WorldWideScience

Sample records for air-conditioners furnaces air

  1. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  2. Experimental Analysis on Solar Desiccant Air Conditioner

    Directory of Open Access Journals (Sweden)

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-05-01

    Full Text Available The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term would be reduced the consumption of electricity used for air conditioning, reduce harmful emission and hence saving money.

  3. Unitary and room air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-09-01

    The scope of this technology evaluation on room and unitary air conditioners covers the initial investment and performance characteristics needed for estimating the operating cost of air conditioners installed in an ICES community. Cooling capacities of commercially available room air conditioners range from 4000 Btu/h to 36,000 Btu/h; unitary air conditioners cover a range from 6000 Btu/h to 135,000 Btu/h. The information presented is in a form useful to both the computer programmer in the construction of a computer simulation of the packaged air-conditioner's performance and to the design engineer, interested in selecting a suitably sized and designed packaged air conditioner.

  4. Pulmonary function tests in air conditioner users

    OpenAIRE

    Vidya G; Kumar B.A; Kalpana M; Chand K

    2014-01-01

    Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of air-conditioners (AC) that has increased the risk of atopic sensitization. Aim: To assess the effect of air conditioners on pulmonary function tests in healthy non-smokers. Methods: The study included 1...

  5. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  6. On noise indices for domestic air conditioners

    Science.gov (United States)

    Tang, S. K.; Wong, M. Y.

    2004-07-01

    A survey was carried out in the present study to determine the noise indices which are capable of describing the nuisance caused by exposure to air-conditioner noise inside residential apartments. This survey consisted of a questionnaire, which asked the respondents to rate their feelings of annoyance and loudness on the air-conditioner noise and to give their preference of a change in the noise levels. Physical noise measurements were also carried out. A total of 57 noise spectra and 399 respondents were involved in the survey. Results show that the Zwicker's loudness level and the percentile level of 90% exceedence are the two major indices for air-conditioner noise assessment. Tonality appears not to be a good indicator for such a purpose.

  7. Pulmonary function tests in air conditioner users

    Directory of Open Access Journals (Sweden)

    Vidya G

    2014-07-01

    Full Text Available Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of air-conditioners (AC that has increased the risk of atopic sensitization. Aim: To assess the effect of air conditioners on pulmonary function tests in healthy non-smokers. Methods: The study included 100 subjects using AC and 100 subjects who were not using AC. After ethical committee approval, pulmonary function tests were done for both study groups by using Medspiror. The data obtained was tabulated and analyzed. Results: The lung functions particularly Forced vital capacity (FVC, and Forced expiratory volume in 1 second (FEV1, were affected more in AC users. FVC and FEV1 were found to be significantly reduced and FEV1/FVC was found to be normal. Conclusion: As FVC and FEVFEV1 were found to be significantly reduced and FEV1/FVC was found to be normal, this is suggestive of predisposition of AC users towards restrictive type of respiratory disorders.

  8. A Review of Solar Desiccant Air Conditioner

    Directory of Open Access Journals (Sweden)

    Dr. U. V. Kongre, D. P. Mahure, P. A. Zamre

    2014-04-01

    Full Text Available This paper represents a detailed study and description of a new solar-based air-conditioning technique. It uses solar energy to produce cold or hot air. This technology can be used to reduce the energy consumption and environmental impact of mechanical cooling system. The use of Desiccant cooling is used to perform air dehumidification operation by utilizing low grade heat source. The solar desiccant air conditioner uses solar power as the main energy source to help in the thermodynamic heat transfer process as well as heat transfer principles to convert ambient air into cooling air. With our constructed design we have seen temperature as well as humidity level drops throughout the desiccant cooling system. A significant advantage of this system is, it have no moving parts consequently they are noiseless, non-corrosive, cheap to maintain, long lasting in addition to being environmentally friendly with zero ozone depletion as well as zero global warming potentials.

  9. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  10. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  11. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  12. ATMOSPHERIC MOISTURE CONDENSATION TO WATER RECOVERY BY HOME AIR CONDITIONERS

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2013-01-01

    Full Text Available Earth’s atmosphere contains billion cubic meters of fresh water, which is considerable as a reliable water resource, especially in sultry areas. What is important in this context, how to extract the water, in an economic manner. In order to extract water from air conditioner, no need to spend any cost, because water produced as a by-product and trouble production. This cross-sectional study was conducted to evaluate the quantity and chemical quality of water obtained from Bandar Abbas air conditioners; at intervals beginning of March to early December of 2010. Sixty six samples were taken in cluster random plan. Bandar Abbas divided into four clusters; based on distance to shore and population density. Chemical tests which included: Turbidity, alkalinity, total hardness, Dissolved Solids (TDS and Electrical Conductivity (EC and quantity measurement were performed on them. Obtained water had slightly acidic pH, near to neutral range. Total dissolved solids, electrical conductivity, total hardness and alkalinity of extracted water were in low rate. Each air conditioner produced 36 liter per day averagely. Split types obtained more water to window air conditioners. With regard to some assumptions, approximately 4680 to 9360 cubic meter per day water is obtainable which is suitable for many municipal and industrial water applications.

  13. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  14. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  15. Laboratory Performance Testing of Residential Window Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  16. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  17. Methodology for uncertainty calculation of net total cooling effect estimation for rating room air conditioners and packaged terminal air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca Diaz, Nestor [Universidad Tecnologica de Pereira, Facultad de Ingenieria Mecanica, Pereira (Colombia); University of Liege, Campus du Sart Tilman, Bat: B49, P33, B-4000 Liege (Belgium)

    2009-09-15

    This article presents the general procedure for uncertainty calculation of net total cooling effect estimation for rating room air conditioners and packaged terminal air conditioners, by means of measurements carried out in a test bench specially designed for this purpose. The uncertainty analysis presented in this work looks for establishing a confidence degree or certainty of experimental results. It is particularly important considering that international standards related to this type of analysis are too ambiguous when treating this subject. The uncertainty analysis is on the other hand an indispensable requirement to international standard ISO 17025 [ISO, 2005. International Standard. 17025. General Requirement to Test and Calibration Laboratories Competences. International Organization for Standardization, Geneva.], which must be applied to obtain the required quality levels according to the Word Trade Organization WTO. (author)

  18. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    OpenAIRE

    Shen, Bo; Bansal, Pradeep

    2014-01-01

    Window air conditioners (WAC) are cheap and sold in large numbers internationally as alternatives to central air-conditioning systems. There are nearly 57 million WACs currently operating within United States alone which account for approximately 1.5% of the total US residential energy use or about 0.21 quads per year. Due to global warming and other environmental concerns, there is a need to find an alternative to the currently used refrigerant R410a in WACs. There are several alternative re...

  19. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    OpenAIRE

    Rongxiang Zhang; Xiaodong Chu; Wen Zhang; Yutian Liu

    2015-01-01

    Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is c...

  20. Installation Specifications of Air-Conditioners for Household and Similar Purposes

    Institute of Scientific and Technical Information of China (English)

    Hu Zhiqiang

    2011-01-01

    Background An air-conditioner known as "30% quality and 70% installation",the quality of its installation is closely related to its service life and application effect.Although air-conditioner manufacturers attach high importance to installation,and there are often the installation requirements specified in the product manual or instructions for installation,there are still no unified,scientific and complete national standards and corresponding regulations for household air-conditioner,which results in the less standardized installation of air-conditioner and the unacceptable quality of installation,and also leaves a lot of hidden quality and safety problems.By means of extensive market survey and the after-sale information statistical analysis of air-conditioner,it is discovered that the nonstandard installation of air-conditioner may lead to the following problems and accidents.

  1. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    Energy Technology Data Exchange (ETDEWEB)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  2. Analysis of Eco friendly Refrigerants Usage in Air-Conditioner

    Directory of Open Access Journals (Sweden)

    C. Chinnaraj

    2011-01-01

    Full Text Available Problem statement: There are two types of global warming contributions through refrigeration and air conditioning systems. The first one is the Direct Global Warming Potential (DGWP due to the emission of refrigerants and their interaction with heat radiation. The second one is the Indirect Global Warming Potential (IDGWP due to the emission of Carbon Dioxide (CO2 by consuming the energy that is generated through the combustion of fossil fuels. Most of refrigerants used in vapor Compression system were Chlorofluorocarbon (CFCs and Hydro Chlorofluorocarbon (HCFCs which contains chlorine and if any leakage in the system, these gases will go up and reach stratosphere. The chlorine atoms in the gases will act as a catalyst to destroy ozone layer and cause ozone depletion which causes health hazards, global warming, melting of polar ice caps and drought. Hence, it is necessary to minimize the Global warming and Ozone depletion. The refrigerant R22 widely used in the air-conditioners is a major Contributor of Chlorofluorocarbons (CFCs which cause irreparable loss to the ozone layer and has to be replaced. Approach: To conserve the energy and minimize the global warming, the systems should be designed as more energy efficient and also to minimize Ozone depletion, the eco friendly refrigerants are to be selected and tested as alternative refrigerants to R22. Hence, a window air conditioner of 3.5 kW capacity fitted with Electronic Expansion Valve (EEV instead of capillary tube as an expansion device, was tested for its performance with the selected eco friendly refrigerants R407C and R290 as an alternative to R22 under fixed indoor and outdoor chamber temperatures in the experimental set up and varying the EEV opening. Results: It has been observed from the experimental studies that when the smaller capacity R22 window air conditioner with EEV is retrofitted with R407C and R290, compared to the performance given by R22, the Coefficient Of Performance

  3. China’s Three Giants in Air Conditioner Manufacturing Reduced Production to Cut Excessive Inventory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Midea,Haier and Gree,China’s three giants in air conditioner manufacturing who have been troubled by an excessive inventory due to a cool summer this year,have cut their produc- tions,marking a premature end to the huge de- mand in China’s air conditioner market lasting for three consecutive years.Currently the whole industry has an inventory of more than 10 million air conditioners.

  4. Estimation of Vapor Quality at Compressor Suction of Air Conditioner

    OpenAIRE

    Endoh, Kazuhiro

    2014-01-01

    To evaluate performance and reliability of an air conditioner, the states of its refrigeration cycle need to be understood. Since the isentropic exponent of the next-generation refrigerant R32 is larger than that of conventional refrigerant R410A, the compressor discharge temperature of R32 is higher than that of R410A. When a wet refrigerant is entered into a compressor suction line to decrease the discharge temperature, it is generally difficult to estimate the vapor quality at the suction....

  5. Testing and Performance Analysis on Air Conditioner cum Water Dispenser

    Directory of Open Access Journals (Sweden)

    Dr. U. V.Kongrea , A. R. Chiddarwarb , P. C. Dhumatkarc , A.B.Aris

    2013-04-01

    Full Text Available The work on developing the heat pumps for space conditioning and water heating has been gone for half a century. The earlier water heating pumps and air to water heating pumps gives only hot water and space conditioning. But in this air conditioning cum water dispenser we get hot and cold water with hot and cold air, thus the system becomes multifunctional. The actual cycles and operating conditions for air and water cycle present in this paper. The paper introduced basic design principles and the test analysis performed in the laboratory. The test results were found encouraging especially the parameters of dispenser output along with air conditioner. The paper also introduced comfort conditions and suitable coefficient of performance with respect to atmospheric condition, without sacrificing the air conditioning output

  6. Huffing air conditioner fluid: a cool way to die?

    Science.gov (United States)

    Phatak, Darshan R; Walterscheid, Jeffrey

    2012-03-01

    "Huffing," the form of substance abuse involving inhalants, is growing in popularity because of the ease and availability of chemical inhalants in many household products. The purpose in huffing is to achieve euphoria when the chemicals in question interact with the central nervous system in combination with oxygen displacement. The abuser is lulled into a false sense of safety despite the well-documented potential for lethal cardiac arrhythmia and the effects of chronic inhalant abuse, including multisystem organ failure, and brain damage. Huffing air conditioner fluid is a growing problem given the accessibility to outdoor units and their fluid components, such as difluorochloromethane(chlorodifluoromethane, Freon), and we have classified multiple cases of accidental death due to the toxicity of difluorochloromethane. Given the ubiquity of these devices and the vast lack of gating or security devices, they make an inviting target for inhalant abusers. Acute huffing fatalities have distinct findings that are present at the scene, given the position of the decedent and proximity to the air conditioner unit. The purpose of the autopsy in these cases is to exclude other potential causes of death and to procure specimens for toxicological analysis. PMID:22442834

  7. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Nishimiya, Hajime [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2010-11-15

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary {alpha}-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy young male adults for 2-types of airflow conditioners, a whole ceiling-type air conditioner (without local air velocity) and a normal-type air conditioner (with local air velocity). The subjects felt cool, windy, dry and uncomfortable when under the normal-type air conditioner as determined in a subjective evaluation. The SAA under the normal-type air conditioner fluctuated more widely than with the whole ceiling-type air conditioner. The level of salivary cortisol decreased more in a day under the normal-type air conditioner than with the whole ceiling-type air conditioner. These results showed that reducing local air velocity may provide more healthy psychosomatic conditions over the long-term. Moreover, the TP of a drying-exposed skin area showed a significant change during this experiment whereas the TP of drying-protected area was relatively unchanged. It was indicated that one week's exposure to local air velocity conditions possibly influences the drying of facial skin. Thus, air movement at low velocity can be provides more comfortable conditions not only psychosomatically but also physically. (author)

  8. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  9. Mycoflora of air-conditioners dust from Riyadh, Saudi Arabia.

    Science.gov (United States)

    Bagy, M M; Gohar, Y M

    1988-01-01

    Using the hair baiting technique, 6 genera and 14 species were collected on Sabouraud's dextrose agar from 37 dust samples from air-conditioners. The most common fungi were Chrysosporium tropicum, C. indicum, C. keratinophilum, Aspergillus flavus followed by Acremonium strictum and Scopulariopsis brevicaulis. Using the dilution-plate method, 26 genera and 52 species were collected from 37 dust samples on glucose-(23 genera and 45 species) and cellulose-(18 genera and 34 species) Czapek's agar at 28 degrees C. The most prevalent species were Aspergillus niger, A. flavus, Penicillium chrysogenum, Stachybotrys chartarum, Ulocladium atrum, Mucor racemosus and Fusarium solani and A. niger, A. flavus, Trichoderma viride, P. chrysogenum, Ulocladium atrum, Chaetomium globosum, C. spirale, Stachybotrys chartarum and Mucor racemosus on the two media, respectively. PMID:3236219

  10. Automotive thermoelectric generators and air conditioner/heaters

    International Nuclear Information System (INIS)

    Full text: The US Department of Energy initiated the application of thermoelectric generators (TEGs) to vehicles in 1994. This TEG was built by Hi-Z Technologies evaluated on a dynamometer test stand then tested successfully installed on a fully loaded Heavy Duty Diesel truck on the PACCAR test track for the equivalence of 550,000 miles. Today every major automobile manufacturer is investigating thermoelectric applications. The US Department of Energy is supporting the development of production prototype TEGs with teams headed by BSST and GM to integrate TEGs to directly convert engine waste heat to electricity in the BMW X6, the Ford Fusion and the Chevy Suburban. These first generation TEGs will provide a nominal 5 percent improvement in on-highway fuel economy by allowing the alternator to be downsized by at least 1/3. The 2nd generation TEG is planned to replace the alternator and provide a nominal 10 percent improvement in fuel economy. DOE/NETL conducted a competitive procurement for automotive thermoelectric air conditioners/heaters (TE HVAC) development and selected teams headed by Ford and GM to develop this technology. Current air conditioners use the R134a refrigerant gas, which produces 1300 times the 'Greenhouse Gas Effect' of carbon dioxide (CO2), the primary 'Greenhouse Gas'. Approximately 41 Million Metric tons of CO2 equivalent (CO2e) are released to the atmosphere in the US annually from air conditioner compressor seal leakage and frontal collisions wherein the R134a refrigerant gas containment was ruptured. The TE HVACs are candidates to eliminate refrigerant gases from vehicles. A problem with maintaining occupant comfort in an electrically assisted vehicle was illustrated by Bob Lutz, Vice Chairman, General Motors, who drove a Chevy Volt in January in Detroit and to obtain occupant comfort had to turn on the 5 kW resistive heater which reduced the battery only propulsion mileage from 40 to 28. Preliminary analysis indicates that with TE HVAC a

  11. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  12. Evaluation of environmental and physiological factors of a whole ceiling-type air conditioner using a salivary biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yusuke; Yamaguchi, Masaki [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Morito, Naomi; Nishimiya, Hajime; Yamagishi, Hideyuki [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2009-06-15

    In order to improve environmental condition such as humidity and airflow in living spaces, a whole ceiling-type air conditioner is proposed. This novel air conditioner exhaust dispersed airflow from the whole ceiling by using a 3-dimensional knit fabric. The purpose of this paper is to reveal the effects when controlling humidity and airflow using the whole ceiling-type air conditioner compared to a commercialized concentrated exhaust air conditioner (normal-type air conditioner) under the same temperature. Salivary {alpha}-amylase activity (SAA) was used as an index of sympathetic nervous activity. An acute experiment for a 15 min period was conducted using 12 healthy young female adults. No significant differences in room and skin temperatures were observed between the whole ceiling-type air conditioner and the normal-type air conditioner. The whole ceiling-type air conditioner showed 11.1% lower humidity than the normal-type air conditioner. The whole ceiling-type air conditioner showed one-thirteenth the airflow of the normal-type air conditioner. As a result, the PMV of the whole ceiling-type air conditioner was more comfortable level than the normal one. Moreover, subjective evaluation questionnaire revealed a significant difference was observed in wind perception (windy). The SAA of subjects under the whole ceiling-type air conditioner showed significantly low values compared with the normal-type air conditioner. It was found that the subject's sympathetic nervous activity has been inactivated under the conditions of the whole ceiling-type air conditioner. Thus, it was revealed that the whole ceiling-type air conditioner provides a more comfortable air environment by reducing physical stimulations to humans. (author)

  13. Effect of air-conditioner on fungal contamination

    Science.gov (United States)

    Hamada, Nobuo; Fujita, Tadao

    Air-conditioners (AC) produce much dew and wet conditions inside their apparatus, when in operation. We studied the fungal contamination in AC and found that the average fungal contamination of AC filters was about 5-fold greater than that of a carpet, and Cladosporium and Penicillium were predominant in AC filters. The fungal contamination inside AC, which were used everyday, increased more markedly than those not used daily, e.g. a few days per week or rarely. Moreover, the airborne fungal contamination in rooms during air-conditioning was about 2-fold greater than one in rooms without AC, and was highest when air-conditioning started and decreased gradually with time. We recognized that the airborne fungal contamination was controlled by the environmental condition of the rooms, in which AC were used. It is suggested that AC might promote mold allergies in users via airborne fungal spores derived from the AC. On the other hand, AC was estimated to remove moisture in the room atmosphere and carpets, and reduce the relative humidity in rooms. It was found that the average fungal contamination in the house dust of carpets with AC was suppressed by two-third of that in rooms without AC. The use of AC for suppressing fungal hazards was discussed.

  14. Energy and economic analysis of a building air-conditioner with a phase change material (PCM)

    International Nuclear Information System (INIS)

    Highlights: • Phase change material of Rubitherm20 was applied with the air-conditioner under the climate of Thailand. • PCM was used to reduce cooling load and electrical power of the air-conditioner. • Mathematical model of the packed ball bed of PCM was presented to predict the thermal performance. - Abstract: In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thailand climate. Rubitherm20 (RT-20) was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. For the experiment, 2 TR of R-134a air-conditioner was chosen to test a pack bed of PCM balls with thickness 40 cm. The pressure drops of the air flowing through the bed were considered with and without a set of by-pass tubes along the height of the storage bed. The mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that pressure drops of the bed with and without bypass tubes were nearly the same results. Thus, PCM ball pack bed using RT-20 without bypass tubes was used to improve the cooling efficiency of the air-conditioner. The experimental result of the modified unit was compared and verified with the mathematical model, which agreed quite well with the simulation result. Finally, the model was used to analyze the economic result, which found that the electrical consumption of the modified air-conditioner could be decreased around 3.09 kW h/d. The saving cost from the PCM bed could be 9.10% of 170.03 USD/y and the payback period was around 4.15 y

  15. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  16. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  17. Net private benefits of purchasing eco-labeled air conditioners and subsidization policies in China

    International Nuclear Information System (INIS)

    Built on a data set of 527 air conditioner models collected from an online retailer, this study investigates whether the savings that consumers realize on their private electricity bills from purchasing energy-efficient appliances compensate for the additional cost of the appliances on the market, and if not, the size of the gap between the savings and the cost. Our findings show that, except for the most energy-efficient category, the cost savings from using energy-efficient air conditioners does compensate for their higher price. Therefore, any government subsidy should be reserved for the most efficient products. For less energy-efficient appliances, the best policy may be to provide more effective information instead of a subsidy because the subsidy might attract consumers away from more energy-efficient air conditioners and result in an unwanted effect. - Highlights: • This paper analyses the net private benefits of purchasing eco-labeled air conditioners in China. • There is no need to subsidize less energy-efficient air conditioners. • The most recently proposed policy development in China is a reform headed in the right direction

  18. Strategies for reducing the environmental impacts of room air conditioners in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grignon-Masse, Laurent, E-mail: laurent.grignon-masse@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France); Riviere, Philippe, E-mail: philippe.riviere@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France); Adnot, Jerome, E-mail: jerome.adnot@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France)

    2011-04-15

    In Europe, buildings tend to be equipped with individual air conditioners, which constitute a fast growing electrical end-use. In this context, this study aims to assess the environmental impacts of European individual air conditioners and to analyse policy strategies to reduce these impacts. After analysing the European context concerning individual air conditioners, the environmental impacts of European air conditioners are assessed using a Life Cycle Analysis approach. The following step consists in studying, both technically and economically, different improvement options aiming at reducing the environmental impacts of these appliances. These results, obtained at the product level, are then generalised at the European level and different policy measures are defined and analysed. The main conclusion is that the implementation of a Minimum Energy Performance Standard based on Least Life Cycle Costs could save up to 49 TWh and 20 MtCO{sub 2-eq} in 2020 and be economically beneficial to the European end-user. - Research highlights: {yields} A methodology based on Life Cycle Analysis is applied to European air conditioners. {yields} Environmental impacts are mainly due to energy consumption. {yields} There is a high potential for energy savings at very low costs for end users.

  19. An Application of Green Quality Function Deployment to Designing an Air Conditioner

    Directory of Open Access Journals (Sweden)

    Peetam Kumar Dehariya

    2015-07-01

    Full Text Available The paper tackles a systematic and operational approach to Green Quality Function Deployment (GQFD, a customer oriented survey based quality management system with regular improvement in product development. GQFD shows balance between product development and environmental protection. GQFD is not used to determine their attributes and their levels. GQFD captures what product developers “think” would best satisfy customer needs considering Environmental factor. This research used Air Conditioner as a case study for implementation of GQFD. In the design of a new Air Conditioner, apply GQFD to find out the most important parameter and functions from customer point of view and then find out Technical Characteristics. These important parameters are then put into house of quality and make relation matrix between voice of customer and Technical Characteristics. From the result of QFD applied to Air Conditioner are short out the parameter which are require modification according to voice of customer and the result has used for new design.

  20. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    ... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010, that are designed to use R-22 refrigerant. 74 FR 66450 (Dec. 15, 2009). EPA's rulemaking included an... issued two guidance documents surrounding testing central air conditioner and heat pump systems...

  1. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  2. Experimental Study of Energy-Saving Air-Conditioner with Hot Water

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-bo; CHEN Dan; LU Ying

    2009-01-01

    Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-dif-ference air-conditioner laboratory.The hot water temperature and the compressor'S discharge and suction pres.sure were recorded in the working condition,where the ambient temperature was at 43℃,35℃,21℃,7℃,and 2℃separately.The results showed that the system operated stably and reliably. This system can supply 240 L hot water at 50℃in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation WaS proved by comparing the thermal effi.ciency with other sourece water heaters.

