical constituents, trace metals and antimicrobial efficiency of Cissus vitiginea

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available The present study focused on the phytochemical constituents, antimicrobial activity and trace metal concentrations of the Cissus vitiginea plant leaves which were collected from the Tiruchirappalli district, southern India. Preliminary phytochemical screening of leaves extracts revealed the presence of the bioactive compounds, such as steroids, triterpenoids, glycosides, sugar, alkaloids, flavonoids, tannins, amino acid, and coumarin in the leaves. The bacterial and fungal strains were tested for antimicrobial sensitivity against C. vitiginea using the disc diffusion method. The methanol extracts of the plant leaves exhibited the higher zone of inhibition against bacterial strains than fungal strains. The trace metal concentrations were analyzed form the powered plant leaves by 797 VA Computrace voltametry, Metrohm. The average concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn were 0.05, BDL, 018, 0.38, BDL, BDL and 0.48 mg kg-1, respectively. The bioactive compounds responsible for these antimicrobial activities could be isolated and identified to develop a new drug of pharmaceutical interest.

  17. [Study on measurement of trace heavy metal Ni in water by laser induced breakdown spectroscopy technique].

    Science.gov (United States)

    Shi, Huan; Zhao, Nan-jing; Wang, Chun-long; Lu, Cui-ping; Liu, Li-tuo; Chen, Dong; Ma, Ming-jun; Zhang, Yu-jun; Liu, Jian-guo; Liu, Wen-qing

    2012-01-01

    The spectroscopy emission characteristics and the detection limit of trace heavy metal nickel in water was studied based on laser induced breakdown spectroscopy technique, with a 1,064 nm wavelength Nd : YAG laser as excitation source, and the echelle spectrometer and ICCD detector were used for spectral separation and high sensitive detection with high resolution and wide spectral range. A round flat solid state graphite as matrix was used for element enrichment for reducing water splashing, extending the plasma lifetime and improving the detection sensitivity, and the experimental sample was prepared by titrating a fixed volume of nickel nitrate solution of different concentrations on a fixed area of the graphite matrix. The results show that the better detection delay time is about 700 ns, the spectrum intensity raises with the concentration increase, a good linear relationship is presented at low concentration with a correlation coefficient 0.996 1, and the lower limit of detection of nickel in water with 0.28 mg x L(-1) was retrieved. A measurement method for further study of trace heavy metals in water is provided with laser induced breakdown spectroscopy technique. PMID:22497119

  18. Record of the accumulation of sediment and trace metals in a Connecticut, U. S. A. , salt marsh. [Dating deposition of trace metals from polluted air masses

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, R.J.

    1977-01-01

    The nonlinear rate of accretion of a Connecticut salt marsh during the past century was estimated from the /sup 210/Pb distribution with depth by assuming a constant flux of /sup 210/Pb to the surface. This rate was found to be in general agreement with the smoothed record of relative mean sea level rise measured independently by the New York City tide gage since 1893. The rate of deposition of Mn, Fe, Cu, Zn, Pb and total inorganic matter on the surface of the salt marsh may be calculated from the age and sediment properties measured at small depth increments. Changes in the inorganic matter content are attributed to variations in land use on the watershed since it was cleared for agriculture. Fe, Mn, and inorganic matter are principally derived from stream transport of eroding soil, while the observed increases in the fluxes of Cu, Zn, and Pb are largely explained as increased supply via the atmosphere during the period of industrialization since the Civil War. Salt marshes thus may supply a refined record of the deposition of trace metals from polluted air masses over long periods of time.

  19. Ostracode trace metal geochemistry from Lake Tanganyika, Africa: Towards the development of a lacustrine paleothermometer

    Science.gov (United States)

    Ash, J.; Cohen, A. S.; Reiners, P. W.; Dettman, D. L.

    2011-12-01

    The development of quantitative lacustrine paleotemperature records is critical to understanding how past climate changes influenced the ecology and hydrology of lakes. Whereas paleoecological transfer functions, TEX-86 and clumped isotopes are all widely applied methods, all have their limitations. We aim to further the development of an alternative method with wider applications: ostracode trace metal geochemistry. Trace element compositions of ostracode valves reflect discriminatory element uptake that in turn reflect ambient environmental conditions and have previously shown promise for quantitative paleotemperature determination. Understanding the specific environmental controls on element concentrations and ratios is an area of active research with much attention focusing on Mg/Ca and Sr/Ca ratios and their relationships with temperature and salinity. Here, HR-ICP-MS geochemical analyses of ostracode valves are compared to an existing TEX-86 temperature record as well as gastropod stable isotopes from Lake Tanganyika, Africa. Two ostracode species (M. opaca and R. ampla) were chosen for analyses from core LT-98-58 (1759 +/- 133 AD-modern). Molar Mg/Ca ratios for M. opaca range from .04 to .16, and a trend towards increased Mg/Ca begins around 1880 AD. Molar Mg/Ca ratios for R. ampla range from .05 to .2, and no trend is discernable. Sr/Ca ratios in both species range from .003-.006 and remain relatively stable, indicating that changes in Mg/Ca are the result of temperature rather than salinity. The M. opaca Mg/Ca record closely resembles the existing TEX-86 paleotemperature record of Tierney et al. (2010) for the past ~240 yr. We intend these preliminary results to facilitate the future research and use of ostracode trace metal geochemistry in a wide range of lakes for paleotemperature reconstruction.

  20. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    Science.gov (United States)

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process. PMID:26692411

  1. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    Science.gov (United States)

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process.

  2. Evaluation of Trace Metals Uptake by Some Plants Close to Some Industrial Zones in Khartoum City

    Directory of Open Access Journals (Sweden)

    Isam Eldin Hussein Elgailani

    2014-12-01

    Full Text Available The study aimed to evaluate the uptake of trace metals by the tissues of some plants which grow inside, or in the peripheries of, pools of water contaminated by waste water from neighboring industrial complexes in Khartoum City. It also aimed to verify the possibility of making use of this phenomenon in combating metal pollution in water and wastewater catchments. The flame atomic absorption spectrophotometry (FAAS was used to find the concentration of the subject metals in waste water and algal biomass of the phyla Chlorophyta, Cyanophyta, and Bacillariophyta; and in newly grown leaves of Calotropis procera in addition to their stems and roots. The physical parameters studied were pH and electrical conductivity (EC of waste water. The metals studied in waste water, algal biomass and C. procera were Fe, Zn, Cd, Pb, Cu, Ni, and Cr. The study covered during summer and autumn 6 sites in Khartoum city industrial complexes. Samples were collected, and analyzed for TMs concentration levels. The algal biomass was found to be more efficient for TMs uptake and accumulation than the three parts of C. procera. Among the parts of C. procera, the root was more efficient for TMs uptake than the leaf, while the stem was the least efficient.

  3. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    Energy Technology Data Exchange (ETDEWEB)

    Gokhan Alptekin

    2008-09-30

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the

  4. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    Science.gov (United States)

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  5. Trace metal contamination influenced by land use, soil age, and organic matter in montreal tree pit soil.

    Science.gov (United States)

    Kargar, Maryam; Jutras, Pierre; Clark, O Grant; Hendershot, William H; Prasher, Shiv O

    2013-09-01

    The short life span of many street trees in the Montreal downtown area may be due in part to higher than standard concentrations of trace metals in the tree pit soils. The effects of land use, soil organic matter, and time since tree planting in a given tree pit (soil age) were studied with respect to the total concentration of trace metals (Cr, Ni, Cu, Zn, Cd, and Pb) in soil collected from tree pits on commercial and residential streets. Contingency table analysis and multiple linear regression were applied to study how these variables were related to the total concentrations of trace metals in soil. Other variables, such as pH, street width, distance of the tree pit from the curb, and tree pit volume, were also used as input to statistical analysis to increase the analysis' explanatory power. Significantly higher concentrations of Cu, Cd, Zn, and Pb were observed in soils from commercial streets, possibly as a result of heavier traffic as compared with residential streets. Soil organic matter was positively correlated with the concentrations of Cu and Pb, probably due to the ability of organic matter to retain these trace metals. Nickel, Cu, Zn, Cd, and Pb were positively correlated with the soil age presumably because trace metals accumulate in the tree pit soil over time. This knowledge can be helpful in providing soil quality standards aimed at improving the longevity of downtown street trees. PMID:24216430

  6. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    Science.gov (United States)

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export. PMID:17763791

  7. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Highlights: •PCO2 alters accumulation of Cd and Cu in clam cells. •Accumulation of Cd induces release of free Zn2+. •Accumulation of Cu induces an increase in free Cu2+ and Fe2+. •Metal-induced oxidative stress is alleviated at high PCO2. •Toxicity of Cu in likely enhanced while that of Cd alleviated by high PCO2. -- Abstract: Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 (PCO2) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high PCO2 (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between PCO2 and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of PCO2 (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants – cadmium (Cd) and copper (Cu). Elevated PCO2 resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated PCO2 significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated PCO2 levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd2+ concentration remained the same, while intracellular levels of free Zn2+ increased suggesting that Cd2+ substitutes bound Zn2+ in these cells. In contrast, Cu exposure did not affect intracellular Zn2+ but led to a profound increase in the intracellular levels of labile Cu2+ and Fe2+. An increase

  8. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    Science.gov (United States)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 μm) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 μm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  9. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    Science.gov (United States)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  10. Health Risk Assessment for Trace Metals, Polycyclic Aromatic Hydrocarbons and Trihalomethanes in Drinking Water of Cankiri, Turkey

    OpenAIRE

    Caylak, Emrah

    2012-01-01

    Lifetime exposure to trace metals, pesticides, polycyclic aromatic hydrocarbons (PAHs), trihalomethanes (THMs), and the other chemicals in drinking water through ingestion, and dermal contact may pose risks to human health. In this study, drinking water samples were collected from 50 sampling sites from Cankiri and its towns during 2010. The concentrations of all pollutants were analyzed, and then compared with permissible limits set by Turkish and WHO. For health risk assessment of trace met...

  11. Evaluation of trace metal levels in tissues of two commercial fish species in Kapar and Mersing coastal waters, Peninsular Malaysia.

    Science.gov (United States)

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A G

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  12. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Fathi Alhashmi Bashir

    2012-01-01

    Full Text Available This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards.

  13. Trace metals in Norwegian lakes. Preliminary results for 473 lakes; Sporeelementer i norske innsjoeer. Foreloepig resultat for 473 sjoeer

    Energy Technology Data Exchange (ETDEWEB)

    Skjelkvaale, B.L.; Henriksen, A.; Vadset, M.; Roeyset, O. [Norsk Inst. for Luftforskning, Kjeller (Norway)

    1996-04-15

    In the autumn of 1995, a regional investigation of 1500 Norwegian lakes was performed as part of a programme on monitoring long-range transfrontier pollution and fallout deposits. This report presents the levels and regional distributions of about 50 trace metals in 473 statistically selected lakes. The concentrations of some of the metals fall off markedly from south to north. The high concentration in the south is probably due to long-range pollution. Some metals have high local concentrations, ascribed to point sources or local rock minerals. Acidification may lead to increased mobilization of certain metals. Lakes in coastal areas often have important quantities of trace metals from sea water, such as B and Sr. 15 refs., 6 figs., 1 table

  14. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  15. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13C) and nitrogen (δ 15N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  16. Linking Environmental Magnetism to Geochemical Studies and Management of Trace Metals. Examples from Fluvial, Estuarine and Marine Systems

    Directory of Open Access Journals (Sweden)

    Michael Scoullos

    2014-07-01

    Full Text Available Among the diverse research fields and wide range of studies encompassed by environmental magnetism, the present work elaborates on critical aspects of the geochemistry of trace metals that emerged through years of original research in a variety of environmental compartments. This review aims at sharing the insights gained on (a tracing metal pollution sources; and (b identifying processes and transport pathways from sources to depositional environments. Case studies on the Elefsis Gulf (Greece and the Gulf of Lions (France demonstrate the potential of combined magnetic measurements and chemical analysis to trace pollution signals resulting from land-based sources and atmospheric deposition. Case studies on estuarine environments, namely the Louros, Acheloos, and Asopos Estuaries (Greece, address modes of trace metal behavior under the influence of different hydrological regimes and elucidate in situ processes within the transitional estuarine zone, that define their ultimate fate. As sources, transport pathways, and processes of trace metals are fundamental in environmental management assessments, the involvement of magnetic measurements in the policy cycle could facilitate the development and implementation of appropriate regulatory measures for the integrated management of river basins, coastal, and marine areas.

  17. Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile.

    Science.gov (United States)

    Astorga-España, Maria Soledad; Calisto-Ulloa, Nancy Cristina; Guerrero, Sandra

    2008-02-01

    Samples of four different species of seaweed were collected monthly between October 2000 and March 2001 from the coast of the Strait of Magellan, Chile to establish baseline levels of trace metals (silver, total mercury, nickel, lead, antimony, vanadium and zinc) and to compare the accumulation capacity among species. The algae included in the study were Adenocystis utricularis (n=15); Enteromorpha sp. (n=11), Mazzaella laminarioides (n=12) and Porphyra columbina (n=6). The concentration range of each metal in microg g(-1) dry weight varied as follows: Ag=ND-0.3, Hg=ND-0.02, Ni=ND-12.6, Pb = ND-11.2, Sb=ND-1.97, V=ND-11.34 and Zn=14.10-79. Results showed that levels of Ag, Hg, Ni, Pb, Sb, V and Zn for all species were similar to those found in other studies for non-contaminated areas with very little influence from anthropogenic activity. Also among the four species studied macroalgae Enteromorpha sp. had the highest capacity for metal accumulation and could therefore be considered as a biomonitor for future studies in the area.

  18. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-04-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).

  19. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    Science.gov (United States)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  20. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses

    Science.gov (United States)

    Zhu, Zongmin; Sun, Guangyi; Bi, Xiangyang; Li, Zhonggen; Yu, Genhua

    2013-10-01

    In the present study, magnetic measurements were combined with geochemical analysis and stable Pb isotopic ratios to reveal the distribution and origination of trace metal pollutants in kindergarten dusts from a typical urban environment of Wuhan, central China. The geoaccumulation index (Igeo) of magnetic properties was more prominent than those of individual metals. The magnetic susceptibility (MS) and trace metals (Zn, Pb, and Cu) in this study together with published results from other Chinese cities formed a liner relationship, suggesting that metal contaminants in Chinese urban areas had similar MS to metal ratios, which could be used as an indicator for identification of pollution sources between Chinese cities and the other Asian cities. Stable Pb isotopic ratios (1.1125-1.1734 for 206Pb/207Pb and 2.4457-2.4679 for 208Pb/207Pb) in the urban dusts from Wuhan were characterized by higher 208Pb component in comparison with those from other Chinese cities. This result combined with principal component analysis (PCA) indicated that metal pollutants in the dusts were derived from industrial activities and coal combustion, whereas the traffic emissions were no longer a predominant pollution source in urban environment. Our study demonstrated that environmental magnetic methods could not only reveal the overall situation of trace metal contamination, but also prove evidence in the identification of pollution sources.

  1. SOIL, BARK AND LEAF TRACE METAL LOADS RELATED TO THE WAR LEGACY (THE PRAŠNIK RAINFOREST, CROATIA

    Directory of Open Access Journals (Sweden)

    Ivana Mesić Kiš

    2016-06-01

    Full Text Available As a special forest vegetation reserve, the Prašnik rain forest is a highly protected area which owes its protection not only to a unique composition of trees, but also to its geographical position and, to an extent, historical events. It is situated on the Sava River left bank, north of the city of Stara Gradiška (cca. 3 km. The study area belongs to the southwestern part of Pannonian Basin, specifically the Sava Depression. The aim of this study was to assess a possible impact of war activities in Croatia (23 years ago when numerous mines were laid in this region and to establish a major and trace metal baseline concentrations for future investigations. Ten topsoil (S samples were taken randomly with adjacent vegetation (bark and leaves at each site. Major and trace metal concentrations were measured for all three types of samples using the ICP method. Analysed soils are composed of quartz, micaceous mineral, 14Å mineral, plagioclase and mixed layer minerals. All metal values in the sample taken from an ex-mine crater are 2-4 times higher compared to other. Generally, positive statistically significant Kendall’s Tau correlation coefficients of trace metals (Cd, Cr, Cu, Ni, and Zn were found for all combinations of the S (soil, B (bark, and L (leaf groups. Such results indicate that the war activity have played a certain role in a distribution pattern of soil as well as vegetative trace metal levels.

  2. Sex-associated differences in trace metals concentrations in and on the plumage of a common urban bird species.

    Science.gov (United States)

    Frantz, Adrien; Federici, Pierre; Legoupi, Julie; Jacquin, Lisa; Gasparini, Julien

    2016-01-01

    Urban areas encompass both favorable and stressful conditions linked with human activities and pollution. Pollutants remain of major ecological importance for synanthropic organisms living in the city. Plumage of urban birds harbour trace metals, which can result from external deposition or from internal accumulation. External and internal plumage concentrations likely differ between specific trace metals, and may further differ between males and females because of potential sex-linked differential urban use, physiology or behaviour. Here, we measured the concentrations in four trace metals (cadmium, copper, lead and zinc) in both unwashed and washed feathers of 49 male and 38 female feral pigeons (Columba livia) from Parisian agglomeration. We found that these concentrations indeed differed between unwashed and washed feathers, between males and females, and for some metals depended on the interaction between these factors. We discuss these results in the light of physiological and behavioural differences between males and females and of spatial repartition of the four trace metals in the city. PMID:26458927

  3. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals

    Science.gov (United States)

    Mlakar, Marina; Fiket, Željka; Geček, Sunčana; Cukrov, Neven; Cuculić, Vlado

    2015-07-01

    Karst marine lakes are unique marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. In this study, organic matter cycle and its impact on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated for the first time. Studied marine lake is small, isolated, shallow basin, with limited communication with the open sea. Intense spatial and seasonal variations of organic matter, dissolved and particulate (DOC, POC), and dissolved trace metals concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high DOC and POC concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers with appearance of sulfur species. Speciation modeling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and organic or inorganic phases, sulfides, Fe-oxyhydroxydes or biogenic calcite. The above is reflected in the composition of the sediments, which are, in addition to influence of karstic background and bathymetry of the basin, significantly affected by accumulation of detritus at the bottom of the Lake.

  4. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India.

    Science.gov (United States)

    Antizar-Ladislao, Blanca; Mondal, Priyanka; Mitra, Soumita; Sarkar, Santosh Kumar

    2015-12-30

    The work investigated concentration of trace metals in surface sediments (0-10 cm; Mangrove Wetland (SMW), eastern coastal part of India. The trace metal concentrations in sediments exhibited an overall decreasing trend as follows: Cr (21.2-60.9)>Cu (11.60-102.47)>Ni (19.10-52.60)>Pb (7.09-183.88)>As (4.41-11.46)>Cd (0.02-4.4)>Ag (0.02-0.87). Both the geo-accumulation index (Igeo) and contamination factor (CF) values revealed significant pollution by Ag, Cd and Pb at Nurpur of HRE. Potential Ecological Risk Index (RI) (61.21 ± 112.40) showed wide range of variations from low (19.76) to serious (463.20) ecological risk. A positive significant correlation was found between metals and organic carbon in sediments. The ecological risk associated with the trace metals in sediment was considered on the consensus based Sediment Quality Guidelines (SQGs). The work suggests that the trace metals present in sediments posed adverse effects on the sediment-dwelling organisms. PMID:26581818

  5. Detection of Trace Heavy Metals Ions by Arrays of Titania Nanotubes Annealed in Nitrogen

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-man; XIAO Peng; CAO Guo-zhong

    2009-01-01

    Redox response of trace heavy metals ions(THMIs) has better performance on highly ordered vertically oriented titania nanotube arrays(TNA) annealed in nitrogen. Experimental data showed that different THMIs possess different reaction peak shapes and charge and discharge capacities. Therefore, the TNA will become an important tool used for environmental protection and facilitating the rapid determination of THMIs. THMIs of 5×10~(-4) mol/L concentration were measured at a scan rate of 100 mV/s. The analytical utility of TNA is demonstrated in a neutral 0.5 mol/L Na_2SO_4 solution. The results sufficiently show that titania nanotube arrays electrodes(TNAE) will be used to measure THMIs.

  6. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    Science.gov (United States)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the

  7. Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy).

    Science.gov (United States)

    Squadrone, S; Brizio, P; Stella, C; Prearo, M; Pastorino, P; Serracca, L; Ercolini, C; Abete, M C

    2016-08-01

    Information regarding chemical pollutant levels in farmed fish and shellfish, along with the risks associated with their consumption is still scarce. This study was designed to assess levels of exposure to 21 trace elements in fish (Dicentrarchus labrax), mussels (Mytilus galloprovincialis) and oysters (Crassostrea gigas) collected from aquaculture marine ecosystems of the northwestern Mediterranean Sea. Metal concentrations showed great variability in the three species; the highest values of the nonessential elements As and Cd were found in oysters while the highest levels of Al, Pb and V were found in mussels. The essential elements Cu, Mn and Zn were highest in oysters, but Fe, Cr, Ni, Se, Co and Mo levels were highest in mussels. Fish had the lowest concentrations for all trace elements, which were at least one order of magnitude lower than in bivalves. The rare earth elements cerium and lanthanum were found at higher levels in mussels than in oysters, but undetectable in fish. The maximum values set by European regulations for Hg, Cd and Pb were never exceeded in the examined samples. However, comparing the estimated human daily intakes (EHDIs) with the suggested tolerable copper and zinc intakes suggested a potential risk for frequent consumers of oysters. Similarly, people who consume high quantities of mussels could be exposed to concentrations of Al that exceed the proposed TWI (tolerable weekly intake). PMID:27179326

  8. Isotope dilution mass spectrometry of microelectronically relevant heavy metal traces in high-purity cobalt

    International Nuclear Information System (INIS)

    Because cobalt and its silicides are increasingly used in microelectronic devices, an isotope dilution mass spectrometric (IDMS) method has been developed for trace analysis of relevant heavy metals (U, Th, Fe, Zn, Tl, and Cd) in high-purity cobalt. The measurements of the isotope ratios were carried out with a small thermal ionization quadrupole mass spectrometer by producing positive thermal ions in a single- or double-filament ion source. For the trace/matrix separation and the isolation of the different heavy metals, anion-exchange chromatography and an extraction method for iron were applied. The detection limits obtained were (in ng/g): U = 0.007, Th = 0.017, Tl = 0.06, Cd = 1, Zn = 8, and Fe = 11, which demonstrates that the particularly critical radioactive impurities uranium and thorium could be analysed down to the low pg/g range. Three cobalt samples of different purity were analysed with concentrations ranging from about 0.1 ng/g for U and Th in an ultra high-purity material produced for microelectronic purposes, up to about 70 μg/g for Cd in a cobalt sample with declared purity of 99.8%. Because IDMS usually results in accurate analytical results, it can be used in the future for calibration of other methods like glow discharge mass spectrometry, as could be shown by analysing one cobalt sample by both methods. IDMS can also be applied for the production of urgently needed certified standard reference materials in this important field of high technology. (orig.)

  9. Leachability of trace metal elements from fly ashes, and from concrete incorporating fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.H. [National University of Singapore (Singapore); Blanchette, M.C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Malhotra, V.M. [Natural Resources Canada, Ottawa, ON (Canada)

    2001-07-01

    Manufacturing portland cement is not environmentally desirable because for every tonne of cement produced, about one tonne of carbon dioxide is released into the atmosphere. This problem can be solved by replacing a portion of portland cement with fly ash, a mineral by-product of burning coal at power generation facilities. A study was conducted to examine the leachability of trace metal elements from a variety of fly ashes from various sources in Canada and the United States along with the concrete incorporating the fly ash. Gold, arsenic, boron, barium cadmium, chromium, copper, mercury, lead and selenium are the regulated elements in leachates. In this study, each of these elements were tested from 9 fly ashes within the limits of the U.S. Environmental Protection Agency and the Canadian regulations for the Transportation of Dangerous Goods. It was shown that in general, but with some exceptions, the leaching of arsenic, boron, nickel and selenium increased with an increase in their content in the fly ash. Arsenic concentration from fly ash obtained from bituminous coal was found to be much higher than that from lignite or from sub-bituminous coal. However, the study also showed that none of the trace metals in the leachates from the fly ash concrete samples exceeded the regulated concentration limits, regardless of the type and percentage of fly ash used. It was concluded that concrete which incorporates fly ash is environmentally stable. It was also concluded that waste product utilization, in terms of using fly ash from power generating facilities, can significantly reduce carbon dioxide emissions when manufacturing portland cement. Typical replacement levels of fly ash in portland cement concrete is about 20 per cent by mass of the total cementitious materials. 10 refs., 14 tabs., 4 figs.

  10. Impact of mineral components and selected trace metals on ambient PM10 concentrations

    Science.gov (United States)

    Limbeck, Andreas; Handler, Markus; Puls, Christoph; Zbiral, Johannes; Bauer, Heidi; Puxbaum, Hans

    PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m -3 (Cd) and approximately 200 ng m -3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m -3 (Ca) to 16.3 μg m -3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called "urban impact", which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the "urban impacts" of individual elements varied between 25.5% (As) and 77.0% (Ba).

  11. Simultaneous estimation of trace and toxic metals through drinking water from Tarapur using ICP-AES

    International Nuclear Information System (INIS)

    In the present paper the contamination levels of trace and toxic metals in drinking water collected from Tarapur industrial area, Thane were investigated. The concentrations of trace and toxic metals (Pb, Cd, Cu, Cr, Ni, Se, V, Zn, Mn, Mo, Co, As and Ba) were determined simultaneously using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The results were compared with international water quality guidelines (WHO, 2008) and were found within the permissible limits. The quality assurance was checked by standard addition method and spike recovery. The concentration of Pb, Cd, Cu, Cr, Ni, Se, V, Zn, Mn, Mo, Co, As and Ba varies from 4.25-19.62 μg/L, 0.13-1.49 μg/L, 0.60-65.55 μg/L, 0.46-4.15 μg/L, <0.1 μg/L, 0.5- 9.35 μg/L, <0.5 μg/L, 3.41-99.64 μg/L, 0.80-9.62 μg/L, 0.30-1.48 μg/L, <0.1-0.90 μg/L, <0.63 μg/L and 0.71-9.0 μg/L respectively. Similarly Na, K, Ca and Mg varies from 8.83-61.54 mg/L, 0.40-27.66 mg/L, 14.63-223.75 mg/L and 9.56-67.06 mg/L in different places around Tarapur. (author)

  12. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  13. Sediment trace metal profiles in lakes of Killarney Park, Canada from regional to continental influence

    International Nuclear Information System (INIS)

    The lakes in Killarney Provincial Park (KPP) located 40-60 km southwest of Sudbury, Ontario are beginning to recover after decades of being severely affected by acidification and atmospheric pollutants. Detailed profiles of acid-recoverable trace elements (As. Cd, Cu, Co. Fe, Mn, Ni, Pb and Zn) were obtained after aqua regia digestion and ICP-OES analysis of sediment cores taken from six Park lakes. Results permitted the identification of two types of profiles. The first type applies to elements such as Fe, Mn, As and Co for which historical deposition and recent recovery are strongly masked by diagenetic remobilization. The second type of profile applies to elements such as Cd, Cu, Ni, Pb and Zn on which the history of industrialisation in North America and mining activities in Sudbury can be superimposed. Based on sediment data of trace elements less affected by diagenetic remobilization (Cd, Cu, Ni, Pb, Zn), chemical recovery indices can be estimated from depth profiles. Indices of maximum (Cp) and surface (Cs) contamination were calculated by dividing the concentration of a given metal by the pre-industrial level. The ratio of the two indices provided a simple estimation of the chemical recovery of lakes that does not consider the influence of the watershed or the lake pH. Profiles of metals in sediment of KPP complement the water quality monitoring data and tend to indicate that this area is in transition from dominant influence of regional pollution sources to becoming controlled by continental atmospheric deposition. - Lakes in Killarney Park are in transition from being impacted by regional pollution to being controlled by continental atmospheric deposition

  14. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review

    Directory of Open Access Journals (Sweden)

    Afnan Mahmood Freije

    2015-04-01

    Full Text Available The Arabian Gulf environmental status was assessed based on studies conducted in Bahrain, Kuwait, Oman, Saudi Arabia, Qatar, and United Arab Emirates (UAE during 1983–2011. This review examines all sorts of pollutions in the Arabian Gulf area over the last three decades. Approximately 50 published studies were reviewed in order to determine the pollution status in the Arabian Gulf regarding heavy metals and organic substances. Three types of environmental pollutions including marine and coastal, soil, and air were addressed in this review as well as sources of pollutants and their effect on biological systems, marine organisms, and human health. Emphasis is placed on marine pollution, particularly toxic metal, and petroleum hydrocarbon contaminations. Major parts of this review discuss the consequences of the 1991 Gulf War on the environment, and the substantial changes associated with the marine habitats. The effects of oil field fires in Kuwait following the 1991 Gulf War were evaluated through studies that investigated hydrocarbons concentration and trace metals in samples of near shore sediments, bivalves, and fish collected from Kuwait, Saudi Arabia, Bahrain, UAE, and Oman. Total petroleum hydrocarbons (TPH and polycyclic aromatic hydrocarbons (PAHs were discussed in biota (fish and various bivalves and coastal sediments from six countries in the Gulf. The review has revealed different concentrations of pollutants, low, moderately, and chronically contaminated areas from oil and metals. It has also outlined effective sustainable management measures and goals as a first step in the evaluation of coastal, marine, soil, and air environment in the Arabian Gulf area.

  15. Impact of trace metals on the water structure at the calcite surface

    Science.gov (United States)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  16. Mechanisms of trace metal sorption in Pseudomonas putida-birnessite assemblages

    Science.gov (United States)

    Peña, J.; Kwon, K. D.; Bargar, J. R.; Sposito, G.

    2012-04-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute strongly to the adsorption of nutrient and toxicant metals in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). The biogenic Mn(IV) oxide found in field settings, as well as that produced by model bacteria in laboratory culture, is typically layer-type hexagonal birnessite containing abundant cation vacancy sites and enmeshed in an organic matrix of bacterial cells and extracellular polymeric substances. In this talk I summarize the results from laboratory-scale research designed to investigate the mechanisms of metal sorption by the bacterial biomass-birnessite assemblages formed by Pseudomonas putida GB-1 when grown in the presence of 1 mM Mn(II) at circumneutral pH values. The goals of this research were first, to identify the structure of the surface complexes formed by trace metals (e.g., Ni, Cu and Zn) on biogenic birnessite and second, to determine the conditions under which the bacterial cell surfaces and extracellular polymeric substances contribute to metal sorption. Macroscopic and spectroscopic experiments were performed at varying pH values (6 - 8) and over a wide-range of metal concentrations. Extended X-ray absorption fine structure (EXAFS) spectroscopy and first-principles calculations based on density functional theory showed that cation vacancy sites in birnessite drive mineral reactivity, but that surface speciation varies from metal to metal. For, Ni we identified two species, Ni bonded to three surface oxygen atoms vacancy sites as a triple-corner-sharing (TCS) complex and Ni incorporated at vacancy sites, with surface speciation varying with pH and surface loading. Zinc formed TCS complexes at vacancy sites, with the proportion of Zn in tetrahedral or octahedral coordination geometry influenced

  17. Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers

    OpenAIRE

    Vystavna, Yuliya; Huneau, Frédéric; Motelica-Heino, Mikael; Le Coustumer, Philippe; Vergeles, Yuri; Stolberg, Felix

    2012-01-01

    This paper reports the results of the in situ application of diffusive gradients in thin-films (DGT) passive samplers for trace metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) monitoring in transboundary Udy and Lopan rivers of the Seversky Donets watershed in the Kharkiv region (Ukraine), which has a long history of industrial development. The research discusses potential sources of DGT-measured labile metals in water and seasonal variations. Our results demonstrate the application of DGT for identif...

  18. Distribution of PAHs and trace metals in urban stormwater sediments: combination of density fractionation, mineralogy and microanalysis

    OpenAIRE

    El Mufleh, Amelène; Bechet, Béatrice; Basile Doelsch, Isabelle; GEFFROY RODIER, Claude; Gaudin, Anne; RUBAN, Véronique

    2014-01-01

    Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. In order to reduce the sediments volumes to treat, organic and metal micropollutants bearing-phases should be identified. To do so, the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, Zn) within variable density fractions was evaluated for three urban stor...

  19. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  20. Towards integrated environmental quality objectives for surface water, ground water, sediment and soil for nine trace metals

    OpenAIRE

    Plassche EJ van de; Bruijn JHM de

    1992-01-01

    This report is the result of the second sub-project of the project "Setting integrated environmental quality objectives", called exotic metals". These trace metals are antimony, barium, beryllium cobalt, molybdenum, selenium, thallium, tin and vanadium. This report is an integration of three activities, published in separate reports: 1. derivation of Maximum Permissible Concentrations (MPC's) and Negligible Concentrations (NC's) for water, sediment, and soil based on ecotoxicological data. 2....

  1. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  2. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  3. Rapid determination of some trace metals in several oils and fats

    Directory of Open Access Journals (Sweden)

    Bhanger, M. I.

    2004-06-01

    Full Text Available An atomic absorption spectrophotometric method has been devised for the rapid determination of trace metals, found in several vegetable oils and fats. Samples were prepared using an ultrasonically assisted acid-extractive technique. The parameters of the analysis were optimized to improve the recovery of metals from the oil matrixes at an ultra trace level within the least possible time. The use of ultrasonic intensification, followed by centrifugation for phase separation reduced the conventional acid extraction time from 180 to only 10 minutes. The respective range of recovery of iron, copper, nickel and zinc was found to be 94.6-98.0 %, 93.6-100.4 %, 95.0-97.3 % and 96.0-101.2 % in a soybean oil which was fortified with 0.10, 0.25, 0.50, 0.75, 1.00 μg/gm of each of the metals using the standard addition method. The ranges of recovery of these metals as investigated by the proposed method were also found in close agreement with those of the wet digestion method. Most of the samples of commercial oils and fats were found to be contaminated with notable amounts of iron and nickel ranging from 0.13-2.48 and 0.027-2.38 ppm respectively. The contents of copper and zinc were also high in many brands, ranging from 0.01-0.15 ppm and zinc 0.03- 0.21 ppm respectively, which poses a threat to oil quality and to human health.Se ha establecido un método analítico rápido mediante espectroscopia de absorción atómica para determinar con rapidez trazas metálicos en algunos aceites y grasas. Las muestras se preparan mediante una técnica extractiva que utiliza ultrasonidos. Los parámetros del análisis han sido optimizados para mejorar la recuperación de metales a niveles de ultra-traza en el menor tiempo posible. El uso de ultrasonidos, seguido por centrifugación para la separación de fases, redujo el tiempo convencional de extracción de 180 a 10 min. Los rangos de recuperación de hierro, cobre, níquel y zinc fueron 94.6-98.0 %, 93

  4. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    Science.gov (United States)

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions. PMID:26809976

  5. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    International Nuclear Information System (INIS)

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  6. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  7. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    Science.gov (United States)

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  8. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0

    Science.gov (United States)

    Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C., III; Taylor, C.D.

    2008-01-01

    High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates

  9. Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters

    Science.gov (United States)

    Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.

    2002-12-01

    As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron

  10. Environmental impact assessment of trace metal deposition around the petrol filling stations

    International Nuclear Information System (INIS)

    The wide use of petroleum products causes contamination of air, water, soil and plants. The present study was conducted to monitor the trace metal deposition in road side soil around the petrol filling stations along the busy roads of Karachi, Pakistan. Total 21 road side soil samples were collected from selected locations of busy roads. The soil samples were digested using acid digestion method and atomic absorption spectrophotometer (AAS) was used for the elemental analysis. Results of the study showed that concentration of lead was highest in the soil samples ranging from 41.3 to 361 mg/kg, then copper from 23.0 to 101 mg/kg, manganese from 36.2 to 125.0 mg/kg and zinc from 27.5 to 213.0 mg/kg, respectively. The correlation-coefficient (r) was also calculated between the metals in soil samples. The correlation matrix showed that all the pollution is coming from the same source. The gravitational sedimentation and impact on vegetation of coarse fraction is responsible for the high lead contamination of vegetation and soils. Collected data showed that, almost all the pollution being generated by automobile exhaust in urban areas of Karachi. The soil acts as an important sink for pollutants released through different activities. (author)

  11. Trace metallic impurity analysis of Pu bearing nuclear fuels by AES and associated instrumental set up

    International Nuclear Information System (INIS)

    Radiochemistry Division, BARC, has been carrying out trace metal assay of Pu bearing nuclear fuels and associated materials such as UO2, PuO2, (U,Pu)O2, (U,Pu)C etc. based on Atomic Emission Spectrometry (AES) for more than four decades. AES is used with two different excitation sources, i.e. Direct Current Arc (D.C.Arc) and Inductively Coupled Plasma (ICP). In the first case, group of metallics viz. Al, B, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Na, Ni, Pb, Si, Sn, Ta,V, W and Zn are normally determined by carrier distillation technique, wherein during excitation of the sample in D.C.Arc, the analytes get selectively volatilised leaving behind the matrix in the electrode crater. Thus the sample prior to arcing has to be only directly mixed with the carrier, therefore, resulting in minimum handling of sample, which results in least chance of contamination and greater speed of analysis

  12. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    Science.gov (United States)

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.

  13. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  14. Total petroleum hydrocarbons and trace metals in tropical estuary of Todos os Santos Bay, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Celino, Joil Jose; Oliveira, Olivia Maria Cordeiro de; Queiroz, Antonio Fernando de Souza [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Trigueis, Jorge Alberto [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil); Garcia, Karina Santos [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2008-07-01

    As part of the environmental assessment within Todos os Santos Bay, State of Bahia - Brazil, in summer of 2005, superficial water and sediments samples of the mangrove were collected at five locations to determine the spatial distribution of anthropogenic pollutants in the Dom Joao estuary at the Sao Francisco do Conde Region. Sandy sediments with low organic matter content dominate the studied area. Trace metal levels indicated that sediments were moderately polluted with Cu (overall mean: 21.48 +/- 4.76 {mu}g.g-1 dry sediment), but not with Pb (15 +/- 8), Zn (38 +/- 10), Cr (15 +/- 7), Ni (13 +/- 6) and Cd (0.4 +/- 0.2). Depending on location, total petroleum hydrocarbons ranged from 1.6 to 10.6 {mu}g.g-1. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the stations investigated and confirmed our analytical results. Principal components analysis confirmed two regions according to their environmental quality. The results pointed out that almost all the area presented some substances that can cause adverse biological effects, especially in the outermost region where some metals are above TEL level. (author)

  15. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  16. Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways

    International Nuclear Information System (INIS)

    Sources and distribution pathways were identified. - Surface sediments throughout Montego Bay, Jamaica were collected in 1995 and analyzed for their trace metal and trace organic contaminant content. A variety of trace metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, coprostanol as well as chlorinated hydrocarbons such as pesticides and polychlorinated biphenyls were detected and provide evidence for several anthropogenic inputs to the bay. Two main sources of these chemicals are the Montego River and the North Gully, the latter being more significant. Particle-associated pollutants were found to be distributed along the Montego River plume, as well as being transported by the prevailing water currents to the South-Western sections of the bay, probably through re-suspension of enriched fine sediments from the North Gully outfall area

  17. The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.J.; Crusius, J.; Jay McNee, J.; Yanful, E.K

    2003-07-01

    The exchange of {sup 226}Ra and trace metals across the tailings-water interface and the mechanisms governing their mobility were assessed via sub-centimetre resolution profiling of dissolved constituents across the tailings-water interface in Cell 14 of the Quirke Waste Management Area at Rio Algom's Quirke Mine, near Elliot Lake, Ontario, Canada. Shallow zones (<1.5 m water depth) are characterized by sparse filamentous vegetation, well-mixed water columns and fully oxygenated bottom waters. Profiles of dissolved O{sub 2}, Fe and Mn indicate that the tailings deposits in these areas are sub-oxic below tailings depths of {approx}3 cm. These zones exhibit minor remobilization of Ra in the upper 5 cm of the tailings deposit; {sup 226}Ra fluxes at these sites are relatively small, and contribute negligibly to the water column activity of {sup 226}Ra. The shallow areas also exhibit minor remobilization of Ni, As, Mo and U. The release of these elements to the water cover is, however, limited by scavenging mechanisms in the interfacial oxic horizons. The presence of thick vegetation (Chara sp.) in the deeper areas (>2 m water depth) fosters stagnant bottom waters and permits the development of anoxia above the benthic boundary. These anoxic tailings are characterized by substantial remobilization of {sup 226}Ra, resulting in a relatively large flux of {sup 226}Ra from the tailings to the water column. The strong correlation between the porewater profiles of {sup 226}Ra and Ba (r{sup 2}=0.99), as well as solubility calculations, indicate that the mobility of Ra is controlled by saturation with respect to a poorly ordered and/or impure barite phase [(Ra,Ba)SO{sub 4}]. In the anoxic zones, severe undersaturation with respect to barite is sustained by microbial SO{sub 4} reduction. Flux calculations suggest that the increase in {sup 226}Ra activity in the water cover since 1995 (from <0.5 to 2.5 Bq l{sup -1}) can be attributed to an increase in the spatial

  18. In-situ measurement of free trace metal concentrations in a flooded paddy soil using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Pan, Y.; Koopmans, G.F.; Bonten, L.T.C.; Song, J.; Luo, Y.; Temminghoff, E.J.M.; Comans, R.N.J.

    2015-01-01

    The field Donnan Membrane Technique (DMT) has been used successfully to measure in-situ free trace metal concentrations in surface waters. However, it has not been applied previously in submerged soil systems including flooded paddy rice fields.Wetested this technique in a columnexperimentwith a flo

  19. Accumulation of Trace Metals, Petroleum Hydrocarbons, and Polycyclic Aromatic Hydrocarbons in Marine Copepods from the Arabian Gulf

    OpenAIRE

    El-Din, N.M. Nour; Abdel-Moati, M. A. R.

    2001-01-01

    In this study, zooplankton samples were collected from the coastal waters of Qatar during winter and summer 1998 to assess the impact of growing industrialization on the bioaccumulation of trace metals, total petroleum hydrocarbons (TPHCs) and polycyclic aromatic hydrocarbons (PAHs) in copepods, the dominant zooplankton group and main food for fish in the Arabian Gulf.

  20. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-07-15

    In this study, we developed a simple and rapid solid phase extraction (SPE) method for the separation/preconcentration and determination of some trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly [2-(4-methoxyphenylamino)-2-oxoethyl methacrylate-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid] (MPAEMA-co-DVB-co-AMPS), was synthesized and characterized. This chelating resin was used as a new adsorbent material for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) ions. The parameters influential on the determination of this trace metals were examined. Under the optimum conditions, the detection limits (DL) of the method for trace metals were found to be (3s) in the range of 0.9-2.2 μg L(-1) (n=21), the preconcentration factor was calculated as 200 and the relative standard deviation was obtained achieved as ⩽2% for n=11. The method was performed for the determination of trace metals in some honey samples and standard reference materials. PMID:26948616

  1. Recent advances and perspectives in analytical methodologies for monitoring the bioavailability of trace metals in environmental solid substrates

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity...

  2. Distribution, provenance and early diagenesis of major and trace metals in sediment cores from the Mandovi estuary, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Prajith, A.; Rao, V.P.; Chakraborty, P.

    origins in the Joyuda Lagoon. Hyun et al. (2007) reported enrichment of Cu, Pb and Zn in the sediments of Masan Bay, South Korea due to anthropogenic sources. 4.1.2 Trace Metals from lateritic source In the upper estuary, the M/Al profiles of Fe, Mn...

  3. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Science.gov (United States)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  4. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    Science.gov (United States)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  5. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. PMID:26917093

  6. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health.

  7. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China).

    Science.gov (United States)

    Chen, Haiyang; Chen, Ruihui; Teng, Yanguo; Wu, Jin

    2016-03-01

    Recognizing the pollution characteristics of trace metals in river sediments and targeting their potential sources are of key importance for proposing effective strategies to protect watershed ecosystem health. In this study, a comprehensive investigation was conducted to identify the contamination and risk characteristics of trace metals in sediments of Le'an River which is a main tributary of the largest freshwater lake in China, Poyang Lake. To attain this objective, several tools and models were considered. Geoaccumulation index and enrichment factor were used to understand the general pollution characteristic of trace metals in sediments. Discriminant analysis was applied to identify the spatial variability of sediment metals. Sediment quality guidelines and potential ecological risk index were employed for ecological risk evaluation. Multivariate curve resolution-alternating least square was proposed to extract potential pollution sources, as well as the application of Monte-Carlo simulation for uncertainty analysis of source identification. Results suggested that the sediments in Le'an River were considerably polluted by the investigated trace metals (Cd, Cr, As, Hg, Pb, Cu, Zn and Ni). Sediment concentrations of these metals showed significant spatial variations. The potential ecological risk lay in high level. Comparatively speaking, the metals of Cd, Cu and Hg were likely to result in more harmful effects. Mining activities and the application of fertilizers and agrochemicals were identified as the main anthropogenic sources. To protect the ecological system of Le'an River and Poyang Lake watershed, industrial mining and agricultural activities in this area should to be strictly regulated. PMID:26685780

  8. Linking trace metals and agricultural land use in volcanic soils--a multivariate approach.

    Science.gov (United States)

    Parelho, C; Rodrigues, A S; Cruz, J V; Garcia, P

    2014-10-15

    The concern about the environmental impacts caused by agriculture intensification is growing as large amounts of nutrients and contaminants are introduced into soil ecosystems. Volcanic soils are unique naturally fertile resources extensively used for agricultural purposes, with particular physical and chemical properties that may result in possible accumulation of toxic substances, such as metals. Within this particular geological context, the present study aims to evaluate the impact of different agricultural systems (conventional, traditional and organic) in trace metal (TM) soil pollution and define the tracers for each one. Physicochemical properties and TM contents in agricultural topsoils were determined. Enrichment Factors (EF) were calculated to distinguish geogenic and anthropogenic contribution to TM contents in agricultural soils. An ensemble of multivariate statistical analyses (PCA and FDA) was performed to reduce the multidimensional space of variables and samples, thus defining a set of TM as tracers of distinct agricultural farming systems. Results show that agricultural soils have low organic matter content (30%); in addition, electric conductivity in conventional farming soils is higher (262.3 ± 162.6 μS cm(-1)) while pH is lower (5.8 ± 0.3). Regarding metal inputs, V, Ba and Hg soil contents are mainly of geogenic origin, while Li, P, K, Cr, Mn, Ni, Cu, Zn, As, Mo, Cd and Pb result primarily from anthropogenic inputs. Li revealed to be a tracer of agricultural pollution in conventional farming soils, whereas V allowed the discrimination of traditional farming soils. This study points to agriculture as a diffuse source of anthropogenic TM soil pollution and is the first step to identify priority chemicals affecting agricultural Andosols. PMID:25093299

  9. Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran

    International Nuclear Information System (INIS)

    To assess the effects of environmental exposures to trace metals on the incidence of preeclampsia, concentrations of lead (Pb), antimony (Sb), manganese (Mn), mercury, cadmium, cobalt and zinc in umbilical cord blood (UCB) and mother whole blood (MWB) were measured in 396 postpartum women without occupational exposure to metals in Tehran, Iran, using inductively coupled plasma mass spectrometry. Mother's ages ranged from 15 to 49 (mean 27) years. Preeclampsia was diagnosed in 31 subjects (7.8%). Levels of Pb, Sb and Mn in UCB were significantly higher in preeclampsia cases [mean+/-SD of 4.30+/-2.49μg/dl, 4.16+/-2.73 and 46.87+/-15.03μg/l, respectively] than in controls [3.52+/-2.09μg/dl, 3.17+/-2.68 and 40.32+/-15.19μg/l, respectively] (P<0.05). The logistic regression analysis revealed that one unit increase in the common logarithms of UCB concentration of Pb, Sb or Mn led to increase in the risk of preeclampsia several-fold; unit risks (95% CI) were 12.96 (1.57-107.03), 6.11 (1.11-33.53) and 34.2 (1.81-648.04) for Pb, Sb and Mn, respectively (P<0.05). These findings suggest that environmental exposure to Pb, Sb and Mn may increase the risk of preeclampsia in women without occupational exposure; levels of metals in UCB to be sensitive indicators of female reproductive toxicity as compared with those in mother MWB. Further studies are necessary to confirm these findings, especially on Sb and Mn

  10. Determination of the side-reaction coefficient of desferrioxamine B in trace-metal-free seawater

    Directory of Open Access Journals (Sweden)

    Johan Schijf

    2016-07-01

    Full Text Available Electrochemical techniques like adsorptive cathodic stripping voltammetry with competitive ligand equilibration (ACSV-CLE can determine total concentrations of marine organic ligands and their conditional binding constants for specific metals, but cannot identify them. Individual organic ligands, isolated from microbial cultures or biosynthesized through genomics, can be structurally characterized via NMR and tandem MS analysis, but this is tedious and time-consuming. A complementary approach is to compare known properties of natural ligands, particularly their conditional binding constants, with those of model organic ligands, measured under suitable conditions. Such comparisons cannot be meaningfully interpreted unless the side-reaction coefficient (SRC of the model ligand in seawater is thoroughly evaluated.We conducted series of potentiometric titrations, in non-coordinating medium at seawater ionic strength (0.7 M NaClO4 over a range of metal:ligand molar ratios, to study complexation of the siderophore desferrioxamine B (DFOB with Mg and Ca, for which it has the highest affinity among the major seasalt cations. From similar titrations of acetohydroxamic acid in the absence and presence of methanesulfonate (mesylate, it was determined that Mg and Ca binding to this common DFOB counter-ion is not strong enough to interfere with the DFOB titrations. Stability constants were measured for all DFOB complexes with Mg and Ca including, for the first time, the bidentate complexes. No evidence was found for Mg and Ca coordination with the DFOB terminal amine. From the improved DFOB speciation, we calculated five SRCs for each of the five (deprotonated forms of DFOB in trace-metal-free seawater, yet we also present a more convenient definition of a single SRC that allows adjustment of all DFOB stability constants to seawater conditions, no matter which of these forms is selected as the 'component' (reference species. An example of Cd speciation in

  11. Organochlorine pesticides, PCBs, trace elements and metals in western pond turtle eggs from Oregon

    Science.gov (United States)

    Henny, Charles J.; Beal, K.F.; Bury, R. Bruce; Goggans, R.