  3. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  4. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    Science.gov (United States)

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. PMID:27423771

  5. Variable Frequency Air Conditioner is Expected to Become Mainstream Product in Rural Market

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>If it can be argued that in 2011 the rural market played a crucial role in the development of air conditioner industry,judging from the present growth trend,in the 2012 refrigeration year the rural market will play an even more important

  6. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kruis, N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brandemuehl, M. [Univ. of Colorado, Boulder, CO (United States)

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  7. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  8. Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Air-conditioner

    OpenAIRE

    Tu, Xiaoping; Liang, Xiangfei; Zhuang, Rong

    2014-01-01

    In this study, the effects of indoor unit heat transfer area and air flow rate and outdoor unit air flow rate on the system performance of residential air-conditioner were experimentally investigated under rated cooling and heating conditions. The experimental results showed that the system cooling capacity, EER, heating capacity and COP all had evident variation with indoor unit heat transfer area and air flow rate and out unit air flow rate, which predicated that there was a proper match ra...

  9. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Bhandari, Mahabir S [ORNL

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  10. Experimental Study of the Controlling Characteristics of Inverter-Driven Multi-type Air Conditioner

    Institute of Scientific and Technical Information of China (English)

    金纪峰; 陈江平; 陈芝久

    2004-01-01

    The controlling algorithm was studied for the inverter-driven multi-type air conditioner using electronic expansion valve(EEV) in outdoor unit. The performance of inverter-driven air conditioner with two different units was investigated by varying the outdoor ambient temperature and compressor speed. Based on the test results, the effect of EEV opening on the indoor unit exit superheat was discussed. For the specified outdoor ambient temperature scope and the EEV opening, the superheats of indoor units decrease with the outdoor ambient temperature rising. Improper distribution of refrigerant into each indoor unit will causes excessive superheat difference between two indoor units. Suggestions were then given for the controlling of the superheat.

  11. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    OpenAIRE

    Tengku Hanidza T.I.

    2010-01-01

    There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA). There...

  12. Performance curves of room air conditioners for building energy simulation tools

    International Nuclear Information System (INIS)

    Highlights: • Experimental characteristic curves for two room air conditioners are presented. • These results can be implemented in building simulation codes. • The energy consumption under different conditions can numerically determine. • The labeled higher energy efficiency product not always provides the best result. - Abstract: In order to improve the modeling of air conditioners in building simulation tools, the characteristic curves for total cooling capacity, sensible cooling capacity and energy efficiency ratio of two room units were determined. They were obtained by means of standard capacity tests on climatic chambers in a set of environmental conditions described by external dry- and internal wet bulb temperatures. Afterward, the performance of these two units and that of four other units, with and without taking into to account the thermodynamic variations of the surrounding environments on it, were compared using a whole building simulation program for simulating a conditioned space. The comparative analysis showed that the air conditioner with the higher energy efficiency rating not always provides the lowest power consumption in real conditions of use

  13. Experimental Study on Performance of Condenser of Two Different Types Used In Window Air Conditioner: A Review

    OpenAIRE

    Madhu Jhariya; P.K. Jhinge & R.C. Gupta

    2013-01-01

    This review paper presents the work of various researchers on the performance of condenser, used in air conditioners with various refrigerants. In this research author used different type of condenser, single and multi channel tubes. They determined various parameters like coefficient of performance (COP), cooling capacity, energy efficiency ratio (EER) of the system. Various approaches have been used by different authors to predict the performance of condenser in window air conditioner using...

  14. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  15. Analysis of Eco friendly Refrigerants Usage in Air-Conditioner

    OpenAIRE

    C. Chinnaraj; Vijayan, R.; Govindarajan, P

    2011-01-01

    Problem statement: There are two types of global warming contributions through refrigeration and air conditioning systems. The first one is the Direct Global Warming Potential (DGWP) due to the emission of refrigerants and their interaction with heat radiation. The second one is the Indirect Global Warming Potential (IDGWP) due to the emission of Carbon Dioxide (CO2) by consuming the energy that is generated through the combustion of fossil fuels. Most of refrigerants used in vapor Compressio...

  16. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  17. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  18. Development of solar driven absorption air conditioners and heat pumps

    Science.gov (United States)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  19. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    International Nuclear Information System (INIS)

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM2.5 (Particulate Matter up to 2.5 μm in size) bounded Σ15PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM10 (Particulate Matter up to 10 μm in size) bounded Σ15PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ15PBDEs via dust inhalation and ingestion for adults reached ∼141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: → Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. → PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. → The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. → Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  20. Girth welding system for vortex type refrigeration compressor of air conditioner

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaowen; Ma Caixia; Yang Siqian; Hu Jisheng

    2006-01-01

    According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both upright and 45 ° incline service positions. And some key technologies were researched, such as structural design of machine body, reliable conduction of rotary weldments and quality control of welding process and so on. The experimental results showed that this machine could satisfy the requirements of welding quality and girth welding technology, results also proved the machine was a high-efficiency and low-cost automatic welding device.

  1. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.

  2. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  3. Analysis for SEER of variable speed room air conditioner in China. Paper no. IGEC-1-104

    International Nuclear Information System (INIS)

    In this paper, the calculation method for seasonal energy efficiency ratio (SEER) given in Standard JRA4046-1999 is analyzed and further modified. Based on temperature zone map of U.S., Japan and China and detailed weather data of eight Chinese cities in last 30 years, regional seasonal energy efficiency ratio (RSEER) and energy saving percentage of variable speed room air conditioner are analyzed and compared with various geographical regions in China. It is concluded that RSEER presents the associated effect of season, climate and geography, and therefore should be taken as an evaluation standard for room air conditioner, especially variable speed room air conditioner. Experimental measurements are conducted in the analysis to investigate the effect of energy efficiency ratio (EER) on the improvement of energy saving percentage and SEER. (author)

  4. Size optimization of stand-alone photovoltaic (PV) room air conditioners

    International Nuclear Information System (INIS)

    Sizing of a stand-alone PV system determines the main cost of the system. PV electricity cost is determined by the amount of solar energy received, hence the actual climate and weather conditions such as solar irradiance and ambient temperature affect the size required and cost of the system. Air conditioning demand also depends on the weather conditions. Therefore, sizing a PV powered air conditioner must consider the characteristics of local climate and temperature. In this paper, sizing procedures and special considerations for air conditioning under Melbourne's climatic conditions is presented. The reliability of various PV-battery size combinations is simulated by MATLAB. As a result, excellent system performance can be predicated.(Author)

  5. Sizing room air conditioners used in sleeping environments in the subtropics

    International Nuclear Information System (INIS)

    In the subtropics, room air conditioners (RACs) have been widely used to maintain an appropriate indoor thermal environment not only at day but also at night for sleeping. However, currently RACs are often sized by rules of thumb that are based on the applications and practices of air conditioning during daytime operating periods. A method of sizing RACs used in sleeping environments has been developed in this paper. The sizing of RACs used in sleeping environments in the subtropics should not be based on the peak load that occurs at the beginning of a night air conditioning process but preferably on 70-80% of the peak load for better indoor thermal comfort and higher energy efficiency

  6. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  7. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  8. Comparison of air conditioners for horticulture; Vergelijking van luchtbehandelingssystemen voor de tuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, B.; Hendriksen, L. [TNO, Delft (Netherlands)

    2011-12-15

    The desire to reduce energy consumption in the greenhouse sector results into new techniques and applications. As such air conditioners are applied in greenhouses. They serve to control temperature, relative humidity and air flow in the greenhouse. However, because of the totally different climatic conditions in the greenhouses such systems must be adapted. TNO investigates how the systems can be evaluated properly [Dutch] De wens om het energieverbruik in de glastuinbouw omlaag te brengen, leidt tot nieuwe technieken en toepassingen. Zo vinden in de utiliteit gangbare luchtbehandelingssystemen nu ook hun weg naar de kas. Ze dienen om temperatuur, relatieve luchtvochtigheid en luchtbeweging in de kas te beheersen. Maar vanwege de totaal andere klimaatomstandigheden moeten de systemen worden aangepast. TNO onderzoekt hoe de systemen goed kunnen worden geevalueerd.

  9. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  10. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  11. Power Quality Improvement in PMBLDCM Drive using PFC SEPIC Converter for Air Conditioner.

    Directory of Open Access Journals (Sweden)

    Athiyaman S

    2013-07-01

    Full Text Available In this paper, an improved power quality converter employing Single Ended Primary Inductor (SEPIC converter topology is used to feed a permanent magnet brushless DC motor (PMBLDCM drive. Normally, the PMBLDCM drive has a three-phase voltage source inverter (VSI and a PMBLDCM which is fed from single-phase AC mains through a diode bridge rectifier (DBR. In this proposed system a SEPIC DC-DC converter is used after the DBR and it performs power factor correction (PFC at input AC mains and voltage control at DC link, in a single-stage. The proposed PMBLDCM drive is designed, modeled and its performance is evaluated in MatlabSimulink environment for an air conditioner (Air-Con load. The speed of the compressor is controlled for efficient operation of the Air-Con which results in controlling the temperature in the conditioned area at the set point, effectively. Obtained results are presented to demonstrate an improved power quality of PFC converter based PMBLDCM drive in wide range of the speed and input AC voltage besides improved efficiency of an Air-Con system.

  12. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  13. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Jinze LV; Lizhong Zhu

    2013-01-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control,which significantly influences the transfer of pollutants between indoors and outdoors.To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants,a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants.During the period when the central ventilation system operated without air conditioning (AC-off period),concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels,due to the good linearity between indoor air and outdoor air (rp > 0.769,p < 0.05),and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs.During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period),although the total levels of PAHs were increased,the concentrations and percentage of the particulate PAHs indoors declined significantly.The BaP equivalency (BaPeq concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  14. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  15. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  16. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  17. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  18. Electric efficiency in lighting system and air conditioners replacement and automation of air conditioners split type in public buildings; Eficiencia eletrica na substituicao do sistema de iluminacao e de condicionadores de ar e automacao do sistema de condicionadores de ar tipo split em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso de; Apolonio, Roberto; Silva, Luciana Oliveira da; Gomes, Fernanda Leles [Universidade Federal de Mato Grosso (UFMT), MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso (IFMT), MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    The reduction in expenditure on electricity is a major benefit not only consumers but also to utilities. In this context, this article examines the process of replacing the system of internal lighting, window type air conditioners and automation of Split type air conditioners from buildings of public institutions of the state of Mato Grosso during 2009 year and verifies the reduction in annual consumption of electric power and demand active power. Thus, measurements and calculations performed are presented for the interior lighting systems and air conditioners of these buildings before and after implementation of the process of replacing the system of internal lighting and window type air conditioners and automation of Split type air conditioners. This work is the result of integration among the Dealer Network Energy Rede Cemat, the Federal University of Mato Grosso (UFMT) and the Administration of all public buildings, where the academy answered these real issues, solving the specific problem presented. (author)

  19. MODEL FOR OPTIMAL BLOCK REPLACEMENT DECISION OF AIR CONDITIONERS USING FIRST ORDER MARKOV CHAINS WITH & WITHOUT CONSIDERING INFLATION

    Directory of Open Access Journals (Sweden)

    Y HARI PRASADA REDDY

    2012-05-01

    Full Text Available In this paper, a mathematical model has been developed for group replacement of a block of Air Conditioners using discrete-time First Order Markov Chains. To make the model more realistic, threeintermediate states viz., Minor Repair State, Semi-Major Repair State and Major Repair States have been introduced between Functioning State & Complete Failure States of the system. The Transition Probabilities for future periods for First Order Markov Chain (FOMC are estimated by Spectral Decomposition Method. Using these probabilities, the number of systems in each state and accordingly the corresponding average maintenance cost is computed. The forecasted inflation for Air Conditioners and the real value of money using Fisherman’s relation are employed to study and develop the real time mathematical model for block replacement decision making.

  20. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  1. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  2. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    International Nuclear Information System (INIS)

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste

  3. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  4. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    Directory of Open Access Journals (Sweden)

    Tengku Hanidza T.I.

    2010-01-01

    Full Text Available There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA. There were 180 employees, 156 workers worked in the production line, which constitutes six work units Tube fin pressed, Brazing, Welding, Final assembly, Piping and Kit II. From the chemical risk evaluation for each work unit, 26 chemical compounds were used. Most of the chemicals were irritants (eye and skin and some were asphyxiants and sensitizers. Based on the work assignment, 93 out of 180 (51.67% of the workers were exposed to chemicals. The highest numbers of workers exposed to chemicals were from the Brazing section (22.22% while the Final Assembly section was the lowest (1.67%. Health survey among the workers showed occurrence of eye irritation, skin irritation, and respiratory irritation, symptoms usually associated with chemical exposure. Using a risk rating matrix, several work process were identified as having ‘significant risk’. For these areas, the workers are at risk of adverse health effects since chemical exposure is not adequately controlled. This study recommends corrective actions be taken in order to control the level of exposure and to provide a safe work environment for workers.

  5. Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Feng; Chen, Jiangping; Chen, Zhijiu [Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Lu, Manqi; Yang, Ke [Engineering Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016 (China); Zhou, Yimin [Research Center, Zhejiang Yinlun Machinery Co. Ltd., Tiantai County, Zhejiang Province 317200 (China)

    2007-10-15

    Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} was developed working at 120-200 C/20-50 C/-10-0 C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van't-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is -27.1 kJ/mol H{sub 2} and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3 W/(m K), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6 W at 150 C/30 C/0 C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance. (author)

  6. 基于复合热源的热泵型空调器%Heat pump air conditioner based on multiple heat sources

    Institute of Scientific and Technical Information of China (English)

    吴国珊; 凌勋

    2012-01-01

    It is proposed that the air-water multiple heat sources could be the heat source of heat pump air conditioner. Based on the current study condition, the heat pump air conditioner which has a air/family waste water multiple heat source is preliminary designed. The working cycle and characteristics of the air conditioner are analyzed by using the thermodynamic principle. The results show that the refrigeration performance of the heat pump air conditioner is better than that of air source heat pump air conditioner, the heating performance and the situation which the outdoor heat exchanger frosts are improved.%提出将空气-水作为热泵型空调器的复合热源.根据当前的研究状况,初步设计空气-水复合热源热泵型空调器,利用热力学原理分析该空调器的工作循环和特点,结果表明该空调器的制冷性能高于空气源热泵空调器,制热和室外换热器结霜状况得到一定改善.

  7. Natural refrigerants for air conditioners in passenger cars. A contribution to climate protection. Background; Natuerliche Kaeltemittel fuer PKW-Klimaanlagen. Ein Beitrag zum Klimaschutz. Hintergrund

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Gabriele; Plehn, Wolfgang

    2010-09-15

    Air conditioners in passenger cars contain a refrigerant which significantly increases the greenhouse effect. Currently about 30 % of global emissions of partially fluorinated hydrocarbons originate from these air conditioners. According to the directive 2006/40/EC, this refrigerant must be replaced by a less harmful substance. Under this aspect, the contribution under consideration initially reports on the stock and level of air conditioning of passenger cars as well as on the refrigerant tetrafluoroethane. Subsequently, refrigerants for air conditioning of passenger cars such as carbon dioxide, 1.1-difluoroethane and 2,3,3,3-tetrafluoro propylene are described. Overall, the refrigerant carbon dioxide is the best alternative for mobile air conditioning.

  8. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor

  9. Study on Improvement of the Suction Valve in a Reciprocating Compressor for an Automotive Air-Conditioner

    Science.gov (United States)

    Koyabu, Eitaro; Tsukiji, Tetsuhiro; Matsumura, Yoshito; Sato, Taizo

    The simplified test model of the commercial reciprocating compressor for an automotive air-conditioner, which is developed in the previous study, is used to measure the displacement of the suction valves using as train gauge and to investigate the velocity distributions of the discharge flow from the valves using PIV (Particle Image Velocimetry) technique. This paper is focused on the effects of shape of the suction valve on the vibration-reduction. First, the size of the conventional valve hole and the width of the tip of the conventional valve are changed and seven new valves are manufactured to reduce the vibration of the valve. Consequently, it is found that one of the new valves is the most effective for the vibration-reduction. Next the influence of the natural frequency on the vibration-reduction is investigated using one of the new valves by changing the material and the thickness of the valve. Finally, the reason of the vibration-reduction for one of the new valves is discussed from the results of the flow analysis around the valve. The vibration-reduction for one of the new valves is confirmed by measurement of the displacement of the valve in the reciprocating compressor for the automotive air-conditioner.

  10. The design of the motor bracket for reduction of structure-borne noise in package air-conditioner

    International Nuclear Information System (INIS)

    As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the air-conditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is developed. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as Operational Deflection Shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of Experiments) in the noise and vibration point a view

  11. A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-09-15

    Air conditioners and refrigerator-freezers are major energy users in a household environment and hence efficiency improvement of these appliances can be considered as an important step to reduce their energy consumption along with environmental pollution prevention. Energy efficiency standards and labels are commonly used tools to reduce the energy uses for household appliances for many countries around the world. The first step towards adopting energy efficiency standards is to establish a test procedure for rating and testing of an appliance. It may be mentioned that an energy test procedure is the technical foundation for energy efficiency standards, energy labels, and other related programs. This paper reviews requirements and specifications of various international test standards for testing and rating of room air conditioners and refrigerators. A review on the development of the energy efficiency standards has been provided as well. Finally, energy labels that provide some useful information for identifying energy efficient products have been reviewed for these appliances. It may be stated that the review will be useful for the developing countries who wish to develop these energy savings strategies. It is also expected to be useful to revise the existing strategies for a few selected countries who already implemented these strategies earlier. (author)

  12. Elemental analysis of dust trapped in air conditioner filters for the assessment of Lahore city's air quality

    International Nuclear Information System (INIS)

    A study was undertaken to assess the air quality of Lahore by the elemental analysis of air conditioner (AC) filter dust samples collected from 15 different commercial sites. Samples were prepared using the Leeds Public Analyst Method and were analyzed using instrumental neutron activation analysis (INAA) for up to 31 elements. The elements Al, As, Ba, Ce, Co, Cr, Cs, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sc, Sm, Sn, Ta, Th, Yb and Zn were detected in all 15 samples whereas the remaining elements have been detected in fewer samples; i.e. Mg, Sb and Tb were detected in 14 samples, Br and V in ten samples, U in nine samples and Ca and Ti in eight samples only. Al, Ca, Fe, K, Mg and Na were determined in all samples at percentage levels. The concentrations of most elements were found to lie around the mean values for the 15 samples studied and were not orders of magnitude different. However the concentrations of Ca, Mg, Sn and Zn were found to be more variable and were found to be dependant on activities such as construction, fruit and vegetable handling, tin plating and transport, respectively. (author)

  13. Production line for concentrated winding DC motor for air conditioner; Eakonyo shuchu maki DC motor seizo line

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to reduce production cost and increase production efficiency of compressor motors for air conditioners, development was made for the first time in the world on a production line for concentrated winding DC motors in which wires are wound directly on a stator core. Advantages of the concentrated winding motor are size reduction as a result of shortened coil end length, reduction in the amount of copper wire used, and enhancement in the efficiency. The gist in the technical points is as follows: (1) technology to form bobbin with thin wall to ensure insulation when winding; (2) semi-normal inner winding technology to wind wires from inside of the stator core; and (3) automatic coil end terminating technology. When compared to the conventional production line of inserter type motors, the capital investment was reduced by 1/3, installation space by 1/3, manpower by 18 workers, and motor cost by 16%. (translated by NEDO)

  14. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  15. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt....

  16. Evaluating Fault Detection and Diagnostics Protocols Applied to Air-Cooled Vapor Compression Air-Conditioners

    OpenAIRE

    Yuill, David P.; Braun, James E.

    2012-01-01

    Fault detection and diagnostics (FDD) tools are being increasingly applied in air-conditioning systems. There are many different protocols used in these FDD tools, so an important question to ask is: how well do the protocols work? This paper describes the ongoing development of the first standardized method of evaluation for FDD protocols applied to air-cooled vapor compression air-conditioning systems. The general approach is to feed a library of data – including temperatures, pressures, an...

  17. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    Science.gov (United States)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The

  18. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  19. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    Science.gov (United States)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. PMID:20934810

  20. Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner

    Science.gov (United States)

    Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki

    The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  2. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  3. 蓄能空调技术及其发展%The Technology and Development of Energy-storage Air-conditioners

    Institute of Scientific and Technical Information of China (English)

    叶水泉

    2002-01-01

    In this article importance of using energy storage technology in peak-clipping and valley-filling of the demandside management in our country' s power systems is generally discussed. With a practical application in projects, superiorityof the energy-storage air-conditioner is tested and proved. This article comprehensively presents some methods taken byadministration branches of domestic and international governments in supporting its application as well as its current appli-cation situation abroad.

  4. Temperature control of the four-zone split inverter air conditioners using LMI expression based on LQR for mixed H2/H∞

    International Nuclear Information System (INIS)

    Highlights: • The optimal control gains were obtained from the linear matrix inequalities with mixed H2 and H∞ control algorithm. • The proposed method guaranteed convergence, stability, and provided a way for disturbance rejection and energy savings. • The coupling effects occurred among the compressor speed, opening degrees, evaporator temperatures and superheats. • The system identification and thermal dynamics equations could obtain the inner and outer loop transfer functions. • All simulations in this paper were in discrete time domain. - Abstract: Air conditioners in either commercial or residential buildings consume substantial electricity. Enhancing the air conditioner efficiency by using a new control scheme is critical. In four-zone multi-evaporator air conditioner systems, coupling effects occur among the compressor speed, the degree of opening of the four electronic expansion valves, the temperatures of the four evaporators, and the four superheats. The system identification and thermodynamic equations could be used to obtain the inner and outer loop transfer functions between the air conditioner and its environment. A variable structure (switching) for the proportional integral anti-windup method could circumvent the saturation phenomenon generated from the integral controller. The optimal control gains were obtained from the linear matrix inequalities (LMI) based on a linear quadratic regulator (LQR) with a mixed H2 and H∞ control algorithm. In a simulated example, this efficient method, through those feedback gains, guaranteed convergence and stability. In addition, the results indicated that the proposed LMI using a mixed H2 and H∞ control method is also an alternative way for disturbance rejection and energy savings in buildings

  5. 机房专用空调性能研究%Performance experimental research of room air conditioner

    Institute of Scientific and Technical Information of China (English)

    刘娥玉; 臧润清; 王红旭

    2009-01-01

    以名义制冷量为40kW的机房专用空调为对象,研究被控温度24℃、相对湿度50%,冷凝器进风温度-5~35℃条件下的机房空调性能.用焓差实验室测试空调机在不同冷凝温度条件下的性能参数,从而分析系统各部件的匹配关系、整机性能及在变冷凝温度下的综合性能.实验结果表明,调整蒸发器结构、增加风速、合理匹配热量膨胀阀,降低系统部件和管道阻力等,能使机房空调机在标准制冷工况下COP、变工况下COP以及综合COP都有较大幅度提高.%Performance of room air conditioner which is under temperature 24℃, 50%RH and air inlet temperature -5~35℃ was studied based on nominal refrigeration capacity 40kW. Tested performance parameters under different condensing temperature on air-enthalpy test lab, analyzed matching regulations and performance of each parts of conditioner under varietal condensing temperature. It showed that adjusting structure of evaporator, raising air flow speed, regulating the optical work opening span of thermostatic expansion valve, reducing resistance of parts and pipelines may heighten conditioner COP under various conditions.

  6. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Science.gov (United States)

    2010-01-01

    ... total electric power input, expressed in watt-hours, during the same period. Single package unit means..., when both the cooling (or heating) effect and the net work input are expressed in identical units of measurement. Commercial package air-conditioning and heating equipment means air-cooled,...

  7. Air Conditioner Selection with TOPSIS and VIKOR Methods In Multi Criteria Decision Making

    Directory of Open Access Journals (Sweden)

    İrfan ERTUĞRUL

    2014-06-01

    Full Text Available Technological and global changes nowadays enable air conditioning sector to gain a higher importance. Short and long term risks for comsumers, the use of air conditioningtechnology with cost minimization, the increase of product charesteristics and firms, and the variability of product features have led to the need for multi-criteria decision. Therefore, caring the multiple criteria and the alternatives, the multi-criteria decision making techniques are taken to the scope of application. The purpose of the study is to determine the factors which affect the decision of air conditioning choice and to present the preference ranking suggestion. Having the nearly have got the approximately equivalent heating and cooling capacity, air conditionings in A+ class are included in the scope of related research. In application, when choosing air conditioning products, Topsis and Vikor that are multi-criteria decision-making methods are used and the results are compared and evaluated. When choosing air conditioning products, preference plansa re presented in the application.