    2003-01-01

    With increased concern over the status of reptile populations globally, contaminant studies should be part of species evaluations. We analyzed eggs of western pond turtles from Fern Ridge Reservoir in western Oregon for 20 organochlorine (OC) pesticides or metabolites, 42 congener-specific polychlorinated biphenyls (PCBs), and 16 trace elements or metals. These eggs represent the first of this species analyzed. The OC pesticides and PCB residue concentrations in the western pond turtle eggs were generally low and similar to those found in eggs of snapping turtles from a remote site in Ontario, Canada. Western pond turtle eggs also contained mercury and chromium, which are metals of special concern. Although few reptilian eggs have been analyzed for metals, the 44.9 mug/g dry weight chromium in a western pond turtle egg in this study may be the highest reported in a reptilian egg. We found no significant difference in contaminant concentrations in eggs from nests in Oregon, where all turtle eggs failed to hatch compared to those where some eggs hatched. During this initial project, however, we were unable to assess fully the role of OCs, PCBs and other contaminants in the western pond turtle decline. Factors other than contaminants may be involved. In another study, snapping turtle eggs near the Great Lakes-St. Lawrence River basin were much more contaminated with evidence reported of effects on sex differentiation and reproductive endocrine function. Egg hatchability, the only reproductive parameter monitored, may not be the most sensitive endpoint. Other endpoints, including endocrine function, deformity rates, growth rates, and sex determination need study.

  12. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  13. Closed vessel microwave assisted extraction - An innovative method for determination of trace metals in plant materials

    Science.gov (United States)

    Oeztan, S.; Duering, R.-A.

    2012-04-01

    Determination of metal concentrations in plant samples is important for better understanding of effects of toxic metals that are biologically magnified through the food chain and compose a great danger to all living beings. In recent years the use of microwave assisted extraction for plant samples has shown tremendous research interest which will probably substitute conventional procedures in the future. Generally conventional procedures have disadvantages including consuming of time and solvents. The objective of this study is to investigate and compare a new closed vessel microwave extraction (MAE) method with the combination of EDTA (MAE-EDTA) for the determination of metal contents (Cd, Mn, Pb, Zn) in plant samples (Lolio-Cynosuretum) by ICP-OES. Validation of the method was done by comparison of the results with another MAE procedure (MAE-H) which is applied with the mixture of 69% nitric acid (HNO3) and 30% hydrogen peroxide (H2O2). Moreover, conventional plant extraction (CE) method, for which the dissolution of plant samples were handled in HNO3 after dry ashing at 420° C, was used as a reference method. Approximately 0.5 g of sample was digested in 5 ml HNO3, 3 ml H2O2, and 5 ml deionized H2O for MAE-H and in 8 ml EDTA solution for MAE-EDTA. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. Thereby, the applicability of both MAE-H and MAE-EDTA procedures could be demonstrated. For 58 plant samples MAE-H showed the same extraction yields as CE in the determination of trace metal contents of the investigated elements in plant samples. MAE-EDTA gave similar values when compared to MAE-H and highly linear relationships were found for determination of Cd, Mn, Pb and Zn amounts. The recoveries for the CRMs were within the range 89.6-115%. Finally, strategic characteristics of MAE-EDTA for determination metal contents (Cd, Mn, Pb, Zn) in plant samples are: (i) applicability to a large set

  14. DOWNSIZED CHELATING RESIN-PACKED MINICOLUMN PRECONCENTRATION FOR MULTIELEMENT DETERMINATION OF TRACE METALS BY ICP-MS

    Directory of Open Access Journals (Sweden)

    Dwinna Rahmi

    2010-11-01

    Full Text Available Chelating resin-packed minicolumn preconcentration was used for multielement determination of trace metals inseawater by inductively coupled plasma mass spectrometry (ICP-MS. The chelating resin-packed minicolumn wasconstructed with two syringe filters (DISMIC 13HP and Millex-LH and an iminodiacetate chelating resin (Chelex 100,200-400 mesh, with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 Mnitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution wassubjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-samplingintroduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 Mammonium acetate for elimination of matrix elements and the amount of 2 M nitric acid for eluting trace metals wasoptimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co,Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, andNASS-5 agreed well with their certified values. The observed values of rare earth elements (REEs in the aboveseawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for theconcentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and referencedata for REEs in these CRMs

  15. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    Science.gov (United States)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  16. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...... with the other adsorbents and to low availability of the mobile trace metals in the system. Correlation between trace metals and clay minerals may therefore be used as an indicator in environmental assessment. Fine grain fractions of the sediment increased markedly after salt marsh invasion in about 1931......To understand the behavior of trace metals in the salt marsh at Skallingen, Danish Wadden Sea, we investigated a profile from surface to 25 cm depth of the salt marsh sediment, focusing primarily on clay mineralogy and grain size distribution of the sediments and their relationship with trace...

  17. Trace Elements, Heavy Metals and Vitamin Levels in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Aysegul Cebi, Yuksel Kaya, Hasan Gungor, Halit Demir, Ibrahim Hakki Yoruk, Nihat Soylemez, Yilmaz Gunes, Mustafa Tuncer

    2011-01-01

    Full Text Available Aim: In the present study, we aimed to assess serum concentrations of zinc (Zn, copper (Cu, iron (Fe, cadmium (Cd, lead (Pb, manganese (Mn, vitamins A (retinol, D (cholecalciferol and E (α-tocopherol in patients with coronary artery disease (CAD and to compare with healthy controls.Methods: A total of 30 CAD patients and 20 healthy subjects were included in this study. Atomic absorption spectrophotometry (UNICAM-929 was used to measure heavy metal and trace element concentrations. Serum α-tocopherol, retinol and cholecalciferol were measured simultaneously by high performance liquid chromatography (HPLC.Results: Demographic and baseline clinical characteristics were not statistically different between the groups. Serum concentrations of retinol (0.3521±0.1319 vs. 0.4313±0.0465 mmol/I, p=0.013, tocopherol (3.8630±1.3117 vs. 6.9124±1.0577 mmol/I, p<0.001, cholecalciferol (0.0209±0.0089 vs. 0.0304±0.0059 mmol/I, p<0.001 and Fe (0.5664±0.2360 vs. 1.0689±0,4452 µg/dI, p<0.001 were significantly lower in CAD patients. In addition, while not statistically significant serum Cu (1.0164±0.2672 vs. 1.1934±0.4164 µg/dI, p=0.073 concentrations were tended to be lower in patients with CAD, whereas serum lead (0.1449±0.0886 vs. 0.1019±0.0644 µg/dI, p=0.069 concentrations tended to be higher.Conclusions: Serum level of trace elements and vitamins may be changed in patients with CAD. In this relatively small study we found that serum levels of retinol, tocopherol, cholecalciferol, iron and copper may be lower whereas serum lead concentrations may be increased in patients with CAD.

  18. Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide

    Science.gov (United States)

    Matsumoto, Akikazu; Hinkley, Todd K.

    2001-03-01

    Trace metals are more abundant in atmospheric load and deposition material than can be due to rock and soil dusts and ocean salt. In pre-industrial ice from coastal west Antarctica, dust and salt account for only a few percent of the lead, cadmium, and indium that is present in most samples, less than half in any sample. For these trace metals, the deposition rate to the pre-industrial ice is approximately matched by the output rate to the atmosphere by quiescent (non-explosive) degassing of volcanoes worldwide, according to a new estimate. The basis of the match is the masses and proportions of the metals, and the proportions of Pb isotopes, in ice and in volcano emissions. The isotopic compositions of Pb in ice are similar to those of a suite of ocean island volcanoes, mostly in the southern hemisphere. The natural baseline values for pre-industrial atmospheric deposition fluxes of trace metal suites at Taylor Dome, and the worldwide quiescent volcano emissions fluxes to which they are linked, constitute a reasonably well-constrained baseline component for deposition fluxes of metals in modern times.

  19. A pilot test of methods for determination of trace metals bound to colloids in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kersti (Geosigma AB (Sweden))

    2011-01-15

    Two methods have been tested for the determination of trace metals associated with colloid species in surface waters, using test water from Eckarfjaerden (PFM000070) in Forsmark; 1) fractionation (ultra filtration) using special membrane filters with cut-offs of 1 kD and 5 kD and 2) filtration using a system of standard membrane filters with varying pore sizes connected in series. Both methods were somewhat modified compared to previous methods for colloid determination in groundwater within the site investigations at Forsmark and Laxemar (PLU). The results show that, in general, the largest amounts of metals associated with a colloid phase were recovered in the fraction between 1kD and 5 kD which indicates that the metal ions are associated with low molecular weight organic acids. Similar amounts were recovered on the filters in the filtration experiment. A minor part of the colloidal phase metals was recovered in the fraction larger than 5 kD i.e. metal ions associated with larger organic acids or colloidal size clay minerals. The metals present preferably as colloids in the fractionation experiment were: iron, thorium, cerium, uranium, neodymium, titanium, zirconium and yttrium. The filtering experiment showed larger parts of titanium and aluminum in the colloid phase than the fractionation experiment while the iron and cerium portions were equal and the uranium, yttrium and neodymium portions were lower. The results from the fractionation test showed that the dissolved parts were large for barium, manganese, strontium and rubidium. In the filtration test, uranium, yttrium and rubidium, were also present mainly as dissolved ions. The detection limit for filter analysis of thorium was high, and the part of thorium present as colloids was determined to <50%. Issues and methodological problems: - Severe contamination caused interpretation difficulties for several metal ions, especially chromium, nickel and zinc. - Both methods are time consuming and difficult to

  20. Atmospheric input of N, P, Fe and trace metals to north Indian Ocean

    Science.gov (United States)

    Sarin, Manmohan; Srinivas, Bikkina

    2016-04-01

    The air-sea deposition of chemical constituents to the north Indian Ocean is influenced by seasonal continental outflow during the late NE-monsoon (December-April). Our recent studies have focused on deposition of mineral dust, nutrients (N, P and Fe) and toxic trace metals to the Arabian Sea (ARS) and Bay of Bengal (BoB), two important limbs of the north Indian Ocean. The chemical composition of PM2.5 in the continental outflow to the marine atmospheric boundary layer reveals dominance of nss-SO42- (as high as 25 μg m-3) and abundance of dust varies from 3 to 20 μg m-3. A striking similarity in the temporal variability of total inorganic acidity (TIA = NO3- + nss-SO42-) and fractional solubility of aerosol-Fe (FeTot: 60 - 1145 ng m-3) provides evidence for chemical processing of mineral dust during atmospheric transport. The enhanced solubility of Fe has implications to further increase in the deposition of this micro-nutrient to ocean surface. The mass ratio of nutrients (NInorg/NTot, Norg/NTot and PInorg/nss-Ca2+) also suggests further increase in their air-sea deposition to the surface BoB. The dry-deposition flux of PInorgto BoB varies by one order of magnitude (0.5 - 5.0 μmol-P m-2 d-1; Av: 0.02 Tg P yr-1). Based on atmospheric deposition of P and Fe, C-fixation in BoB (˜1 Pg yr-1) is dominated by anthropogenic sources and that in ARS (0.3 Pg yr-1) is limited by P and Fe. This is attributed to poor fractional solubility (˜1%) of mineral dust over the Arabian Sea. However, N-fixation by diazotrophs in the two oceanic regions is somewhat similar (0.03 Pg yr-1). Our estimate of N-deposition (0.2 Tg yr-1) to the northern Indian Ocean is significantly lower than the model results (˜800 - 1200 mg-N m-2 yr-1 ≈ 5.7 - 8.6 Tg yr-1 by Duce et al. (2008); ˜4.1 Tg yr-1 by Okin et al. (2011); and ˜0.8 Tg yr-1 by Kanakidou et al. (2012). The increase in aerosol toxicity is also evident from high enrichment factors of anthropogenic trace metal (Pb, Cd, Cr, Cu and

  1. Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables

    Energy Technology Data Exchange (ETDEWEB)

    Peter Jaffe; Herschel Rabitz

    2003-02-14

    The objective of this project was to gain an insight into the modeling support needed for the understanding, design, and operation of trace metal/radionuclide bioremediation. To achieve this objective, a workshop was convened to discuss the elements such a model should contain. A ''protomodel'' was developed, based on the recommendations of the workshop, and was used to perform sensitivity analysis as well as some preliminary simulations in support for bioremediation test experiments at UMTRA sites. To simulate the numerous biogeochemical processes that will occur during the bioremediation of uranium contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled, steady state mass balance equations, accounting for advection, diffusion, dispersion, and a kinetic formulation of the transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and uranium. This set of equations is solved numerically, using a finite element scheme. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species are passed to a modified version of MINTEQA2, which calculates the speciation and solubilities of the species of interest. Kinetics of abiotic reactions are described as being proportional to the difference between the actual and equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. Results indicated that for the usually high nitrate contents found ate many DOE

  2. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  3. Labile trace metal contribution of the runoff collector to a semi-urban river.

    Science.gov (United States)

    Villanueva, J D; Granger, D; Binet, G; Litrico, X; Huneau, F; Peyraube, N; Le Coustumer, P

    2016-06-01

    In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r (2) > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04-1.75 g/day), Co (0.08-05.42 g/day), Ni (0.06-1.45 g/day), and Pb (0.08-9.89 g/day); (2) moderate

  4. Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic

    Science.gov (United States)

    Monien, Patrick; Lettmann, Karsten Alexander; Monien, Donata; Asendorf, Sanja; Wölfl, Anne-Cathrin; Lim, Chai Heng; Thal, Janis; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2014-09-01

    Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the

  5. Tracing industrial heavy metal inputs to topsoils using using cadmium isotopes

    Science.gov (United States)

    Huang, Y.; Ma, L.; Ni, S.; Lu, H.; Liu, Z.; Zhang, C.; Guo, J.; Wang, N.

    2015-12-01

    Anthropogenic activities have dominated heavy metal (such as Cd, Pb, and Zn) cycling in many environments. The extent and fate of these metal depositions in topsoils, however, have not been adequately evaluated. Here, we utilize an innovative Cadmium (Cd) isotope tool to trace the sources of metal pollutants in topsoils collected from surrounding a Vanadium Titanium Magnetite smelting plant in Sichuan, China. Topsoil samples and possible pollution end-members such as fly ashes, bottom ashes, ore materials, and coal were also collected from the region surrounding the smelting plant and were analyzed for Cd isotope ratios (d114Cd relative to Cd NIST 3108). Large Cd isotope fractionation (up to 3 ‰) was observed in these industrial end-members: fly ashes possessed higher δ114Cd values ranging from +0.03 to +0.19‰; bottom fly ashes have lower δ114Cd values ranging from -0.35 to -2.46‰; and unprocessed ore and coal samples has δ114Cd value of -0.40‰. This fractionation can be attributed to the smelting processes during which bottom ashes acquired lighter Cd isotope signatures while fly ashes were mainly characterized by heavy isotope ratios, in comparison to the unprocessed ore and coal samples. Indeed, δ114Cd values of topsoils in the smelting area range from 0.29 to -0.56‰, and more than half of the soils analyzed have distinct δ114Cd values > 0‰. Cd isotopes and concentrations measured in topsoils suggested that processed materials (fly and bottom ashes from ore and coal actually used by the smelting plant) were the major source of Cd in soils. In a δ114Cd vs 1/Cd mixing diagram, the soils represent a mixture of three identified end members (fly ash, bottom ash and deep unaffected soil) with distinct Cd isotopic compositions and concentrations. Deep soils have the same δ114Cd values range as the unprocessed ore and coal, which indicated the Cd isotope fractionation did occur during evaporation and condensation processes inside the smelting plant

  6. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Michael Shull, J. [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: michael.shull@colorado.edu, E-mail: danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0

  7. Trace metals in fugitive dust from unsurfaced roads in the Viburnum Trend resource mining District of Missouri--implementation of a direct-suspension sampling methodology.

    Science.gov (United States)

    Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan

    2013-09-01

    Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. PMID:23659966

  8. Past 140-year environmental record in the northern South China Sea: Evidence from coral skeletal trace metal variations

    International Nuclear Information System (INIS)

    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986–1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. -- Highlights: • Geochemical behaviors of trace elements in corals from South China Sea were investigated. • Terrestrial input, SST, war and infrastructure explain about 77.4% of elements behaviors in coral. • Changes of trace elements in coral of Xisha Islands were mainly impacted by local activities. • Spatial change of elements in seawater by was evaluated in 1986–1997 using distribution coefficient KD of coral. -- 140-year changes in the trace metals in corals from South China Sea were investigated. The spatiotemporal change model of the metals in seawater was reconstructed using coral record

  9. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis

    OpenAIRE

    Domi, Nadège; Bouquegneau, Jean-Marie; Das, Krishna

    2005-01-01

    In order to trace their feeding habits, stable carbon and nitrogen isotope ratios (d15N and d13C), as well as trace metal concentrations (Zn, Cd, Fe, Cu, Se and Hg) were analysed in the tissues of five commercial shark species from the Celtic Sea: the tope shark Galeorhinus galeus, the black-mouthed catshark Galeus melastomus, the starry smooth hound Mustelus asterias, the spiny dogfish Squalus acanthias and the lesser-spotted dogfish Scyliorhinus canicula. Our results were compared to previo...

  10. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    Science.gov (United States)

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. PMID:26723494

  11. Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain.

    Science.gov (United States)

    Rubio, C; Jalilli, A; Gutiérrez, A J; González-Weller, D; Hernández, F; Melón, E; Burgos, A; Revert, C; Hardisson, A

    2011-11-01

    The aim of this study was to determine the levels of metals (Ca, K, Na, Mg) and trace metals (Ni, Fe, Cu, Mn, Zn, Pb, Cd) in two fish species (gilthead bream [Sparus aurata] and sea bass [Dicentrarchus labrax]) collected from fish farms located along the coast of Tenerife Island. Ca, K, Na, Mg, Fe, Cu, Zn, and Mn were measured by flame atomic absorption spectrometry, whereas Pb, Cd, and Ni were determined using graphite furnace atomic absorption spectrometry. Mean Fe, Cu, Mn, and Zn contents were 3.09, 0.59, 0.18, and 8.11 mg/kg (wet weight) in S. aurata and 3.20, 0.76, 0.24, and 10.11 mg/kg (wet weight) in D. labrax, respectively. In D. labrax, Ca, K, Na, and Mg levels were 1,955, 2,787, 699.7, and 279.2 mg/kg (wet weight), respectively; in S. aurata, they were 934.7, 3,515, 532.8, and 262.8 mg/kg (wet weight), respectively. The Pb level in S. aurata was 7.28 ± 3.64 μg/kg (wet weight) and, in D. labrax, 4.42 ± 1.56 μg/kg (wet weight). Mean Cd concentrations were 3.33 ± 3.93 and 1.36 ± 1.53 μg/kg (wet weight) for D. labrax and S. aurata, respectively. All Pb and Cd levels measured were well below the accepted European Commission limits, 300 and 50 μg/kg for lead and cadmium, respectively.

  12. Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China

    Science.gov (United States)

    Fu, Jun; Tang, Xiao-Liang; Zhang, Jing; Balzer, Wolfgang

    2013-04-01

    Wenchang/Wenjiao river estuary significant trace metal contamination was observed.

  13. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils.

    Science.gov (United States)

    Hassan, Saad El Din; Boon, Eva; St-Arnaud, Marc; Hijri, Mohamed

    2011-08-01

    We assessed the indigenous arbuscular mycorrhizal fungi (AMF) community structure from the roots and associated soil of Plantago major (plantain) plants growing on sites polluted with trace metals (TM) and on unpolluted sites. Uncontaminated and TM-contaminated sites containing As, Cd, Cu, Pb, Sn and Zn were selected based on a survey of the TM concentration in soils of community gardens in the City of Montréal. Total genomic DNA was extracted directly from these samples. PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE), augmented by cloning and sequencing, as well as direct sequencing techniques, was all used to investigate AMF community structure. We found a decreased diversity of native AMF (assessed by the number of AMF ribotypes) in soils and plant roots harvested from TM-polluted soils compared with unpolluted soils. We also found that community structure was modified by TM contamination. Various species of Glomus, Scutellospora aurigloba and S. calospora were the most abundant ribotypes detected in unpolluted soil; ribotypes of G. etunicatum, G. irregulare/G. intraradices and G. viscosum were found in both polluted and unpolluted soils, while ribotypes of G. mosseae and Glomus spp. (B9 and B13) were dominant in TM-polluted soils. The predominance of G. mosseae in metal-polluted sites suggests the tolerance of this species to TM stress, as well as its potential use for phytoremediation. These data are relevant for our understanding of how AMF microbial communities respond to natural environments that contain a broad variety of toxic inorganic compounds and will substantially expand our knowledge of AMF ecology and biodiversity. PMID:21668808

  14. Trace metal accumulations in tissues of goats fed silage produced on sewage sludge-amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Bray, B.J.; Dowdy, R.H.; Goodrich, R.D.; Pamp, D.E.

    Studies were conducted to document the impact of sewage sludge-fertilized corn (Zea mays L.) on the feed and food chain under controlled experimental conditions that eliminated any direct ingestion of sewage sludge by animals. Accumulations of trace metals were measured in various tissues of dairy goats (Capra hircus) consuming corn silage that contained up to 5.3 mg Cd/kg and 113 mg Zn/kg, for 3 consecutive years. The Cd concentrations in goat livers increased as the amount of silage-borne Cd increased and reached a high concentration of 2.94 mg/kg. Kidney Cd concentrations were approximately 10 times greater than those observed in liver, ranging from 3 mg/kg for animals fed control corn silage to 22 mg/kg for those consuming silage grown on soil amended with the highest rate of sewage sludge. However, this concentration is an order of magnitude less than the critical level suggested for induction of renal dysfunction. Kidney Zn ranged from 76.6 to 91.8 mg/kg with animals fed control silage having less Zn than animals fed sludge-fertilized corn silage. Concentrations of Zn in livers did not differ among treatments. Copper concentrations in livers and kidneys were significantly lower (approximately 2 mg/kg) in animals receiving sludge-fertilized silage than in animals fed control silage. The reduced Cu absorption may have been caused by a Cd and/or Zn metabolic interference. The elemental concentrations of 12 other metals and minerals in goat liver and kidney were not affected by treatment. Similarly, elemental concentrations in heart and muscle were not affected by treatment.

  15. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    Directory of Open Access Journals (Sweden)

    I. Antcibor

    2013-02-01

    Full Text Available Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N–69.5° N representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe, arsenic (As, manganese (Mn, zinc (Zn, nickel (Ni, copper (Cu, lead (Pb, cadmium (Cd, cobalt (Co and mercury (Hg in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were

  16. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, Anna V. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, 589 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261 (United States); Etzkorn, Markus; Meyers, Tiffany B. [Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 (United States); Ringwood, Amy H. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 (United States); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 (United States)

    2013-09-15

    Highlights: •P{sub CO{sub 2}} alters accumulation of Cd and Cu in clam cells. •Accumulation of Cd induces release of free Zn{sup 2+}. •Accumulation of Cu induces an increase in free Cu{sup 2+} and Fe{sup 2+}. •Metal-induced oxidative stress is alleviated at high P{sub CO{sub 2}}. •Toxicity of Cu in likely enhanced while that of Cd alleviated by high P{sub CO{sub 2}}. -- Abstract: Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO{sub 2} (P{sub CO{sub 2}}) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high P{sub CO{sub 2}} (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between P{sub CO{sub 2}} and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of P{sub CO{sub 2}} (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants – cadmium (Cd) and copper (Cu). Elevated P{sub CO{sub 2}} resulted in a decrease in intracellular pH (pH{sub i}) of the isolated mantle cells from 7.8 to 7.4. Elevated P{sub CO{sub 2}} significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated P{sub CO{sub 2}} levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd{sup 2+} concentration remained the same, while intracellular levels of free Zn{sup 2+} increased suggesting that Cd{sup 2+} substitutes bound Zn{sup 2

  17. An evaluation of trace metals, vitamins, and taste function in anorexia nervosa.

    Science.gov (United States)

    Casper, R C; Kirschner, B; Sandstead, H H; Jacob, R A; Davis, J M

    1980-08-01

    Trace metals, vitamins, and other biochemical parameters were measured in 30 female patients hospitalized for anorexia nervosa with the aim of relating them to taste function, biochemical changes, and clinical signs found in this illness. Plasma zinc (71.9 +/- 14 microgram/100 ml; P zinc (129.5 +/- 121 microgram/24 hr), and copper (84 +/- 17 microgram/100 ml; P zinc and copper content of hair was normal. Anorexia nervosa patients showed hypogeusia, with the bitter and sour taste most severely affected, however plasma zinc levels did not correlate with taste recognition scores. Patients showed hypercarotenemia (214 +/- 129 microgram/100 ml; P zinc, copper, and total iron binding capacity levels increased whereas plasma carotene and cholesterol decreased to normal levels. It is concluded that the observed zinc, copper, and iron binding protein deficiencies, and hypogeusia, reflect the self-imposed nutritional restriction of anorexia nervosa patients. Zinc and other micronutrients released from catabolized tissue along with vitamin intake may mitigate against more severe deficiency states in anorexia nervosa. PMID:7405882

  18. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    International Nuclear Information System (INIS)

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  19. The analytical measurement of fluorescein, quinine and trace metal concentrations in solution using single bubble sonoluminescence

    Science.gov (United States)

    Wallace, P.; McCallum, K.; Barnard, C. L. R.; Clement, C.; Marshall, J.; Carroll, J.

    2007-03-01

    A single bubble was generated and levitated in a high-intensity sound field within a spherical flask excited in its fundamental mode. Under optimum experimental conditions the bubble was observed to emit light in the form of short flashes. This phenomenon is known as single bubble sonoluminescence (SBSL). Using this process, the emitted light from the bubble was monitored when solutions containing fluorescein, quinine and sodium, potassium and copper salts were placed in the cell. The results obtained indicated that reproducible signals related directly to the concentration of the species present in solution could be achieved using single bubble sonoluminescence. The results for the molecular species were compared with those obtained by fluorescence spectroscopy and, in the case of quinine, parallel determinations of concentration in a test solution were performed with consistent results. SBSL signals were also observed to exhibit a linear correlation with the concentration of several trace metal salts introduced to the solution in the measurement cell. However, it was not possible to demonstrate that the SBSL signals were derived from stimulated atomic emission or fluorescence, and it was concluded that the effect may result from an indirect effect involving the bubble excitation mechanism.

  20. A novel recovery technology of trace precious metals from waste water by combining agglomeration and adsorption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel and efficient technology for separating and recovering precious metals from waste water containing traces of Pd and Ag was studied by the combination of agglomeration and adsorption. The recovery process and the impacts of operating conditions such as pH value of waste water, adsorption time, additive quantity of the flocculant and adsorbent on the recovery efficiency were studied experimentally. The results show that Freundlich isothermal equation is suitable for describing the behavior of the recovery process, and the apparent first-order adsorption rate constant k at 25 ℃ is about 0.233 4 h-1 The optimum technology conditions during the recovery process are that pH value is 8-9; the volume ratio of flocculant to waste water is about 1 :(2 000-4 000); the mass ratio of adsorbent to waste water is 1 :(30-40); and processing time is 2-4 h. Finally, the field tests were done at the optimum technology conditions, which show that the total concentration of Pd and Ag in the waste water below 11 mg/L can be reduced to be less than 1 mg/L.

  1. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, P.R.; Meeker, K. (New Mexico Institute of Mining and Technology, Socorro (USA)); Finnegan, D. (Los Alamos National Lab., NM (USA))

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  2. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments.

    Science.gov (United States)

    Yuan, Fasong; Depew, Richard; Soltis-Muth, Cheryl

    2014-01-01

    Many freshwater and coastal marine ecosystems across the world may have undergone an ecosystem regime change due to a combination of rising anthropogenic disturbances and regional climate change. Such a change in aquatic ecosystems is commonly seen as shifts in algal species. But considerably less detail is known about the eutrophication history in terms of changes in algal productivity, particularly for a large lake with a great deal of spatial variability. Here we present an analysis of trace metals (Cu, Ni, Cd, and Pb) on a sediment core recovered from Lake Erie, off the Vermilion coast of northern Ohio, USA, to reconstruct the eutrophication history of the lake over the past 210 years. Following a slow eutrophication during European settlement, Lake Erie experienced a period of accelerated eutrophication, leading to an ecosystem regime transition into a eutrophic lake state in 1950. Our results suggested that the lake's biological productivity has ever since maintained fairly high even though a significant input reduction was realized from rigorous nutrient abatements that began as early as in 1969. This work underscored the role of in-lake biogeochemical cycling in nutrient dynamics of this already eutrophic lake.

  3. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  4. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  5. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.

    Science.gov (United States)

    Glass, Jennifer B; Yu, Hang; Steele, Joshua A; Dawson, Katherine S; Sun, Shulei; Chourey, Karuna; Pan, Chongle; Hettich, Robert L; Orphan, Victoria J

    2014-06-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphide-rich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold (≤ 10°C) and sulphidic (> 1 mM ΣH(2)S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  6. Assessment of Trace Metals in Groundwater of Jammalamadugu and Yerraguntla Areas of YSR Kadapa Dt., AP, India

    Directory of Open Access Journals (Sweden)

    Haribabu Bollikolla

    2016-08-01

    Full Text Available Ground water is the only primary source of drinking water in the study area. So, a comprehensive study has been carried out with respect to heavy metals like Arsenic, Cadmium, Chromium, Copper, Iron, Mercury, Manganese, Molybdenum, Nickel, Lead, Selenium and Zinc in ground water sources of Jammalamadugu (JMD and Yerraguntla (YGL areas of YSR Kadapa district, Andhra Pradesh. Ten groundwater samples from each area were collected and analyzed for trace metals by ICP-OES method. The results showed that the mean concentration level of various heavy metals in the JMD area followed the sequence: Zn > Fe > Mn > Se > Cu > Cd>Mo~ Pb > Ni > Cr > As~Hg where as in YGL area the mean concentration of heavy metals was in the order: Zn> Fe> Se> Mn> Ni> Mo> Cd> Pb> Cr> As~ Hg ~Cu. The concentration of eleven heavy metals, except cadmium, in both areas was detected within the permissible limits of WHO. The Concentration of Cadmium in 40% of samples of JMD area and 30% samples of YGL area was detected above WHO guidelines. Cadmium (Cd is an extremely toxic industrial and environmental pollutant. Drinking water with high Cadmium levels severely irritates the stomach, leading to vomiting, diarrhea, kidney damage, osteoporosis and osteomalacia. Some of the groundwater sources are safe for drinking, but proactive measures should take to check the levels of trace metals periodically.

  7. Trace metal concentrations in acidic, headwater streams in Sweden explained by chemical, climatic, and land use variations

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2012-02-01

    Full Text Available Long term data series (1996–2009 for eleven acidic, headwater streams (<10 km2 in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr, lead (Pb, and zinc (Zn. Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance and iron related positively to Pb and Cr while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr, 52% (Zn, and 72% (Pb of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10 and Zn (8, only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude, chemical (sulfate, and land use (silvaculture influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long term increases (Pb or decreases (Zn for trace metal concentrations at these sites.

  8. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    Science.gov (United States)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  9. High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium

    International Nuclear Information System (INIS)

    The objective of our study was to determine the trace metal accumulation rates in the Misten bog, Hautes-Fagnes, Belgium, and assess these in relation to established histories of atmospheric emissions from anthropogenic sources. To address these aims we analyzed trace metals and metalloids (Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn), as well as Pb isotopes, using XRF, Q-ICP-MS and MC-ICP-MS, respectively in two 40-cm peat sections, spanning the last 600 yr. The temporal increase of metal fluxes from the inception of the Industrial Revolution to the present varies by a factor of 5–50, with peak values found between AD 1930 and 1990. A cluster analysis combined with Pb isotopic composition allows the identification of the main sources of Pb and by inference of the other metals, which indicates that coal consumption and metallurgical activities were the predominant sources of pollution during the last 600 years. -- Highlights: •Study of trace metals and metalloids in two cores from Belgian peat bog. •Reconstruction of trace metals and metalloids deposition over last 600 years. •Maximum trace metals accumulation rates are recorded between 1930 and 1990 AD. •A cluster analysis combined with Pb isotopic composition used to identify the main sources of Pb and by inference the other metals. •The predominant anthropogenic trace metals sources were consumption and metallurgical activities. -- In this study we used trace metals concentrations and fluxes from two cores sampled in a Belgium bog to document with high resolution the history of trace metals deposition over the last 600 years

  10. Role of organic matter on trace metal availability in contaminated soils: case of high biomass perennial crops vs annual crops

    Science.gov (United States)

    Lamy, I.; Beaumelle, L.; Iqbal, M.; Chenu, C.

    2012-04-01

    Soils of contaminated agrosystems are still potential arable surfaces for the production of non-alimentary crops provided that such cropping systems do not increase risks for the environment in order to integrate them in a sustainable agriculture development. Effects of changing land management from annual to perennial on soil properties have been widely studied over the last decades, but the case of contaminated agricultural soils remains little documented in particular concerning the effects on the dynamic of soil trace elements. Among the non-alimentary crops, the use of energy crops like miscanthus, a C4 perennial plant, must be studied in particular to evaluate their environmental impacts as they are known to modify the soil organic matter pools. In this work we aimed at assessing changes in soil trace metal availability when annual crops are replaced by a perennial cropping system in a metal contaminated soil, with the hypothesis that exogenous organic carbon originating from the plant induced changes in the soil metal speciation. For this, we used the soil surface horizons of a smelter impacted parcel in the North of France, whose one part was cultivated in miscanthus three years ago and the other part was left with the previous land use i.e. cropping rotations. We quantified the carbon fluxes originating from miscanthus in the various granulo-densimetric fractions of the soil under miscanthus by C13 measurements, and compared the chemical extraction and the physical localisation of both organic carbon and of two trace metal, Cu and Zn in the various soil size fractions of both soils under miscanthus and under annual crops. Results showed an incorporation of organic carbon from miscanthus in the coarse organic fractions which was related to an increase in the metal localisation in the coarse grain fractions observed for Cu but not for Zn. Comparison of metal availabilities between the two cropping systems showed no difference for Zn availability while copper

  11. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    International Nuclear Information System (INIS)

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na+, K+, Mg2+, Ca2+, Cl−, SO42−, and HCO3−) and stable isotopic composition (δ18O and δ2H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are urgently needed. - Highlights: • Trace metal pollution in

  12. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: Evidence from isotopes and hydrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Fadong, E-mail: lifadong@igsnrr.ac.cn; Liu, Qiang; Zhang, Yan

    2014-02-01

    Metals are ubiquitous in the environment. The aim of sustainable management of the agro-ecosystem includes ensuring that water continues to fulfill its function in agricultural production, cycling of elements, and as a habitat of numerous organisms. There is no doubt that the influence of large-scale irrigation projects has impacted the regional surface–groundwater interactions in the North China Plain (NCP). Given these concerns, the aim of this study is to evaluate the pollution, identify the sources of trace metals, analyze the influence of surface–groundwater interactions on trace metal distribution, and to propose urgent management strategies for trace metals in the agriculture area in China. Trace metals, hydrochemical indicators (EC, pH, concentrations of Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup −}, SO{sub 4}{sup 2−}, and HCO{sub 3}{sup −}) and stable isotopic composition (δ{sup 18}O and δ{sup 2}H) were determined for surface water (SW) and groundwater (GW) samples. Trace metals were detected in all samples. Concentrations of Fe, Se, B, Mn, and Zn in SW exceeded drinking water standards by 14.8%, 29.6%, 25.9%, 11.1%, and 14.8% higher, respectively, and by 3.8%, 23.1%, 11.5%, 11.5%, and 7.7% in GW. The pollution of trace metals in surface water was more serious than that in groundwater, and was also higher than in common irrigation areas in NCP. Trace metals were found to have a combined origin of geogenic and agriculture and industrial activities. Their distribution varied greatly and exhibited a certain relationship with the water flow direction, with the exception of a number of singular sites. Hydrochemical and environmental isotopic evidence indicates surface–groundwater interactions influence the spatial distribution of trace metal in the study area. Facing the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring net to warn of increased risk are

  13. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals

    Science.gov (United States)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.

    2013-05-01

    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  14. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea: use as a biological monitor?

    Directory of Open Access Journals (Sweden)

    Gosselin Marc

    2006-09-01

    Full Text Available Abstract Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1 the spatial and 2 temporal variations of these metals in these areas and 3 to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue and in sheaths (dead tissue demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades, seem to be less sensitive to variations in the metal concentration in the environment

  15. Assessment of trace metal bioaccumulation by Avicennia marina (Forsk.) in the last remaining mangrove stands in Manila Bay, the Philippines.

    Science.gov (United States)

    Gabriel, Ana Veronica S; Salmo, Severino G

    2014-12-01

    Concentrations of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) were evaluated in the sediments, roots and leaves of a mangrove species (Avicennia marina) in Las Piñas-Parañaque Critical Habitat and Ecotourism Area (LPPCHEA), Manila Bay. The concentrations showed a general pattern of Zn > Pb > Cu > Cd in sediments, Cu > Pb > Zn > Cd in roots and Cu > Zn > Pb > Cd in leaves. The trace metal concentrations in both sediments and plant tissues were below contamination threshold levels. Based on computed bioaccumulation indices, A. marina could be used for the phytostabilization and phytoextraction of Cu and Cd. The LPPCHEA mangrove ecosystem is an ecologically important ecosystem that will limit the spread of trace metals to the surrounding environment. PMID:25365960

  16. Determination of Trace Metal Impurities in Cerium Oxide by Fluorination-Assisted ETV-ICP-AES after HPLC Separation

    Institute of Scientific and Technical Information of China (English)

    Ruth Wanjau; Hu Bin(胡斌); Jiang Zucheng(江祖成); Qin Yongchao(秦永超); He Man(何蔓); Liang Pei(梁沛)

    2004-01-01

    A new method for the separation and detection of trace metal impurities in cerium oxide(CeO2)using HPLC combined with electrothermal vaporization(ETV)-ICP-AES was developed.This combination links the high separation power of HPLC and high sensitivity of ETV-ICP-AES.The 2-ethylhexyl hydrogen 2-ethylhexylphosphate(P507)resin was used as stationary phase for the separation of metallic impurities in order to eliminate severe spectral interferences of the matrix.The dilute nitric acid was adopted as mobile phase for eluting Cu,Mn,Ni and La.The separation process can be accomplished in about 30 min.After concentrating the eluate by evaporation,the trace impurities were determined by using ETV-ICP-AES with the addition of 6% PTFE slurry as chemical modifier.The proposed method was applied to the analysis of CeO2 with satisfactory recoveries.

  17. Leach tests on grouts made with actual and trace metal-spiked synthetic phosphate/sulfate waste

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted experiments to produce empirical leach rate data for phosphate-sulfate waste (PSW) grout. Effective diffusivities were measured for various radionuclides (90Sr, 99Tc, 14C, 129I, 137Cs, 60Co, 54Mn, and U), stable major components (NO3-, SO42-, H3BO3, K and Na) and the trace constituents Ag, As, Cd, Hg, Pb, and Se. Two types of leach tests were used on samples of actual PSW grout and synthetic PSW grout: the American Nuclear Society (ANS) 16.1 intermittent replacement leach test and a static leach test. Grout produced from both synthetic and real PSW showed low leach rates for the trace metal constituents and most of the waste radionuclides. Many of the spiked trace metals and radionuclides were not detected in any leachates. None of the effluents contained measurable quantities of 137Cs, 60Co, 54Mn, 109Cd, 51Cr, 210Pb, 203Hg, or As. For those trace species with detectable leach rates, 125I appeared to have the greatest leach rate, followed by 99Tc, 75Se, and finally U, 14C, and 110mAg. Leach rates for nitrate are between those for I and Tc, but there is much scatter in the nitrate data because of the very low nitrate inventory. 32 refs., 6 figs., 15 tabs

  18. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    Energy Technology Data Exchange (ETDEWEB)

    Audry, Stephane, E-mail: audry@lmtg.obs-mip.fr [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France)] [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [Universite de Toulouse, UPS (OMP), LMTG, 14 Av., Edouard Belin, F-31400 Toulouse (France); Grosbois, Cecile [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [Universite Francois-Rabelais de Tours, CNRS/INSU, Universite d' Orleans, UMR 6113 ISTO, FST, Parc Grandmont, F-37200 Tours (France); Bril, Hubert [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France); Schaefer, Joerg [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France); Kierczak, Jakub [Universite de Limoges, Groupement de Recherche Eau Sol Environnement, IFR 145 GEIST, FST, 123 Avenue, A. Thomas, 87060 Limoges cedex (France)] [University of Wroclaw, Institute of Geological Sciences, Cybulskiego 30, 50-205 Wroclaw (Poland); Blanc, Gerard [Universite de Bordeaux, UMR 5805 EPOC, Avenue des facultes, 33405 Talence cedex (France)

    2010-06-15

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO{sub 4} promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a

  19. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment.

    Science.gov (United States)

    Raknuzzaman, Mohammad; Ahmed, Md Kawser; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Tokumura, Masahiro; Sekine, Makoto; Masunaga, Shigeki

    2016-09-01

    Trace metals contamination in commercial fish and crustaceans have become a great problem in Bangladesh. This study was conducted to determine seven trace metals concentration (Cr, Ni, Cu, Zn, As, Cd, and Pb) in some commercial fishes and crustaceans collected from coastal areas of Bangladesh. Trace metals in fish samples were in the range of Cr (0.15 - 2.2), Ni (0.1 - 0.56), Cu (1.3 - 1.4), Zn (31 - 138), As (0.76 - 13), Cd (0.033 - 0.075), and Pb (0.07 - 0.63 mg/kg wet weight (ww)), respectively. Arsenic (13 mg/kg ww) and Zn (138 mg/kg ww) concentrations were remarkably high in fish of Cox's Bazar due to the interference of uncontrolled huge hatcheries and industrial activities. The elevated concentrations of Cu (400), Zn (1480), and As (53 mg/kg ww) were also observed in crabs of Cox's Bazar which was considered as an absolutely discrepant aquatic species with totally different bioaccumulation pattern. Some metals in fish and crustaceans exceeded the international quality guidelines. Estimated daily intake (EDI) and target cancer risk (TR) revealed high dietary intake of As and Pb, which was obviously a matter of severe public health issue of Bangladeshi coastal people which should not be ignored and concentrate our views to solve this problem with an integrated approaches. Thus, continuous monitoring of these toxic trace elements in seafood and immediate control measure is recommended.

  20. The role of colloidal material in the fate and cycling of trace metals in estuarine and coastal waters

    OpenAIRE

    E. R. Parker

    1999-01-01

    Trace metals in natural colloidal material (l-400nm) were investigated in the River Beaulieu, the Trent- Humber system and the Celtic Sea. Colloidal and truly dissolved ( Cd. Colloidal Fe, Pb and Mn all illustrated removal in the low salinity region of the estuary. Ni (mainly truly dissolved) showed somewhat conservative behaviour. Total dissolved Cd (and Zn) consistently showed a mid-estuarine maximum (truly dissolved), which was attributed to chloro-complex formation or ionic ex...

  1. Assessment of an ultramicroelectrode array (UMEA) sensor for the determination of trace concentrations of heavy metals in water [online

    OpenAIRE

    Xie, Xudong

    2004-01-01

    The main objectives of this book are (i) to investigate the electrochemical behavior and the analytical performance of a novel ultramicroelectrode array (UMEA); (ii) to assess the analytical parameters of square-wave anodic stripping voltammetric measurements (SWASV) using the UMEA; and (iii) to estimate the potential of the UMEA in developing decentralised analytical equipments for the determination of trace concentrations of heavy metals in natural waters. Surface analytical techniques ...

  2. Distribution of trace metals and methylmercury in soft tissues of the freshwater eel Anguilla marmorata in Vietnam.

    Science.gov (United States)

    Le, Dung Quang; Nguyen, Duc Cu; Harino, Hiroya; Kakutani, Naoya; Chino, Naoko; Arai, Takaomi

    2010-08-01

    This study investigated trace metals in water, sediment, and various organs of the mature eel Anguilla marmorata in the Ba River, Vietnam. The metal concentrations in water and sediment did not exceed the Vietnam water criteria and sediment background concentration, except for Mn and Pb in sediment. The results of metal analysis in eel specimens indicated that the liver and kidney were the dominant organs for almost all trace metals, whereas muscle tended to accumulate high levels of Hg and approximately 87.4-100% of Hg was methylmercury. A strong positive correlation between mercury levels in muscle and age were found, but there was no correlation between mercury and body size. Interestingly, a high concentration of Zn was found in the gonad and liver; this indicated that high levels of Zn in the liver might play a physiologically important role in the eel's biological mechanisms during gonadal maturation. Though almost none of the metal concentrations in the muscle exceeded the reference doses of the U.S. EPA, approximately 80% of eels from the river contained mercury exceeding the recommended levels (0.30 microg/g) of the U.S. EPA and might present a risk for human consumption.

  3. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc.

    Science.gov (United States)

    Chatelain, Marion; Gasparini, Julien; Frantz, Adrien

    2016-07-01

    Trace metals from anthropogenic activities are involved in numerous health impairments and may therefore select for detoxification mechanisms or a higher tolerance. Melanin, responsible for the black and red colourations of teguments, plays a role in metal ion chelation and its synthesis is positively linked to immunity, antioxidant capacity and stress resistance due to pleiotropic effects. Therefore, we expected darker birds to (1) store higher amounts of metals in their feathers, (2) maintain lower metal concentrations in blood and (3) suffer less from metal exposure. We exposed feral pigeons (Columba livia) exhibiting various plumage darkness levels to low, but chronic, concentrations of zinc and/or lead, two of the most abundant metals in urban areas. First, we found negative and positive effects of lead and zinc, respectively, on birds' condition and reproductive parameters. Then, we observed positive relationships between plumage darkness and both zinc and lead concentrations in feathers. Interestingly, though darker adults did not maintain lower metal concentrations in blood and did not have higher fitness parameters, darker juveniles exhibited a higher survival rate than paler ones when exposed to lead. Our results show that melanin-based plumage colouration does modulate lead effects on birds' fitness parameters but that the relationship between metals, melanin, and fitness is more complex than expected and thus stress the need for more studies. PMID:27282322

  4. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution. PMID:27589726

  5. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  6. Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals?

    Science.gov (United States)

    Volland, Jean-Marie; Lechaire, Jean-Pierre; Frebourg, Ghislaine; Aranda, Dalila Aldana; Ramdine, Gaëlle; Gros, Olivier

    2012-04-01

    Digestive tubules of Strombidae are composed by three cell types: digestive cells, vacuolated cells, and crypt cells. The last one is characterized by the presence of intracellular granules identified as spherocrystals. Such structures are known to occur in basophilic cells of gastropod digestive gland, where they are supposed to be involved in the regulation of some minerals and in detoxification. In this study, energy-dispersive X-ray analysis (EDX) and energy filtered transmission electron microscopy (EFTEM) were used to determine the elemental content of spherocrystals in two Strombidae, Strombus gigas and Strombus pugilis. In freshly collected individuals of both species, the following elements were detected: Ca, Fe, Mg, P, and Zn. Aluminum and Mn were also detected in S. gigas. Their presence in spherocrystals indicates that, in Strombidae, spherocrystals are involved in the regulation of minerals and essential trace metals. In order to answer the question "are spherocrystals involved in nonessential trace metals scavenging?," artificial cadmium and lead exposure by both waterborne and dietary pathways was applied to S. pugilis. No evidence of cadmium (Cd(NO(3))(2)) or lead (Pb(NO(3))(2)) provided by food was found in spherocrystals. Cadmium provided in water (Cd(NO(3))(2) and CdCl(2)) causes structural modifications of the digestive gland; however, this element was not trapped in spherocrystals. These results suggest that spherocrystals are not involved in detoxification of such nonessential trace metals. PMID:21919125

  7. The quality control of fruit juices by using the stable isotope ratios and trace metal elements concentrations

    Science.gov (United States)

    Magdas, D. A.; Dehelean, A.; Puscas, R.; Cristea, G.; Tusa, F.; Voica, C.

    2012-02-01

    In the last years, a growing number of research articles detailing the use of natural abundance light stable isotopes variations and trace metal elements concentration as geographic "tracers" to determine the provenance of food have been published. These investigations exploit the systematic global variations of stable hydrogen, oxygen and carbon isotope ratios in (combination) relation with trace metal element concentrations. The trace metal elements content of plants and also their light stable isotopic ratios are mainly related to the geological and pedoclimatic characteristics of the site of growth. The interpretation of such analysis requires an important number of data for authentic natural juices regarding the same seasonal and regional origin, because the isotopic analysis parameters of fruit juices show remarkable variability depending on climatologically factors. In this work was mesured H, C, O stable isotope ratios and the concentrations of 16 elements (P, K, Mg, Na, Ca, Cu, Cr, Ni, Zn, Pb, Co, As, Cd, Mn, Fe and Hg) from 12 single strength juices. The natural variations that appear due to different environmental and climatic conditions are presented and discussed.