  8. Experimental investigation on a solid desiccant system integrated with a R407C compression air conditioner

    International Nuclear Information System (INIS)

    In the present work, experimental performance data of a solid desiccant based hybrid air conditioning system are presented. The system consists of a packed bed solid desiccant integrated with a R407C conventional vapor compression refrigeration system. Experiments are carried out during dehumidification operation mode for various operating parameters such as; desiccant mass on shelves (5, 10 and 15 kg), air mass flow rate (7.4 and 10.2 kg/min), shelves number (1, 2 and 3) and three values of shelves span (7, 14 and 28 cm) at evaporator air inlet conditions of 28 deg. C DBT and 66% RH, condenser air inlet volume flow rate of 850 m3/h and temperature of 35 deg. C. The reactivation of the desiccant at different regeneration temperatures and air flow rates as well as desiccant masses is also investigated. During the dehumidification mode, the average system coefficient of performance increases by 6.2% and 1.61% when the mass of desiccant increases from 5 to 10 kg and from 10 to 15 kg, respectively. The enhancement in the coefficient of performance is 6.2% due to increasing the air mass flow rate from 7.4 to 10.2 kg/min. Increasing both shelves number and span yields to a reduction in the adsorption rate that can be extracted by the desiccant material in the ranges of considered operating conditions. The regeneration temperature and the air flow rate of regeneration have significant effects on the reactivation process. It was found that, with increasing the mass flow rate of regenerated air from 7.4 to 10.2 kg/min produces a reduction in regeneration time by 87.5% and an augmentation in the desorption rate by 16% after 10 min of regeneration. In addition, with escalating the regeneration temperature from 45 to 55 deg. C, the reactivation time reduces by 25%. Reported results revealed that solid desiccant based hybrid air conditioning system reduces the compressor electric power and the number of electric unit (kW h) by 10.2%.

  9. Experimental investigation on a solid desiccant system integrated with a R407C compression air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Mostafa, A. [Dept. of Mechanical Power Engineering, Faculty of Engineering, El-Mattaria (Helwan Univ.), Masaken El-Helmia P.O., Cairo 11718 (Egypt); Ibrahim, Talaat A. [Dept. of Mechanical Power Engineering, Faculty of Engineering, El-Mattaria (Helwan Univ.), Masaken El-Helmia P.O., Cairo 11718 (Egypt); King Saud Univ., P.O. 70908, 11577 Riyadh (Saudi Arabia)

    2009-10-15

    In the present work, experimental performance data of a solid desiccant based hybrid air conditioning system are presented. The system consists of a packed bed solid desiccant integrated with a R407C conventional vapor compression refrigeration system. Experiments are carried out during dehumidification operation mode for various operating parameters such as; desiccant mass on shelves (5, 10 and 15 kg), air mass flow rate (7.4 and 10.2 kg/min), shelves number (1, 2 and 3) and three values of shelves span (7, 14 and 28 cm) at evaporator air inlet conditions of 28 C DBT and 66% RH, condenser air inlet volume flow rate of 850 m{sup 3}/h and temperature of 35 C. The reactivation of the desiccant at different regeneration temperatures and air flow rates as well as desiccant masses is also investigated. During the dehumidification mode, the average system coefficient of performance increases by 6.2% and 1.61% when the mass of desiccant increases from 5 to 10 kg and from 10 to 15 kg, respectively. The enhancement in the coefficient of performance is 6.2% due to increasing the air mass flow rate from 7.4 to 10.2 kg/min. Increasing both shelves number and span yields to a reduction in the adsorption rate that can be extracted by the desiccant material in the ranges of considered operating conditions. The regeneration temperature and the air flow rate of regeneration have significant effects on the reactivation process. It was found that, with increasing the mass flow rate of regenerated air from 7.4 to 10.2 kg/min produces a reduction in regeneration time by 87.5% and an augmentation in the desorption rate by 16% after 10 min of regeneration. In addition, with escalating the regeneration temperature from 45 to 55 C, the reactivation time reduces by 25%. Reported results revealed that solid desiccant based hybrid air conditioning system reduces the compressor electric power and the number of electric unit (kW h) by 10.2%. (author)

  10. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    Science.gov (United States)

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  11. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  12. Refrigerant and Lubricant Mass Distribution in a Convertible Split System Residential Air-Conditioner

    OpenAIRE

    Wujek, Scott S.; Bowers, Chad D.; Powell, Joshua W.; Urrego, Roberto A.; Hessell, Edward T.; Benanti, Travis L.

    2014-01-01

    Lubricants are utilized in air-conditioning systems for the purpose of decreasing friction and wear within the compressor. While ideally the lubricant remains in the compressor, some lubricant is entrained and transported by the refrigerant to the other system components. During operational transients, the lubricant is redistributed throughout the various system components. The equilibrium distribution of lubricant depends among other things on fluid properties, phase change processes, flow r...

  13. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    Science.gov (United States)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  14. Propeller fan and outdoor machine using the same for air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Ryoji; Nagai, Makoto; Yoneyama, Hiroyasu; Mori, Yutaka; Mochizuki, Masaaki; Mochizuki, Yoshihiko; Otaguro, Toshio

    1997-09-12

    A low-noise propeller fan of a low manufacturing cost by improving the rigidity of fan blades in the axial and radial directions thereof and reducing the thickness of the fan blades to as great an extent as possible in spite of the larger diameter of the fan, whereby the moldability of and molding time for the material for the propeller fan is improved and reduced respectively, and by minimizing the amount of use of a material the cost of which accounts for a large percentage of the fan manufacturing cost. A plurality of plate type circumferential ribs projecting from acting faces towards the negative pressure side and a plurality of radial ribs projecting from the acting faces toward the negative pressure side are provided on the reverse (negative pressure) side of the fan blades, whereby the thickness of the fan blades is reduced, so that the amount of material used decreases. This causes the influence of the ribs upon a flow of the air to be minimized, and the occurrence of noise to be suppressed. (author)

  15. 新技术在空调领跑者开发中的应用%Application of New Technology in the Development Process of Air Conditioner Pacemaker

    Institute of Scientific and Technical Information of China (English)

    曾建波; 郭霞龄; 黄建华

    2014-01-01

    In order to further improve energy efficiency ratio of air conditioner, we has developed an air condi-tioner product KF-26GW/Wa-E0 with special energy efficiency grade by applying three new technologies:noz-zle throttle, spiral strip and condensate water energy conservation. In 2013 in the air conditioner pacemaker test competition held in China, its actual measurement energy efficiency ratio reached 5.10W/W. It has exceeded the first energy efficiency ratio grade 3.60W/W of the national standard far away. From the actual experimental data, we can learn that the three new technologies can improve energy efficiency ratio of air conditioner significantly.%为了进一步提高空调器的能效比,采用喷嘴节流、螺旋条、冷凝水节能三项新技术,开发了一款特级能效的空调产品KF-26GW/Wa-E0,在2013年度国家举办的空调领跑者测试评比中,实测能效比达到5.10W/W,远高于国家标准一级能效比的指标3.60W/W。从实际试验数据可知,这三项新技术能明显地提高空调器的能效比。

  16. 恒温恒湿空调机PLC控制程序优化%Optimization of the PLC Control Program of Constant Temperature and Humidity Air Conditioners

    Institute of Scientific and Technical Information of China (English)

    戴建国

    2014-01-01

    optimized the PLC control program of constant temperature and humidity air conditioners in the production areas of Guangzhou Cigarette Factory. Using the methods of adjusting air moisture content of the air supply outlet to adjust relative air humidity, adopting cascade PID double loop adjustment in the PID algorithm of temperature and humidity, increasing the working condition recognition and correction of logic in each air conditioner and constructing intelligent air conditioning control module to realize automatic temperature and humidity adjustment, remarkable energy-saving effect has been achieved.%优化了广州卷烟厂生产区域空调恒温恒湿空调机的PLC控制程序,采取的措施包括调节送风口的空气中的含湿量从而调节环境的空气相对湿度,在温度及湿度的PID算法上采用串级PID双环调节,在各台空调机增加工况识别及修正逻辑,构建智能空调控制模块实现温湿度自动偏移等,取得了显著的节能效果。

  17. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    Energy Technology Data Exchange (ETDEWEB)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The

  18. 电子膨胀阀在机房空调机中的应用%Application of Electronic Expansion Valve to Air Conditioner in Computer Room

    Institute of Scientific and Technical Information of China (English)

    孙萦豪; 马军华

    2011-01-01

    为了提高机房空调能效比,传统的热力膨胀阀正逐步被电子膨胀阀取代.本文详细介绍了电子膨胀阀的结构、控制特点,并进行了试验分析.%The thermostatic expansion valve (TEV)is replaced by the electronic expansion valve (EEV) to increase the energy efficiency ratio (EER) in computer room air conditioner(CRAC). This paper introduces the construction, control and experimental analysis of the electron expansion valve(EEV).

  19. Investigation of the compressor part-load behaviour and its effects on the per annum energy consumption of the air conditioner; Untersuchung des Kompressor-Teillastverhaltens im Hinblick auf den Jahresverbrauch der Klimaanlage

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Klaus; Lechner, Bernhard [Virtual Vehicle. Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH (ViF), Graz (Austria); Rieberer, Rene [Technische Univ. Graz (Austria); Moenkediek, Thomas [Audi AG, Ingolstadt (Germany)

    2010-07-01

    The air conditioning system is one of the most important ancillary units of a motor vehicle. Energetic optimization of air conditioners has been a key issue of research at AUDI AG during the past few years. As a rule, the cooling capacity of the air conditioner is controlled by adapting the compressor lift if the compressor is driven by the car engine and control via the rotational speed is not possible. As air conditioners ted to be designed for extreme conditions, the compressor will work at part load in most operating conditions. Optimization of the energetic efficiency of the air conditioner also means to look at the part-load behaviour of the compressor. Simulations have been used successfully by AUDI AG for many years now; the have helped to shorten development times and improve the product quality. The contribution describes an advanced model of a swivel plate compressor of a R134a cooling cycle with particular consideration of part-lift operation. The simulation model is based on measurements with continous recording of the piston lift. The focus is on the influence of reduced lift on the compressor efficiency. Another point of interest is the successful integration of the compressor model in the overall refrigerating cycle model which will be used for simulations of system performance and efficiency and for further optimization of the air conditioner. (orig.)

  20. Application of central air conditioner system on modular drilling rig of offshore ifxed platform%集中空调系统在海洋固定平台模块钻机上的应用研究

    Institute of Scientific and Technical Information of China (English)

    罗立臣; 许瑞杰; 马冬辉

    2014-01-01

    Based on the air conditioner selection of Lu Feng7-2 oil ifeld modular drilling rig project, this paper determines two sets of selection of air conditioner by preliminary study, which are central and separation air conditioner systems, respectively. With comparison between the central air conditioner and the split air conditioner in cost, effciency, comfort, space, etc., it concludes that the central air conditioner system has the advantages of lower operation cost, higher energy effciency ratio, better comfort capability, smaller space occupation and so on. It also analyzes its superiority and prospect of application on the modular drilling rig of offshore ifxed platform, which can provide a certain reference for the room cooling design and the equipment selection.%结合陆丰7-2油田模块钻机项目空调选型,通过前期调查研究制定了两套空调选型方案:集中空调系统方案和分体空调系统方案。通过对比两者在费用、工作效率、舒适性、占用空间等方面的特点,得出集中空调系统具有初始投入及运行成本低、能效比高、舒适性好、占地面积小等方面的优点,并分析了集中空调在海洋固定平台模块钻机上使用的优越性以及应用前景,对海洋固定平台模块钻机的房间制冷设计及设备选型提供了一定的参考。

  1. Research on Performance of High Temperature Refrigeration Household Air Conditioner%高温制冷家用空调器性能研究

    Institute of Scientific and Technical Information of China (English)

    于永全; 贺素艳; 王军; 杨启荣

    2014-01-01

    Household heat pump type air conditioner, an efficient, energy-saving and convenient air conditioning equipment, plays an important role in people's everyday life and production activities.In recent years, the global climate anomalies, people production and living conditions deteriorated because of the continuous high temperature weather.The awful summer condition puts forward higher requirements for household air conditioner refrigeration per-formance at high temperature.In this paper, we put forward the use of Refilling and Enthalpy Increasing Device ( REID) way to effectively solve the problem of air conditioner refrigeration at high temperature, experimental study the performance of air conditioning systems with REID in the high temperature environment, will play a guiding role for design of high temperature refrigeration air conditioning product and the application of new environmental protec-tion refrigerant-R32.%家用普通热泵型空调作为一种高效、节能、便捷的空气调节装置,在人们的日常生产、生活中扮演着重要的角色。近年来全球气候异常,多地连续出现高温酷热天气,人们生产、生活条件恶化。夏季恶劣工况对家用空调器的高温制冷性能提出了更高的要求。文中提出了利用补气增焓( REID)的办法来有效解决空调器高温制冷问题,从理论上分析了补气增焓对空调系统高温制冷性能的影响,实验研究了补气增焓空调系统在高温工况下的性能,对高温制冷空调产品的设计及新环保冷媒R32的应用起到指导作用。

  2. 低温超强制热家用空调器研究%Research of Super Low Temperature Heating Household Air Conditioner

    Institute of Scientific and Technical Information of China (English)

    于永全; 贺素艳; 王军

    2015-01-01

    Household heat pump type air conditioner, an efficient, energy-saving and convenient air conditioning equipment, plays an important role in people's everyday life and production activities. However, in cold regions, since the low-temperature heat source itself inefficient air conditioning, heating a low output capability, seriously affect the comfort of the user area. This paper theoretically analyze the influence of Refilling and Enthalpy Increasing Device (REID) for the air conditioning system, experimental study the performance of air conditioning systems with REID in the low temperature environment, will play an important role for the future development of low temperature using air conditioner.%家用普通热泵型空调作为一种高效、节能、便捷的空气调节装置,在人们的日常生产、生活中扮演着重要的角色。但在严寒区域,由于家用空调本身低温效率低下,输出制热能力低,严重影响该地区用户使用舒适性。从理论上分析了补气增焓(REID)对空调系统低温制热性能的影响,实验研究了补气增焓空调系统在低温工况下的性能,对低温制热空调产品的设计及普及起到重要作用。

  3. Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system

    International Nuclear Information System (INIS)

    We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800m3/h, the average CO2 concentration can be satisfied with the standard limits of Japanese in our case studies. (author)

  4. 家用空调器装卸搬运系统设计及运用%TheDesignandApplicationofAirConditionerHandlingSystem

    Institute of Scientific and Technical Information of China (English)

    熊立贵

    2013-01-01

    本文针对空调器成品下线与运输入库生产环节的物流系统,设计了一条辊筒输送线的总体布局,实现了空调器输送物流的无缝连接。通过液压升降台、车内可升降辊筒输送机构等重要工位的设计,可靠地完成空调器出入库以及到运输车辆的工程操作。利用设计的图纸、加工、组装、运行实现一套输送出、入库过程,这样减少劳动力,并提高效率,产生经济效益的装卸搬运系统。%According to the logistics system of air conditioner’s production line and trans-portation into storage, the overall layout of a roller conveyor line was designed to real-ize the seamless connection of air conditioner transportation logistics. Through the design of important stations like hydraulic elevator platform and lift roller conveying mechanism in car, it reliably accomplishes the operation of air conditioners warehousing and vehicle transportation. Using the design drawings, process, assembling and operation, it accomplish-es a set of handling system for out-put and in-put of warehouse. In this way, it reduces the workforce and increases the efficiency, and generates economic benefits.

  5. Experimental study of the application of intermittently operated SEHRAC (storage-enhanced heat recovery room air-conditioner) in residential buildings in Hong Kong

    International Nuclear Information System (INIS)

    Effectiveness of SEHRAC (storage-enhanced heat recovery room air-conditioner) for water heating in residential buildings in Hong Kong and elsewhere has been confirmed in previous studies. However, given these studies assumed a theoretical maximum recoverable heat, whether its use is still energy effective in practice, in particular under intermittent operation, is of concern. Intermittent operation of the SEHRAC can lead to significant fluctuations in operating conditions. Adding that capillary tube is often used as the expansion device to magnify the fluctuations, whether SEHRAC can still operate satisfactorily despite the fluctuations is another concern. To address these concerns, a prototype which can be switched between the combined CH (cooling and heating) mode and the CC (conventional cooling) mode was set-up for laboratory experiments. The results showed that the water heating objective can be achieved. The operating parameters also confirmed the satisfactory operation of SEHRAC. Energy performance of the CH mode was found better than the CC mode. A prediction model was developed for evaluating the use of SEHRAC. On wider application of SEHRAC, energy use of the residential sector in Hong Kong can be reduced by 9.1%. The experimental details described in this study would become an experiment protocol to enhance future research in this area. - Highlights: • Practical use of SEHRAC (storage-enhanced heat recovery room air-conditioner) for free water heating was investigated. • Investigations were based on laboratory experiments that matched with practical situations. • Experimental results confirmed the effective operation of SEHRAC in practical situations. • Potential water heating energy saving on wider application of SEHRAC was estimated to be 9.1%. • The prototype designed and set-up for this study would become an experiment protocol to enhance future research in this area

  6. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Science.gov (United States)

    2010-01-01

    ... source as indicated in the appendices to this part. (5) Placement of the labeled product on the scale... heating seasonal performance factors for all heating only heat pumps. (5) Placement of the labeled product... the product in the form of an adhesive label. All adhesive labels should be applied so they can...

  7. Simulation Analysis of the Indoor Unit of Variable Frequency Air-Conditioner%变频空调室内机仿真分析

    Institute of Scientific and Technical Information of China (English)

    甄雅曼; 南晓红

    2015-01-01

    MATLAB language was used to mathematically simulate the indoor unit of frequency conversion air-conditioner. Based on the simulation model, change of the refrigerant and air temperature with the length of coil pipe with the unit as an evaporator under refriger-ation condition and as a condenser under heating condition was studied and analyzed. The surface heat transfer coefficient on the refrigerant side and heat transfer coefficient of the in-door unit and the evaporation pressure distribution along the coil pipe were simulated and an-alyzed. The parameters under the two operating conditions were also comparatively analyzed.%运用MATLAB软件对一变频多联室内机进行模拟仿真,分析研究了制冷工况下作为蒸发器和制热工况下作为冷凝器时制冷剂和室内空气温度随管长的变化情况,同时对制冷剂侧表面传热系数、室内机传热系数和蒸发压力沿程分布情况进行了仿真及分析.并将两种工况下的参数进行对比分析.

  8. 低温环境下风冷热泵型空调机组应用问题的探讨%Discussion of the Heat Pump Air Conditioner in Low Temperature Environment

    Institute of Scientific and Technical Information of China (English)

    刘迎云

    2001-01-01

    The main causes for capacity reduction of the heat pump air conditioner while working at low environment was studied, a way and methods to raise the evaporation temperature of the heat pump air conditioner and to prove the feasibility by calculation was proposed.%分析了低温环境下风冷热泵型空调机组制热能力降低的主要原因,提出了在低温环境下提高风冷热泵型空调机组蒸发温度的方法及措施,并通过计算来验证其可行性。

  9. 移动空调噪声控制技术的研究与实践%The Research and Practice of Portable Air Conditioner Noise Control Technology

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This text focuses on analyzing the reason and course of the noise generated from portable air conditioner. With test data and analytic technology, it concludes that present noise control technology for air conditioner, which was proved effective in practice.%  本文主要就移动空调器噪声产生的机理进行分析研究,应用试验分析技术和解析分析技术,从而总结出目前移动空调器的噪声控制方法,并且在实践中被证明是有效的。

  10. 家用空调冷凝水节能利用探讨%Exploration on the utilization and energy saving of condensing water from household air conditioner

    Institute of Scientific and Technical Information of China (English)

    姬利明; 祁影霞; 欧阳新萍

    2011-01-01

    There are an amount of condensed water which contained a lot of cold energy exhaused by household air conditioner. The water directly drawn outside pollute not only, but also couse cold energy to waste. In this paper, we calculated the theoretical production capacities of condensed water and evaporated water, its enhancement effect on condenser heat transfer as well as its energy saving effect, and designed a new condensate utilization device. Finally the energy - saving effect was remarkable if we make full use of the condensed water to cool condenser.%家用空调的冷凝水量可观,且含有一定冷量,但现实中常被直接排放掉,污染环境、浪费资源.实例计算了冷凝水生成量,蒸发量和冷凝水冷却冷凝器换热的强化作用以及节能效果,并设计了一种新型冷凝水回收装置.最后,指出冷凝水利用冷量冷却冷凝器,节能效果显著.

  11. Development of Refrigeration Oil for Rotary Vane Compressor of Automobile Air Conditioner%旋叶式汽车空调冷冻机油的研制

    Institute of Scientific and Technical Information of China (English)

    陈美名

    2013-01-01

      介绍旋叶式汽车空调压缩机对冷冻机油的性能要求,研制一种适用于以R134a为制冷剂的压缩机的聚醚类合成冷冻机油,并分析其理化性能,通过台架试验评价其润滑性能和抗氧化性能。结果表明,研制油具有较好的理化性能,很好的润滑性能及抗氧化能力,满足旋叶式压缩机使用要求。%The requirement for performance of refrigeration oil for rotary vane compressor of automobile air conditioner was introduced,and a PAG refrigeration oil was developed for rotary vane compressor with R134a as refrigerant. The physi-cochemical properties of the refrigeration oil were analyzed,and the lubricating performances and antioxidant properties were evaluated through bench tests. The results show that the refrigeration oil has good physicochemical properties,good lu-bricating performances and excellent antioxidant properties,meeting the application requirement of the rotary vane compres-sor.

  12. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  13. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  14. 壁挂式空调器陶瓷PTC异常噪声研究%Study on Abnormal Noise of Ceramic PTC in Wall-mounted Air Conditioner

    Institute of Scientific and Technical Information of China (English)

    杨春生; 占庆仲; 李彬

    2015-01-01

    分体壁挂式空调器一般采用PTC这一部件来辅助制热,以提高制热效果及制热速度。在蒸发器部件、底壳风道与贯流风叶所包围的空间里,加装陶瓷PTC会产生一定的异响噪声。在设定同一制热模式下,PTC的不同结构对整机噪声的影响程度不同。本文采用CFD数值模拟与试验测试相结合的方法对PTC结构进行模拟优化和试验验证,完成两种不同结构的陶瓷PTC对噪音影响分析,并梳理出陶瓷PTC结构优化设计及推广应用的一种思路。%Generally, split wall-mounted air conditioner adopts PTC to assist heating, in order to improve heating effect and accelerate heating speed. In the space of the bottom of evaporator, pan and cross-flow fan duct surrounded, the installation of ceramic PTC will result in abnormal sound noise. In the same setting heating mode, different structures of ceramic PTCs have different degrees of influence on the noise of the whole unit. This paper adopts the method which combines the CFD numerical modeling and experimental test to simulate and optimize, and test and validate. Finally, it analyzes the noise influence of the two different structures of ceramic PTC; and puts forward an idea of structure optimization design and application of ceramic PTC.

  15. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece

    International Nuclear Information System (INIS)

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g−1 with a median value of 1092 ng g−1, while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day−1 (median 12 ng day−1). - Highlights: • PBDEs were investigated in dust of A/C filters in occupational settings in Thessaloniki, Greece. • BDE-209 was found to be the most abundant BDE congener. • High levels of PBDEs were found in a newspaper building, internet cafes and electronic shops. • PBDEs were attributable to the extensive presence and/or usage of electronic devices. • Exposure of employees to PBDEs via indoor dust ingestion was estimated at 12 ng day−1. - PBDEs were for the first time measured in dust from central A/C filters in workplaces of Greece and their concentrations were used to estimate the non-dietary human exposure

  16. Manufacturers of Copper Tube for Central Air Conditioner Use Face Mounting Pressure in the Final Quarter of the Year

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>This year,the investment growth rate of real estate industry continued to slow down,sold area of commercial housing also dropped significantly,which brought huge pressure to the domestic air conditioning manufactures.In the first half of the year,by relying on high growth in national financial expenditure,along with investment in public infrastructure

  17. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    OpenAIRE

    Brewer, Eli Henry

    2015-01-01

    We study the PM2.5 and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration t...

  18. 某办公建筑空调系统新风换气机设计研究%Research on design for fresh air ventilation of air-conditioner system of some office building

    Institute of Scientific and Technical Information of China (English)

    景胜蓝; 王飞; 雷勇刚

    2015-01-01

    介绍了采用数码多联机空调系统的办公建筑,对新风系统采用的新风换气机进行了分析,通过研究计算结果,表明新风换气机在改善室内空气品质的同时,具有显著的节能效果和良好的经济性。%The paper introduces the digital multi-connected air-conditioner system of office buildings,analyzes the fresh air ventilation of the fresh air system,and proves by the research and calculation that the ventilation equipment can improve the indoor air quality with evident energy-saving effect and money-saving feature.

  19. 空调压缩机铝合金连杆的液态模锻%Hydraulic Forging of the Al Alloy Connection Rod of the Air-Conditioner Compressor

    Institute of Scientific and Technical Information of China (English)

    屈华昌

    2001-01-01

    分析了空调压缩机用铝合金连杆的工艺特点和技术要求,介绍了液态模锻的模具结构和工作过程,同时还介绍了铝合金连杆液态模锻的工艺参数。%The processing characteristics and the technical requirement of the aluminum alloy connection rod for the air-conditioner compressor were analyzed. The structure and working process of the hydraulic forging die were introduced. And the processing data for hydraulically forging the aluminum alloy connection rod were stated.

  20. Semi-empiric model of an air cooled cabinet air conditioner for the dynamic analysis of the building and acclimation systems integrated behaviour; Modelo semi-empirico de condicionador de gabinete resfriado a ar para analise dinamica do comportamento integrado de edificacoes e sistemas de climatizacao

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jorge E. [Para Univ., Belem (Brazil). Dept. de Engenharia Mecanica]. E-mail: jecorrea@amazon.com.br; Melo, Claudio. E-mail: melo@nrva.ufsc.br; Negrao, Cezar O. R. E-mail: negrao@energia.damec.cefetpr.br

    2000-07-01

    This work presents a semi-empirical model for a air cooled case air conditioner. This model is to be inserted in the EPS-r program (Environmental System Performance - research version) allowing the dynamic analysis of the integrated behaviour of buildings and acclimation systems using this equipment. Results obtained from simulations under the operation conditions existing in Brazil are analysed.

  1. 77 FR 28673 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Science.gov (United States)

    2012-05-15

    ... furnaces and central air conditioners and heat pumps and are, therefore, also widely used by HVAC product..., Methods of Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat ] Pump Equipment. The... the energy conservation standard rulemaking for furnace fans. 75 FR 31323. DOE posted the furnace...

  2. Modelagem de um condicionador de ar de alta precisão para uso em processamento agrícola Modeling of a high precision air conditioner for use in agricultural processing

    Directory of Open Access Journals (Sweden)

    Mauri Fortes

    2006-08-01

    Full Text Available Apresenta-se neste trabalho, estudo detalhado sobre a modelagem de um condicionador de ar com controle acurado de temperatura e umidade relativa. Desenvolveu-se um programa de computador que permite predizer o comportamento do sistema sob diferentes condições psicrométricas e de vazão do ar de entrada. O modelo global físico-matemático inclui equações de balanço de massa e de energia para três diferentes volumes de controle que compõem o condicionador. Modelaram-se os processos de mistura, evaporação (ou condensação simultânea de uma superfície d'água e de uma gota e o aquecimento de corrente de ar, separadamente. Propõem-se expressões semi-empíricas simples para os coeficientes de transferência de calor e massa inerentes ao processo de evaporação sobre uma superfície d'água e um modelo simplificado para o sistema de spray. Construiu-se um condicionador de ar no qual foram feitos testes experimentais para o ajuste das constantes que aparecem nas expressões para os coeficientes de transferência. Os dados obtidos validaram o modelo global, com precisão aceitável para projetos de engenharia.In this work, a detailed procedure for the analysis of an accurately controlled air conditioner is presented. A computer program, that allows predicting the behavior of the system under different psychrometric conditions and different input air mass flow rates, was developed. The global physical-mathematical model includes mass and energy conservation equations for three different control volumes that compose the conditioner. Thus, the processes of mixture of air, simultaneous evaporation (or condensation from a water surface and from a drop, and the air-stream heating are modeled separately. Simple semi-empiric expressions for heat and mass coefficients inherent to the evaporation process on a water surface are proposed as well a simplified model for the spray system. Experimental tests made on an air-conditioner allowed to obtain

  3. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m3), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  4. 水力平衡调试在中央空调中节能的应用%On application of hydraulic balancing adjustment in energy-saving of central air-conditioner

    Institute of Scientific and Technical Information of China (English)

    田雷

    2012-01-01

    Based on the importance of the hydraulic balancing in the heating air-conditioning system, the paper indicates the application of the hydraulic balancing adjustment in energy-saving of central air-conditioner from the concept of the hydraulic balancing, the adjustment principle and the practical cases, so as to realize the hydraulic balance in the operation process of the central air-constioner and achieve the energy-saving.%鉴于水力平衡在暖通空调系统中的重要作用,从水力平衡的概念、调节原理以及实际应用案例等方面入手,对水力平衡调试在中央空调中节能的应用进行简单论述,以实现中央空调运行过程的水力平衡,达到节能的目的。

  5. 非等温送风机柜空调的性能研究%Performance Analysis of Machine Cabinet Air Conditioner when Supplying Air with Different Temperature

    Institute of Scientific and Technical Information of China (English)

    牛倩倩; 臧润清; 郝莹

    2011-01-01

    The equipments in the machine room have great calorie power. The calorie power of different cabinet and the different part of a cabinet are also different. The position of the cabinets with different caloricity is indefinite, as a result, the machine room air conditioning can not satisfy the cooling. A cabinet on inequitable internal heat to cool "peer-to-peer" was presented. Through the experiment study ,for an evaporator with multi-channel ,increase the length of the boiling tube and supply the refrigerant separately ,can supply air with different temperature and realize a higher cooling efficiency. Another system equipped back pressure valves on the return gas pipe can realize supplying air with different temperature but the efficiency is lower.%机房设备具有发热量大、每个机柜发热量不同和个体机柜各个局部发热量不一致的特点.由于机房内不同发热量机柜摆放的不确定性,目前在用的机房空调不能满足降温要求.本文提出一种针对于个体机柜内部发热量不均进行"点对点"降温的机柜空调.通过试验研究可知,在一个机体上的多通路蒸发器,通过增加两个通路蒸发管长度,并与其它通路分开供液,可以实现非等温送风,且制冷系统具有较高的工作效率.另一种回气管路装有背压阀的系统虽能实现非等温送风,但制冷系统的效率较低.

  6. 空调压缩机油粘度与油温过热度的测试研究%Experimental Study on the Oil Viscosity and Oil Superheat Temperature of Air Conditioner Compressor

    Institute of Scientific and Technical Information of China (English)

    魏会军; 刘靖

    2015-01-01

    A method which can test the viscosity of the refrigerating oil on line is used to measure the air conditioner of 1.5HP. Combined with the actual working condition of rotary compressor, the situations which probably lead to a failure without lubricating enough is found. It can provide the data and theory basis to the study of the reliability of the rotary compressor lubrication and the evaluation standard.%通过自行建立的压缩机油粘度与油温过热度在线测试方法,对1.5HP家用变频空调系统进行测试分析,并结合滚动转子式压缩机的实际工作情况,分析了可能导致压缩机润滑失效的情况,为滚动转子式压缩机润滑可靠性的研究及评价提供了数据支持及理论依据。

  7. Flow Analysis around the Suction Valve and the Effect of the Flow on the Vibration-Reduction of the Valve in a Reciprocating Compressor for an Automotive Air-Conditioner

    Science.gov (United States)

    Sato, Taizo; Tsukiji, Tetsuhiro; Koyabu, Eitaro; Nakamura, Yusuke

    In the present study the simplified test model of the commercial reciprocating compressor for an automotive air-conditioner is designed to investigate the velocity distributions of the discharge flow from the suction valve using PIV (Particle Image Velocimetry) technique and to measure the displacement of the valve. The displacement of the conventional valve in the test model is observed using the high speed video camera and is also measured using a strain gauge. On the other hand the velocity distributions around the suction valve are measured using PIV and the relation between the velocity distributions and the movement of the valve is investigated. Furthermore the new valve with the shape improved from the conventional valve is designed and the results of the flow visualization and the measurement of the valve displacement for the new valve are compared with those of the conventional valve. We found that the vibration of the new valve can be suppressed compared with the conventional one from the experiment using both the present test model and the commercial reciprocating compressor. The reason of the vibration-reduction for the new valve is discussed from the results of the present flow analysis.

  8. Design and Techno-economic Analysis of Domestic Solar Bubble Pump Driven Absorption Air-conditioner%一种家用太阳能气泡泵吸收式空调的系统设计与技术经济性分析

    Institute of Scientific and Technical Information of China (English)

    谢应明; 周兴法; 舒欢; 刘道平; 刘妮

    2014-01-01

    In order to effectively solve the problems of high power consumption and noisy in traditional domestic air conditioner , a new type of domestic solar bubble pump absorption air-conditioner was developed .In this air conditioner , the lithium-bromide ab-sorption chiller was driven by solar and the traditional mechanical pump was replaced by the bubble pump .Under the design re-quirement of cooling capacity of 16.5kW and heating capacity of 18.0kW, bubble pump with inner diameter of 0.05m and im-mersed height of 0.5m, solar collector with area of 20m2 and heat storage tank with volume of 1m3 were selected by theoretical calculation.Finally, techno-economic comparison of this apparatus with traditional air-conditioner shows that the solar bubble pump absorption air conditioner has greater superiority .%为了有效解决传统家用空调的高耗电和噪声问题,开发了一种新型的家用太阳能气泡泵吸收式空调装置。该装置采用太阳能驱动溴化锂吸收式制冷机组,并以气泡泵代替传统的机械泵。在空调制冷量为16.5kW和制热量为18.0kW的设计要求下,通过理论计算选择内径为0.05m和沉浸高度为0.5m的气泡泵、集热面积为20m2太阳能集热器以及容积为1m3的蓄热水槽。最后,将该装置与普通家用空调进行技术经济比较,得出太阳能气泡泵吸收式空调有很大的优越性。

  9. A PD Law Based Fuzzy Logic Control Strategy For Simultaneous Control Of Indoor Temperature And Humidity Using A Variable Speed Direct Expansion Air Conditioner

    OpenAIRE

    Li, Zhao; Xu, Xiang Guo; Deng, Shi Ming; Pan, Dong Mei

    2014-01-01

    In small to medium scale buildings located in the subtropics, such as Hong Kong, direct expansion air conditioning (DX A/C) systems are widely applied. This is because, as compared to chilled water based central air conditioning systems, DX A/C systems are compact, flexible for multi-room services, energy efficient and cost less to maintain and operate. However, traditionally, a DX A/C system is equipped with a single-speed compressor and supply air fan, and employs ON / OFF control strategy ...

  10. Residential Demand-Side Valuation of Interruptible Load Management for Air Conditioner%居民空调可中断管理的需求侧价值评估

    Institute of Scientific and Technical Information of China (English)

    赵媛; 俞炜华; 逄金栋; 沈淑琳; 李国平; 吴锴

    2012-01-01

    智能电网可以实现针对居民家庭不同电器终端的控制.评估不同电器终端的使用价值对于寻找目标人群和目标终端,从而细化需求侧管理(demand side management,DSM)具有重要意义.应用假设市场调研法(contingent valuation model,CVM)研究西安市居民在夏季用电高峰期使用空调的愿受价值(willingness to accept,WTA).在4种情景下分析管理的目标人群及影响因素,指出针对目标人群的调控可以以低成本提高用户响应,单纯的经济刺激可能难以实现既定的调峰目标.%Smart grid makes the control of residential end users possible. Measuring the value of different end users contributes to finding target population and further improve demand side management (DSM). This paper estimates the value of households' willingness-to-accept (WTA) for air conditioner in summer peak load period of Xi'an city by using of the contingent valuation method (CVM). Four scenarios are considered respectively to identify the target population and influencing factors. Calculation results show that cost-effective and better households' response could be implemented by DSM directing to target population, and pure economic incentive such as price signal may fail to fulfill the established object of peak load regulation.

  11. 基于太阳能辐射技术的热能转换空调制冷技术研究%Research on Cooler Air conditioner Based on Thermal Conversion of Solar Radiation Technology

    Institute of Scientific and Technical Information of China (English)

    李裕斌

    2016-01-01

    This paper presents technical approach on cooler air conditioner based on thermal conver-sion of solar radiation technology,i.e.transforming solar energy to heat energy,and use the heat energy to achieve refrigeration.We developed a new solar absorption air conditioning system based on the thermal conversion of solar radiation technology.Through verification studies,the operating characteristics of so-lar collector and heat storage system of air conditioning systems,and operating characteristics of the re-frigeration unit are verified.The experiment shows:the air conditioning system can operate continuously and stably for 8 hours.The average cooling capacity is 4 kW,and the maximum cooling capacity is 4.7 kW.The system COP average is 0.3.Therefore,this new solar absorption air conditioning system based on thermal conversion of solar radiation technology provides a feasible method to realize large scale,low cost application of solar energy.%给出了以太阳能辐射技术为基础的热能转换空调制冷技术的技术方法,即将太阳能转变成热能,使用热能进行制冷。以太阳能辐射技术的热能转换为基础,研制了新型的太阳能吸收式空调系统,并且通过实验研究,验证了该系统的集热、蓄热特性以及制冷机组的运行热性。实验表明,该空调系统可连续8 h 稳定地工作,最大制冷量可达到4.7 kW,平均值也可达到4 kW,该空调系统性能参数 COP,平均可达到0.3。因此,基于太阳能辐射技术的热能转换空调制冷技术为太阳能规模化、低成本应用提供了行之有效的新方法。

  12. 太阳能复合能源空调热水系统中热泵系统换热性能的试验研究%Experimental Research on the Thermodynamic Performance of Heat Pump in Solar-assisted Air-conditioner with Water Heater

    Institute of Scientific and Technical Information of China (English)

    李晨; 郑祖义; 陈焕新; 金听祥

    2011-01-01

    通过将太阳能热水系统和空调热泵系统结合,设计出太阳能复合能源空调系统.针对该新型系统中的热泵空调热水子系统进行研究,在标准工况下,分别对该系统的3种模式下的换热性能进行试验,数据分析结果表明该系统比传统系统更为高效的,其单独制冷模式下系统最高COP可达5.34,单独热水模式下的静态加热系统COP可达5.78,制冷兼热水模式下系统COP可达4.5.%The research presents a solar-assisted air-conditioner with water heater in which solar water heater and heat pump air-conditioner are combined. The performance of heat pump in the new system is experimentally investigated. The performance of heat pump working at 3 modes under standard condition is measured. The results show that, the COP is 5.34, 5.78 and 4.5 at cooling mode, heating mode,and cooling-heating mode, respectively, which indicates that the new system is more effective than traditional systems.

  13. Current Situation Research of Domestic Air Conditioner Distribution Channel in Xuzhou and Analysis of Innovative Channel Mode:Setting Gree Air-co as an Example%徐州市家用空调器分销渠道现状调研及创新渠道模式探析--以格力空调为例

    Institute of Scientific and Technical Information of China (English)

    李阳; 姚君秋; 周长卿; 戎晓红

    2013-01-01

    Air conditioning manufaturers in Xuzhou are facing increasingly fierce competion. As an important inflluencing factor of sales performance, choosing of distribution channel is getting more and more attention. All air conditioning manufacturers are constantly adjusting distribution strategies and exploring new channel modes. Gree Electric Appliances, Inc. of Zhuhai is a leading company in Chinese air conditioning market. This article takes Zhuhai Gree Air-co as an example to analyse the current situation of air conditioner distribution chaanel in Xuzhou and explore channel innovation modes.%  空调厂家在徐州的竞争日趋激烈,分销渠道的选择作为影响其销售业绩的重要因素,越来越受重视。各空调厂家都在不断地调整渠道策略,探索新渠道模式。珠海格力电器股份有限公司占据着中国空调市场一线品牌的领军位置。本文以珠海格力空调为例,分析徐州市家用空调器分销渠道现状,探析渠道创新模式。

  14. Chamberless residential warm air furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Godfree, J. [Product Design consultant, Pugwash (Canada)

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  15. 商用多联机室外机电机支架动力学分析及优化设计%Dynamics analysis and optimization design of outdoor unit’s motor bracket for commercial multi-split air conditioner

    Institute of Scientific and Technical Information of China (English)

    张浩

    2016-01-01

    利用有限元仿真技术对某商用多联机室外机电机支架进行动力学分析,并利用试验结果证明仿真计算结果的准确性。基于仿真计算结果对电机支架进行优化设计,有效解决电机支架的共振问题。%The motor bracket of one commercial multi-split air conditioner is analyzed using finite element simulation technology,and the accuracy of simulation results is proved by experiment.The optimization design of motor bracket is conducted based on the simula-tion results,and the resonance of motor bracket is solved effectively.

  16. 替代高温气候区域分体式家用空调R22的低GWP制冷剂R444B实验研究%Experiment Study on R444B as an Alternative Low GWP Refrigerant of R22 Used in Room Air Conditioners in High Ambient Temperature Regions

    Institute of Scientific and Technical Information of China (English)

    林恩新; 牛永明; 霍宏祥; 林云

    2015-01-01

    制冷剂R444B是霍尼韦尔最新开发的、可作为高温气候区域家用空调制冷剂R22的替代制冷剂。R444B的ODP(臭氧消耗潜能值)为零,GWP(全球变暖潜能值)仅为295;相对于R22,GWP减少85%。理论制冷循环分析表明,R444B 的制冷量和COP(性能系数)在高温工况下与R22相当。分体式空调实验结果显示:在高温气候区域的T3和T3Max工况下,R444B的制冷量和COP与R22相当,略高于R407C;R444B的排气温度与R22相当;R444B换热器压降也小于R22;R444B制冷剂流量约为R22的80%。通过优化室内机管路连接方式,优化后R444B空调制冷量和COP相对于原型提升0.3%~1.0%。R444B的制冷量和COP随高温环境衰变速率与R22相当,优于R407C。%Refrigerant R444B is developed by Honeywell as an alternative to R22 used in room air conditioners in high ambient temperature regions. R444B shows zero ODP (ozone depletion potential) and 295 GWP (global warming potential). Comparing with R22, GWP of R444B reduces 85%. Analysis on the theory refrigeration cycle at the condition of high ambient temperature shows the refrigeration capacity andCOP (coefficient of performance) of R444B are similar with that of R22. Experimental study on Mini-Split air conditioner under T3 and T3max shows that, the refrigeration capacity andCOP of R444B are similar to those of R22, and are higher than those of R407C; the discharge temperature of R444B is similar to those of R22;the pressure drop of R444B in the heat exchanger is lower than that of R22. Comparing with the original one, the refrigeration capacity andCOP of the optimized R444B air conditioner can be increased by 0.3%~1.0% through optimization on the pipeline connection of indoor unit. The degradation of refrigeration capacity and COP of R444B are similar to those of R22, and are better than those of R407C.

  17. Research on influence law of capillary length on performance of room air conditioner in non-standard working condition%非标工况下毛细管长度对家用空调器性能影响规律的研究

    Institute of Scientific and Technical Information of China (English)

    段亮; 熊军; 陈绍林

    2012-01-01

    通过研究家用空调器的制冷量、能效比、排气温度、吸气温度等随室外温度和毛细管长度的变化规律,得出增加毛细管长度有利于提升高温工况下的制冷量,缩短毛细管长度有利于提升低温工况下的制冷量的结论,对于空调系统匹配有一定的指导意义.%The influence law of capillary length and outdoor temperature on cooling capacity, COP, exhaust temperature, suction temperature of room air conditioner are analyzed. The results show that increasing capillary length is benefit for cooling capacity under high temperature condition and decreasing length brings advantage to cooling capacity under low temperature condition. The study will provide reference for air-conditioning system matching.

  18. 企业创新悖论与两栖组织模式——基于海尔空调产品开发团队案例的研究%Innovation paradox and ambidextrous organization: A case study on development teams of air conditioner in Haier

    Institute of Scientific and Technical Information of China (English)

    王凤彬; 江鸿

    2009-01-01

    新产品开发作为企业自主创新活动的一种重要形式,是知识探索与知识利用有机结合的过程.在对二者悖论关系及其处理方略进行系统文献综述的基础上,将两栖组织的定义从"二元结构"、"二面性结构"伸展到"两栖能力",试图在较低的组织层次上回答如何辩证地解决二者看似矛盾实则可统一的关系.在对海尔空调开发团队的成员构成及异质性知识组合案例分析后,得出的结论是,"两栖"不仅是组织层面的构念,而且可以是团队乃至像"型号经理"这样的个体员工层面的构念.%While knowledge exploration and exploitation represent two distinct activities requiring corresponding organizational arrangements, new product development calls for a dynamic combination of the two. Based on a systematic review of the paradox between knowledge exploration and exploitation and various resolving strategies, this research extends the construct of organizational ambidexterity from dual structure to ambidextrous capabilities, and suggests a dialectical method for reconciling this paradox at lower organizational levels. Based on a case study on the development teams of air conditioner in Haier, we find that ambidexterity is a multi-level construct existing not only at the organization level but also at lower levels such as teams and individuals like model managers.

  19. Energy efficiency program through exchange of air conditioners in residential sector of Manaus city: a concrete experience; Programa de eficiencia energetica atraves da troca de condicionadores de ar no setor residencial de Manaus: uma experiencia concreta

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fabricio Rodrigues; Goncalves, Ana Catarina Lima Chaves; Cartaxo, Elizabeth Ferreira; Gomes, Hugo Miguel Oliveira; Nascimento, Nilton Correa; Inui, Raul Eiji; Guedes, Ricardo Augusto de Morais; Benchaya, Roberto Tavares [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil)

    2004-07-01

    The present review attempts to evaluate the importance of efficient equipment diffusion in reducing energy consumption, based upon the Study-case of an air conditioned exchange program in Manaus city of Amazonas. In spite of the existence, in the actual market, of efficient technology, it has been, yet, badly diffused, mostly due to economical and informative laps. Therefore, once tried to demonstrate the potential benefits, in technical gains, of energy efficiency offered by efficient Air conditioned equipment, through a plan that favors the consumer's participation as an active contributor in the dissemination process of efficient technology, and a following program for efficiency evaluation, beside a tributary evaluation proposal, so that technology becomes accessible to the general population, attempting its benefices. In addition, the environmental benefits of that specific proposal are analyzed, trough the developed recycling program. (author)

  20. 有限元技术在空调应力应变中的应用分析%Analysis on the Application of Finite Element Technology on the Stress-strain of Air-conditioner

    Institute of Scientific and Technical Information of China (English)

    陈思磊

    2015-01-01

    本文以ANSYS有限元分析软件为工具,对空调管路系统进行模态分析,并结合实验得出解决应力超标的方案,体现了有限元技术在空调应力应变分析中的重要性.%Taking the ANSYS finite element analysis software as the tool, the modal analysis is carried out for the air-conditioning pipeline system. Besides, combined with the experiments, the scheme to solve the problem of exceeding stress is proposed. It reflects the significance of finite element technology in the stress-strain analysis of air-condition-er.