  8. A Geographic Information System (GIS) analysis for trace metal assessment of sediments in the Gulf of Paria, Trinidad

    International Nuclear Information System (INIS)

    The Gulf of Paria is a semi-enclosed shallow basin with increasing coastal development activities along Trinidad's west coast. Sediments present a host for trace metal pollutants from overlying waters, therefore determination of their content is critical in evaluating and detecting sources of marine pollution. This paper presents a Geographic Information System (GIS) analysis of geochemical assessment for trace metals in coastal sediments of the Gulf of Paria. This GIS approach facilitates interpretation of the spatial relationships among key environmental processes. The GIS development involves the integration of spatial and attribute data pertaining to bathymetry, current systems, topography, rivers, land use/land cover and coastal sediments. It employs spatial interpolation and retrieval operations to analyze the total trace metal concentrations of aluminum, copper and lead in the sediments and the clay-enriched sediments, to determine whether they are related to sediment type or are affected by the discharge from anthropogenic sources. Spatial distribution modeling of element concentrations are produced to indicate contamination plumes from possible anthropogenic sources such as rivers entering the Gulf of Paria, and to reveal potential hot spots and dispersion patterns. A direct spatial correlation between clay-enriched sediments and high concentrations of aluminum and lead is detected, however regions of high concentrations of copper and lead indicate a relationship to anthropogenic sources. The effectiveness of GIS for visualization, spatial query and overlay of geochemical analysis is demonstrated

  9. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow.

    Science.gov (United States)

    Bichet, Coraline; Scheifler, Renaud; Cœurdassier, Michaël; Julliard, Romain; Sorci, Gabriele; Loiseau, Claire

    2013-01-01

    Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.

  10. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow.

    Directory of Open Access Journals (Sweden)

    Coraline Bichet

    Full Text Available Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.

  11. Distribution of dissolved and particulate trace metals in Arctic sea ice

    Science.gov (United States)

    Taylor, M.; Hendy, I. L.; Aciego, S.; Meyer, K.

    2014-12-01

    Iron (Fe) is an essential biolimiting micronutrient, however, the bioavailablility of Fe is dependent on source and speciation. In a high nutrient/low chlorophyll region of the ocean such as the Arctic, sea ice is an important aggregator of dissolved and particulate Fe from aerosol, lithogenic, and biogenic sources. While particulate Fe is less bioavailable than dissolved Fe, it is far more abundant in sea ice. As a result, sea ice directly enhances productivity by ice entrapment of mineral dust particulates containing Fe, which can be released into the surface ocean waters during melting. In seawater underlying sea ice, Fe can be concentrated up to two orders of magnitude higher than in the ice-free open ocean (Lannuzel et al., 2011). A transect of sea ice cores were collected in the spring of 2014 offshore of Barrow, AK, and the Canadian Arctic Archipelago to capture a gradient of sediment contributions from shelf sediments to aeolian sediments. At Barrow, AK, land fast first year ice was sampled. In the Canadian Arctic, both multi-year (pack ice) and first year (land fast) ice cores were retrieved. First year ice cores were between 100-150 cm thick and the multi year core was 195 cm thick. Cores were subsampled by depth and filtered. The resulting ice core sediments were analyzed for elemental composition, and multistep Fe-leaching experiments were conducted to determine the fraction of soluble Fe. Thus we have ascertained the solubility of particulate Fe prior to onset of melt season. Dissolved trace metals were also analyzed to ascertain changes in concentration with ice core depth of lithogenic elements (Mn, Al) and biologically important elements (Si, Mo, Cu, Zn). Preliminary results show some enrichment of lithogenic inputs near surface, indicating dust deposition, and lower portions of the cores, suggesting resuspended sediments from the continental shelf. Concentrations of some biologically important elements decrease with depth, suggesting possible

  12. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    Science.gov (United States)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2015-07-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant (P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  13. Synchrotron X-Ray Fluorescence Analysis of Trace Elements in Focused Ion Beam Prepared Sections of Carbonaceous Chondrite Iron Sulfides (CM and CR) and Associated Metal (CR)

    Science.gov (United States)

    Singerling, S. A.; Sutton, S. R.; Lanzirotti, A.; Newville, M.; Brearley, A. J.

    2016-08-01

    This study presents data on trace element abundances in CM and CR sulfides and metals. We determined that Ge and Zn were observed to be depleted relative to CI chondrite while the more volatile Se was observed to be enriched.

  14. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    Energy Technology Data Exchange (ETDEWEB)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  15. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents

    International Nuclear Information System (INIS)

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of 'pulse' toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a 'snap-shot' of soil, plant or avian tissue trace metal analysis post-mining activity. - Research Highlights: → Archived gizzard samples reveals mining history. → Grit ingestion exposes grouse to cadmium and lead. → Grit selection includes particles enriched in cadmium. → Cadmium enriched particles are of toxicological significance.

  16. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Yaowen, E-mail: yqiu@scsio.ac.cn [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Yu Kefu [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Wenxiong [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-06-15

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 {mu}g g{sup -1}, whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 {mu}g g{sup -1}, respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  17. Assessment of trace metals using lichen transplant from automobile mechanic workshop in Ile-Ife metropolis, Nigeria.

    Science.gov (United States)

    Odiwe, Anthony I; Adesanwo, Adeyemi T J; Olowoyo, Joshua O; Raimi, Idris O

    2014-04-01

    The level of air pollution around the automobile mechanic workshops has been generally overlooked. This study, examined the level of trace metals in automobile mechanic workshops and the suitability of using transplanted lichen thalli of Lepraria incana for measuring air pollution in such areas. Samples of the lichen thalli were transplanted into seven different sites and were attached to the bark of trees at each site. The samples were harvested from the sites after 3-month exposure. Concentrations of Pb, Cu, Cd, Fe, Zn, and S content were determined using an atomic absorption spectrophotometer. Results showed that there was a significant difference in the trace metals concentrations across the sites (p < 0.05). The analyzed lichen samples showed a range of 91.26-119.35 ppm for Fe, 30.23-61.32 ppm for Zn, 1.25-2.45 ppm for Cu, 0.017-0.043 ppm for Cd, 0.018-0.051 ppm, and 0.37-0.42 ppm for S. From the study, sites 6 and 7 presented higher concentrations of Cd, Pb, and Zn than other sites. The enrichment factor calculated showed that Zn, Cd, and Pb were greatly enriched from the workshops. The trend in the concentration of these heavy metals suggests that activities in these workshops might become a major source of certain heavy metals in the environment and if the pollution activities persist, it might become worrisome over time.

  18. Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction.

    Science.gov (United States)

    Zeng, Xiangfeng; Twardowska, Irena; Wei, Shuhe; Sun, Lina; Wang, Jun; Zhu, Jianyu; Cai, Jianchao

    2015-05-15

    Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H₂O₂ dose in Fenton-like process (5 days and 2g H₂O₂/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H₂O₂, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments. PMID:25682517

  19. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    International Nuclear Information System (INIS)

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 μg g-1, whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 μg g-1, respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  20. An Automated Electronic Tongue for In-Situ Quick Monitoring of Trace Heavy Metals in Water Environment

    Science.gov (United States)

    Cai, Wei; Li, Yi; Gao, Xiaoming; Guo, Hongsun; Zhao, Huixin; Wang, Ping

    2009-05-01

    An automated electronic tongue instrumentation has been developed for in-situ concentration determination of trace heavy metals in water environment. The electronic tongue contains two main parts. The sensor part consists of a silicon-based Hg-coated Au microelectrodes array (MEA) for the detection of Zn(II), Cd(II), Pb(II) and Cu(II) and a multiple light-addressable potentiometric sensor (MLAPS) for the detection of Fe(III) and Cr(VI). The control part employs pumps, valves and tubes to enable the pick-up and pretreatment of aqueous sample. The electronic tongue realized detection of the six metals mentioned above at part-per-billion (ppb) level without manual operation. This instrumentation will have wide application in quick monitoring and prediction the heavy metal pollution in lakes and oceans.

  1. A preliminary study of the distribution of selected trace metals in the Besut River basin, Terengganu, Malaysia.

    Science.gov (United States)

    Suratman, S; Hang, H C; Shazili, N A M; Mohd Tahir, N

    2009-01-01

    This paper presents a preliminary result carried out in the Besut River basin, Terengganu, Malaysia to determine the selected trace metal concentrations. Concentrations of dissolved Pb, Cu, and Fe during the present study were in the range of 3.3-8.3 microg/L Pb, 0.1-0.3 microg/L Cu, and 1.1-12.3 microg/L Fe. For the particulate fraction concentrations of Pb, Cu, and Fe ranged from 1.0 to 3.6 microg/L, 0.3 to 2.8 microg/L, and 114 to 1,537 microg/L, respectively. The concentrations of metals in this study area, in general, were lower than those reported for other study areas. Higher metal concentrations measured in the wet monsoon season suggest that the input was mainly due to terrestrial runoff. PMID:18665317

  2. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean).

    Science.gov (United States)

    Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi

    2016-03-01

    Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea. PMID:26564186

  3. Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area.

    Science.gov (United States)

    Jović, Mihajlo; Stanković, Slavka

    2014-08-01

    Considering the growing concern due to different levels of anthropogenic loadings, the main purpose of this study was to identify the levels of trace metals (Fe, Mn, Cu, Zn, Co, Ni, Cd, Pb and Hg) in the mussels Mytilus galloprovincialis sampled along the marine coast of Boka Kotorska Bay, Montenegro. In comparison with the permissible limits set by the EU and the US FDA, all trace metal concentrations found in the mussels from the coastal area of Boka Kotorska Bay were lower than the prescribed limits. Generally, the trace metal concentrations found in Montenegrin mussels are within the range of trace metal concentrations determined in low to moderately polluted Adriatic areas. Based on these and other available literature data published by other authors for Adriatic region, the public health risks associated with the consumption of mussels in relation to reported trace metal concentrations were evaluated. In terms of the obtained trace metals concentrations in mussels and the provisional tolerable weekly intake prescribed by the JECFA and oral reference doses by the US EPA, the Pb and Cd concentrations and the Co and Cd concentrations were recognized as the limiting factor for the consumption of mussels from some Adriatic areas, respectively.

  4. Evaluation of Trace Metal Content by ICP-MS Using Closed Vessel Microwave Digestion in Fresh Water Fish

    Directory of Open Access Journals (Sweden)

    Sreenivasa Rao Jarapala

    2014-01-01

    Full Text Available The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS. Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO.

  5. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    Science.gov (United States)

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  6. Intelligent Simultaneous Quantitative Online Analysis of Environmental Trace Heavy Metals with Total-Reflection X-Ray Fluorescence

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2015-05-01

    Full Text Available Total-reflection X-ray fluorescence (TXRF has achieved remarkable success with the advantages of simultaneous multi-element analysis capability, decreased background noise, no matrix effects, wide dynamic range, ease of operation, and potential of trace analysis. Simultaneous quantitative online analysis of trace heavy metals is urgently required by dynamic environmental monitoring and management, and TXRF has potential in this application domain. However, it calls for an online analysis scheme based on TXRF as well as a robust and rapid quantification method, which have not been well explored yet. Besides, spectral overlapping and background effects may lead to loss of accuracy or even faulty results during practical quantitative TXRF analysis. This paper proposes an intelligent, multi-element quantification method according to the established online TXRF analysis platform. In the intelligent quantification method, collected characteristic curves of all existing elements and a pre-estimated background curve in the whole spectrum scope are used to approximate the measured spectrum. A novel hybrid algorithm, PSO-RBFN-SA, is designed to solve the curve-fitting problem, with offline global optimization and fast online computing. Experimental results verify that simultaneous quantification of trace heavy metals, including Cr, Mn, Fe, Co, Ni, Cu and Zn, is realized on the online TXRF analysis platform, and both high measurement precision and computational efficiency are obtained.

  7. Intelligent simultaneous quantitative online analysis of environmental trace heavy metals with total-reflection X-ray fluorescence.

    Science.gov (United States)

    Ma, Junjie; Wang, Yeyao; Yang, Qi; Liu, Yubing; Shi, Ping

    2015-05-06

    Total-reflection X-ray fluorescence (TXRF) has achieved remarkable success with the advantages of simultaneous multi-element analysis capability, decreased background noise, no matrix effects, wide dynamic range, ease of operation, and potential of trace analysis. Simultaneous quantitative online analysis of trace heavy metals is urgently required by dynamic environmental monitoring and management, and TXRF has potential in this application domain. However, it calls for an online analysis scheme based on TXRF as well as a robust and rapid quantification method, which have not been well explored yet. Besides, spectral overlapping and background effects may lead to loss of accuracy or even faulty results during practical quantitative TXRF analysis. This paper proposes an intelligent, multi-element quantification method according to the established online TXRF analysis platform. In the intelligent quantification method, collected characteristic curves of all existing elements and a pre-estimated background curve in the whole spectrum scope are used to approximate the measured spectrum. A novel hybrid algorithm, PSO-RBFN-SA, is designed to solve the curve-fitting problem, with offline global optimization and fast online computing. Experimental results verify that simultaneous quantification of trace heavy metals, including Cr, Mn, Fe, Co, Ni, Cu and Zn, is realized on the online TXRF analysis platform, and both high measurement precision and computational efficiency are obtained.

  8. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes

    Energy Technology Data Exchange (ETDEWEB)

    Hlawatsch, S.; Garbe-Schonberg, C.D.; Lechtenberg, F.; Manceau, A.; Tamura, N.; Kulik, D.A.; Suess, E.; Kersten, M.

    2002-03-12

    Trace element profiles in ferromanganese nodules from the western Baltic Sea were analyzed with laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and synchrotron-based micro-X-ray radiation techniques (fluorescence: mSXRF, and diffraction: mXRD) at high spatial resolution in growth direction. Of the trace elements studied (Zn, Cu, Cd, Ni, Co, Mo, Ba), Zn showed the most significant enrichment, with values in the outermost surface layers of up to six-fold higher than those found in older core parts. The high-resolution Zn profiles provide the necessary temporal resolution for a dating method analogous to dendrochronology. Profiles in various samples collected during two decades were matched and the overlapping sections used for estimation of the accretion rates. Assuming a continuous accretion of these relatively fast growing nodules (on average 20 mm a-1) over the last century, the Zn enrichment was thus assessed to have commenced around 1860/70 in nodules from the Kiel Bight and in 1880/90 from Mecklenburg Bight, reflecting the enhanced heavy metal emissions with rising industrialization in Europe. Apart from the obvious success with Zn, only As and Co show significant but only 1.5-fold enrichments in the most recent growth layers of the nodules. Other anthropogenic trace metals like Cu and Cd are not at all enriched, which, together with the distinct early-diagenetic Fe/Mn banding, weakens the potential of the nodules for retrospective monitoring.

  9. Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W

    2007-07-01

    database used in Swiss radioactive waste disposal projects. Within the scope of this TDB project I reviewed extensively thermodynamic data for Th, Pd, Al, and solubility and metal complexation of silicates, the review considering not only U, Np, Pu, Am, Tc, Ni, Se and Zr, but also the major constituents of ground and surface waters, i.e. H, Na, K, Mg and Ca. The decision to evaluate the organic ligands oxalate, citrate, ethylenediaminetetraacetate (edta) and {alpha}-isosaccharinate (isa) was based on two aspects, namely the importance of the ligands in radioactive waste problems, and the availability of experimental data. (ii) In many case studies involving inorganic and simple organic ligands a serious lack of reliable thermodynamic data is encountered. There, a new modeling approach to estimate the effects of these missing data was applied. This so called 'backdoor approach' begins with the question: 'What total concentration of a ligand is necessary to significantly influence the speciation, and hence the solubility, of a given trace metal?' Radioactive waste contains substantial amounts of ion-exchange resins from decontamination procedures. Degradation of these organic waste forms by radiolysis in a repository is a source of concern in radioactive waste management. Radiolytic degradation experiments with strong acidic ion exchange resins resulted in the formation of the complexing ligands oxalate and ligand X, whose structure could not be identified. In the case of anion exchange resins, ammonia and methylamines were detected. I assessed the influence of these ligands on radionuclide speciation in groundwater and cement pore water of a repository using the 'backdoor approach'. Prussian Blue, Fe{sup III}{sub 4} [Fe{sup II}(CN){sub 6}]{sub 3}, and structurally related transition metal compounds like Ni{sub 2}[Fe(CN){sub 6}] are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers

  10. Contamination of the Marine Environment by trace metals: old and emergent elements, case studies and perspectives

    OpenAIRE

    Gobert, Sylvie; Richir, Jonathan

    2011-01-01

    Presentation of 18 trace elements (old: Cd, Ni, Cu, Zn, Cr, Pb, Fe ; emergent: Be, Al, V, Mn, Sb, As, Bi, Se, Mo, Ag, Sn studied in the laboratory of Oceanology. Study cases in the Mediterranaen Sea (Seagrass, mussel, seaurchin).

  11. Trace levels of metallic corrosion in water determined by emission spectrography

    Science.gov (United States)

    Snell, H. H.

    1966-01-01

    Emission spectrographic method determines trace amounts of inorganic impurities in potable water. The capability of this innovation should arouse considerable interest among plant biologists, chemists working in organic synthesis, and pathologists.

  12. Trace metal distribution in the Arosa estuary (N.W. Spain): The application of a recently developed sequential extraction procedure for metal partitioning

    International Nuclear Information System (INIS)

    A study of the trace metal distribution in sediment samples from the Galician coast (Spain) has been performed. A multielement extraction method optimised via experimental design has been employed. The method uses centrifugation to pass the extractant solution at varying pH, through the sediment sample. The sequential leaches were collected and analysed by ICP-AES. Chemometric approaches were utilised to identify the composition of the physico-chemical components in order to characterise the sample. The samples collected at different sites could be classified according to their differences in metal bio-availability and important information regarding element distribution within the physico-chemical components is given. The method has proved to be a quick and reliable way to evaluate sediment samples for environmental geochemistry analysis. In addition, this approach has potential as fast screening method for the bio-availability of metals in the environment

  13. Seasonal Fluxes and Cycling of Trace Metals in Semi-Arid Fluvial Systems: Leichhardt River, Queensland, Australia

    Science.gov (United States)

    Mackay, A. K.; Taylor, M. P.

    2007-12-01

    This paper examines the storage and transfer of trace metal contaminants in water and sediment within the upper Leichhardt River Catchment (1,113 km2), Mount Isa, north-west Queensland. The Leichhardt River runs adjacent to Mount Isa City and the Cu and Pb-Zn-Ag Mount Isa Mine and smelter (MIM) and feeds Lake Moondarra, Mount Isa's potable water supply. The river flows only during the monsoonal wet season (December- March) and for the remainder of the year is characterised by a series of disconnected temporary and permanent pools ranging in length from 10 m to 1 km. These pools are significant because they act as storage zones for water-soluble and sediment-associated metals and serve as refugia for native and domestic fauna during protracted intervals between wet season flows. To recognise seasonal fluxes and cycling patterns of trace metal contaminants in the Leichhardt River system this study investigates the physico-chemical water quality of the wet season flows and the subsequent seasonal variations in the dry season pool water. In January 2007 two floods were studied using sixteen rising stage water quality samplers along the Leichhardt River. The samplers were placed above and below MIM, and within selected tributaries draining MIM to ascertain the specific impacts from mining activities on water quality. Grab samples were also collected during the floods and on the falling stages of flow within the river system. Following this, dry season water quality sampling commenced on eleven remnant pools over a period of 8 months. Overall 60 wet season and 34 dry season water samples were collected and analysed for physico-chemical (pH, EC, DO, TDS, SS) variables in the field and total and water soluble cations, trace elements of concern (Cd, Cu, Pb, Zn) and anions via ICP-MS and ion chromatography, respectively. In addition, mineralogical and geochemical analysis was undertaken on 34 bottom sediment samples collected from the pools. Analysis of the temporal metal

  14. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    Energy Technology Data Exchange (ETDEWEB)

    Aiuppa, A.; Allard, P.; D' Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  15. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    Science.gov (United States)

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P  liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  16. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    Science.gov (United States)

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P  liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.

  17. Geochemical Distribution of Trace Metals and Assessment of Anthropogenic Pollution in Sediments of Old Nakagawa River, Tokyo, Japan

    Directory of Open Access Journals (Sweden)

    H. M. Zakir

    2008-01-01

    Full Text Available The geochemical distributions of cadmium (Cd, copper (Cu, chromium (Cr, lead (Pb and zinc (Zn were examined in sediments collected from Old Nakagawa River (NR, Tokyo, Japan. A widely used 5-step sequential extraction procedure was employed for the fractionation of the metals and the concentrations were measured in the liquid extracts by inductively coupled plasma mass spectrometry (ICP-MS. The association of Cd (76-98% and Zn (48-67% were found highest with AEC (adsorbed/exchangeable/carbonate phase, Cu (45-60% and Pb (44-73% with amorphous Fe oxyhydroxide phase and the maximum fractionation of Cr was in both crystalline Fe oxide (12-60% and amorphous Fe oxyhydroxide phase (15-60%. For retention by amorphous Fe oxyhydroxide minerals, the observed stoichiometric gradient was: 1.52 for Cu, 1.23 for Pb, 2.25 for Cr and 3.09 for Zn. Corresponding values for association with crystalline oxides and sulphides and organics were an order of magnitude greater than those for amorphous oxyhydroxide, indicating a greater affinity of trace metals for these phases. The total concentration ranges of Cd, Cr, Cu, Pb and Zn in NR sediments were 2.86-16.95, 551.7-3953.1, 340.6-1565.3, 136.9-385.9 and 931.4-3650.1 µg g-1, respectively. The observed order of potential trace metal mobility in the aquatic system was: Cd>Zn>Pb>Cu>Cr. Organic carbon contents in sediment samples were comparatively high (mean 5.48% and the X-ray diffraction (XRD study detected the presence of several clay minerals, those are likely to be major host of trace metals in sediments. The sediments of NR was considered to be polluted on the basis of unpolluted sediments and geochemical background values with respect to Cd, Cr, Cu, Pb and Zn. According to the enrichment factors (EFc, most of the sites have several times higher values of trace metals than the standard. The study revealed that the pollution in sediments of NR could be linked to anthropogenic activities such as industrialization

  18. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    Science.gov (United States)

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were amended plots, in spite of increased soil organic matter, factor of metal retention. Indeed, DOC, also increased by amendments, favours the

  19. Trace metals in harbour and slipway sediments from the island of Malta, central Mediterranean.

    Science.gov (United States)

    Huntingford, Emily J; Turner, Andrew

    2011-07-01

    Sediment samples collected from large harbours and public slipways on the island of Malta have been analysed for geochemically important metals (Al, Ca, Fe, Mn) and contaminant metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) following fractionation (Malta.

  20. Leach tests on grouts made with actual and trace metal-spiked synthetic phosphate/sulfate waste

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; LeGore, V.L.; Lindenmeier, C.W.; McLaurine, S.B.; Martin, P.F.C.; Lokken, R.O.

    1989-10-01

    Pacific Northwest Laboratory conducted experiments to produce empirical leach rate data for phosphate-sulfate waste (PSW) grout. Effective diffusivities were measured for various radionuclides ({sup 90}Sr, {sup 99}Tc, {sup 14}C, {sup 129}I, {sup 137}Cs, {sup 60}Co, {sup 54}Mn, and U), stable major components (NO{sub 3}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 3}BO{sub 3}, K and Na) and the trace constituents Ag, As, Cd, Hg, Pb, and Se. Two types of leach tests were used on samples of actual PSW grout and synthetic PSW grout: the American Nuclear Society (ANS) 16.1 intermittent replacement leach test and a static leach test. Grout produced from both synthetic and real PSW showed low leach rates for the trace metal constituents and most of the waste radionuclides. Many of the spiked trace metals and radionuclides were not detected in any leachates. None of the effluents contained measurable quantities of {sup 137}Cs, {sup 60}Co, {sup 54}Mn, {sup 109}Cd, {sup 51}Cr, {sup 210}Pb, {sup 203}Hg, or As. For those trace species with detectable leach rates, {sup 125}I appeared to have the greatest leach rate, followed by {sup 99}Tc, {sup 75}Se, and finally U, {sup 14}C, and {sup 110m}Ag. Leach rates for nitrate are between those for I and Tc, but there is much scatter in the nitrate data because of the very low nitrate inventory. 32 refs., 6 figs., 15 tabs.