  1. 水源热泵机组空调系统的运用和选择%On application and selection of air-conditioner system of water source heat pump unit

    Institute of Scientific and Technical Information of China (English)

    丰秀桂

    2011-01-01

    The paper analyzes the air-conditioning system,indicates from the scheme of using the water source heat pump unit and the identification of ways,and points out the feasibility of the current use of the water source heat pump unit,analyzes and researches the calculation of energy efficiency,technology and economic,the environment influence,the application perspective and the risks of the air-conditioning system of the water source heat pump unit,and indicates the necessity for the extensive use of the air-conditioning system in water source heat pump unit.%对空调系统进行了分析,从使用水源热泵机组的方案论述、方式确定等方面进行了论述,指出了当前使用水源热泵的可行性,同时对水源热泵机组空调系统的能效计算、技术经济、环境影响、应用前景、风险等进行了分析研究,充分说明了水源热泵机组空调系统广泛使用的必然性。

  2. Air-cooled CWS warm air furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Litka, A.F.; Becker, F.E.

    1995-08-01

    Thermo Power Corporation, Tecogen Division, has developed coal water slurry (CWS) combustion technologies specifically tailored to meet the space heating needs of the residential, commercial, and industrial market sectors. This furnace was extensively tested and met all the design and operating criteria of the development program, which included combustion efficiencies in excess of 99%, response to full load from a cold start in less than 5 minutes, and steady-state thermal efficiencies as high as 85%. While this furnace design is extremely versatile, versatility came at the expense of system complexity and cost. To provide a more cost effective CWS-based option for the residential market sector, Tecogen, developed a totally air-cooled CWS-fired residential warm air heating system. To minimize system cost and to take advantage of industry manufacturing practices and experience, a commercially available oil/gas solid fuel-fired central furnace, manufactured by Yukon Energy Corporation, was used as the platform for the CWS combustor and related equipment. A prototype furnace was designed, built, and tested in the laboratory to verify system integrity and operation. This unit was then shipped to the PETC to undergo demonstration operation and serve as a showcase of the CWS technology. An in-depth Owners Manual was prepared and delivered with the furnace. This Owners Manual, which is included as Appendix A of this report, includes installation instructions, operating procedures, wiring diagrams, and equipment bulletins on the major components. It also contains coal water slurry fuel specifications and typical system operating variables, including key temperatures, pressures, and flowrates.

  3. Research on the Transient Performance of the Double-Evaporator VRV Air Conditioner%双联变频空调系统的动态特性研究

    Institute of Scientific and Technical Information of China (English)

    周兴禧; 陈武; 夏清; 王懿

    2001-01-01

    With an void fraction model equation adopted and conservation priciple applied, an unsteady distributed-parameter mathematical model based on two-phased theory, which can predict the transient performance of the system, is established. The dynamic response to the step change of inverter-aided compressor speed, opening of the EEV and air fan speed is studied.%通过引入空泡系数模型方程,应用守恒原理,建立起以蒸发器、电子膨胀阀、压缩机为一体的双联空调系统的动态分布参数数学模型;通过仿真计算对一拖二系统随变频压缩机转速、电子膨胀阀开度以及回风风机转速改变的动态特性进行研究分析;为系统的实时控制打下基础。

  4. ANALYSIS ON REAL OPERATION AND ADSORBER PERFORMANCE OF A CONTINUOUS HEAT REGENERATIVE ADSORPTION AIR CONDITIONER%连续回热型吸附式空调实际运行与吸附床性能分析

    Institute of Scientific and Technical Information of China (English)

    吴静怡; 王如竹; 许煜雄

    2000-01-01

    近年来,我们研制了一台连续回热型吸附式空调/热泵,该空调/热泵在100热源驱动下,单位质量制冷功率SCP可达到150 W/kg,与此同时COP达到0.4。在系统的实际运行中,吸附床起到了重要的作用。本文介绍了该机组在实际运行中为稳定工况所采取的一系列措施,以及机组运行的实际Clapeyron图,着重讨论了系统运行参数对吸附床性能的影响%A continuous heat regenerative adsorption air conditionerhas been developed, which has specific cooling power of 150 W/kg andCOP of 0.5 in heating temperature of 100. In this systemtwo adsorbers are key devices, which are made of two shell and pipeexchangers. Adsorber performance depends on real operationparameter such as desorption temperature, adsorption temperature,condensing temperature, evaporating temperature, cycle time, massrecovery time and so on. In this paper, the methods controllingtemperature of heat source and evaporatingtemperature for stabilizing working condition are introduced.Clapeyron curves of real operation are showed. The factors effectingadsorber performance, such as cycle time of system and temperature ofheat source and so on, are chiefly discussed

  5. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 2, Fluorescent lamp ballasts, television sets, room air conditioners, and kitchen ranges and ovens

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is divided into ``volumes`` B through E, dealing with individual classes of consumer products. Chapters in each present engineering analysis, base case forecasts, projected national impacts of standards, life-cycle costs and payback periods, impacts on manufacturers, impacts of standards on electric utilities, and environmental effects. Supporting appendices are included.

  6. Study on the High Temperature Air-conditioner Based on Flash Evaporative Cooling Technology and Using R134a as Refrigerant%闪发蒸汽冷却技术及 R134a 用于高温空调器的研究

    Institute of Scientific and Technical Information of China (English)

    胡文举; 王梦圆; 江辉民; 高岩; 李德英

    2015-01-01

    建立了基于闪发蒸汽冷却技术及 R134a 为工质的高温空调器数学模型,分析并比较了 R22单级压缩、R22闪发蒸汽冷却和 R134a 单级压缩制冷系统在不同室外气温度下系统冷凝压力、压缩机排气温度、制冷量、耗功和性能系数。结果表明,相同工况下 R134a 制冷系统的冷凝压力和排气温度最低,制冷量较小,较 R22制冷系统适宜于环境温度50℃以上工况。当环境温度介于42~50℃时,闪发蒸汽冷却技术可有效降低以 R22为工质的空调压缩机的排气温度,提高系统制冷量和性能系数,但冷凝压力和耗功略有升高。%Mathematical model of the high temperature air-conditioner based on flash evaporative cooling technology and using R134a as refrigerant were developed.Condensing pressure,compressor’s discharge temperature and input power,refrigerating ca-pacity and coefficient of performance (COP)of refrigeration systems including refrigeration system with R134a as refrigerant,sin-gle stage compression refrigeration system with R22 as refrigerant and flash evaporative cooling technology based refrigeration sys-tem also using R22 as refrigerant were analyzed.Results showed that refrigeration system using R134a as refrigerant had the lowest condensing pressure,compressor discharge temperature and refrigerating capacity when three refrigeration systems worked in same condition,and this system was more suitable for the condition that environment temperature was higher than 50℃.Compared with single stage compression refrigeration system with R22 as refrigerant,flash evaporative cooling technology could effectively reduce the compressor discharge temperature and improve the refrigeration system’s capacity and COP with slightly higher power con-sumption and condensing pressure when the environment temperature was between 42 ~50 ℃.

  7. Demand Response Control Strategy for Central Air-conditioner Based on Temperature Adjustment of Partial Terminal Devices%基于局部终端温度调节的中央空调需求响应控制策略

    Institute of Scientific and Technical Information of China (English)

    戚野白; 王丹; 贾宏杰; 黄仁乐; 张逸; 杨占勇

    2015-01-01

    不同于传统单体温控设备,中央空调因其较大的制冷/制热容量而具有更好的需求响应可调潜力。结合中央空调需求响应特点,对其进行了热力学建模,涉及中央空调主机、循环水泵系统、终端组件等动态,形成了多终端中央空调需求响应模型。针对以往中央空调控制策略中对终端整体调节的方法,提出了一种基于局部终端温度调节的控制策略,可实现不同的控制精度。研究结果表明,基于“自下而上”的控制方法,通过合理调节关键的中央空调终端温度设定值,受控群体能够在维持较高用户舒适度的同时,精准响应外界功率信号。%Unlike small amounts of thermostatically controlled appliances (TCAs),the central air-conditioner(CAC) has huge potential ability of demand response by virtue of its large capacity.Focusing on the features of CAC demand response,an integrated model is proposed to describe CAC”s thermodynamic aspects,including the main devices,circulating water system and terminal devices.This paper presents a new CAC control strategy based on temperature adjustment of partial terminal devices which differs from previous methods in concentrating on all the CAC”s terminal devices.The effects of different precision controlling conditions can be reflected by using this model and strategy.Modeling results show that the proposed approach has better performance and efficiency by rational adjustment.

  8. Application of Computer Model to Estimate the Consistency of Air Conditioning Systems Engineering

    OpenAIRE

    Amal El-Berry; Afrah Al-Bossly

    2013-01-01

    Reliability engineering is utilized to predict the performance and optimization of the design and maintenance of air conditioning systems. There are a number of failures associated with the conditioning systems. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely are mainly due to a variety of problems with one or more components of an air conditioner o...

  9. Hazardous air emissions potential from a wood-fired furnace

    International Nuclear Information System (INIS)

    During the first week of April, 1991 the Wisconsin Department of Natural Resources (WDNR) conducted a series of air emissions tests of a small industrial wood-fired boiler in northern Wisconsin. The boiler was firing a virgin hogged wood/wood waste fuel with a moisture content of about 35 percent. The pollutants measured were particulates, nitrogen oxides (NOx), carbon monoxide (GO), total hydrocarbons (THC), benzene, formaldehyde (CHOH), polycyclic organic matter (POM, e.g. Benzo (a) pyrene), aldehydes, and trace metals (As, Ba, Cu, Pb, Mn, Ni, K, Se, Na, and Zn). For two and a half days continuous emissions data were recorded by laboratory-certified continuous emissions monitors for CO, NOx, 0-2, THC, and COq2 while the EPA reference method stack tests were being conducted for the other pollutants. In addition, a WDNR test team measured CO, 0-2, and flue gas temperature with a Rosemount portable combustion analyzer for several hours over the course of those two and a half days. The principal purpose behind the study was to evaluate the hazardous air emissions potential of a small industrial furnace firing a virgin wood fuel. To that end, it was hoped that a surrogate pollutant could be identified which would represent the levels of hazardous air emissions (e.g., benzene) present in the wood-fired furnace flue gases. If a readily monitorable pollutant could be identified, then a regulatory strategy of measuring one representative pollutant could be put in place to continually assess the hazardous emissions potential of virgin wood combustion. (UK)

  10. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ...-contained oil-fired or gas-fired furnace designed to supply heated air through ducts to spaces that require... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431.72 Section 431.72 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM...

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  12. Numerical Study of Air Nozzles on Mild Combustion for Application to Forward Flow Furnace

    Institute of Scientific and Technical Information of China (English)

    Liu Bo; Wang Yuanhua; Xu Hong

    2016-01-01

    An attempt was made to extend mild combustion to forward lfow furnace, such as the reifnery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furnace. The Eddy Dissipation Concept (EDC) model coupled with the reaction mechanism DRM-19 was used. The prediction showed a good agreement with the measurement. The effect of air nozzle circle (D), air nozzle diameter (d), air nozzle number (N), and air preheating temperature (Tair) on the lfow, temperature and species ifelds, and the CO and NO emissions was investigated. The results indicate that there are four zones in the furnace, viz.:a central jet zone, an ignition zone, a combustion reaction zone, and a lfue gas zone, according to the distribution proifles of H2CO and OH. The central jet entrains more lfue gas in the furnace upstream with an increasing D while the effect of D is negligible in the downstream. The air jet momentum increases with a decreasing d or an increasing Tair, and entrains more lfue gas. The effect of N is mainly identiifed near the burner exit. More heat is absorbed in the radiant section and less heat is discharged to the atmosphere with a decreasing d and an increasing N as evidenced by the lfue gas temperature. The CO and NO emissions are less than 50μL/L and 10μL/L, respectively, in most of conditions.

  13. 40 CFR 424.40 - Applicability; description of the covered calcium carbide furnaces with wet air pollution control...

    Science.gov (United States)

    2010-07-01

    ... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable...

  14. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... characterization, (3) markups to determine product price, (4) life-cycle cost and payback period, and (5) national...-the-wall and space-constrained systems. 69 FR 50997. This final rule constituted the first cycle of... analyses DOE would conduct, such as the engineering analysis, the life-cycle cost (LCC) and payback...

  15. Quality standards for ventilation devices and air conditioners; Qualitaetsstandards fuer Lueftungs- und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Backes, C. [DSD-Lufttechnik, St. Ingbert (Germany); Baumeister, R.L. [Robatherm, Burgau (Germany); Boehm, P. [TUEV Bayern-Sachsen, Muenchen (Germany); Lorenz, W. [Fachgemeinschaft Allgemeine Lufttechnik im VDMA, Frankfurt am Main (Germany)

    1995-07-01

    In Germany the requirements and testing of ventilation devices/space HVAC systems have not been standardised yet. In this work a report is given on the European standardisation activities and on the activities of the private industry with respect to quality assessment, both of which are setting new standards. This will have major effects on the market for these devices. (orig.) [Deutsch] Anforderungen und Pruefungen von raumlufttechnischen Geraeten sind in Deutschland bisher nicht standardisiert. Die europaeische Normung und privatwirtschaftliche Aktivitaeten zur Guetesicherung, ueber die in diesem Beitrag berichtet wird, setzen neue Massstaebe. Dies wird grundlegende Auswirkungen auf den Geraetemarkt haben. (orig.)

  16. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    Institute of Scientific and Technical Information of China (English)

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  17. The system of thermoelectric air conditioning based on permeable thermoelements

    OpenAIRE

    Cherkez R. G.

    2009-01-01

    There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of compute...

  18. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    Science.gov (United States)

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  19. Application of an Integrated Heat Recovery Technology for Domestic Hot Water Supply System and Air Conditioning

    OpenAIRE

    Chen Yan; Zhang Yufeng

    2013-01-01

    This study is to design an integrated heat recovery and air conditioner system and to investigate the feasibility and the potential performance of this system in changing conditions. Different season conditions and operating modes are studied based on the items of one hotel. In winter, heat recovered from wastewater is used on water heating and air condition and the surplus energy of air conditioner system is used on hot water system in summer. Dynamic energy ...

  20. hermetically sealed compressor unit, temperature level, mathematical model, marine air conditioning syste

    OpenAIRE

    Lytosh, Olena V.; Dorosh, Vadym S.

    2014-01-01

    The mathematical model and calculation method of the temperature level of the hermetically sealed compressor unit for the marine self-contained air conditioners taking into account the operating conditions and machine design parameters have been given.

  1. Numerical Simulation of Combustion Characteristics in High Temperature Air Combustion Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-hua; CAI Jiu-ju; XIE Guo-wei

    2009-01-01

    The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-e model with wall function, and radiation was handled using discrete ordi-nate radiation model. The PDF (probability density funetion)/mixture fraction combustion model was used to simu-late the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen eoncentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera-ture lessens the mixing of the fuel and air in primary combustion zone, ereates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly.

  2. Impact of air staging along furnace height on NO{sub x} emissions from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Weidong; Lin, Zhengchun; Kuang, Jinguo; Li, Youyi [School of Mechanical and Power Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 20024 (China)

    2010-06-15

    Experiments were carried out on an electrically heated multi-path air inlet one-dimensional furnace to assess NO{sub x} emission characteristics of an overall air-staged (also termed air staging along furnace height) combustion of bituminous coal. The impact of main parameters of overall air-staged combustion technology, including burnout air position, air stoichiometric ratio, levels of burnout air (the number of burnout air arranged at different heights of the furnace), and the ratios of the burnout air flow rates and pulverized coal fineness of industrial interest, on NO{sub x} emission were simulated to study in the experimental furnace, as well as the impact of air staging on the carbon content of the fly ash produced. These results suggest that air-staged combustion affects a pronounced reduction in NO{sub x} emissions from the combustion of bituminous coal. The more deeply the air is staged, the further the NO{sub x} emission is reduced. Two-level air staging yields a greater reduction in NO{sub x} emission than single-level air staging. For pulverized coal of differing fineness, the best ratio between the burnout air rates in the two-level staging ranges from 0.6 to 0.3. In middle air-staged degree combustion with f{sub M} = 0.75, pulverized coal fineness, R{sub 90} (%), has a greater influence on NO{sub x} emission, whereas R{sub 90} has little influence on NO{sub x} emission for deep air-staged degree with f{sub M} = 0.61. Air-staged combustion with proper burnout air position has little effect on the burnout. For overall air-staged combustion, proper burnout air position and air-staged rate should be considered together in order to achieve high combustion efficiency. (author)

  3. Smart sensors enable smart air conditioning control.

    Science.gov (United States)

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  4. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  5. Effect of Combustion Air Pre-Heating In Carbon Monoxide Emission in Diesel Fired Heat Treatment Furnace

    Directory of Open Access Journals (Sweden)

    E B Muhammed Shafi,

    2015-09-01

    Full Text Available This paper describes the effect of combustion air pre- heating in Diesel fired heat Treatment Furnace. The main heat treatment processes are Normalizing, Tempering, Hardening, Annealing, Solution Annealing and Stress Relieving. The emission of carbon monoxide is measured with combustion air pre-heating and without preheating. The results are then compared and it is found that the emission of CO is reduced by 29.12%. With the Combustion air pre-heating a considerable reduction in Specific Furnace Fuel Consumption (SFFC is obtained. The test was caaried out at Peekay Steels Casting (P ltd, Nallalam, Calicut.

  6. Candidate chemical systems for air cooled, solar powered, absorption air conditioner design. Part II. Solid absorbents, high latent heat refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, W. J.

    1978-04-01

    Work done in attempting to qualify absorption refrigeration systems based on refrigerants with intermediate latent heats of vaporization is summarized. In practice, these comprise methanol, ammonia, and methylamine. A wide variety of organic substances, salts, and mixtures were evaluated in as systematic a manner as possible. Several systems of interest are described. The system, LiClO/sub 3/--LiBr--H/sub 2/O, is a good back up system to our first choice of an antifreeze additive system, and thermodynamically promising but subject to some inconvenient materials limitations. The system, LiBr/ZnBr/sub 2/--methanol, is thermodynamically promising but requires additional kinetic qualification. Chemical stability of the system, LiCNS--ammonia/methylamine with various other third components, does not appear to be adequate for a long-lived system.

  7. Experimental study on sulfur removal from ladle furnace refining slag in hot state by blowing Air

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Lu Lin; Qi-fan Wu

    2016-01-01

    In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron micros-copy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high tempera-ture by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the tem-perature exceeded 1350°C. At 1370°C and 1400°C, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are benefi-cial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur re-moval.

  8. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  9. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-01-01

    and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14......Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions......%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six...

  10. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm...

  11. Effect of overfire air angle on flow characteristics within a small-scale model for a deep-air-staging down-fired furnace

    International Nuclear Information System (INIS)

    Highlights: • Down-fired furnace suffering from poor combustion performance and high NOx emissions. • Developing a deep-air-staging technology including OFA to deal with these problems. • Evaluating flow fields at different OFA angles by cold modeling experiments. • Determining an optimal OFA angle to be 40°. - Abstract: A deep-air-staging combustion technology consisting of special combustion organization and overfire air (OFA) application, has been developed previously for the particularly high NOx emissions, severely asymmetric combustion, and serious slagging that were found in a 350 MWe down-fired furnace. To evaluate the flow characteristics with respect to the OFA angle and thus establish an optimal OFA angle for the furnace, cold airflow experiments were conducted by recording flow field data within a 1:15-scaled model of the furnace at different OFA angle settings (i.e., 30°, 35°, 40°, 45°, and 50°, respectively). Various data such as the flow field pattern, velocity distribution in the furnace throat region where OFA flows, and the decay in the OFA jet, were compared among different angle settings. No negative effect on the flow field could be found with increasing the OFA angle except for 50°. As the angle increased, the vertical reach of the OFA flow increased continually, whereas the transverse spread of OFA increased initially but then decreased in the furnace throat region. To establish a symmetric flow field along with an appropriate OFA penetration depth, an optimal setting of 40° was found for the OFA angle. Our published numerical results uncovered that applying the deep-air-staging combustion technology with the optimized OFA angle, well-formed symmetric combustion developed and NOx emissions could be reduced by 50%, without increasing levels of carbon in fly ash

  12. Heat Engineering and Economical Justification of Selection of Optimum Air Heating Temperature in Recuperators of Heating Continuous Furnaces at Machine-Building Enterprises

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolsky

    2009-01-01

    Full Text Available The paper presents a methodology for calculation of recuperative heat exchangers applied at heating continuous furnaces of press-forging production at machine-building enterprises. Technical and economic calculations of an optimum air heating temperature have been made taking needle-shape heat exchangers in the RUE MAZ heating continuous  furnaces as an example while varying furnace capacity, cost of power carriers and heat-exchange devices.

  13. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  14. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  15. Model for predicting noise of propeller fans in air conditioners; Kuchoyo propeller fan no soon hasei model no kento

    Energy Technology Data Exchange (ETDEWEB)

    Hakamaya, N.; Funabashi, S.; Takada, Y. [Hitachi, Ltd., Tokyo (Japan)

    1999-12-25

    A model for predicting noise of propeller fans has been developed experimentally. First, the frequency response of turbulence on the blade of a rotating propeller fan was experimentally measured. Then, propeller fan noise was predicted by this model, which calculates lift fluctuations by Sears's equation and sound pressure in the far field by Curle's equation. The model assumes that the normalized intensity of turbulence (i. e., velocity fluctuation) is small in the high-flow-coefficient range but increases sharply in the low-flow-coefficient range. And the model showed that propeller fan noise depends on averaged relative velocity, intensity of turbulence, and length scale of turbulence. These results agree with the experimental measurements. Accordingly, the model predicts propeller fan noise and noise spectrum over a wide range of flow coefficients with reasonable accuracy. (author)

  16. Carbon Emissions from air-Conditioning

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2013-01-01

    Full Text Available This paper explores electricity consumption and carbon emissions associated with air-conditioning. The total heat load of a room fitted with air conditioner of 1.5 ton capacity has been calculated by calculating conduction and ventilation losses. Solar heat gain and internal gain were taken as the other two parameters for the total heat calculation.

  17. Radioactivity in the furnace air-cleaning filter from a house with an unusually high level of airborne radon

    International Nuclear Information System (INIS)

    The amounts of the three short-lived daughters of radon on the furnace air-cleaning filter from a house with a high level of radon were estimated to be 8.2, 33, and 38 kBq (0.22, 0.89, and 1.03 μCi) for 218Po, 214Pb, and 214Bi, respectively, at the time of removal from the furnace. These data were used to calculate the airborne concentrations of the three, and the results indicated that about 70% of the daughters were lost to surfaces in the house and by impaction in the air ducts. The filter's content of 210Pb was found to be 4.4 kBg (0.12 μCi); from this the average concentration of radon-producing filterable daughters during the time the furnace blower operated, was estimated to be 860 Bq m-3. This indicated that there was no significant loss to surfaces or in air ducts. Possible reasons for the difference are given. The filter was also found to contain 1 kBq (27 nCi) of 212Bi from the thorium series

  18. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  19. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    Directory of Open Access Journals (Sweden)

    Lerchai Yodrak

    2010-01-01

    Full Text Available Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a hot brass forging process. The heat pipe air-preheater was designed, constructed and tested under medium temperature operating conditions with inlet hot gas ranging between 370-420°C using water as the working fluid with 50% filling by volume of evaporator length. Results: The experiment findings indicated that when the hot gas temperature increased, the heat transfer rate also increased. If the internal diameter increased, the heat transfer rate increased and when the tube arrangement changed from inline to staggered arrangement, the heat transfer rate increased. Conclusion/Recommendations: The heat pipe air-preheater can reduced the quantity of using gas in the furnace and achieve energy thrift effectively.

  20. Indoor Air Quality

    OpenAIRE

    Korlakunta Divya #1, M.Anil Kumar

    2013-01-01

    The main aim of our project is to maintain the indoor air quality.The analysis is done on different parameters like temperature,relativehumidity,CO2,lights,sens ors and air conditioners to maintain the indoor environment.This report provides overview on importance of indoor air quality in an office or any other closed structure. It also discusses about the effects of poor indoor air quality, the various factors that affect the indoor air quality and various methods to assess indoor air qualit...

  1. You Can Help Keep the Air Cleaner -- Every Day

    Science.gov (United States)

    ... when ozone is expected to be high: Conserve electricity and set your air conditioner at a higher temperature. Choose a cleaner commute—share a ride to work or use public transportation. Bicycle or walk to errands when possible. Refuel cars ...

  2. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems....

  3. Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Arvind Atreya

    2007-02-16

    This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

  4. Structure of reaction zone of normal temperature air flameless combustion in a 2 ton/h coal-fired boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Xing, X.; Wang, B.; Lin, Q. [University of Science & Technology of China, Hefei (China)

    2007-06-15

    By injecting normal temperature air into a coal-fired boiler furnace at an evaporation capacity of 2 ton/h, flameless combustion with little noise is achieved. Numerical simulations and experimental research shows that the combustion takes place in a wide and broad area, almost the whole furnace, resulting in a voluminal reaction. For this normal temperature air flameless combustion (NTAFC), when the excess air coefficient approaches 1, the fuel combusts fully. The concentrations of NOx and CO in flue gas are relatively low and are hardly affected by either an excess air coefficient or thermal load. In front of the jet is a low-temperature gas-mixing zone whose diameter is equivalent to that of the jet, and the temperature of this zone increases with the distance from the jet tip. A mild stable combustion reaction without a visible flame takes place in the part of the furnace where the temperature value is higher and the amplitude of variation is not large. In addition to the advantages shared with high-temperature air combustion (e.g. uniform temperature distribution, low NOx and CO emission, high combustion efficiency, and so on), NTAFC does not require a high-temperature air-preheating system and is easier to actualize.

  5. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  6. Influence Analysis of Air Flow Momentum on Concentrate Dispersion and Combustion in Copper Flash Smelting Furnace by CFD Simulation

    Science.gov (United States)

    Zhou, Jun; Zhou, Jieming; Chen, Zhuo; Mao, Yongning

    2014-09-01

    The Outokumpu flash smelting process is a very successful technology for copper extraction from sulfide concentrate. Numerical simulation has been used for several decades in the analysis and evaluation of the smelting process. However, significant delay in the particle ignition was found in computations of flash furnaces that had great expansion in their productivity. A study was thereafter carried out to investigate how the gaseous flows influence the particle dispersion and combustion. A momentum ratio was defined to describe the effective portion of the pressure forces caused by the lateral and the vertical gaseous flows. Simulations were carried out with Fluent 6.3 (Fluent Inc. The software package is now known as Ansys Fluent of Ansys Inc.) for cases with different momentum ratios as well as of the same momentum value. A detailed analysis and discussion of influences of the gaseous momentum on the particle dispersion are presented. The result reveals that a large momentum ratio combined with large amount of distribution air is helpful for good particle dispersions and thus quicker combustions. Also the process air is found to perform a constraint influence on the particle dispersions, particularly for those of medium and small sizes.

  7. Smart Sensors Enable Smart Air Conditioning Control

    OpenAIRE

    Chin-Chi Cheng; Dasheng Lee

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be contr...

  8. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    2011-06-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  9. In-situ, in air, high-temperature phase transformations in rare-earth niobates and titanium oxides (dysprosium and yttrium) using a thermal-image furnace

    Science.gov (United States)

    Siah, Lay Foong

    Thermal-image furnaces afford two major advantages over the conventional resistance heating systems for high-temperature studies of oxides in air, namely: (i) the highly localized heating allows temperatures in excess of 2500°C to be reached in air or in an oxidizing atmosphere, and (ii) no sample contamination from volatile furnace components since the sample is heated by absorption of a focused, high intensity light beam. In this work, we developed a compact furnace powered by four halogen infrared reflector lamps (150 W each), for in-situ high-temperature studies using synchrotron radiation. The primary objective was to evaluate the feasibility of the thermal-image technique for in-situ, in air, studies of high-temperature phase transformations in oxide ceramics. Specifically, the issues of temperature measurement and reliability of results obtained in comparison with published literature were addressed. The use of a co-existent "in-situ thermometer" was found to be a viable method to monitor the sample temperature in the image "hot-spot". Studies of YNbO4 and DyNbO4 revealed the existence of a new cubic phase at elevated temperatures beyond the commonly known ferroelastic monoclinic-to-paraelastic tetragonal transformations. A series of high-temperature powder patterns of the pure hexagonal phase of DY2TiO5 was also collected in-situ, in air.

  10. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  11. Application of Computer Model to Estimate the Consistency of Air Conditioning Systems Engineering

    Directory of Open Access Journals (Sweden)

    Amal El-Berry

    2013-04-01

    Full Text Available Reliability engineering is utilized to predict the performance and optimization of the design and maintenance of air conditioning systems. There are a number of failures associated with the conditioning systems. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely are mainly due to a variety of problems with one or more components of an air conditioner or air conditioning system. To maintain the system forecasting for system failure rates are very important. The focus of this paper is the reliability of the air conditioning systems. The most common applied statistical distributions in reliability settings are the standard (2 parameter Weibull and Gamma distributions. Reliability estimations and predictions are used to evaluate, when the estimation of distributionsparameters is done. To estimate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several companies’ departments is checked. This air conditioning system is divided into two systems, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40 - 45oF (4 - 7oC. The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, with the application of the Weibull and Gamma distributions it is indicated that the reliability for the systems equal to 86.012% and 77.7% respectively . A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families is studied. It is found that Weibull method has performed well for decision making .

  12. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  13. VENTILATION INFLUENCE UPON INDOOR AIR RADON LEVEL

    Institute of Scientific and Technical Information of China (English)

    田德源

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level.Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition.although using household conditioner requires a sealed room which should lead to a higher radon level.Turning on air conditioner helps lower indoor radon level.Therefore.the total indoor air Rn levels are normal>ventilation>exhaust or indraft> exhaust plus indraft.

  14. R290家用空调器的可靠性设计%Design on reliability of household R290 air conditioner

    Institute of Scientific and Technical Information of China (English)

    冼志健

    2014-01-01

    通过对比R290和R22的热物性,指出R290是一种理想的替代制冷剂,但是存在易燃易爆的安全隐患.基于R290的可燃性,论述家用空调器采用R290作为制冷剂的可靠性方案设计与控制方式.

  15. 实验动物房洁净空调的研究综述%Talk about Cleaning Air-Conditioner of Animal Test Room

    Institute of Scientific and Technical Information of China (English)

    才廷波; 董少宁

    2007-01-01

    实验动物房饲养实验动物种类齐全,是集科研、新药开发、药品质量检验等于一体的综合实验动物房,本文介绍了洁净空调的系统划分、实验动物房的特点及其采取的有效措施.

  16. 空调制造业对生物污染的防治策略%THE STRATEGY TO PREVENT BIOLOGIC POLLUTION FOR AIR CONDITIONER MANUFACTURING INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    俞炳丰; 张斌; 孔琼香

    2003-01-01

    非典型肺炎的流行,使得室内空气品质再次成了人们关注的问题.本文介绍了室内空气品质的影响因素,总结了现有的防治室内生物污染的一些有效措施,并提出了若干建议.

  17. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  18. AIR CONDITIONING IN OPERATING ROOMS AND INFECTION CONTROL – A REVIEW

    OpenAIRE

    May Socorro Martinez Afonso; Adenicia Custodia Silva e Souza; Anaclara Ferreira Veiga Tipple; Eliene Aparecida Machado; Eliane Alves Lucas

    2006-01-01

    ABSTRACT: This bibliographic survey in data banks such as MEDLINE, LILACS, SCIELO, Ministry of Health, among others aims at identifying what makes air conditioners a source of environmental contamination. The air is contaminated by particles which transport microorganisms. The sources of particles include patients and surgical staff. The control of the temperature, relative humidity, pressure, number of changes of air accomplished per hour, clothes, traffic, number of people in the rooms, mai...

  19. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  20. 对我公司吹风气燃烧炉及配风管路设计的探讨%Discussion on Design of Blow-Air Combustion Furnace and Air Distribution Piping

    Institute of Scientific and Technical Information of China (English)

    梁明超

    2013-01-01

    介绍2008年投运的2台吹风气余热回收装置燃烧炉及其配风管路在设计上的独到之处。投运以来,一直运行稳定,安全环保。%Describe the unique design of two combustion furnaces and air distribution piping in the blow-air waste heat recovery unit ,which was put into operation in 2008 .Since then ,the unit has been operated stablely , safely and environmental protection .

  1. Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities

    OpenAIRE

    Sharma, Dev

    2013-01-01

    Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities Conventional air-conditioners need high grade energy i.e. electricity, which in India, is primarily produced from fossil fuels. In spite of several emission restraints exercised by many countries under Kyoto protocol, energy consumption and pollution levels are higher than ever. Therefore, an assessment from the ecological point of view needs to be implemented as the greenhouse gases effect remains a threa...

  2. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    International Nuclear Information System (INIS)

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures ≤2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO2, MgO, and Pt which were found to be within ±3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed

  3. Desenvolvimento e construção de fornalha para biomassa com sistema de aquecimento direto e indireto do ar = Development and construction of a furnace for biomass with system of direct and indirect air heating

    Directory of Open Access Journals (Sweden)

    Fernanda Augusta de Oliveira Melo

    2010-07-01

    Full Text Available Uma fornalha, com opção para aquecimento direto e indireto de ar, foiprojetada e construída para utilizar, como combustível complementar à lenha, biomassa particulada, resíduo agroindustrial abundante e desperdiçado em boa parte. No intuito de verificar o funcionamento da fornalha, na opção de aquecimento direto e indireto, foram realizados três testes preliminares utilizando somente lenha como combustível. Nestes testes, avaliaram-se as temperaturas do ar ambiente, do ar aquecido na saída da fornalha e depois do ventilador, fluxo de ar, poder calorífico inferior e eficiência térmica. Com os dados obtidos nos testes, nas opções de aquecimento direto e indireto de ar, a fornalha mostrou-se flexível na opção de aquecimento, de fácil construção e operação, não exigindo mão-de-obra qualificada.A furnace, with a system for direct and indirect air heating, was projected and constructed to use biomass, particulate biomass, abundant and largely wasted agroindustrial refuse, as complementary fuel to firewood. With the objective of verifying furnace operation, in the option of direct and indirect heating, three preliminaries tests were conducted using only firewood as fuel. In these tests, the following variables were monitored: room air temperature, heated air temperature at the exit of the furnace and after the fan; room air relative humidity; warm air flow; lower calorific power and thermal efficiency of the furnace. In the tests the results showed, for both direct and indirect air heating, the furnace was shown to be flexible in the heating option, of easy construction and operation, not requiring skilled labor.

  4. Vibration Analysis and Control for Combined Air-preheater of Coking Furnace%焦化加热炉空气预热器振动及减振

    Institute of Scientific and Technical Information of China (English)

    颜祥富; 侯杰; 龙运国

    2013-01-01

    The combined air-preheater produces strong vibration when the coking furnace is working. In this paper, it was pointed out that the resonance caused by Carmen vortex is the main reason for the strong vibration of the air-preheater. To avoid the resonance, the Carmen vortex frequency of the heat-transfer-tube was adjusted so that it would not coincide with the natural frequency of the chamber any more. Through the improvement, the vibration of the air-proheater was eliminated, and the normal operation of the preheater was resumed.%  焦化装置组合式空气预热器试运行时产生强烈振动,对组合式空气预热器产生振动的原因进行分析,卡门涡流是预热器产生振动的主要原因。提出合理的消振方案,通过改造,该预热器消除了振动,恢复了正常的运行。

  5. Air conditioning system

    Science.gov (United States)

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  6. 车用空调系统在农用车辆上的应用%Application of Vehicle Air-conditioning System in Farm Vehicle

    Institute of Scientific and Technical Information of China (English)

    彭高宏

    2011-01-01

    Aimming at the structure,principle and general requirement of air-conditioning system,the practical methods for adding air conditioner on farm vehicles are introduced.%依据车用空调系统的结构和原理,以及加装空调的一般要求,介绍了农用车辆加装空调的具体方法。

  7. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2014-04-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  8. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  9. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  10. 太阳能技术在汽车空调上的应用%The application of solar - energy technology in the automotive air conditioning

    Institute of Scientific and Technical Information of China (English)

    施军锞; 祁影霞

    2012-01-01

    针对国家对环境污染及能源有效利用的重视,提出了现有汽车空调存在的问题,通过分析日渐成熟的高效太阳能电池技术、充放电控制技术,特别是具有高光电转化效率材料的不断涌现,以及嵌入式单片机技术的不断创新,为实现汽车空调热电制冷以及太阳能天窗的商业化应用提供了必要的技术支持,从而解决现有的蒸汽压缩制冷所面临的制冷剂替换及耗油问题,实现环境的保护和能源的有效利用.%Due to the environment pollution from the refrigerants of traditional air conditioners, a new typf of solar - energy air conditioner in automobiles was put forward. This paper analysed the high efficience of solar - energy cells, charging and discharging techniques and high photoelectrical conversion materials. With embedded micro - controller technology development, the thermoelectrical cooling technology could he used in air conditioners in automobiles.

  11. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Larry G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  12. 78 FR 62472 - Energy Conservation Program: Alternative Efficiency Determination Methods, Basic Model Definition...

    Science.gov (United States)

    2013-10-22

    ... type of commercial HVAC equipment, such as packaged terminal air conditioners (PTACs) and heat pumps...-cooled, evaporatively-cooled, and water-source) Packaged terminal air conditioners and heat pumps Computer room air conditioners Single package vertical air conditioners and heat pumps Variable...

  13. 不同二次风角度的W炉冷态流场实验研究%Influence of secondary air angle on flow field in down-fired furnace determined by cold-flow modeling experiment

    Institute of Scientific and Technical Information of China (English)

    杨文闯; 杨卫娟; 周志军; 袁炜东; 陈瑶姬; 周俊虎; 岑可法

    2013-01-01

    针对燃煤W火焰锅炉氮氧化物排放高的问题,提出新型W火焰锅炉燃烧技术——热风包裹低NOx燃烧技术(HAP),并对该技术进行冷态模化实验研究.HAP技术在常规W炉的基础上,在下炉膛增加了冷灰斗二次风和炉底二次风.冷态模化实验表明:相比于常规的W锅炉,HAP技术的炉内流场更优化,一次风下探深度大,炉内充满度高,并且壁面未出现严重的贴壁流动,结渣风险较小.通过对前后墙二次风和冷灰斗二次风的不同倾角的实验研究发现:倾角为45°的前后墙二次风具有较好的下探深度和炉膛充满度,避免了贴壁流动现象;增大冷灰斗二次风入射角度可以减小一次风下探深度,使得贴壁流动现象加剧.炉膛充满度随着冷灰斗二次风倾角的逐渐增大呈现先增大后减小的趋势,在66°时达到最大值.%Focusing on the problems of high NOx emissions in down fired boilers, a new combustion technology was presented for down fired boilers, hot air packing low-NOx combustion technology (HAP), and its cold-flow modeling experiments were conducted. HAP technology adds the secondary hot-air ports in the furnace hopper and bottom on the basis of the prior down fired boiler. The cold-flow modeling experiments prove that HAP technology has a much better airflow distribution compared with the prior W flame technology in the lower furnace. HAP technology produces a deeper penetration depth of the primary air and a higher filling fullness of air flow in the lower furnace. The adherent air flow towards the furnace wall does not appear obviously, which implies little risk of slagging. Different injection angles of the front and rear walls' secondary hot-air and the hopper secondary hot-air were researched. The wall secondary air with the injection angles of 45° makes a deeper penetration depth, higher filling fullness of air flow and good adherent air flow. Penetration depth of the primary air decreased and

  14. Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; DU Bin; ZHAO Yun

    2007-01-01

    Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant.In this paper regeneration and energy storage characteristics were studied theoretically and experimentally.Two criterion equations for heat and mass transfer in the regeneration process were obtained.The main factors that influence the regeneration process were analyzed.A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

  15. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  16. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  17. 10 CFR 434.517 - HVAC systems and equipment.

    Science.gov (United States)

    2010-01-01

    ... zone Packaged terminal air conditioner with space heater or heat pump, one heating/cooling unit per... Furnace, heat pump, or electric resistance (Note 8) Heat pump w/electric resistance auxiliary or air... perimeter reheat Fourpipe fan coil per zone with central plant Water source heat pump Fan...

  18. Prizes awarded in fiscal 1999 by the Minister for International Trade and Industry on factories having applied excellent energy management. Energy conservation by installing fuel cell power generation facilities utilizing methane gas generated from waste water treatment plants / Improvements toward a clean room and energy saving air conditioning system; 1999 nendo energy kanri yuryo kojo tsusho sangyo daijin hyosho jusho. 1999 nendo shigen energy sho chokan hyosho jusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    In order to achieve energy conservation in a waste water treatment plant in a brewery factories, an anaerobic treatment facility was introduced, and a fuel cell power generation facility effectively utilizing methane gas generated from the anaerobic waste water treatment plant was installed. This has resulted in large reduction in the operating number of blowers in the waste water treatment facility of activated sludge system. In addition, electric power, steam, and hot water generated from the fuel cells are effectively utilized as the factory utility. In energy conservation in an optical communication device manufacturing factory, the fan filter unit system was adopted, having been changed from the circulation air conditioner, a conventional type air conditioning system. The present system is a circulation system integrating the fan with the filter, making it possible to circulate air in the room to perform control of temperature, humidity, and dust in a clean room. Thus, the system has eliminated the circulating air conditioner, and reduced the air conditioner capacity by 42% and power consumption by 58.6% compared with those in the conventional circulation system. (NEDO)

  19. How motor vehicles contribute to global warming and air pollution

    International Nuclear Information System (INIS)

    In this chapter, the authors describe ways in which motor vehicles are contributing to global climate change and health problems caused by air pollution. Globally, motor vehicles account for about a third of world oil consumption and about 14% of the world's carbon dioxide emissions from fossil fuel burning. For the US the figures are 50% of oil demand and about 25% of carbon dioxide emissions. Motor vehicles are the major source of ozone precursors and monitoring data suggest that ozone concentrations are increasing by about one percent per year in the northern hemisphere and are causing adverse effects on human health and on crops. A major source of chlorofluorocarbons in the atmosphere is motor vehicle air conditioning. Annually about 120,000 metric tons of CFCs are used in new vehicles and in serving air conditioners in older vehicles. According to the EPA, vehicle air conditioners accounted for about 16% of the total CFC use in the US during 1989. According to the Montreal Protocol, CFCs are to be completely phased out of new vehicles by the turn of the century, thus reducing the depletion of the stratospheric ozone layer

  20. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    Science.gov (United States)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  1. Price freezes, durables and residential electricity demand - Evidence from the Greater Buenos Aires

    Energy Technology Data Exchange (ETDEWEB)

    Casarin, Ariel; Delfino, Maria Eugenia

    2010-09-15

    This paper examines the determinants of residential electricity demand in the Greater Buenos Aires between 1997 and 2006. During the second half of this period, residential tariffs remained nominally fixed, while an income boom boosted up the sales of durables. This study differs from previous works in that it explicitly considers the impact of the stock of air-conditioners on residential demand. The paper reports short- and long-run elasticities and examines the contribution of prices and durables to recent demand growth. Simulations illustrate the impact of prices and durables on future demand.

  2. Efficient air conditioning. Part 2. Air quality; Effiziente Klimatisierung - Teil 2. Luftqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Herbert [Paul Wurth S.A., Luxembourg (Luxembourg)

    2002-05-01

    Like other air conditioning systems, solar air conditioners should provide 'dry cool air', i.e. hygienically acceptable air at a comfortable temperature. In the summer season and in big cities, this is not possible without air filtering and dehumidification. [German] Im Herbst vergangenen Jahres wurden in dieser Zeitschrift am Markt vorhandene Systeme fuer eine solargestuetzte Klimatisierung verglichen.In dem Artikel fordern die Verfasser 'trockene kuehle Luft fuer die Nutzer'. Diese Forderung sollte eigentlich lauten 'schadstoff- und staubarme Luft im Aufenthaltsbereiche mit Temperatur und Feuchte innerhalb des Behaglichkeitsfeldes' oder kurz gesagt: 'hygienisch einwandrei und angenehm temperiert'. Diese Forderung ist allerdings ohne eine Luftfilterung und ohne Entfeuchtung in den Innenstaedten im Sommer nicht realisierbar. (orig.)

  3. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances

    International Nuclear Information System (INIS)

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. (authors)

  4. Electromelt furnace evaluation

    International Nuclear Information System (INIS)

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high

  5. A Kind of Multipurpose Robot of Single Station for the Air-conditioner Assembly Line%空调外机总装线的一种单工位多用途机器人

    Institute of Scientific and Technical Information of China (English)

    罗建伟; 奚源

    2015-01-01

    通过机器人末端夹具的模块化和一体化设计,实现了1台机器人驱动3套机器人末端夹具模块,不仅很好地满足了线体节拍要求,而且成倍提高了机器人的使用效率。为机器人使用方节省了自动化改造成本,促进工业机器人产业的持续健康发展。%Through modularized and integrated design of the robot fixture, a single robot can drive three sets of ro-bot fixture. It not only can satisfy the requirements of the line, but also improve the robot’s efficiency. In this way, it saves the cost for the robot’s user, so to promote the sustained and healthy development of the industrial robot indus-try.

  6. ynamic Simulation of Multi-Step Forming Processes Based on the Bulkhead Plate of Air-Conditioner%空调电机端盖冲压拉深工序的动态仿真

    Institute of Scientific and Technical Information of China (English)

    毛兰斌; 邢亚从; 邹甲军

    2007-01-01

    通过对空调电机端盖冲压件的复杂多次冲压工艺分析,初步确定工件各道工序的形状与尺寸,然后利用DYNAFORM软件对冲压式序进行动态模拟,分析冲压工序的合理性.通过修改参数,确定切实可行的冲压方案.再根据确定的方案设计制造模具,冲压出符合要求的工件.对冲压工序的设计方法和多道成形的动态模拟方法进行了说明,确保了模具设计的成功,缩短了生产周期,降低了生产成本.

  7. 空调电机端盖冲压拉深工序的动态仿真%Dynamic Simulation of Multi-step Forming Processes Based on Bulkhead Plate of Air-conditioner

    Institute of Scientific and Technical Information of China (English)

    毛兰斌; 邢亚从

    2007-01-01

    通过对空调电机端盖冲压件的复杂多次冲压工艺分析,初步确定工件各道工序的形状与尺寸,然后利用DYNAFORM软件对冲压工序进行动态模拟,分析冲压工序的合理性.通过修改参数,确定切实可行的冲压方案,再根据确定的方案设计制造模具,冲压出符合要求的工件.对冲压工序的设计方法和多道成形的动态模拟方法进行了说明,确保了模具设计的成功,缩短了生产周期,降低了生产成本.

  8. CBN砂轮高效内圆磨削空调压缩机活塞孔的研究%Research on CBN High Efficiency Grinding of the Air-Conditioner Compressor Piston Hole

    Institute of Scientific and Technical Information of China (English)

    刘伟刚; 姜滨; 郑师光

    2010-01-01

    针对空调压缩机活塞孔高效内圆磨削的需求,基于所研制的CBN砂轮数控内圆磨床,开展了CBN砂轮高效内圆磨削技术的研究.通过大量的磨削试验及对CBN砂轮磨削机理的深入分析,调整并优化磨削工艺,针对性地解决了活塞孔高效磨削中出现的问题,保证了高效连续磨削的精度稳定性.现场超过10万件的磨削试验证明该磨削技术及工艺稳定可靠,可大大提高磨削效率,降低磨加工成本.

  9. THE SIMULATION ON THE OUTDOOR ENVIROMENT OF SPLIT AIR CONDITIONER IN ONE HOTEL%某酒店分体空调室外环境的数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈姝; 卓献荣; 陈胜

    2010-01-01

    根据上海某酒店建筑格局,针对当地夏季工况,用CFD软件Fluent采用数值模拟方法对安装于建筑物外室外分体空调机环境的温度场和速度场进行数值模拟,分析此建筑格局的气流组织对分体空调机运行中对冷凝温度、压缩机运行、设备效率等问题的影响,为工程的实际应用提供理论参考和优化指导.

  10. 家用变频空调与公用电网谐波污染%Frequency Inverter Air Conditioner in Household and Harmonic Pollution in Public Supply Network

    Institute of Scientific and Technical Information of China (English)

    范忠瑶; 论立勇; 王松岭; 谢英柏

    2005-01-01

    变频空调因为省电,舒适性好等优点,市场占有率不断提高,但是目前市场上变频空调产品层次参差不齐.本文通过总结当前家用变频空调技术现状,分析当前市场上仍采用交流变频技术的家用空调器运行过程中对电网的谐波污染的机理和其产生的危害,在技术上总结了一些谐波污染的防治措施,并指出了出台相应技术法规规范变频空调器市场的急迫性.