  1. Identification and characterization of trace metals in black solid materials deposited from biomass burning at the cooking stoves in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mahmodul; Salam, Abdus; Alam, A.M. Shafiqul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka -1000 (Bangladesh)

    2009-10-15

    In this study we have reported the emissions of trace metals from biomass burning at the cooking stoves. Black solid materials deposited from two different types of biomass (rice husk coils - type 1; mixed (straw, bamboo, cow dung, leaves and plants) biomasses - type 2) burning at the cooking stoves were collected from the top of the stoves (but inside the roof of the kitchen) in Narsingdi, Dhaka, Bangladesh. Systematic chemical analysis was done for both samples. Lead, mercury, iron and calcium were identified in sample type-1, and lead, iron and magnesium were identified in sample type-2. The concentration of the trace element was determined with an atomic absorption spectrophotometer. The average concentrations of lead, iron, cadmium calcium, potassium and magnesium were 95.6, 11520, 8.33, 1635, 17.1 and 443.1 mg kg{sup -1}, respectively in sample type-1. The average concentration of lead, iron, cadmium calcium, potassium and magnesium were 125.2, 12360, 12.0, 1648, 21.5 and 534.2 mg kg{sup -1}, respectively in sample type-2. However, the average concentrations of the determined trace elements followed the sequences, Fe > Ca > Mg > Pb > K > Cd. The emission of lead, iron, cadmium, calcium, potassium and magnesium were much higher from mixed biomass (type-2) compared than the rich husk coils (type-1). The mixed biomass produced about 31% higher lead, 44% higher cadmium, 26% higher potassium, and 21% higher magnesium compared than the rice husk coils. This is the first systematic analysis for the trace metal emissions from different types of biomass burning at the cooking stoves in Bangladesh. (author)

  2. Polychlorinated biphenyls, organochlorine pesticides and trace metals in cultured and harvested bivalves from the eastern Adriatic coast (Croatia).

    Science.gov (United States)

    Milun, Vesna; Lušić, Jelena; Despalatović, Marija

    2016-06-01

    Polychlorinated biphenyls, organochlorine pesticides and trace metals were determined in tissues of bivalve molluscs (Mytilus galloprovincialis, Ostrea edulis, Venus verrucosa, Arca noae and Callista chione), collected from 11 harvesting and 2 cultured locations along the eastern Adriatic coast, in May and November 2012. Concentrations (ng g(-1) dry weight) of organochlorines ranged from 1.53 to 21.1 for PCBs and 0.68 to 5.21 for p,p'-DDTs. HCB, lindane, heptachlor and aldrin-like compounds were found in lower levels or were not detected. Metal concentrations (mg kg(-1) dry weight) ranged from 0.23 to 4.03 for Cd, 0.87-3.43 for Cr, 3.69-202.3 for Cu, 0.06-0.26 for HgT, 0.62-9.42 for Ni, 0.95-4.64 for Pb, and 55.76-4010.3 for Zn. Established organochlorine and trace metal levels were lower than the maximum allowable levels in seafood set by the European Commission. PMID:27010163

  3. Crabs tell the difference--Relating trace metal content with land use and landscape attributes.

    Science.gov (United States)

    Álvaro, Nuno V; Neto, Ana I; Couto, Ruben P; Azevedo, José M N; Rodrigues, Armindo S

    2016-02-01

    Heavy metal concentration in a given locality depends upon its natural characteristics and level of anthropogenic pressure. Volcanic sites have a different heavy metal footprint from agriculture soils and both differ from urban centres. Different animal species absorb heavy metals differently according to their feeding behaviour and physiology. Depending on the capability to accumulate heavy metals, some species can be used in biomonitoring programs for the identification of disturbed areas. Crabs are included in these species and known to accumulate heavy metals. The present study investigates the potential of Pachygrapsus marmoratus (Fabricius, 1787), a small crab abundant in the Azores intertidal, as an indicator of the presence of heavy metals in Azorean coastal environments, comparing hydrothermal vent locations, urban centres and locations adjacent to agricultural activity. Specimens were collected in the same period and had their hepatopancreas removed, dried and analysed for heavy metals. Results revealed differences in concentration of the studied elements between all sampling sites, each one revealing a distinct heavy metal content. Fe, Cu, Mn, Zn and Cd are the metals responsible for separating the various sites. The concentration levels of the heavy metals recorded in the present study reflect the environmental available metals where the organisms live. This, associated to the large availability of P. marmoratus specimens in the Azores, and to the fact that these animals are easy to capture and handle, suggests this species as a potential bioindicator for heavy metal concentration in Azorean coastal areas, both humanized and naturally disturbed.

  4. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Science.gov (United States)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  5. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Science.gov (United States)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  6. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    Science.gov (United States)

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils. PMID:27288953

  7. The stability of trace metals suspensions in heavy crudes as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    The importance of trace elements in petroleum has increased, since the role of nonhydrocarbon components has been recognized in the elucidation of the mechanisms of migration and origin of crudes. Knowledge of trace elements in petroleum is also important in the refining and processing of crudes. In developing different instrumental analytical techniques for trace analysis of crudes, little attention has been devoted to the scatter of data due to poor sampling and to the proper nature of the matrix. In the present paper the results of the determination of 17 trace elements including Co, Zn, Fe, V, Ni, Mo, Ba, Cs, Au, Br, Se, Sc, As, Mn, La, Eu and Cu are presented. A multielemental neutron activation analysis in a purely instrumental form was performed on a homogenized sample and the results are compared with those obtained on the same sample after a seven-month period. The results clearly show that the crude loses its induced homogeneous nature and that a standard heavy crude can not be stocked for comparison purposes. For the heavy asphaltene fractions, results of the analysis of the same trace elements are presented and the possibility of its use as a standard is discussed. (T.G.)

  8. Novel sample introduction system to reduce ICP-OES sample size for plutonium metal trace impurity determination

    International Nuclear Information System (INIS)

    A new methodology for trace elemental analysis in plutonium metal samples was developed by interfacing the novel micro-FAST sample introduction system with an ICP-OES instrument. This integrated system, especially when coupled with a low flow rate nebulization technique, reduced the sample volume requirement significantly. Improvements to instrument sensitivity and measurement precision, as well as long term stability, were also achieved by this modified ICP-OES system. The sample size reduction, together with other instrument performance merits, is of great significance, especially to nuclear material analysis. (author)

  9. Temporal and spatial variability of trace metals in suspended matter of the Mandovi estuary, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Kessarkar, P.M.; Rao, T.G.

    riverine inputs. Trace metals, on the other hand, can be derived from the weathering of rocks and/or anthropogenic sources derived from mining, industrial and urban development and other human practices near river and estuaries (Zhang et al. 1990... of the possible variations due to lithogenic effects (Muller 5 1969; Loska et al. 2004). The defined categories of I geo (cf. Förstner et al. 1990) are as follows: I geo value ~0 = practically unpolluted; 0–1= unpolluted to moderately polluted; 1...

  10. Determination of trace elements and heavy metals in agricultural products cultivated at the river Rimac in the city of Lima

    International Nuclear Information System (INIS)

    There are strong indications that the river Rimac valley is being contaminated with heavy metals and an excess of trace elements that come from some industrial and mining activities developed along the river Rimac valley. The agricultural products cultivated therein could be suffering the same effect. Nuclear and related analytical techniques will play an important role in the study of pollution by providing information concerning the degree of contamination in some agricultural products cultivated in the valley and consumed by the population of Lima. (author)

  11. Use of zebra mussel (Dreissena polymorpha) to assess trace metal contamination in the largest Italian subalpine lakes.

    Science.gov (United States)

    Camusso, M; Balestrini, R; Binelli, A

    2001-07-01

    Trace metal (Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) contamination was evaluated in zebra mussels from the lakes Maggiore, Lugano, Como, Iseo and Garda, which are located in the most highly populated and industrialised area in Italy. Zebra mussels from Lake Maggiore contained the highest concentrations (3.44, 1.51, 4.97, 0.158, 5.87, 346 microg g(-1) for Cd, Co, Cr, Hg, Pb, Zn, respectively) of all metals analysed except Cu and Ni. The lowest levels of most metals were in animals from Garda and Lugano (0.78 and 0.60 microg g(-1) for Cd, 2.87 and 2.03 microg g(-1) for Cr, 0.065 and 0.049 microg g(-1) for Hg, 12.1 and 11.9 microg g(-1) for Ni, 1.96 and 2.46 microg g(-1) for Pb, 158 and 163 microg g(-1) for Zn). The most contaminated sites and possible local sources of metals were identified for each lake, and the lakes classified into quality classes concerning metal pollution.

  12. Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HUANG Xiaoping

    2012-01-01

    Concentrations of the trace metals Cu,Cd,Pb,and Zn were measured in seawater,rhizosphere sediments,interstitial water,and the tissues of three tropical species of seagrasses (Thalassia hemprichii,Enhalus acoroides and Cymodocea rotundata) from Xincun Bay of Hainan Island,South China.We analyzed different environmental compartments and the highest concentrations of Pb and Zn were found in the interstitial and seawater.The concentrations of Cd and Zn were significantly higher in blades compared with roots or rhizomes in T.hemprichii and E.acoroides,respectively.A metal pollution index (MPI) demonstrated that sediment,interstitial water,and seagrasses in the sites located nearest anthropogenic sources of pollution had the most abundant metal concentrations.There was obvious seasonal variation of these metals in the three seagrasses with higher concentrations of Cu,Pb and Zn in January and Cd in July.Furthermore,the relationships between metal concentrations in seagrasses and environmental compartments were positively correlated significantly.The bioconcentration factors (BCF) demonstrated that Cd from the tissues of the three seagrasses might be absorbed from the sediment by the roots.However,for C.rotundata,Zn is likely to be derived from the seawater through its blades.Therefore,the blades of T.hemprichii,E.acoroides and C.rotundata are potential bio-indicators to Cd content in sediment,and additionally Zn content (C.rotundata only) in seawater.

  13. USEPA METHOD STUDY 38 - SW-846 METHOD 3010, ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TRACE METALS BY FLAME ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    An interlaboratory collaborative study was conducted on SW-846 Method 3010, "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy", to determine the mean recovery and precision for analyses of 21 trace metals in surf...

  14. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014.

    Science.gov (United States)

    Kumar, Alok; Ramanathan, Al; Prasad, M B K; Datta, Dilip; Kumar, Manoj; Sappal, Swati Mohan

    2016-05-01

    The distribution, enrichment, and ecotoxicity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. A total of eleven surficial sediment samples were collected along a vertical transect along the freshwater-saline water gradient. The sediment samples were digested using EPA 3051 method and were analyzed on ICP-MS. Geo-accumulation index suggests moderately polluted sediment quality with respect to Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As, and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co, and Cd, moderate by Fe, Mn, Cu, and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb, and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co, and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves. PMID:26822216

  15. Benthic flux of nutrients and trace metals in the northern component of San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Parcheso, Francis; Engelstad, Anita C.; Greene, Valerie E.

    2009-01-01

    Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 sites Tiburon Center for Environmental Studies, provides information to assist in developing and refining management strategies for the Bay/Delta system and supports efforts to monitor changes in food-web structure associated with regional habitat modifications directed by the California Bay-Delta Authority. On July 7, 2008, and August 5, 2008, pore-water profilers were successfully deployed at six North Bay sites per trip to measure the concentration gradient of dissolved macronutrients and trace metals near the sediment-water interface. Only two of the sites (433 and SSB009 within Honker Bay) were sampled in both series of profiler deployments. At each sampling site, profilers were deployed in triplicate, while discrete samples and dataloggers were used to collect ancillary data from both the water column and benthos to help interpret diffusive-flux measurements. Benthic flux of dissolved (0.2-micron filtered) inorganic phosphate (that is, soluble reactive phosphorus (SRP)) ranged from negligible levels (-0.003?0.005 millimole per square meter per day (mmole m-2d-1) at Site 4.1 outside Honker Bay) to 0.060?0.006 mmole m-2d-1 near the northern coast of Brown?s Island. Except for the elevated flux at Browns Island, the benthic flux of soluble reactive phosphorus (SRP) was consistently: (1) lower than previously reported for South Bay sites, (2) an order of magnitude lower than oligotrophic Coeur d?Alene Lake, (3) two orders of magnitude lower than determined for eutrophic Upper Klamath Lake, and (4) an order of magnitude or more lower than the estimated summer riverine inputs for SRP (900 to 1,300 kilograms of phosphorous per day (kg-P d-1)). In contrast to fluxes reported for the South Bay, nitrate fluxes were consistently negative (that is, drawn from the water column into the sediment

  16. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry.

    Science.gov (United States)

    Sturgeon, R E; Berman, S S; Desaulniers, A; Russell, D S

    1980-02-01

    Determination of Cd, Zn, Pb, Cu, Fe, Mn, Co, Cr and Ni in coastal sea-water by graphite-furnace atomic-absorption spectrometry after preconcentration by solvent extraction and use of a chelating ion-exchange resin is described. Following the extraction of the pyrrolidine-N-carbodithioate and oxinate complexes into methyl isobutyl ketone, the trace metals are further preconcentrated by back-extraction into 1.5M nitric acid. Preconcentration on the chelating resin is effected by a combined column and batch technique, allowing greater preconcentration factors to be obtained. Provided samples are appropriately treated to release non-labile metal species prior to preconcentration, both methods yield comparable analytical results with respect to the mean concentrations determined as well as to mean relative standard deviations. Control and treatment of the analytical blank is also described. PMID:18962623

  17. Distribution and health risk assessment of trace metals in freshwater tilapia from three different aquaculture sites in Jelebu Region (Malaysia).

    Science.gov (United States)

    Low, Kah Hin; Zain, Sharifuddin Md; Abas, Mhd Radzi; Md Salleh, Kaharudin; Teo, Yin Yin

    2015-06-15

    The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond. PMID:25660902

  18. Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash river, Ethiopia.

    Science.gov (United States)

    Woldemichael, Gelaneh; Tulu, Taffa; Flechsig, Gerd-Uwe

    2016-03-01

    We report about testing a new mobile and sustainable water sample digestion method in a preliminary field trial in Ethiopia. In order to determine heavy metals at the ultra-trace level by stripping voltammetric techniques in water samples from Awash River, we applied our new method of solar UV-assisted sample pretreatment to destroy the relevant interfering dissolved organic matter. The field tests revealed that 24 h of solar UV irradiation were sufficient to achieve the same sample pretreatment results as with classic digestion method based on intense and hard UV. Analytical results of this study suggest that both a hydroelectric power station and agrichemical applications at Koka Lake have increased the levels of the investigated metals zinc, cadmium, lead, copper, cobalt, nickel, and uranium. PMID:27441266

  19. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  20. Heavy and trace metal concentrations in three rockpool shrimp species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from Tenerife (Canary Islands).

    Science.gov (United States)

    Lozano, Gonzalo; Herraiz, Elena; Hardisson, Arturo; Gutiérrez, Angel J; González-Weller, Dailos; Rubio, Carmen

    2010-09-01

    Trace metal concentrations (Fe, Cu, Co, Zn, Ni and V) were investigated in three rockpool shrimp species (Palaemon elegans, Palaemon adspersus and Palaemon serratus) from six littoral sampling sites (polluted and non-polluted) of Tenerife in the Canary Islands (Central Eastern Atlantic), Spain. Sex ratio for all three species has been determined: females predominate over males in all species and significant differences in total length and cephalothorax length was detected between sexes, being females larger than males. By other side, concentrations of trace metals were determined in whole specimens. Higher mean values for every metal were observed in P. adspersus. In males, higher values were observed in P. elegans and P. serratus, whereas in P. adspersus, mean values are higher in females. Finally, mean concentrations of trace metals studied were higher, in general terms, in the two clearly polluted stations: Santa Cruz of Tenerife commercial harbour and its fishery dock dependency.

  1. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  2. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Science.gov (United States)

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium. PMID:27207229

  3. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    Science.gov (United States)

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  4. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  5. Speciation and Fate of Trace Metals in Estuarine Sediments Under Reduced and Oxidized Conditions, Seaplane Lagoon, Alameda Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, S A; Day, P A; Esser, B; Randall, S

    2002-10-18

    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60-year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60-year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  6. Effect of the FCC to HCP Phase Transition on Trace Element Partitioning Between Metal and Sulfide Melt

    Science.gov (United States)

    Campbell, A. J.; Thomas, R. B.; Fei, Y.

    2006-12-01

    Most of what we understand about the chemical behavior of iron alloys, even at high pressure, pertains to the fcc phase. However, it is widely thought that the relevant structure in the Earth's core is hcp, not fcc. In this study we aim to understand the effect of the fcc-hcp transition on siderophile element partitioning between metal and coexisting sulfide melt. This is important, for example, in evaluating models in which Re-Os-Pt isotope fractionations are attributed to partitioning between the Earth's inner and outer core. Experiments were doped with trace elements Ni, Re, Os, Ir, and Pt, which partitioned between Fe-Ru alloys and sulfide melt. Most experiments were performed at 1 bar in sealed silica tubes in a tube furnace, and some experiments were performed at 6 GPa in a multi-anvil press. The fcc-hcp transition was investigated by varying the Ru content of the experiments; the metal is fcc at Ru-poor compositions but hcp at higher Ru contents. The sulfur content of the melt varied with temperature and with bulk composition. The run products were characterized by electron microprobe, and abundances of the trace elements in both metal and melt were determined by laser ablation ICP-MS. The effect on partitioning of the phase transition can be distinguished from compositional effects because a range of Ru contents was studied. Our Ru-free dataare in good agreement with previously published data in the Fe-S system at 1 bar. However, our highest-Ru compositions show significant differences in their D values, attributable to the phase transition in the metal.

  7. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    Energy Technology Data Exchange (ETDEWEB)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  8. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    extracted by means of concentrated HNO{sub 3}, estuarine freshwaters and waters of two different salinities (S=15 and S=31). Analysis of trace elements was carried out by means of quadrupole inductively coupled plasma-mass spectrometry. Furthermore, single particles from road sediments were characterised with scanning electron microscopy (SEM). Results: SEM analysis clearly showed that some particles contained fairly high concentrations of potentially toxic trace elements. Extractions of materials investigated by varying acidities and salinities documented that the potentially bioavailable fractions extracted by concentrated HNO{sub 3} may cover wide concentration ranges. Natural estuarine waters of various salinities (S=0.5; S=15; S=31) extracted high proportions of Co, Ni, Cu, Zn and Cd from urban particles, especially for high-salinity water (S=31). Extractions with freshwater revealed the lowest concentrations of desorbed trace elements. Particulate Mo, Pb and V showed similar or lower mobility in saline water compared with freshwater, depending on the sample type. Discussion: Trace element mobility in estuarine waters varied according to the type of urban particles and depended on salinity for Co, Ni, Cu, Zn and Cd. This is of high importance for towns located directly at the coast or for cities like Bordeaux, where water courses crossing the agglomerations are connected to saline water masses. Since trace elements desorbed from particles in saline waters may become highly bioavailable, they bear a potential risk for organisms. Comprehensive studies on the behaviour of urban particles in estuarine waters and the related potential environmental impact are still missing. Conclusions: Saline waters mobilise relatively high amounts of Co, Ni, Cu, Zn and Cd from urban particles suggesting considerable metal fluxes from riverine urban systems into coastal waters. Although estimates of trace metal inputs by urban bulk deposition (urban dust) and other types of urban particles

  9. Pb and Sr isotopes and trace metals in molluscs: constraints on metal sources and water fluxes in a coastal lagoon (Thau, France)

    International Nuclear Information System (INIS)

    Because of its unique ability to characterize the origins and quantify the fluxes of waters and their loads, isotopic geochemistry is being increasingly used in environmental problems. On the other hand, molluscs are known to concentrate metals in a very strong manner and equilibrate relatively rapidly with their environment. They are used in many programs of coastal survey (Mussel Watch, RNO,...). The originality of our work is to apply isotopic systems (Pb, Sr) to living organisms, in order to: 1- identify the metal sources; 2- determine their proportions in the lagoon and 3- to trace the water movements. The Thau lagoon (Herault, S. France) presents various potential sources of metals inputs: heavy traffic road, Sete harbour, various industries (cement factory, fertilizers...), agriculture, camping areas and leisure ports, not to mention natural (rock) sources. Our study deals with the metal and alkali, alkali-earth concentrations, Pb and Sr isotopes determined on both mussels implanted in the lagoon and wild mussels. We also compare our mussel results with those determined on clams which live at the water/sediments interface. A first study deals with the metal accumulation in laboratory experiments using mono-isotopic tracers 'spike'. It shows that the new metal is being superimposed to the metals initially present in the organisms; this effect is seen within a few days, although variable depending on elements (Zn, Cd, Pb). We have sampled the introduced mussels 4 times a year and we see that the concentration fluctuations are principally related to animal weight variations. The flesh isotopic compositions usually define nice alignments depending on season, indicative of a progressive mixing between two main components: one natural, one anthropogenic. Depending on winds,two influences of seawater entries or local water treatment plants effluents can be shown. We have compared past and present metal levels and origins in the area by analysing also ancient shells

  10. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  11. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    International Nuclear Information System (INIS)

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  12. Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy

    Directory of Open Access Journals (Sweden)

    A. DI LEO

    2013-04-01

    Full Text Available Distribution of metals (Hg, Pb, Sn, Cu, Cd and Zn was determined in sediments and in different tissues of Posidonia oceanica collected from San Pietro Island, Taranto Gulf (Ionian Sea, Southern Italy. In seagrass, results, compared with metal concentrations in sediments, showed that the highest concentrations of Hg, Pb, Sn and Cu were found in the roots, while in the green leaves were found the highest levels of Cd and Zn. Instead the lowest metal concentrations were found in the basal part of the leaf. Levels of  metals in the leaves were similar to those found by other authors in uncontaminated areas of the Mediterranean Sea. Mercury levels in roots were correlated to levels in sediments. This could demonstrate the plant memorizes sediments contamination . This study reinforces the usefulness and the relevance of Posidonia oceanica as an indicator of spatial metal contamination and an interesting tool for environmental quality evaluation.

  13. Trace metal determination as it relates to metallosis of orthopaedic implants: Evolution and current status.

    Science.gov (United States)

    Ring, Gavin; O'Mullane, John; O'Riordan, Alan; Furey, Ambrose

    2016-05-01

    In utilising metal surfaces that are in constant contact with each other, metal-on-metal (MoM) surgical implants present a unique challenge, in the sense that their necessity is accompanied by the potential risk of wear particle generation, metal ion release and subsequent patient toxicity. This is especially true of orthopaedic devices that are faulty and subject to failure, where the metal surfaces undergo atypical degradation and release even more unwanted byproducts, as was highlighted by the recent recall of orthopaedic surgical implants. The aim of this review is to examine the area of metallosis arising from the wear of MoM articulations in orthopaedic devices, including how the surgical procedures and detection methods have advanced to meet growing performance and analytical needs, respectively. PMID:26794632

  14. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    International Nuclear Information System (INIS)

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project

  15. Metallothioneins and trace metals in the dogwhelk Nucella lapillus (L.) collected from Icelandic coasts

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kenneth M.Y. [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland)]. E-mail: kmyleung@hkucc.hku.hk; Dewhurst, Rachel E. [School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Halldorsson, Halldor [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland); Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik (Iceland); Svavarsson, Joerundur [Sandgeroi Marine Centre, Garovegi 1, 245 Sandgeroi (Iceland); Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik (Iceland)

    2005-07-01

    Different sizes of the dogwhelk Nucella lapillus were collected from eight locations along the southwest and north coasts of Iceland. Concentrations of total metallothioneins (MTs) and heavy metals (Cd, Cu, Cr, Mn, Ni, and Zn) were analysed using the silver saturation method and inductively coupled plasma-atomic emission spectrometry. The level of tributyltin (TBT) contamination was also assessed using imposex indices, the vas deferens stage index (VDSI) and relative penis size index (RPSI). Gufunes N. lapillus presented the highest values of VDSI (4.0) and RPSI (11.1), followed by Grenivik individuals (VDSI = 3.0; RPSI = 0.9), while the Strandakirkja population showed the lowest VDSI (0.3) and zero RPSI. At a standardised size (0.25 g dry soft-body weight), Grenivik N. lapillus exhibited significantly higher concentrations of all metals whereas overall metal concentrations were significantly lower in individuals from Strandakirkja and Garoskagi compared to other study sites. Partial correlation analyses with size correction indicated that MT concentrations were better correlated with Cd and Cu concentrations than with other metals. At the standard size, the pattern of MT concentrations in N. lapillus from different sites was, however, very different from those of metal profiles. Such discrepancies between the patterns of MT and metals in N. lapillus might be explained by the fact that MT induction could be influenced by various factors such as temperature, dietary metal intake, growth rate and co-existence of other MT-inducing chemicals.