  11. Working Principle of the Air-conditioner Controller on Bus TOYOTA HIACE%丰田海狮(HIACE)客车空调控制器工作原理

    Institute of Scientific and Technical Information of China (English)

    丁垚

    2007-01-01

    根据实物分别测绘整理出丰田海狮客车RZ系列、Y系列发动机空调控制器(空调放大器)内部的电路原理图.介绍其电源电路、前电磁阀控制电路、后电磁阀控制电路、电磁离合器继电器控制电路等的构成及工作状态,在此基础上讲述整个系统不同情况下的工作过程.

  12. Improvement and Development of Energy-saving and Environmental-friendly Hot Air Furnace for Cocoon Drying%节能环保烘茧机热风炉的改良研制

    Institute of Scientific and Technical Information of China (English)

    胡祚忠; 赵明孔; 杜文生; 吴建梅; 张剑飞; 叶晶晶

    2011-01-01

    热风发生炉中燃煤的燃尽率及热效率直接影响到蚕茧烘干机的节能、环保性能.新研制出烘茧机的椭圆形推拱式分段燃烧热风炉,将传统烘茧机中燃煤炉的方形或圆形燃烧室改为长椭圆形,将人工加煤改为机械化自动加煤,并将燃煤由原来的层叠式燃烧改为水平设置预热干馏区、高温燃烧区、燃烬区3个区段的分段式燃烧.这种热风炉的热风产生过程为:燃煤由机械传动缓慢均匀推入预热干馏区,受炉前拱与高温烟气热辐射而被烘干和干馏,析出的碳氢化合物及少量氢和一氧化碳等着火燃烧变成焦炭;焦炭、挥发物燃烧产生的热风以及不完全燃烧气体(黑烟)一起从前拱向后进入到中部高温燃烧区充分燃烧;未燃尽的余炭被推到后段燃烬区,在离开炉膛之前充分燃尽,最后落入尾部的灰渣室中.由此可见,椭圆形推拱式分段燃烧热风炉可使燃煤充分燃尽,不仅提高热效率至90%以上,而且从根本上解决了燃烧过程中黑烟污染环境的问题,具有节能环保的特点.%The burn-off rate and thermal efficiency of fire coal in a hot air generating furnace directly affects the performance of a silkworm cocoon drying machine on energy-saving and environmental protection. We developed an oval-shaped hot air furnace with multiple arches designed for staged combustion of the fuel in cocoon drying machine. In this new furnace, the combustion chamber was changed from the square or round shape in a conventional cocoon drying machine into long oval shape, coal supply was changed from manual-operated into automatic machine-driven, and coal burning was changed from stack mode into staged combustion mode in three horizontal compartments namely preheating and dry distillation, high temperature burning and re-burning. The generating process of hot air in this furnace is as follows: coals are pushed into the preheated dry distillation compartment through

  13. 75 FR 35447 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009; Nationwide...

    Science.gov (United States)

    2010-06-22

    ... Register on February 4, 2010, 75 FR 5783. Upon receipt of completed waiver requests in response to the RFI... mini-split heat pump and air conditioner systems. This waiver includes the main condensor and heat pump... pellet and chip boiler furnaces; variable refrigerant flow zoning and inverter-driven ductless...

  14. 77 FR 1649 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Science.gov (United States)

    2012-01-11

    ... Residential Furnaces and Residential Central Air Conditioners and Heat Pumps. (76 FR 37408). The NIA... section 3(f) of Executive Order 12866, Regulatory Planning and Review, 58 FR 51735 (Oct. 4, 1993.... 13272, ``Proper Consideration of Small Entities in Agency Rulemaking'' 67 FR 53461 (August 16,...

  15. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  16. Emission spectroscopy for coal-fired cyclone furnace diagnostics.

    Science.gov (United States)

    Wehrmeyer, Joseph A; Boll, David E; Smith, Richard

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuel-lean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and O2 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths. PMID:14661846

  17. Continuous ring furnaces

    Energy Technology Data Exchange (ETDEWEB)

    De Stefani, G.; Genevois, J.L.; Paolo, P.

    1981-01-06

    A smoke conducting apparatus for use particularly with continuous ring furnaces (e.g., Hoffman furnaces) wherein each furnace chamber is connected to the smoke channel, the latter being a metal pipe inclined slightly from horizontal and provided with one or more traps along the length of its bottom surface, each trap containing a removable receptacle, and heating means being disposed along the bottom of the channel to fluidize tarry deposits of combustion products so that such deposits will flow by gravity into the removable receptacle.

  18. Induction Furnace - A Review

    Directory of Open Access Journals (Sweden)

    Vivek R. Gandhewar

    2011-09-01

    Full Text Available A new generation of industrial induction melting furnaces has been developed during the last 25 years. Present practices followed in Induction Furnaces are discussed in this paper. Through a literature review account of various practices presently being followed in steel industries using Induction Furnaces has been carried out with a view to gather principal of working. Apart from this a pilot studyhas also been carried out in few industries in India. We provide some recommendations for the productivity improvement .Due to non availability of the proper instrumentations the effect of the ill practices can not be precisely judged. If this is properly measured, the percentage of productivity improvement in steel melting Induction Furnace can be calculated.The review is carried out from the literature in the various journals and manuals.

  19. Space station furnace facility

    Science.gov (United States)

    Cobb, Sharon D.; Lehoczky, Sandor L.

    1996-07-01

    The Space Shuttle Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity environment of the International Space Station. The facility is divided into the Core System and two Instrument Racks. The core system provides the common electrical and mechanical support equipment required to operate experiment modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first instrument rack include a high temperature gradient furnace with quench, and a low temperature gradient furnace. A new EM is planned to be developed every two years.

  20. Acoustics of motor car air conditioning systems; Akustik der Kfz-Klimaanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, M.; Martini, J.; Cucuz, S. [Visteon Deutschland GmbH, VTZ Kerpen (Germany)

    2002-07-01

    Air conditioning systems in motor cars provide thermal comfort but the noise level may increase to an extent that makes the driver shut off the air conditioning system altogether. The contribution presents an introduction to acoustics. The human ear is described, and typical acoustic parameters like sound pressure, sound intensity, acoustic power and level definitions are introduced. Measuring systems and techniques are described, and typical problems and solutions in air conditioner acoustics are gone into. Finally, empirical estimates are made for the sound pressure level of ventilation nozzles and air conditioners. [German] Gestiegene Komfortansprueche der Kfz-Insassen haben in Europa waehrend der letzten Dekade die Kfz-Klimaanlage zu einem Standard-Ausstattungsmerkmal in der oberen Mittelklasse werden lassen, und auch kleinere Fahrzeugklassen (B- und C-Segment) folgen dieser Entwicklung auf dem Fusse. Die Hauptaufgabe der Kfz-Klimaanlage - die Bereitstellung des thermischen Komforts - wird aber mit akustischen Belastungen der Fahrzeuginsassen erkauft. Die akustische Belastung kann dabei so gross werden, dass die Insassen von einem optimalen Gebrauch der Klimaanlage absehen - einfach weil sie zu laut ist. Um einen moeglichst umfassenden Einblick in die Akustik zu gewaehren, wird zunaechst das menschliche Gehoer vorgestellt. Danach werden typische Kenngroessen der Akustik wie Schalldruck, Schallintensitaet und Schallleistung und die entsprechenden Pegeldefinitionen eingefuehrt. Im zweiten Abschnitt werden Messraeume und Messverfahren vorgestellt, um dann auf typische Probleme und Loesungsmoeglichkeiten in der Klimageraeteakustik einzugehen. Schliesslich werden empirische Abschaetzungen fuer den Schalldruckpegel von Belueftungsduesen und Klimageraeten vorgestellt. (orig.)

  1. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    Institute of Scientific and Technical Information of China (English)

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  2. Establishing a low-NOx and high-burnout performance in a large-scale, deep-air-staging laboratory furnace fired by a heavy-oil swirl burner

    International Nuclear Information System (INIS)

    A combustion configuration consisting of a low-NOx heavy-oil swirl burner along with overfire air (OFA) and flue gas recirculation (FGR), was developed for the low-NOx heavy oil combustion in a lab-scale furnace. Combustion experiments were performed with various heavy-oil supply temperatures, different oil spray nozzle types, and with or without feeding FGR. The combustion configuration was found to achieve low NOx and acceptable CO emissions (levels of 240–286 mg/m3 and 45–175 mg/m3 at 3% O2, respectively), even under the conditions without FGR. Increasing the FGR ratio from 0 to 10% attained a NOx reduction of 9% without an obvious increase in CO emission. In the oil atomizing nozzle type aspect, a radial bias pattern, which was designed to lower NOx emissions and improve ignition by regulating fuel bias combustion, actually resulted in higher NOx and CO emissions than those using a uniformly atomizing pattern. Decreasing the heavy-oil supply temperature (from 154 °C to 132 °C) prolonged the fuel combustion process and reduced NOx emissions. Finally, the optimized operation with low NOx and CO emissions (240 mg/m3 and 45 mg/m3 at 3% O2, respectively) was established. - Highlights: • Developing a low-NOx heavy-oil combustion configuration. • Trialing the combustion configuration in a large-scale laboratory furnace. • Evaluating combustion and NOx emission characteristics under various conditions. • Establishing an optimized low-NOx and high-burnout performance

  3. Thermal properties in phase change wallboard room based on air conditioning cold storage

    Institute of Scientific and Technical Information of China (English)

    陈其针; 刘鑫; 牛润萍; 王琳

    2009-01-01

    By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.

  4. A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

    Directory of Open Access Journals (Sweden)

    Xiaoqing Hu

    2015-08-01

    Full Text Available Thermostatically controlled loads (TCLs, such as air conditioners (ACs, are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID controller based on the particle swarm optimization (PSO algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

  5. Current Trend in Furnace Technology in the Melting Industries

    Directory of Open Access Journals (Sweden)

    O.A. Ighodalo

    2011-06-01

    Full Text Available The aim of this study is to presents some of the current trend in Furnace technology as it pertains to the melting industries. Furnaces are applied in various industries for material processing. Large amounts of energy are usually consumed in the melting industries. The current trend in furnace technology is towards energy conservation, enhanced efficiency and productivity. The reduction of pollutant emissions are also taken into consideration due to their environmental impact. The various materials and processes for furnaces are discussed. The various strategies being employed towards furnace energy conservation, efficiency and productivity, and reduction of pollutant emissions are also discussed. Such strategies include the use of better fuel types such as natural gas; improved insulation and refractory materials; advanced burner designs such as high velocity, regenerative and recuperative burners; new combustion technologies such as air and fuel staging, flue gas recirculation technique. Mathematical modeling is also being employed for analysis and design purpose.

  6. Trends in furnace control

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

    1993-07-01

    This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

  7. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    OpenAIRE

    T.J. Fudihara; L. Goldstein Jr.; Mori, M.

    2007-01-01

    In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional invest...

  8. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    OpenAIRE

    Zečević, N.

    2008-01-01

    There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon blac...

  9. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  10. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  11. Advanced steel reheat furnaces: Research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  12. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  13. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  14. Application study of complex control algorithm for regenerative furnace temperature

    Institute of Scientific and Technical Information of China (English)

    Lusheng GE

    2004-01-01

    Altemative switch combustion mode of air and gas is adopted on the two sides of the regenerative furnace, its temperature is in uncontrolled state in the switching process and the switch period is generally 3 ~ 5 min. Thus, the conventional bi-cross limited combustion control method is no longer applicable to the object. This paper makes use of neutral network algorithm to adjust the static operating point. On this basis, fuzzy control strategy is used for the furnace temperature control. The actual application result shows that the control strategy is effective to solve the problem of the combustion control for regenerative furnace.

  15. New possibilities of Consteel furnaces

    Science.gov (United States)

    Tuluevskii, Yu. N.; Zinurov, I. Yu.; Shver, V. G.

    2012-06-01

    The disadvantages of Consteel electric furnaces, which are mainly caused by the low efficiency of heating of a charged metal scrap by effluent furnace gases, are considered. A new concept of an electric-arc furnace with scrap heating on a conveyer by powerful burners, which provide fast scrap heating to 800°C, is proposed. As follows from calculations, the capacity of such a furnace increases substantially, the specific electric power consumption decreases, and the emission of toxic substances into the atmosphere decreases as compared to the existing Consteel furnaces.

  16. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  17. Novel rare earth-bearing ultra-high-temperature ceramics tested in a solar furnace above 2,200 C in air

    International Nuclear Information System (INIS)

    A novel method for testing ultra-high-temperature ceramics (UHTC) at very high temperature (above to 2,200 C) in air with an exposure time of several minutes is used. The well-known ZrB2 + SiC material shows a limited temperature of use in an oxidizing environment due to the low stability above 2,000 C of any silica that is formed. A few new systems without silicon are proposed, starting with the Hf or Zr, C, B and rare earth elements. The choice of rare earths is motivated by the formation of oxides with melting points higher than 2,000 C. The complex oxide scales formed during oxidation are accurately described, in terms of presence of porosity and gradients of composition. Similarities with the mechanism of oxidation described for ZrB2 + SiC materials are shown. A significantly higher thermal stability of rare-earth oxide containing ceramics compared to silica is highlighted. As a consequence, the protective capacity of the oxide scale is improved. (authors)

  18. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    Science.gov (United States)

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  19. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    Science.gov (United States)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  20. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  1. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  2. An induction heating furnace for radioactive waste fixation in glass

    International Nuclear Information System (INIS)

    The furnace is designed for the processing of liquid or loose solid, medium- or high-level radioactive wastes. The furnace lid is firmly attached to the frame. The furnace vessel is made of a refractory, corrosion resistant alloy, and it is attached to the bottom side of the lid using mechanisms remotely controlled with compressed air. The components connected to the lid and protruding into the melt, such as the tapping bar, are adapted to being remotely disassembled into two parts. The design enables the vessel to be lowered away. Remote dismantling of the furnace comprises three operations: disassembling the components connected to the lid and protruding into the melt, uncoupling the vessel from the lid, and lowering the vessel with the vitreous material into a shielded shipping container. (J.B.). 4 figs

  3. Moving behavior of pellets in a pellet shaft furnace

    Institute of Scientific and Technical Information of China (English)

    梁儒全; 赫冀成

    2008-01-01

    The downward moving behavior of pellets in a 8 m2 pellet shaft furnace with an internal vertical air channel and a drying bed was studied by means of a visualized model(1-15) and a top model(1-1).The visualized model experiment shows that the downward movement of pellets can be regarded as plug flow approximately inside the furnace except for the lower region of cooling zone due to the influence of the drained hopper.The top model experiment reveals that the pellet sizes increase along the moving direction because of the percolation phenomenon,which results in a decrease of the resistance coefficient and an increase of the gas flow rate from the furnace wall toward the furnace center.

  4. Situation and Expectation of Ice Thermal-Storage System Spot Test%冰蓄冷系统现场测试情况与展望

    Institute of Scientific and Technical Information of China (English)

    赵庆珠; 骆维军; 张雁

    2002-01-01

    @@ Appointed by the original Electric Power Ministry, Ts- inghua University air-conditioner lab has taken spot investi- gation and tests on many ice thermal-storage air-conditioner systems in nationwide scale since 1995. These systems with respective characteristic basically include the ice ther- mal-storage air-conditioner forms applied widely in China.

  5. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  6. Sintering furnace with hydrogen carbon dioxide atmosphere

    International Nuclear Information System (INIS)

    A heated furnace for sintering structures of uranium oxide containing composition being introduced to the furnace is described. The furnace receives an atmosphere comprising a mixture of hydrogen and carbon dioxide as initially introduced to the furnace, and this mixture reacts in the furnace to give the presence of water vapor and carbon monoxide

  7. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  8. Large scale air monitoring: lichen vs. air particulate matter analysis.

    Science.gov (United States)

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). PMID:10474261

  9. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  10. Electricity and Natural Gas Efficiency Improvements forResidential Gas Furnaces in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-05-26

    This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78 percent annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80 percent AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81 percent AFUE) and condensing furnaces (90-96 percent AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80 percent. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90 percent or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current

  11. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  12. Hybrid furnace system for the plasma melting of radioactive waste

    International Nuclear Information System (INIS)

    A hybrid type plasma melting furnace has been designed for vitrification of medium and low level radioactive wastes. Refractory is used the bottom side of the furnace while the upper side consists of water-cooled metal plate. Such configuration takes the advantages of all refractory furnace (easy heating and tapping) and all water-cooled furnace (no additional waste production and reduced carry-over of volatile metals). The system uses two plasma torches - a main torch for the melting of incoming wastes and a subsidiary torch for the slag tapping. The torch will use air for the plasma medium and in order for the reduction of NOx, an appropriate amount of hydrocarbon gas will be supplied to the furnace at the time. A load-lock type feeder will be used together with a conveyer system. A water cooled baffle will be used at the off-gas exit to reduce the amount of carry-over of dust. The configuration and advantage of such hybrid type melting furnace is discussed

  13. Energy-saving bogie-hearth furnace with heat exchanger system; Energiesparender Herdwagenofen mit Waermetauschersystem

    Energy Technology Data Exchange (ETDEWEB)

    Strohmenger, P. [KWS Strohmenger GmbH, Neunkirchen am Brand (Germany)

    2003-07-01

    This article introduces a newly developed bogie-hearth furnace which features about 75% recovery of the input energy. The calcining units tunnel furnace and bogie-hearth furnace are compared and essential features of the new bogie-hearth furnace concept are described, including the minimisation both of radiation losses in the furnace and thermal inertia of the furnace and bogie-hearth, as well as the use of preheated combustion air, and heat recovery from the flue gases. (orig.) [German] Der Beitrag stellt einen neu entwickelten Herdwagenofen vor, bei dem die eingesetzte Energie zu etwa 75% zurueckgewonnen werden kann. Es werden die Brennaggregate Tunnelofen und Herdwagenofen verglichen und wesentliche Merkmale des neuen Herdwagenofen-Konzeptes wie das Minimieren der Abstrahlverluste des Ofens und der Waermespeichermasse von Ofen und Herdwagen, Verwenden vorgewaermter Verbrennungsluft und die Waermerueckgewinnung aus den Rauchgasen beschrieben. (orig.)

  14. REACTIVATION OF GRANULAR CARBON IN AN INFRARED TRAVELING BELT FURNACE

    Science.gov (United States)

    An all-electrical Shirco carbon regeneration furnace and its air pollution control system have been evaluated for cost and process effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The granular activated carbon used for the Shirco...

  15. Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Shen, H.G. [School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China)

    2009-02-15

    A lumped method combined with dynamic model is proposed for use in investigating the performance and solar fraction of a solar-driven ejector refrigeration system (SERS) using R134a, for office air conditioning application for buildings in Shanghai, China. Classical hourly outdoor temperature and solar radiation model were used to provide basic data for accurate analysis of the system performance. Results indicate that during the office working-time, i.e., from 9:00 to 17:00, the average COP and the average solar fraction of the system were 0.48 and 0.82 respectively when the operating conditions were: generator temperature (85 C), evaporator temperature (8 C) and condenser temperature varying with ambient temperature. Compared with traditional compressor based air conditioner, the system can save upto 80% electric energy when providing the same cooling capacity for office buildings. Hence, the system offers a good energy conservation method for office buildings. (author)

  16. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  17. Challenges in Melt Furnace Tests

    Science.gov (United States)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  18. Amorphous and crystalline blast furnace slag

    International Nuclear Information System (INIS)

    Full text: One of the by-products of iron production from a blast furnace is the slag, Generally 250-300 kg of slag is produced per ton of iron. Liquid blast furnace slag can either be cooled quickly by quenching in a granulator or more slowly in air. The air-cooled product is crushed and sized for use as an aggregate in concrete. The granulated slag is ground to form ground granulated slag, which is a cost-effective supplementary cementitious material. Blends of ground granulated slag and Portland cement produce a cementitious paste that is more resistant to chloride penetration than pastes made from the Portland cement alone. In this study neutron diffraction techniques were used to examine samples of air-cooled and granulated slags from Australian Steel Mill Services stock piles at Port Kembla. Sourced from the same blast furnace, the materials should be expected to posses similar elemental chemistry. The mineral compositions would be different due to the rate of cooling each slag was subjected to. Samples, 15 grams in mass, were mounted in a vanadium can and diffraction patterns were measured using the SLAD instrument on the Reactor R-2 at the Studvik Neutron Research Laboratory in Sweden. The diffraction patterns were transformed into radial distribution functions using the reverse Monte Carlo program, MCGR. The granulated slag showed no diffraction peaks while the air cooled slag showed a crystalline product that can be identified by x-ray diffraction. The radial distribution functions showed differences that were consistent with the granulated slag being amorphous and the air-cooled slag crystalline. Both slag samples showed peaks in the radial distribution function at 1.8 Angstroms and 2.8 Angstroms. The greatest anomaly was a feature about 2.5 Angstroms found only in the radial distribution function for the granulated slag. This demonstration showed that there are differences in the short range bonding between the two compounds. We are currently

  19. Thermodynamic modeling of lead blast furnace

    Institute of Scientific and Technical Information of China (English)

    TAN Peng-fu

    2005-01-01

    A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.

  20. Simulating the heat transfer process of horizontal anode baking furnace

    Energy Technology Data Exchange (ETDEWEB)

    L.Q. Zhang; C.G. Zheng; M.H. Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2005-07-01

    A transient two-dimensional mathematical model of a horizontal baking furnace is presented. The model combines complex thermal phenomena in a baking process such as air infiltration, evolution and combustion of volatile matters, combustion of packing coke, and heat losses. The predicted results are in good agreement with measured data. Furthermore, the process is simulated under different operating conditions such as firing cycle time, airflow and air infiltration. The simulated results indicate that the fuel consumption decreases as the firing cycle time decreases. It is also found that reducing the airflow and air infiltration will help to save fuel. The model is proved to be a useful tool for the process optimisation of the baking furnace in the aluminum industry.

  1. Hybrid intelligent control of combustion process for ore-roasting furnace

    Institute of Scientific and Technical Information of China (English)

    Aijun YAN; Tianyou CHAI; Fenghua WU; Pu WANG

    2008-01-01

    Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of two systems: one is a cascade fuzzy control system with a temperature soft-sensor, and the other is a ratio control system for air flow with a compensation model for heating gas flow and air-fuel ratio. This approach combined intelligent control, soft-sensing and fault diagnosis with conventional control. It can adjust both the heating gas flow and the air-fuel ratio in real time. By this way, the difficulty of online measurement of the furnace temperature is solved, the fault ratios during combustion process is decreased, the steady control of the furnace temperature is achieved, and the gas consumption is reduced. The successful application in shaft furnaces of a mineral processing plant in China indicates its effectiveness.

  2. Char refiring under O2/N2 and O2/CO2 atmospheres. Implication for PCI injection in blast furnace

    OpenAIRE

    Álvarez Rodríguez, Diego; Casal Banciella, M.ª Dolores; Gómez Borrego, Ángeles; Osório, Eduardo; Vilela, Antonio C. F.

    2007-01-01

    It is attempt in pulverized coal injection (PCI) in blast furnace tuyeres to increase the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. The unburned char can cause problems in the blast furnace operation, such as reduced permeability, undesirable gas/temperature distribution, excessive coke erosion and significant char carryover. In the near tuyere region the coal is injected with air but the resolidified char will burn in an atmosphere w...