  16. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  17. Trace Metal Pollution From Traffic in Denizli-Turkey During Dry Season

    Institute of Scientific and Technical Information of China (English)

    UMIT DIVRIKLI; DURALI MENDIL; MUSTAFA TUZEN; MUSTAFA SOYLAK; LATIF ELCI

    2006-01-01

    To determine the metal contents of date palm (Pheonix dactylifera) samples in dry season from Denizli-Turkey for investigation of heavy metal-polluted traffic. Method The levels of iron, copper, zinc, lead, cadmium,nickel, chromium, and manganese ions in the leaves of thirty five date palm (Pheonix dactylifera) samples collected from various levels of traffic in the streets of Denizli-Turkey were determined by graphite furnace or flame atomic absorption spectrometry. The wet, dry, and microwave digestion procedures for the date palm (Pheonix dactylifera) leaves were compared.The accuracy of the digestion procedures was checked using a standard reference material (IAEA-336 Lichen, SRM). Results Microwave digestion procedure for the leaves was preferred because it was more proper with respect to both time and recovery than dry and wet digestion. The levels of the heavy metal ions investigated were the highest on the samples from high traffic level. Also correlations between metal levels and traffic volume for all the metals were investigated. Conclusion In the light of our findings, the date palm (Phoenix dactylifera) leaves are suitable as a biomonitor for atmospheric heavy metal-polluted traffic. Significant correlations can be obtained between traffic levels and heavy metal concentrations.

  18. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  19. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation

    Science.gov (United States)

    Plathe, Kelly L.; von der Kammer, Frank; Hassellöv, Martin; Moore, Johnnie N.; Murayama, Mitsuhiro; Hofmann, Thilo; Hochella, Michael F.

    2013-02-01

    Nanominerals and mineral nanoparticles from a mining-contaminated river system were examined to determine their potential to co-transport toxic trace metals. A recent large-scale dam removal project on the Clark Fork River in western Montana (USA) has released reservoir and upstream sediments contaminated with toxic trace metals (Pb, As, Cu and Zn), which had accumulated there as a consequence of more than a century and a half of mining activity proximal to the river's headwaters near the cities of Butte and Anaconda. To isolate the high-density nanoparticle fractions from riverbed and bank sediments, a density separation with sodium polytungstate (2.8 g/cm3) was employed prior to a standard nanoparticle extraction procedure. The stable, dispersed nanoparticulate fraction was then analyzed by analytical transmission electron microscopy (aTEM) and flow field-flow fractionation (FlFFF) coupled to both multi-angle laser light scattering (MALLS) and high-resolution, inductively coupled plasma mass spectrometry (HR-ICPMS). FlFFF analysis revealed a size distribution in the nano range and that the elution profiles of the trace metals matched most closely to that for Fe and Ti. aTEM confirmed these results as the majority of the Fe and Ti oxides analyzed were associated with one or more of the trace metals of interest. The main mineral phases hosting trace metals are goethite, ferrihydrite and brookite. This demonstrates that they are likely playing a significant role in dictating the transport and distribution of trace metals in this river system, which could affect the bioavailability and toxicity of these metals.

  20. Trace metals speciation by HPLC with plasma source mass spectrometry detection.

    OpenAIRE

    Byrdy, F A; Caruso, J A

    1995-01-01

    The analysis of environmental and biological samples often requires detection at the parts per billion (ppb) level. Plasma source mass spectrometry has potential as a method for the analysis and speciation of trace elements. This is due to the technique's highly selective nature and excellent sensitivity. In comparison to atomic emission detection, detection limits are usually two to three orders of magnitude lower for plasma MS determinations. Interfacing HPLC with plasma MS provides a means...

  1. Trace metals in soils of the main geomorphological units in the southwestern part of Western Siberia

    Science.gov (United States)

    Konstantinova, E. Yu

    2016-09-01

    Total concentrations of Ti, Cr, Mn, Ni, Cu, Zn, Rb, Sr, and Pb as well as soil granulometric texture were studied for three plot sites representing different geomorphologic units of the southwestern part of Western Siberia: periphery of the upland Tobolsky Mainland, Ishim plain, Turinskaya plain. Interregional difference in the relationship by and among the content of trace elements and particle size distribution of soil horizons is established. Thus, for the soils of Turinskaya plain such interrelations are not observed. For the soils of Ishim Plain moderate negative correlation between Pb concentrations and medium silt, as well as average positive correlations between Zn and fine sand, coarse sand and Pb are found. For the soils of the high terraces of the Irtish and periphery of Tobolsky Mainland interface zone moderate positive correlations between contents of Ti, Zn, Sr and fine sand, weak positive ones between Rb and medium sand, moderate negative ones between Zn and clay, Ti, Ni, Cu, Zn, Rb, Sr, and fine dust, Ti, Cu, Zn, Rb, Sr and medium silt are observed. Consequently, properties and genesis of local parent rocks are significant factors for distribution and accumulation of trace elements in the soils of the southern taiga; at the same time, the processes of bioaccumulation in thick humus horizons of dark gray soils and chernozems apparently play an important part in accumulation and migration of trace elements in forest-steppe soils of Ishim and Turinskaya plains.

  2. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    Science.gov (United States)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  3. Trace metals related to historical iron smelting at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.

  4. Progress in the biosensing techniques for trace-level heavy metals.

    Science.gov (United States)

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization.

  5. Trace metals in harbour and slipway sediments from the island of Malta, central Mediterranean.

    Science.gov (United States)

    Huntingford, Emily J; Turner, Andrew

    2011-07-01

    Sediment samples collected from large harbours and public slipways on the island of Malta have been analysed for geochemically important metals (Al, Ca, Fe, Mn) and contaminant metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) following fractionation (<63 μm) and digestion in aqua regia. Absolute and Al-normalised concentrations of contaminant metals exhibited relatively little dispersion both among different samples from the same location and between samples from different locations, notable exceptions including lower concentrations of Cr and Sn on the slipways than in the harbours. Sources of contaminant metals are attributed to diffuse and specific waste inputs from urban surroundings and boating and shipping activities. Overall, concentrations are similar to those reported for other large harbours in urban settings where equivalent sample fractionation-digestion has been performed. Relative to various sediment quality guidelines, Pb is predicted to exert the greatest threat to the marine environment of Malta. PMID:21665231

  6. Trace metal determination in total atmospheric deposition in rural and urban areas

    OpenAIRE

    Azimi, Sam; Ludwig, Alexandre; Thevenot, Daniel,; Colin, Jean-Louis

    2003-01-01

    International audience The wet, dry and total atmospheric depositions of some metals (Al, Cd, Cr, Cu, Fe, Na, Pb and Zn) were sampled at two sites and atmospheric fallout fluxes were determined for these locations. This work, led by two different research groups, allowed to reach two main goals: to define a simple analytical procedure to secure accurate shipboard sampling and analysis of atmospheric deposition, and to assess anthropogenic impacts of heavy metals to the environment. The fir...

  7. The dynamics of the content and migration of trace metals in aquatic ecosystems of Moldova

    OpenAIRE

    Zubcov E.; Zubcov N.

    2013-01-01

    The current complex investigations, carried out according to well-established methods, allowed us to find the main patterns of the dynamics and migration of metals in the Dniester and Prut rivers, affected by natural and anthropogenic factors. Using a polyfactorial analysis approach, the quantitative effect of main factors (water debit, amount of suspended matter, volume of discharged wastewaters, amount of pesticides and fertilizers metals in water, suspended matter, silt sediments of rivers...

  8. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    OpenAIRE

    Ehsanul Kabir; Sharmila Ray; Ki-Hyun Kim; Hye-On Yoon; Eui-Chan Jeon; Yoon Shin Kim; Yong-Sung Cho; Seong-Taek Yun; Richard J. C. Brown

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration obs...

  9. Assessment of Trace Metal Levels in Commonly Edible Vegetables from Selected Markets in Lagos State, Nigeria

    OpenAIRE

    Adu, A.A; Aderinola, O.J; Kusemiju, V

    2014-01-01

    Consumption of food contaminated with heavy metals is a major source of health problems for man and animals. Three commonly edible Leafy vegetables (Amaranthus hybridus, Celosia argentea ,Cochorus olitoris) from Agboju and Iba markets , Lagos Nigeria were sampled, identified, digested and analyzed with the aid of Atomic Absorption Spectrophotometer (AAS) as directed by APHA (American Public Health Association) to determine heavy metals concentration in them with the aim of ascertaining their...

  10. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany

    International Nuclear Information System (INIS)

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. - Highlights: ► Traffic-related pollutant deposition as important pathway for crop contamination. ► Heavy metal content often over EU standards for lead concentration in food crops. ► ‘Grow your own’ food in inner cities not always ‘healthier’ than supermarket products. ► No support for generalisations of crops as ‘risky high’ or ‘safe low’ accumulators. - Higher overall traffic burden increased, while the presence of buildings and large masses of vegetation as barriers between crops and roads reduced heavy metal content in crop biomass.

  11. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    Science.gov (United States)

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  12. The Cosmic Evolution of the Metallicity Distribution of Ionized Gas Traced by Lyman Limit Systems

    CERN Document Server

    Lehner, Nicolas; Howk, J Christopher; Prochaska, J Xavier; Fumagalli, Michele

    2016-01-01

    We present the first results from our KODIAQ Z survey aimed to determine the metallicity distribution and physical properties of the partial and full Lyman limit systems (pLLSs and LLSs; 16.22, which probe gas in the interface regions between the intergalactic medium and galaxies. We study 31 HI-selected pLLSs and LLSs at 2.3metal-ions to N(HI) and use photoionization models to assess the total H column density and the metallicity. The metallicity distribution function (MDF) of the pLLSs/LLSs at 2.3metallicities well below those of damped Lyman alpha absorbers (DLAs) at any given z, and this fraction remains relatively constant from z<1 to z~2-4. There is therefore a reservoir of metal-poor cool gas at all z that ma...

  13. Trace metal concentration in different Indian tobacco products and related health implications.

    Science.gov (United States)

    Verma, S; Yadav, S; Singh, I

    2010-01-01

    Concentrations of seven heavy metals, viz. Cd, Ni, Pb, Cr, Cu, Fe and Zn were determined in 30 samples of various brands of five different tobacco product types easily available in Indian markets. Three product types cigarettes, cigars and biri (tobacco rolled in dry leaf and smoked without filter) are consumed by smoking while chewing tobacco and snuff are consumed by chewing and sniffing, respectively. The metal content showed smoking and non-smoking type, brand and element specific variations. In the non-smoking type, chewing tobacco samples contained more heavy metals compared to snuff samples. Biri showed minimum metal content compared to cigarettes and cigars among the smoking types. This could be due to the metal enrichment during both chemical and physical processing in finished product; biri being the most raw and cheap product. The intra brand variations also indicate the same as the processing technologies are exclusive and different for each brand. The results are nearly comparable to the existing data with limited exceptions. We suggest that the smoke and ash produced could be significant contributor to metal load in the soil, air and water systems in addition to the adverse human health effects via direct tobacco consumption.

  14. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    Science.gov (United States)

    Pinedo-González, Paulina; West, A. Joshua; Tovar-Sánchez, Antonio; Duarte, Carlos M.; Marañón, Emilio; Cermeño, Pedro; González, Natalia; Sobrino, Cristina; Huete-Ortega, María.; Fernández, Ana; López-Sandoval, Daffne C.; Vidal, Montserrat; Blasco, Dolors; Estrada, Marta; Sañudo-Wilhelmy, Sergio A.

    2015-10-01

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  15. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  16. Tracing oxygen variations and its biogeochemical expression during the late hauterivian Faraoni Event: A multi tracers approach using paired carbon, nitrogen, sulfur isotopes and trace metallic elements

    Science.gov (United States)

    Thomazo, Christophe; Riquier, Laurent; Martinez, Mathieu; Mathieu, Olivier

    2013-04-01

    During the Cretaceous, several occurrences of Oceanic Anoxic Event (OAE) are described in the sedimentary record. Among them, the late Hauterivian Faraoni Event has been extensively studied in several locations including Italy, Switzerland, France and Spain and interpreted as a short-lived OAE from palaeontological, sedimentological and geochemical observations. However, the biogeochemical response to water column oxygen depletion is poorly documented and mostly stands on carbon carbonates isotopes during the Faraoni event. In order to bring further insights into the biogeochemical cycles modifications during O2 variations across the Faraoni Event, we performed an integrated geochemical study including C, N and S isotopes together with paleo-redox tracers (i.e. trace metallic elements and iron speciation) on about 25 samples from the Río Argos section (S.E. Spain). δ13Ccarb increases from 1.23‰ to 1.61‰ at the base of the studied section before the Faraoni event. Maximum values, ranging between 1.21‰ and 1.73‰, are observed within this event and are followed by a rapid decrease in δ13Ccarb values down to 0.50‰ toward the top of the section. δ13Corg and TOC values show a narrow range of variations around -26.3±0.3‰ and 0.15±0.3 wt.%, respectively. Only one sample records a higher TOC content up to 1.53 wt.% at the very base of the Faraoni Event while no sensible variations can be deduced form organic carbon isotopes. Bulk sediments nitrogen isotopes have a mean value of 2.3±0.2‰ and nitrogen contents vary between 320 and 790 ppm. A noticeable δ15N excursion (i.e. 0.86‰) is observed at the very base of the Faraoni Event and is associated with the highest TOC value. Sulfur contents vary between 100 and 2480 ppm, the highest content being recorded just bellow the base of the Faraoni Event. δ34S show a wide range of variations from -44.8 to -10.1‰ on a short scale without easily recognizable stratigraphic trend. Finally, slight increases of

  17. Bioaccumulation of polonium (210Po, uranium (234U, 238U isotopes and trace metals in mosses from Sobieszewo Island, northern Poland

    Directory of Open Access Journals (Sweden)

    Boryło A.

    2013-04-01

    Full Text Available The objective of this study was determination of the polonium (210Po, uranium (234U and 238U radionuclides and trace metals (Pb, Fe, Zn, Cu, Ni, Cd, Hg concentrations in mosses samples from Sobieszewo Island near the phosphogypsum waste dump in Wiślinka (northern Poland. The obtained results revealed that the concentrations of 210Po, 234U, and 238U in the two analyzed kinds of mosses: Pleurozium schreberi and Dicranum scoparium were similar. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk.

  18. Subcellular partitioning of non-essential trace metals (Ag, As, Cd, Ni, Pb, and Tl) in livers of American (Anguilla rostrata) and European (Anguilla anguilla) yellow eels

    Energy Technology Data Exchange (ETDEWEB)

    Rosabal, Maikel [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Pierron, Fabien [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Couture, Patrice [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Baudrimont, Magalie [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Hare, Landis [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2015-03-15

    Highlights: • Handling of hepatic metals consistently involved cytosolic, thermostable ligands. • Granule-like fractions are also involved in the detoxification of Ni, Pb, and Tl. • Despite these sequestration mechanisms, metal detoxification is incomplete. • Along the metal gradient, concentrations increase in metal-sensitive fractions. • This increase could represent a toxicological risk for the yellow eels. - Abstract: We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative “sensitive” fractions (heat-denatured proteins, mitochondria and microsomes + lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in “sensitive” subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes + lysosomes. Among these “sensitive” fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in “sensitive” fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments.

  19. Analytical evaluation of a cup-horn sonoreactor used for ultrasound-assisted extraction of trace metals from troublesome matrices

    International Nuclear Information System (INIS)

    In this work, a sample preparation method based on ultrasound-assisted extraction of trace metals from a variety of biological and environmental matrices using a cup-horn sonoreactor is described. Diluted acids (HNO3, HCl and HF) and oxidants (H2O2) were tried for extraction, the extracts being directly analyzed by electrothermal-atomic absorption spectrometry. The cup-horn sonoreactor combines the advantages of probe and bath sonicators, allowing a variety of conditions to be used for metal extraction from troublesome matrices. This system facilitates the use of HF to destroy the silicate lattice, application of simultaneous treatments of up to six samples and short treatment times. Quantitative metal recoveries are achieved from different matrices (animal and vegetal tissues, soil, sediment, fly ash, sewage sludge) under a set of extraction conditions ranging from the use of 3 min sonication time and 3% volume/volume HNO3 for some animal tissues to 40 min sonication time along with 5% volume/volume HNO3 + 20% volume/volume HF for sediment. Vegetal matter required the use of 5% volume/volume HNO3 + 5% volume/volume HF for extraction of some elements. Ultrasound-assisted extraction of Cd, Mn, Pb, Ni and Cr from 16 certified reference materials representing a variety of biological and environmental matrices using the cup-horn sonoreactor is evaluated. Cd, Pb and Mn are more easily extracted from most certified reference materials (CRMs) than Cr and Ni and less stringent conditions can be chosen for the former metals. Metal extractability follows the order of difficulty: animal tissue < vegetal tissue < soil, fly ash, sewage sludge < sediment.

  20. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    Science.gov (United States)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing

  1. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    K. Wuttig

    2013-04-01

    Full Text Available The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently, however, the chemical and physical processes occurring after atmospheric deposition are poorly constrained, principally because of the difficulty in following natural dust events in situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths deployed in the surface waters of the northwestern Mediterranean, close to the coast of Corsica within the frame of the DUNE project (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem. Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (Mn, iron (Fe and aluminum (Al concentrations were followed immediately after the seeding with dust and over the following week. The Mn, Fe and Al inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dissolved Mn, Al and Fe. Even though the mixing conditions differed from one seeding to the other, Mn and Al showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, Al concentrations decreased as a consequence of scavenging on sinking particles. Al appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. In

  2. Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    K. Wuttig

    2012-10-01

    Full Text Available The deposition of atmospheric dust is the primary process supplying trace elements abundant in crustal rocks (e.g. Al, Mn and Fe to the surface ocean. Upon deposition, the residence time in surface waters for each of these elements differs according to their chemical speciation and biological utilization. Presently however their behavior after atmospheric deposition is poorly constrained, principally because of the difficulty in following natural dust events in-situ. In the present work we examined the temporal changes in the biogeochemistry of crustal metals (in particular Al, Mn and Fe after an artificial dust deposition event. The experiment was contained inside trace metal clean mesocosms (0–12.5 m depths deployed in the surface waters of the Northwestern Mediterranean, close to the coast of Corsica in the frame of the DUNE project (a DUst experiment in a low Nutrient low chlorophyll Ecosystem. Two consecutive artificial dust deposition events, each mimicking a wet deposition of 10 g m−2 of dust, were performed during the course of this DUNE-2 experiment. The changes in dissolved manganese (dMn, iron (dFe and aluminium (dAl concentrations were followed immediately and over the following week and their inventories and loss or dissolution rates were determined. The evolution of the inventories after the two consecutive additions of dust showed distinct behaviors for dMn, dAl and dFe. Even though the mixing conditions differed from one seeding to the other, dMn and dAl showed clear increases directly after both seedings due to dissolution processes. Three days after the dust additions, dAl concentrations decreased as a consequence of scavenging on sinking particles. dAl appeared to be highly affected by the concentrations of biogenic particles, with an order of magnitude difference in its loss rates related to the increase of biomass after the addition of dust. For dFe concentrations, the first dust addition decreased the

  3. Validation of newly developed method for the determination of trace metallic impurities in reactor grade magnesium metal

    International Nuclear Information System (INIS)

    The present paper discusses about validation of a simple method developed for estimation of Al, Cu, Fe, Mn, Ni, Si and Ti in high pure Magnesium metal by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) through Inter Laboratory Comparison Experiment (ILCE). The method involves dissolution of Magnesium metal in nitric acid and subsequent analysis of resultant solution by ICP-AES. Synthetically prepared matrix matching standard solutions of elements are used for method calibration. Expanded Uncertainty (Ue) of < ±3% has been achieved for all the above elements by this method. Values obtained from different laboratories are subjected to two way-factor Analysis of Variance (ANOVA) and found that there is no significant difference between the means obtained. (author)

  4. [Characteristics of Atmospheric Dry and Wet Deposition of Trace Metals in the Hinterland of the Three Gorges Reservoir, China].

    Science.gov (United States)

    Zhang, Liu-yi; Liu, Yuan; Qiao, Bao-qing; Fu, Chuan; Wang, Huan-bo; Huang, Yi-min; Yang, Fu-mo

    2016-02-15

    In order to investigate the characteristics of atmospheric trace metals deposition in the hinterland of the Three Gorges Reservoir, the wet and dry deposition samples were collected at an urban area sampling site in Wanzhou during January to June 2014. Besides, the samples were collected at five other sampling sites in April 2014 for comparative analysis, including factory region, town suburb, nature reserve, county suburb, and rural area. pH, conductivity, and trace metals (Al, As, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Pb, Ni, Sb, Sr, Sn, Ti, Zn, V) were analyzed. In urban area, the acid rain frequency was 48.44% , and the acid rain occurred mainly in the period of January to April. The order of acid rain frequency in various functional areas was factory region > urban area > county suburb > town suburb > nature reserve > county rural area. All of the trace metals in wet deposition during the sampling period were lower than the National Environmental Quality Standard for Surface Water Standard of Class III. Cd, Cu, Ph and Zn were found exceeding the standard of class I , and the pollution in factory region was more serious compared to other functional areas. The extract pH of dry deposition in urban area was in the range of 4.91-6.74, with an average value of 5.79. The order of dry deposition in various functional areas was factory region > county suburb > urban area > county rural area > town suburb > nature reserve, which was exactly the same as that of the wet deposition, indicating the similar sources of dry and wet deposition. In urban area, the contents of Ba, Co, Cu, Cr, Li, Mn, Ni, Sr, Zn in dry deposition were greater than those in wet deposition, but the contents of Al, As, B, Bi, Cd, Fe, Ph, Sb, Sn, Ti, V showed the opposite trend. Analysis of the enrichment factors showed that Al was in moderate enrichment, while Bi and Cd were significantly enriched. PMID:27363132

  5. Children exposure to trace levels of heavy metals at the north zone of Kifissos River

    International Nuclear Information System (INIS)

    This study evaluates the exposure level of primary school children at three different towns in northern Attica, near the banks of the Kifissos River, defining referential values of toxic heavy metals. Concentrations of five toxic metals (arsenic, cadmium, mercury, lead and nickel) were analyzed in water samples from the Kifissos River as well as in the scalp hair of children aged 11 to 12 years old living in the study area. Chronic low-level toxicity of lead and cadmium came into view in recent years as a problem of our civilization. Exposure to concentrations of arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) poses a potential threat to humans and can cause effects on children's renal and dopaminergic systems without clear evidence of a threshold, a fact that reinforces the need to control all the potential heavy metal emissions into the environment in order to protect children's health. The results were analyzed with the IBM SPSS Statistics 20 for Windows. The possible influence of sex and area was examined. Statistical differences were observed by t-test between the log-transformed hair concentrations of lead (p = 0.021), arsenic (p = 0.016) and nickel (p = 0.038) in children's scalp hair from the municipalities of Kifisia and Kryoneri. ANOVA one-way test confirmed the difference of Pb concentration in hair between girls and boys from the municipality of Kifisia (p = 0.038). The t-test confirms the difference of heavy metal concentrations in river samples between the municipalities Kifisia and Philadelphia in comparison with the samples from Kryoneri. The observations suggest that children living at the municipality of Kifisia are exposed to higher concentrations of heavy metals than the others. Despite all the confounding factors, hair can be used as a biomarker in order to determine the exposure to heavy metals, according to standardized protocols. - Highlights: ► The study area was the north zone of the Kifissos River which is characterized by

  6. Children exposure to trace levels of heavy metals at the north zone of Kifissos River

    Energy Technology Data Exchange (ETDEWEB)

    Evrenoglou, Lefkothea [Department of Sanitary Engineering and Environmental Health, National School of Public Health, 11521 Athens (Greece); Partsinevelou, Sofia Aikaterini, E-mail: partsi@hol.gr [Department of Sanitary Engineering and Environmental Health, National School of Public Health, 11521 Athens (Greece); Stamatis, Panagiotis; Lazaris, Andreas; Patsouris, Eustratios; Kotampasi, Chrysanthi [Department of Pathology, Medical School of Athens,11527 Athens (Greece); Nicolopoulou-Stamati, Polyxeni, E-mail: pnicolopouloustamati@gmail.com [Department of Pathology, Medical School of Athens,11527 Athens (Greece)

    2013-01-15

    This study evaluates the exposure level of primary school children at three different towns in northern Attica, near the banks of the Kifissos River, defining referential values of toxic heavy metals. Concentrations of five toxic metals (arsenic, cadmium, mercury, lead and nickel) were analyzed in water samples from the Kifissos River as well as in the scalp hair of children aged 11 to 12 years old living in the study area. Chronic low-level toxicity of lead and cadmium came into view in recent years as a problem of our civilization. Exposure to concentrations of arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) poses a potential threat to humans and can cause effects on children's renal and dopaminergic systems without clear evidence of a threshold, a fact that reinforces the need to control all the potential heavy metal emissions into the environment in order to protect children's health. The results were analyzed with the IBM SPSS Statistics 20 for Windows. The possible influence of sex and area was examined. Statistical differences were observed by t-test between the log-transformed hair concentrations of lead (p = 0.021), arsenic (p = 0.016) and nickel (p = 0.038) in children's scalp hair from the municipalities of Kifisia and Kryoneri. ANOVA one-way test confirmed the difference of Pb concentration in hair between girls and boys from the municipality of Kifisia (p = 0.038). The t-test confirms the difference of heavy metal concentrations in river samples between the municipalities Kifisia and Philadelphia in comparison with the samples from Kryoneri. The observations suggest that children living at the municipality of Kifisia are exposed to higher concentrations of heavy metals than the others. Despite all the confounding factors, hair can be used as a biomarker in order to determine the exposure to heavy metals, according to standardized protocols. - Highlights: ► The study area was the north zone of the Kifissos River which is

  7. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution

    International Nuclear Information System (INIS)

    This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L−1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals. -- Highlights: ► A novel combination of biosurfactant saponin and EDDS was used to simultaneously remove mixed contaminations from soil. ► Significant synergy on Pb, Cu and PCB desorption were achieved with EDDS/saponin. ► The marked interaction between EDDS and saponin contributed to the synergy performance. -- Significant synergistic effect on Pb, Cu and PCB desorption were achieved with the mixed solution of saponin and EDDS

  8. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    Science.gov (United States)

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed.

  9. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China

    International Nuclear Information System (INIS)

    Surface water samples were collected from 42 sampling sites throughout the upper Han River during the time period of 2005-2006. The concentrations of trace metals were determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) for the seasonal variability and preliminary risk assessment. The results demonstrated that concentrations of 11 heavy metals showed significant seasonality and most variables exhibited higher levels in the rainy season. Principal component analysis (PCA) and factor analysis (FA) revealed that variables governing water quality in one season may not be important in another season. Risk of metals on human health was then evaluated using Hazard Quotient (HQ) and carcinogenic risk, and indicated that As with HQ >1 and carcinogenic risk >10-4, was the most important pollutant leading to non-carcinogenic and carcinogenic concerns, in particular for children. The first five largest elements to chronic risks were As, Pb, V, Se and Sb, in the dry season, while they were As, V, Co, Pb and Sb in the rainy season. This assessment would help establish pollutant loading reduction goal and the total maximum daily loads, and consequently contribute to preserve public health in the Han River basin and develop water conservation strategy for the interbasin water transfer project.

  10. Evaluation of various techniques for the pretreatment of sewage sludges prior to trace metal analysis by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Six techniques were evaluated for their suitability for the pretreatment of dried sewage sludge prior to trace metal analysis by atomic absorption spectrophotometry. The evaluation comprised analysis of two prepared samples of dried sludge for aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel and zinc, after the following pretreatment: dry ashing at 500 degrees Celsius followed by extraction with dilute hydrochloric acid; dry ashing at 500 degrees Celsius followed by extraction with aqua regia; nitric acid digestion followed by extraction with hydrochloric acid; extraction with aqua regia; ashing with magnesium nitrate solution at 550 degrees Celsius followed by digestion with hydrochloric acid and extraction with nitric acid; extraction with nitric acid. Procedures involving the use of perchloric acid, hydrofluoric acid and hydrogen peroxide were not considered for reasons of safety. Except in the case of aluminium the direct mineral acid digestion and/or extraction methods generally gave higher recoveries than the procedures incorporating an ashing step. Direct extraction of the sample with aqua regia was recommended as a rapid and simple general method of sample pretreatment prior to analysis for all the metals investigated except aluminium. For this metal, more drastic sample pretreatment will be required, for example fusion or hydrofluoric acid digestion

  11. Role of estuarine natural processes in removal of trace metals under emergency situations

    Directory of Open Access Journals (Sweden)

    A.R. Karbassi

    2016-01-01

    Full Text Available Estuaries are well known for their potential in removing metal from fresh water to provide micro-nutrients to aquatic life. In the present investigation, we have tried to bring out the metal removal potential of estuaries during accidental spills. For this purpose artificial river water containing high concentration of Mn, Cu, Zn, Ni and Pb were mixed with sea water at different salinity regimes. Water samples were taken from a station on the main branch of Tajan River that flows in to the Caspian Sea. For this purpose, solutions with a concentration of 5 mg/L of each studied metal (Mn,Cu, Zn, Pb were prepared in Tajan River water. The salinity regimes include 3, 6, 8, 10 and 11 ppt. It was noted that metal concentration decreased by increasing salinity. Metals were flocculated at different rates: Cu (88% > Ni (86% > Pb (84% > Mn (74%.Thus, as average about 80% of total elemental content flocculates. Hence, it was concluded that a large amount of micro nutrients is carried by the river and flocculated in the estuary where the river water mixes with the sea water which may play a vital role in supplying nutrients to the aquatic animals. Cluster analyses have shown that Mn and Ni are governed by EC, pH and salinity.

  12. Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream

    Science.gov (United States)

    Nimick, D.A.; Cleasby, T.E.; McCleskey, R.B.

    2005-01-01

    Substantial diel (24-h) cycles in dissolved (0.1-??m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34-61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17-152% for Mn and 70-500% for Zn. Diel increases of As concentrations (17-55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH. ?? Springer-Verlag 2005.

  13. Assessment of Trace Metal Levels in Commonly Edible Vegetables from Selected Markets in Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Adu, A.A

    2014-12-01

    Full Text Available Consumption of food contaminated with heavy metals is a major source of health problems for man and animals. Three commonly edible Leafy vegetables (Amaranthus hybridus, Celosia argentea ,Cochorus olitoris from Agboju and Iba markets , Lagos Nigeria were sampled, identified, digested and analyzed with the aid of Atomic Absorption Spectrophotometer (AAS as directed by APHA (American Public Health Association to determine heavy metals concentration in them with the aim of ascertaining their edibility for human consumption. The mean concentration for each heavy metal in the samples gotten from each market were calculated, the comparison of these data was done amongst the two markets, and compared with the permissible levels set by the FAO and WHO. The results showed that the levels of Lead, Cadmium, Copper, Zinc, Iron, Nickel, Selenium and Chromiumpresent in the vegetable concentrated in the following order Fe>Pb>Zn>Cd>Ni>Cu>Cr>Se. With regards to vegetables in questions, analysis of variance showed that some vegetables accumulated metals more than each other and as such indicated that metals like copper, cadmium, selenium, iron and zinc are significant at P0.05.With significant values of lead, cadmium and nickel, recorded in both Amaranthus hybridus and Celosia argenteavegetables, vegetables consumers must be weary of vegetables to buy and the market that is save to buy from, especially markets located very close to highways or close to major busy roads .

  14. Measurement techniques for trace metals in coal-plant effluents: A brief review

    Science.gov (United States)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  15. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  16. Trace metals in sediments of two estuarine lagoons from Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo-Figueroa, D. [Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico); Center for Environmental and Toxicological Research, Medical Sciences Campus, University of Puerto Rico, P.O. Box 365067, San Juan 00936-5067 (Puerto Rico); Jimenez, B.D. [Department of Biochemistry, School of Medicine, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico); Center for Environmental and Toxicological Research, Medical Sciences Campus, University of Puerto Rico, P.O. Box 365067, San Juan 00936-5067 (Puerto Rico); Rodriguez-Sierra, C.J. [Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067 (Puerto Rico)]. E-mail: crodriguez@rcm.upr.edu

    2006-05-15

    Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San Jose Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in {mu}g/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.

  17. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    Science.gov (United States)

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  18. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower 4066, QLD (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Simpson, Stuart L. [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia)

    2014-07-01

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  19. Trace metal analysis in human tooth enamel and dentine using EDXRF spectrometry

    International Nuclear Information System (INIS)

    EDXRF spectrometry is used normally to determine the concentration of the different elements in a sample with advantages of good sensitivity, multielemental capabilities, fast, non-destructive and because of this simple relation to the fundamental physics of atom-radiation interaction, make of EDXRF a highly attractive analytical technique.The aim of this work is to investigate the correlation between the tooth elemental concentration (enamel and dentine) and environmental condition, sex and dietary effects on the biological age using x-ray fluorescence spectrometry (Millipore pixels of 1 mm2).The experimental set-up is based on miniaturized x ray tube of the low power (2.25 W and tungsten anode) and a Si-Li detector with an energy resolution of about 180 eV at 5.9 keV. The teeth were longitudinally cut and each slice was scanned from the inner region to the surface enamel for elemental profiles determination purposes. Both major constituents of the teeth and trace elements could be identified and partially quantified, including Ca, Fe, Cu, Zn, Pb and Sr. These results can be useful in dental clinic because teeth are a part of the skeleton, their trace element content should be an indicator of that in the other calcified tissues

  20. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    Science.gov (United States)

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  1. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012

    Science.gov (United States)

    Kondo, Yoshiko; Obata, Hajime.; Hioki, Nanako; Ooki, Atsushi; Nishino, Shigeto; Kikuchi, Takashi; Kuma, Kenshi

    2016-10-01

    Distributions of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in September 2012 were investigated to elucidate the mechanisms behind the transport of these metals from the Chukchi Shelf to the Canada Basin. Filtered (biogeochemical cycles of the ocean interior. Based on the findings of studies that have previously evaluated the concentration maxima of Ni, Zn and Cd within the halocline layer in the Canada Basin near the Canadian Arctic Archipelago, the elevated Ni, Zn and Cd concentrations in the halocline layer may extend across the Canada Basin from the Chukchi Sea shelf-break area. The determination coefficients for correlations with phosphate concentration varied between the concentrations of Ni, Zn and Cd, which suggest that the sources of these trace metals, such as sediments and sea-ice melting, affected their patterns of distributions differently. Our findings reveal the importance and impact of the halocline layer for the transport of trace metals in the western Arctic Ocean during the late summer. The existence of rich and various sources likely sustained the high concentrations of trace metals and their unique profiles in this region.

  2. Trace Metals in Surface Soil Contaminated by Release of Phosphate Industry in the Surroundings of Sfax-Tunisia

    Directory of Open Access Journals (Sweden)

    Ahmed Wali

    2013-10-01

    Full Text Available There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.There is a worldwide growing concern about soil pollution caused by phosphate industry creating thus large amounts of phosphogypsum slurry. This slurry is piped from the processing facilities up into acidic wastewater ponds that sit atop the mountainous waste piles known as gypsum stacks. This issue is of special interest because of toxic metals threats to groundwater tables as well as to the surrounding environment.The aim of the present work is to assess the level of trace elements content in soil around stocked solid waste “a phosphogypsum” derived from a former phosphate fertilizers factory and to investigate their factors of variation. Twenty soil samples were collected at the depths of 20 cm and analyzed for their physicochemical properties, the content of their major elements (Ca, Mg, K, Na, Al, Fe, Mn, and some trace elements such as Zn, Pb, Cr, Cu, Co and Ni. Data were processed with multivariate statistical analysis in order to investigate relationships among the trace elements and the factors controlling their distribution in the phosphogypsum surrounding environment. Enrichment factors (EF were calculated to assess either natural and/or anthropogenic origins. The results indicate moderate levels of contamination and big differences in variability among elements. The maximal and mean concentrations found in soil, except the soil sample S5.1, were 95.2 and 36.5 mg Kg-1 for Zn, 75.2 and 30.23 mg Kg-1 for Pb, 28.4 and 17.5 mg Kg-1 for Cr, 61.9 and 15.6 mg Kg-1 for Cu, 5.28 and 2.7 mg Kg-1 for Co, and 13.2 and 6.4 mg Kg-1

  3. Influence of organic matter from urban effluents on trace metal speciation and bioavailability in river under strong urban pressure

    Directory of Open Access Journals (Sweden)

    Matar Z.

    2014-07-01

    Full Text Available In aquatic systems, dissolved organic matter (DOM constitutes a key component of the carbon cycle controlling the transport, speciation, bioavailability and toxicity of trace metals. In this work, we study the spatio-temporal variability of the MO in terms of both quality and quantity from upstream to downstream the Parisian conurbation. Urban discharges which are the main source of allochthonous organic matter into the Seine at low water periods were also investigated. The DOM collected was fractionated according to polarity criteria into five fractions: hydrophobic, transphilic, hydrophilic acid, hydrophilic basic and hydrophilic neutral. Due to urban discharges a strong enrichment in the hydrophilic (HPI fraction was observed for downstream sites. This hydrophilic fraction presented stronger binding capacities for copper than hydrophobic fraction from less urbanized site (upstream from Paris and than Suwannee river fulvic acid (SRFA. Furthermore, biotests highlighted a significant copper bioavailability decrease in presence of hydrophilic DOM.

  4. Trace metal assay of fast breeder test reactor fuel using D.C. arc and plasma emission spectrometry

    International Nuclear Information System (INIS)

    This report describes the methods developed and used for the trace metal assay of the first charge of the FBTR fuel using a glove-box adapted direct reading emission spectrometer. The group of medium and highly volatile elements are determined in (U,Pu)C fuel samples by d.c. arc carrier distillation technique while the group of lanthanide elements are determined by ICP excitation mode with prior chemical separation from the major matrix. The statistical treatment of the analytical data collected from the analysis of about one hundred samples has indicated good purity of samples and consistent and satisfactory performance of the direct reading spectrometer and associated systems during this period. (author)

  5. A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals.

    Science.gov (United States)

    Smith, Matthew J; Francis, Matthew B

    2016-09-16

    Microbial mutualisms play critical roles in a diverse number of ecosystems and have the potential to improve the efficiency of bioproduction for desirable chemicals. We investigate the growth of a photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942, and a diazotroph, Azotobacter vinelandii, in coculture. From initial studies of the coculture grown in media with glutamate, we proposed a model of cross-feeding between these organisms. We then engineer a new microbial mutualism between Azotobacter vinelandii AV3 and cscB Synechococcus elongatus that grows in the absence of fixed carbon or nitrogen. The coculture cannot grow in the absence of a sucrose-exporting S. elongatus, and neither organism can grow alone without fixed carbon or nitrogen. This new system has the potential to produce industrially relevant products, such as polyhydroxybutyrate (PHB) and alginate, from air, water, phosphate, trace metals, and sunlight. We demonstrate the ability of the coculture to produce PHB in this work. PMID:27232890

  6. Influence of organic matter from urban effluents on trace metal speciation and bioavailability in river under strong urban pressure

    Directory of Open Access Journals (Sweden)

    Matar Z.

    2013-04-01

    Full Text Available In aquatic systems, dissolved organic matter (DOM constitutes a key component of the carbon cycle controlling the transport, speciation, bioavailability and toxicity of trace metals. In this work, we study the spatio-temporal variability of the MO in terms of both quality and quantity from upstream to downstream the Parisian conurbation. Urban discharges which are the main source of allochthonous organic matter into the Seine at low water periods were also investigated. The DOM collected was fractionated according to polarity criteria into five fractions: hydrophobic, transphilic, hydrophilic acid, hydrophilic basic and hydrophilic neutral. Due to urban discharges a strong enrichment in the hydrophilic (HPI fraction was observed for downstream sites. This hydrophilic fraction presented stronger binding capacities for copper than hydrophobic fraction from less urbanized site (upstream from Paris and than Suwannee river fulvic acid (SRFA. Furthermore, biotests highlighted a significant copper bioavailability decrease in presence of hydrophilic DOM.

  7. Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes

    Science.gov (United States)

    Zhang, Lu-Hua; Li, Wen-Cui; Yan, Dong; Wang, Hua; Lu, An-Hui

    2016-07-01

    The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A clear correlation between the contact points and the electron transfer resistance has been established, which fits well with the quadratic function model and is dependent on the size of HCSs. To our knowledge, this is the first clear function that expresses the structure-sensing activity relationship of carbon-based electrodes. The prepared carbon electrode is capable of sensing Pb(ii) with a sensitivity of 0.160 μA nM-1, which is much higher than those of other electrodes reported in the literature. Its detection limit of 0.6 nM is far below the guideline value (72 nM) given by the US Environmental Protection Agency. In addition, the carbon electrode could be a robust alternative to various heavy metal sensors.The challenge in efficient electrochemical detection of trace heavy metal ions (HMI) for early warning is to construct an electrode with a nano-patterned architecture. In this study, a range of carbon electrodes with ordered structures were fabricated using colloidal hollow carbon nanospheres (HCSs) as sensing materials for trace HMI (represented by Pb(ii)) detection by square wave anodic stripping voltammetry. The regular geometrical characteristics of the carbon electrode allow it to act as a model system for the estimation of electron transfer pathways by calculating contact points between HCSs and a glassy carbon electrode. A

  8. Enrichment factor and geoaccumulation index applied to sediment samples from the Guarapiranga reservoir, Brazil, for metal and trace element assessment

    International Nuclear Information System (INIS)

    This study aims to assess sediment contamination by metals and other trace elements in five sampling points of the Guarapiranga Reservoir. Two collection campaigns were undertaken and the samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in order to determine the following elements: major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb , Sc, Ta, Tb, Th, U and Zn) and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu). Soil samples were collected in the Guarapiranga Park, located next to the reservoir. Composite top soil samples (0-20 cm) were collected in lines across the park at every 30m and were also analyzed by INAA. EF values was calculated using Sc as the conservative element for normalization purposes and soil from Guarapiranga region was used as background levels for the elements analyzed. EF > 1.5 were obtained for the elements As, Sb and Zn, with highest values for Zn (1.6< EF<4.0), mainly at sampling points near the water supply catchment point from the Water Treatment Agency of Sao Paulo State, indicating anthropogenic contribution. As for the other elements, a 0.5< EF<1.0 was obtained, indicating that they mostly originate from crustal contribution. The Igeo Index was calculated using soil values as background or pristine values as well. For Zn, Igeo values (1.0< EF<2.0) were obtained, and, according to this criteria, these sediments can be classified as moderately contaminated. (author)

  9. Solubility of ion and trace metals from stabilized sewage sludge by fly ash and alkaline mine tailing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongling; SUN Lina; SUN Tieheng

    2008-01-01

    Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil,to be applied on the ecological rehabilitation at mining junkyards,offers a potentially viable utilization of the industrial by-product,as well as solves the shortage of soil resource in the mine area.An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge.Results showed that fly ash offset a decrease in pH value of sewage sludge.The pH of (C) treatment (FA:SS=1:1) was stable and tended to neutrality.The SO42- and Cl- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing,compared to the single SS treatment.Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%.The Cr,Ni,and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days,for all treatments over the duration of the incubation.Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility.The final Cr,Cu,and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5,15,and 50 μg/L,respectively.

  10. Trace metals and organometals in selected marine species and preliminary risk assessment to human beings in Thane Creek area, Mumbai.

    Science.gov (United States)

    Mishra, S; Bhalke, S; Saradhi, I V; Suseela, B; Tripathi, R M; Pandit, G G; Puranik, V D

    2007-10-01

    Trace metals and organometals were estimated in different types of marine organisms (fish, bivalve, crab and prawn) collected from the Trans-Thane Creek area, Mumbai. Thane Creek area is considered as most polluted area due to industrial discharges. Potential risks associated with consumption of marine organisms collected from this particular area to human beings were assessed. Concentrations of ten trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) in the edible part of marine organisms were analysed by atomic absorption spectrometer and differential pulse anodic stripping voltametric technique. Methyl mercury and tributyl tin were estimated using gas chromatograph-mass spectrometer in combination with solid phase micro extraction (SPME). An assessment of the risk on human beings due to consumption of marine organism was undertaken using toxic reference benchmark, namely the reference dose (RfD). The hazard index (HI), sum of hazard quotients calculated for all the pollutant showed that the risks from consumption of fish and marine organisms as a whole were generally low and are within safe limits.

  11. Enrichment factor and geoaccumulation index applied to sediment samples from the Guarapiranga reservoir, Brazil, for metal and trace element assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Guilherme M.; Figueiredo, Ana M.G.; Silva, Paulo S.C.; Favaro, Deborah I., E-mail: defavaro@ipen.b, E-mail: anamaria@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica; Franklin, Robson L., E-mail: robsonf@cetesbnet.sp.gov.b [Companhia de Tecnologia de Saneamento Ambiental (EAAI/CETESB), Sao Paulo, SP (Brazil). Lab. de Quimica Inorganica e Radioatividade

    2011-07-01

    This study aims to assess sediment contamination by metals and other trace elements in five sampling points of the Guarapiranga Reservoir. Two collection campaigns were undertaken and the samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in order to determine the following elements: major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb , Sc, Ta, Tb, Th, U and Zn) and rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu). Soil samples were collected in the Guarapiranga Park, located next to the reservoir. Composite top soil samples (0-20 cm) were collected in lines across the park at every 30m and were also analyzed by INAA. EF values was calculated using Sc as the conservative element for normalization purposes and soil from Guarapiranga region was used as background levels for the elements analyzed. EF > 1.5 were obtained for the elements As, Sb and Zn, with highest values for Zn (1.6

  12. Influence of size-fractioning techniques on concentrations of selected trace metals in bottom materials from two streams in northeastern Ohio

    Science.gov (United States)

    Koltun, G.F.; Helsel, Dennis R.

    1986-01-01

    Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contains significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentration in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected fir their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and

  13. Statistical significance of biomonitoring of marine algae for trace metal levels in a coral environment

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Muraleedharan, N.S.; Chandramohanakumar, N.; Jayalakshmy, K.V.

    Organization (FAO) in seafood for human consumption. None of the species of algae had the tendency to bioconcentrate Pb in their system as the detection level was below 0.1 mg/kg. The metal selectivity index calculated in statistical analysis emphasized...

  14. Temporal evolution of pollution by trace metals and plants analysis in Apipucos reservoir, Recife, PE, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Fonseca, Cassia K.L.; Santos, Suzana O.; Paiva, Ana C. de; Silva, Waldecy A. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Recife, PE (Brazil)

    2015-07-01

    Water and sediments may reflect the current quality of an aquatic system and the historical behavior of certain hydrological and chemical parameters. Analysis of metals in sediment profiles are used to determine anomalies in their concentrations, as well as sources of pollution. This study was performed in Apipucos Reservoir in the city of Recife, Brazil. Samples of water, plants and sediments were collected in the study area and their metals content (extract by adding acids) were determined a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The {sup 210}Pb activity concentration in each sediment layer was determined through the beta counting of {sup 210}Bi after lead precipitation as lead chromate. The results showed the metals' behavior in sediments: iron and manganese concentrations in sediments increase proportionately with the ages of the sediments. In general, cobalt, copper and zinc were also their concentrations increased over the years. These same elements in water are similar from the blank samples, however the roots of 'Eichhornia crassipes' assimilated higher concentrations of metals than the stems and leaves of this species. (author)

  15. Baseline trace metals in gastropod mollusks from the Beagle Channel, Tierra del Fuego (Patagonia, Argentina).

    Science.gov (United States)

    Conti, Marcelo Enrique; Stripeikis, Jorge; Finoia, Maria Grazia; Tudino, Mabel Beatriz

    2012-05-01

    With the aim to evaluate the mollusk Nacella (P)magellanica as biomonitor of elemental pollution in seawater of the Beagle Channel, more than one hundred individuals of the gastropod were sampled, separated in viscera and muscle, and then examined with respect to the accumulation of Cd, Cr, Cu, Ni, Pb and Zn. Collection was performed in seven strategic locations along 170 km of the coastal area of the Beagle Channel (Tierra del Fuego, Argentina) in two campaigns during 2005 and 2007. Samples of surrounding seawater in the different sites were obtained and tested for the same metals as well. The accumulation capacity of Nacella (P)magellanica and thus its aptitude as biomonitor, was evaluated through the calculus of the preconcentration factors of the metals assayed. A discussion involving the comparison with other mollusks previously tested will be given. Several statistical approaches able to analyze data with environmental purposes were applied. Non parametric univariate tests such as Kruskal-Wallis and Mann-Whitney were carried out to assess the changes of the metal concentrations with time (2005 and 2007) in each location. Multivariate methods (linear discriminant analysis on PCA factors) were also applied to obtain a more reliable site classification. Johnson's probabilistic method was carried out for comparison between different geographical areas. The possibility of employing these results as heavy metals' background levels of seawater from the Beagle Channel will be debated. PMID:22350107

  16. Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Thomas K. [Southern Research Inst., Birmingham, AL (United States); Walsh, Pete M. [Southern Research Inst., Birmingham, AL (United States)

    2007-03-21

    Effective syngas cleanup is one of the remaining major technical challenges yet to be resolved and one that will provide the most benefit to the suite of bio-thermochemical process technologies. Beyond tars and acid gases, which are themselves a significant detriment to reforming catalysts and associated equipment, semi-volatile metals can also damage cleanup systems, catalysts, and contaminate the fungible products. Metals are a difficult challenge to deal with whether using hot-gas filtration or low-temperature processing. Even though most of the metal tends to condense before the barrier filter of hot-gas cleanup systems, some small percentage of the metal (large enough to damage syngas-reforming catalysts, the candle filters themselves, and gas turbine blades) does pass through these barrier filters along with the clean syngas. Low-temperature processing requires expensive measures to remove metals from the process stream. Significant costs are