  3. 空调冷凝水的回收利用%Recovery and Utilization of Air-conditioning Condensing Water

    Institute of Scientific and Technical Information of China (English)

    孙华勇

    2014-01-01

    This paper discussed the recycling application of air-conditioning condensing water and the influence of air conditioner condensing water on refrigeration coefficient by reducing condensing temperature. The author also carried out an economic calculation and analyzed the feasibility of the other recycling modes of the condensed water.%本文讨论了空调冷凝水的回收应用,空调冷凝水降低冷凝温度对制冷系数的影响,并对其进行了经济计算,对冷凝水其他回收利用方式的可行性讨论进行了研究。

  4. Transient characteristics and performance analysis of a vapor compression air conditioning system with condensing heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ming Liu; Wu, Jing Yi; Xu, Yu.Xiong; Wang, Ru Zhu [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)

    2010-11-15

    The objective of this study is to evaluate the influence of condensing heat recovery on the dynamic behavior and performance of air conditioners. The article includes a test procedure utilized to evaluate the condensing heat recovery system, relevant experimental results, a detail analysis of the mechanisms, and improvement measure on such a system. The experimental results indicate that although the condensing heat recovery has a negative effect on the cooling capacity at the start of the heat recovery process, the average cooling coefficient of performance (COP) of the system can be improved. The study also incorporates a control scheme of the electronic expansion valve (EEV) of the condensing heat recovery system. The experimental comparison between the EEV and the thermostatic expansion valve (TEV) demonstrates that the EEV has better performance in both stability and efficiency in the condensing heat recovery system. (author)

  5. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    The oxy-fuel combustion system is a promising technology to control CO2 and NOX emissions. Furthermore, sulfation reaction mechanism under CO2-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO3) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO3, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO2 atmosphere due to the higher CO2 partial pressure. Instead, the sintering effect was dominant in the CO2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO2 atmospheres.

  6. Characterization of calcium carbonate sorbent particle in furnace environment.

    Science.gov (United States)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO₂ and NO(x) emissions. Furthermore, sulfation reaction mechanism under CO₂-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO₃) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO₃, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO₃ sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO₂ atmosphere due to the higher CO₂ partial pressure. Instead, the sintering effect was dominant in the CO₂ atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO₂ atmospheres. PMID:22578525

  7. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  8. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10-5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  9. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  10. High Efficiency Solar Furnace Core Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  11. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  12. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    International Nuclear Information System (INIS)

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H2O and CO2 concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O2. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar

  13. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2006-05-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

  14. Technology Solutions Case Study: Improving the Field Performance of Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  15. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Rothgeb, S.; Brand, L.

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  16. Handling of corn stover bales for combustion in small and large furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.; Savoie, P.; Villeneuve, J. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    This paper reported on a study in which dry corn stover was baled and burned in 2 furnaces in the province of Quebec. Small and large rectangular bale formats were considered for direct combustion. The first combustion unit was a small 500,000 BTU/h dual chamber log wood furnace located at a hay growing farm in Neuville, Quebec. The heat was initially transferred to a hot water pipe system and then transferred to a hot air exchanger to dry hay bales. The small stover bales were placed directly into the combustion furnace. The low density of the bales compared to log wood, required filling up to 8 times more frequently. Stover bales produced an average of 6.4 per cent ash on a DM basis and required an automated system for ash removal. Combustion gas contained levels of particulate matter greater than 1417 mg/m{sup 3}, which is more than the local acceptable maximum of 600 mg/m{sup 3} for combustion furnaces. The second combustion unit was a high capacity 12.5 million BTU/h single chamber furnace located in Saint-Philippe-de-neri, Quebec. It was used to generate steam for a feed pellet mill. Large corn stover bales were broken up and fed on a conveyor and through a screw auger to the furnace. The stover was light compared to the wood chips used in this furnace. For mechanical reasons, the stover could not be fed continuously to the furnace.

  17. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  18. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  19. Multi-fuel furnace. Demonstration project. Final rapport; Multibraendselsovn - Demonstrationsprojekt. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.

    2012-06-15

    It has been verified that the Dall Energy Furnace have unique features: - The furnace will accept biomass fuel with moisture content in range 20% to 60% and still keep the flue gas temperature within +-10 deg. Celsius (for pre-set temperature 900 to 975 deg. Celsius); - The ash quality from the furnace is very good with no excessive sintering and without carbon in the ash; - Flue gas dust content at the furnace exit is below 50 mg/Nm3, while the content of NO{sub x} and CO is below 175 mg/Nm3 and 20 mg/Nm3, respectively. The Dall Energy biomass furnace consists of two separate stages which are combined in a single aggregate: an updraft gasification process and a gas combustion process. As the furnace is refractory lined and as the furnace can operate at low excess air it is possible to burn biomass with water content above 60%. No mechanical parts are used at temperatures above 200 deg. Celsius. This provides a very rugged system. In the gasifier section a combustible gas is produced with a low velocity at the top of the gasifier bed. This gas is combusted to a flue gas with extremely low dust content. Also, the NO{sub x} and CO content is very low. The temperature of the flue gas at the exit is kept low by injecting water spray together with the secondary air. (Author)

  20. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  1. Evaluation of processing rate and reaction products in the polymeric material furnace using the molten slag

    International Nuclear Information System (INIS)

    A prototype furnace, which adopted the new technique for combusting the polymeric material, was manufactured. In this furnace, the polymeric materials such as rubber were fed to molten slag. The ash, generated at the surface of the polymeric material, dissolved into melt, which promoted the surface combustion of the fixed carbon. The advantages of the new furnace are: (1) High treating rate was realized at so low air excessive ratio as 0.5 ∼ 0.7. (2) The fineness of the unburned particles made the combustion in the after burner easy. (3) The reduction of flying ash coming from the gasification zone lowered the load of the ceramic filters. (author)

  2. Furnaces. Manufacturers become engineering offices; Les fours, le constructeur devient bureau d`ingenierie

    Energy Technology Data Exchange (ETDEWEB)

    Nivoche, C. [Salas SA (France)

    1997-12-31

    The example of Selas, a manufacturer of industrial furnaces for steel and glass industries, faced with the new european pollution regulations, is presented. It is shown how Selas has to develop optimal furnaces using low emission burners but also has to be involved in all the related aspects such as industrial implementation in the client`s plant, plant architecture, cooling systems, air conditioning, noise and vibration issues, operation procedures, safety, etc. Means for reducing NOx emissions are reviewed

  3. Registration of Cherenkov radiation flashes with the using of optical system of big solar furnace

    International Nuclear Information System (INIS)

    The possibilities of using optical system of big solar furnace as a part of cosmic rays detection system is shown. The results of registration of Cherenkov radiation flashes from extensive air showers by the use of concentrating collector of solar furnace are presented. It was shown that solar concentrator with photoregistration system can be used in astrophysical researches as search and study high energy gamma-sources and optical bursts. (Avezov A.D.). 5 refs.; 2 figs

  4. Reduction of NOx emission in tangential fired - furnace by changing the, mode of operation

    International Nuclear Information System (INIS)

    The present work analyses tile results of tests on 575 MW units with tangential firing furnace arrangement in sub-stoichiometric combustion. Tangential firing provides good conditions for implementing sub-stoichiometric combustion owing to the delivery scheme of pulverized coal and air. The furnace was tested in several different modes of operation (Over Fire Air, Bunkers Out Of Service, Excess air, Tilt etc.) to achieve low cost NOx reduction. Actual performance data are presented based on experiments made on lEC's boiler in M.D. 'B' power station

  5. DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    2002-10-02

    Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residence time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small amount

  6. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  7. Development of gas-fired vacuum furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Sikirica, S.J. (Gas Research Inst. (United States)); Hemsath, K.H. (Indugas Inc. (United States)); Panahi, S.K. (Southern California Gas Co. (United States))

    1994-01-01

    Vacuum processing in metallurgical heat treating processes is finding widespread acceptance. Gas-fired vacuum furnaces have several features that make them perform differently from electrically heated vacuum furnaces. This paper describes the development and preliminary performance results of a gas-fired vacuum-capable furnace system. A gas-fired vacuum furnace, with a novel high convection heating system, is show to result in lower energy operating cost and improved temperature uniformity in processes such as ion nitriding. Industrial gas-fired furnace designs, capable of operation to 1850 F, are described for horizontal and vertical configurations. (orig.)

  8. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  9. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    Science.gov (United States)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  10. Batch Preheat for glass and related furnace processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Energy & Environmental Resources, Inc

    2002-08-12

    The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat

  11. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    International Nuclear Information System (INIS)

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included

  12. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  13. Effective Ventilation Parameters and Thermal Comfort Study of Air-conditioned Offices

    Directory of Open Access Journals (Sweden)

    Roonak Daghigh

    2009-01-01

    Full Text Available The study presents objective and subjective studies of thermal comfort levels and ventilation characteristics of two air-conditioned postgraduate study offices. The observations were performed at the offices of Department of Electrical and Electronic Engineering, in University Putra Malaysia. Thermal comfort variables were measured while the students answered a survey on their sensation of the indoor climate. Concurrently, tracer gas analysis, based on concentration decay method, is employed to determine air exchange rate, age of air and air exchange effectiveness. During the air conditioner is working, the study offices had not conditions within the comfort zone, of ASHRAE standard 55 causing occupants to report cold thermal sensations and the objective data analysis showed that the offices were uncomfortable. The thermal neutralities were significantly higher that proposed by ASHRAE Standard 55:1992. The monitored air exchange rates are indicated that the provisions of outside air for ventilation based on design occupancy are adequate for these two study offices. In addition, questionnaires were completed by the students in order to provide a subjective assessment of thermal comfort and indoor air quality. Finally, the outcomes of over 30 surveys for each office responses to the thermal comfort questions are presented and discussed.

  14. Crystal growth through a computer controlled, eight zone thermal gradient freeze furnace

    Science.gov (United States)

    Bishop, Michael R.

    Multiple temperature zone gradient furnaces are well suited to investigate crystal growth processes, since they have a plurality of independently controlled temperature zones which can be programmed to process a wide variety of materials under specific growth rate and temperature gradient conditions. The ongoing design and operation of a low cost multiple zone gradient freeze furnace is described. An early version consisted of the furnace core made of threaded hollow alumina around which eight independent resistive wire elements were wound, along with a power supply and a control system. Performance of the furnace was tested using both zinc and tin samples with a variety of furnace operating characteristics. A number of problems were revealed such as the difficulty of maintaining high thermal gradients. A numerical modelling review of the design indicated that the most significant feature limiting performance was the air gap separating the alumina core from the ampoule containing the sample. To improve performance, several fundamental changes were made. The core was modified into a series of independent ceramic elements, and isolated air cooling paths for each zone were installed. The entire furnace assembly was cabinetized for stability and portability in preparation for testing in a low gravity environment.

  15. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  16. Pollutant emissions of commercial and industrial wood furnaces

    International Nuclear Information System (INIS)

    Based on literature surveys, personal contacts to designers, manufactures and users of woold furnaces, as well as informations of experts from Austria and Switzerland, the used wood fuels and combustion techniques and the potentially by commercial and industrial wood burning emitted air pollutants are described; including the mechanism of pollutant formation, concentrations, and their environmental relevance. The actual situation in Baden-Wuerttemberg concerning the used wood fuels, the state of installed and operated furnaces and the amount of emitted pollutants is presented basing on informations of the 'Statistical Country Bureau' and a country-wide inquiry round the chimney-sweepers. In order to realize the described existing possibilities to reduce pollutant emissions the introduction of a general brand test and certification mode is proposed. (orig.). 53 figs., 118 refs

  17. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  18. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    found that by adjusting the mass flow and the injection angle at different inlet ports, one can significantly decrease the particle emissions at the outlet. Also, different over-fire secondary air supply leads to different CO emissions at the outlet. The emissions of CO can be reduced through controlling the secondary air supply. Char formed in the bed is low in terms of its influence on the heat release, however it has significant influence on the CO distribution in the upper part of the furnace and at the outlet. The numerical simulations has been used for predicting combustion efficiency, pollutant emissions and geometrical optimization of furnace.

  19. Modelling and simulation of air-conditioning cycles

    Science.gov (United States)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  20. Designing furnaces for the primary aluminum industry

    Science.gov (United States)

    Schmitz, Christoph

    1996-02-01

    Although many typically regard the casthouse furnace as a simple piece of equipment, in reality the furnace design has a remarkable effect on final metal quality and efficiency of operation. Heat exchange, burner design, process control, and the refractory lining all contribute to the overall performance of the furnace. The most efficient design may vary from plant to plant, but poor design will definitely lead to higher production cost and difficulty attaining the highest quality products.

  1. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  2. Tracer tests on furnaces at Metalloys Limited

    International Nuclear Information System (INIS)

    During 1980, thirteen double tests were carried out with five radioactive isotopes on three furnaces at Metalloys Limited, near Meyerton. Each double test involved the introduction of a sample of coke impregnated with lanthanum and a sample of irradiated manganese ore (54Mn or 59Fe), irradiated quartzite (46Sc), or irradiated coal (46Sc, 59Fe, and 60Co). The tests were conducted on the three large furnaces for the production of high-carbon ferromanganese, viz M10, M11, and M12. The radioactivity of samples of the metal and the slag leaving the furnace was measured by the Isotopes and Activation Division of the Atomic Energy Board (AEB). Response curves and computer analyses are presented on the elution of the tracers from the furnaces. The response curves for the tracers, which were inserted close to the electrodes, are discussed so that the salient differences between their passage through the three furnaces can be established. The results obtained give support to the findings of a dig-out carried out on furnace M10 during 1977. The metal and slag products of furnace M12 were subjected to mineralogical investigation so that the major phases in the furnace products could be determined. Details of the calculation of the mean residence time for material in furnace M12 are given in an appendix

  3. Combustion of biodiesel in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    Combustion tests in a large-scale laboratory furnace were carried out to assess the feasibility of using biodiesel as a fuel in industrial furnaces. For comparison purposes, petroleum-based diesel was also used as a fuel. Initially, the performance of the commercial air-assisted atomizer used in the combustion tests was scrutinized under non-reacting conditions. Subsequently, flue gas data, including PM (particulate matter), were obtained for various flame conditions to quantify the effects of the atomization quality and excess air on combustion performance. The combustion data was complemented with in-flame temperature measurements for two representative furnace operating conditions. The results reveal that (i) CO emissions from biodiesel and diesel combustion are rather similar and not affected by the atomization quality; (ii) NOx emissions increase slightly as spray quality improves for both liquid fuels, but NOx emissions from biodiesel combustion are always lower than those from diesel combustion; (iii) CO emissions decrease rapidly for both liquid fuels as the excess air level increases up to an O2 concentration in the flue gas of 2%, beyond which they remain unchanged; (iv) NOx emissions increase with an increase in the excess air level for both liquid fuels; (v) the quality of the atomization has a significant impact on PM emissions, with the diesel combustion yielding significantly higher PM emissions than biodiesel combustion; and (vi) diesel combustion originates PM with elements such as Cr, Na, Ni and Pb, while biodiesel combustion produces PM with elements such as Ca, Mg and Fe. - Highlights: • CO emissions from biodiesel and diesel tested are similar. • NOx emissions from biodiesel tested are lower than those from diesel tested. • Diesel tested yields significantly higher PM (particulate matter) emissions than biodiesel tested. • Diesel tested originates PM with Cr, Na, Ni and Pb, while biodiesel tested produces PM with Ca, Mg and Fe

  4. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    Science.gov (United States)

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D

    2016-09-15

    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions. PMID:27240207

  5. Double utilization of the roof. 'Solar green roofs' - the advantages are in the combination; Das Dach zweifach nutzen. 'SolarGruenDaecher - die Vorteile liegen in der Kombination

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gunter

    2013-06-01

    Air conditioners cooling with solar energy have already existed for a long time. The core principles are adsorption chillers, absorption chillers and DEC chillers. However, these chillers are relatively expensive compared to air conditioners in compression technology and therefore not often used in the mass market. Since January 2013, Sedna Aire Europe GmbH (Dortmund, Federal Republic of Germany) offers solar-assisted air-conditioners that cost the same as commercial non-solar comparable equipment and enable significant cost savings from the first year. In addition, these air-conditioners are designed as heat pumps, which can be heated.

  6. Research on Integrated Fridge and Air-Conditioner System Driven by Solar Energy and Natural Gas: Selection of Working Fluids%太阳能与天然气驱动的冰箱空调复合机研究(Ⅰ)——工质选择

    Institute of Scientific and Technical Information of China (English)

    王寒栋; 侯志坚; 詹勋良

    2009-01-01

    提出了采用太阳能、天然气联合驱动的扩散吸收式冰箱空调复合机总体设计方案,对其中相关技术问题进行了论述,重点对扩散吸收式制冷机工质的选择进行了探讨.通过对扩散吸收式系统常用的NH3/H2O,NH3/ NaSCN,NH3/ LiNO3吸收制冷工质对进行分析比较,认为在综合考虑系统的性能系数、最低制冷温度、溶液结晶、溶液比热和粘度等因素后,以选用LiNO3/NH3/ He作为复合机中扩散吸收式制冷机的工质为好.

  7. ANALYSIS OF EMISSIONS FROM RESIDENTIAL OIL FURNACES

    Science.gov (United States)

    The paper gives results of a series of emission tests on a residential oil furnace to determine emissions from two types of burners. umber of analyses were performed on the emissions, including total mass, filterable particulate, total oil furnaces tested by the EPA in Roanoke, V...

  8. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  9. Furnace for vitrification of radioactive waste

    International Nuclear Information System (INIS)

    A melting furnace is claimed for patent with a totally new design of the placement of the inner tube and melt discharge. The advantage of the new design is that the discharged glass has higher temperature and thereby lower viscosity than glass melt and that the height of the siphon may be altered in furnace operation. (E.S.). 1 fig

  10. Blast furnace operation analysis by thermic exergy

    International Nuclear Information System (INIS)

    In order to know the blast furnace thermic state, the thermic exergy can be used, which considers the temperatures level of the process. The magnitude analysis of thermic exergy for blast furnace operation using pulverized coal, natural gas and oxygen injection by tuyeres, shows that natural gas injection is less effective than pulverized coal and enriched blast with oxygen simultaneous injection. (Author) 6 refs

  11. Total Heat Exchange Factor Based on Non-Gray Radiation Properties of Gas in Reheating Furnace

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; CHEN Hai-geng; XU Li; WU Bin

    2009-01-01

    Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted.Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated.The resuits show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases.The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.

  12. Influence of operation parameters on flash smelting furnace based on CFD

    Institute of Scientific and Technical Information of China (English)

    Xinfeng Li; Shiheng Peng; Xiangli Han; Chi Mei; Tianyuan Xiao

    2004-01-01

    The influence of three important operation parameters in Jinlong flash smelting furnace, including the distributing blast speed, the oxygen enrichment rate of process air and the ratio of central oxygen to overall oxygen (Oc/Oo), has been investigated using a virtual simulation system on copper flash smelting furnace. The core of this virtual simulation system is a numerical simulation of CFD (computational fluid dynamics), and this system incorporates coupling momentum transport, heat transport, mass transport,reaction kinetics between gas and particles and chemical reactions between gas and gas. A set of numerical predicted data were obtained. The CFD simulation shows that there is a sensitive zone of the distributing blast speed, and the dust content ascends when the speed exceeds 180 m-s-1. Increasing the oxygen concentration of processing air benefits the efficient production of the flash smelting furnace.

  13. Gas Flow Distribution in Pelletizing Shaft Furnace

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; DONG Hui; WANG Guo-sheng; YANG Jun

    2006-01-01

    Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends; among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC; the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone h3 are the main factors affecting flow distribution. In case the ratio of b2/b1, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.

  14. High temperature furnace modeling and performance verifications

    Science.gov (United States)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report

  16. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Pathak

    2014-05-01

    Full Text Available Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS and this material is obtained from the blast furnace of cement plant, which is the byproduct of iron (from ACC plant, sindri. It is generally obtained in three shaped one is air cooled, foamed shaped and another is in granulated shaped. The use of by-product materials for stabilisation has environmental and economic benefits. Ground granulated blast furnace slag (GGBS material is used in the current work to stabilise soil (clay. The main objectives of this research were to investigate the effect of GGBS on the engineering property (optimum moisture content and maximum dry density, plastic limit, liquid limit, compaction, unconfined compressive strength, triaxial and California bearing ratio test of the soil and determine the engineering properties of the stabilised.

  17. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Yee, S. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Baker, J. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the life of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.

  18. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    Directory of Open Access Journals (Sweden)

    Kwang Rae Cho

    2014-12-01

    Full Text Available Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients.The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter and temperature selection (high, medium, low and ambient. All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant.Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG respectively (high, medium, low and ambient temperature set. ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances.ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  19. Modelling of carry-over in recovery furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, Reza [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Development of mathematical modelling of the combustion process in the furnace of recovery boilers is the subject of this work. This work as a continuation of many years of modelling efforts carried out at KTH/Vaerme- och Ugnsteknik focussed particularly on: char bed modelling; droplets-wall interaction modelling; and carry-over modelling. The char bed model has been studied. Droplets/parcels were considered as a single reactor working independently of the other droplets. The mass of the droplets was not distributed uniformly but induced in the landing place. The droplets hitting the char bed will stick to it and they are alive and part of the calculation. In this way the distribution of the mass on the char bed is only dependent on the parameters which effect flight history such as droplet/parcel diameter, boilers flow field, etc. The droplet- wall interaction model has been studied and found to be very important for obtaining the correct temperature distribution in the recovery furnace. The new approach is based on removal of droplets which hits the wall in the upper part of the recovery boiler from carryover calculation. This model has been proposed and implemented into the GRFM (General Recovery Furnace Model). The carryover modelling effort was based on mass balance in which the number and physical statistics of the droplets/parcel were estimated and the amount of unburned mass was calculated. All of the above listed models were tested together with all other models of heat and mass transfer processes in recovery furnaces using a GRFM. Three-dimensional numerical simulations of the industrial recovery boiler (63 kg/s, 82 bar, 480 deg C) were performed. The number of grid was 232,000 and the number of air ports in this simulation was 178. The air entering the furnace by these ports has different flow rates. Flow and temperature fields as well as species distributions were calculated. The results show good agreement with previously published data and modelling

  20. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  1. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    Directory of Open Access Journals (Sweden)

    T. J. Fudihara

    2007-06-01

    Full Text Available In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-epsilon model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

  2. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Science.gov (United States)

    2010-07-15

    ... standards for furnace fans on June 3, 2010 by publishing a notice in the Federal Register (75 FR 31323). The...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC22 Energy Conservation Program: Energy Conservation Standards... establish energy conservation standards for the use of electricity for purposes of circulating air...

  3. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  4. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  5. Partnering and the WCI blast furnace reline

    Energy Technology Data Exchange (ETDEWEB)

    Musolf, D.W. [WCI Steel, Inc., Warren, OH (United States)

    1997-11-01

    In 1993, WCI Steel entered into a partnership agreement to perform a blast furnace reline. The reline included a complete rebrick from the tuyere breast to the furnace top including the tapholes. Also included was the replacement of the Paul Wurth top equipment from the receiving hoppers through the gearbox and distribution chute, a skip incline replacement, and installation of tilting runners and a casthouse roof. The bustle pipe and hot blast main were repaired. One stove was also replaced. The reline was accomplished in 36 days, wind to wind, which allowed for 29 days of construction inside the blast furnace proper.

  6. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  7. Thermal Characteristics of Heating-furnace with Regenerative Burner

    OpenAIRE

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  8. Advanced Automated Directional Solidification Furnace (AADSF)

    Science.gov (United States)

    1983-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) with the Experimental Apparatus Container (EAC) attached flew during the USMP-2 mission. This assembly consists of a furnace module, a muffle tube assembly and a translation mechanism which are enclosed in the EAC. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zone . The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.

  9. New developments in electric arc furnace technologies

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, P. [Danieli Centrome, France (France)

    1997-04-01

    Technologies are described for the flexible operation of electric arc furnaces combining various energy sources and for the improvement of the electrical behaviour of the furnace. The main part of the article deals with the post-combustion process, as a means of reducing the energy consumption and increasing the furnace productivity. The energy yield from post-combustion is evaluated and compared to operational results. Oxidizing reactions as energy source are discussed. The energy yield for post-combustion is evaluated with data from four furnaces in operation. The energy yield from post-combustion ranges from 4 to 2 kWh per Nm{sup 3} of oxygen representing a range of 4 to 18 Nm{sup 3} oxygen injected for post-combustion. (author) 2 refs.

  10. LPCVD Furnace: Tystar Mini Tytan 4600

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Names: SiN LPCVD, Poly LPCVD, LTO LPCVD This three stack furnace system is utilized to deposit silicon nitride, polysilicon, and low temperature...

  11. Cast construction elements for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2011-07-01

    Full Text Available The study presents sketches and photos of the cast creep-resistant components used in various types of heat treatment furnaces. The shape of the elements results from the type of the operation carried out in the furnace, while dimensions are adjusted to the size of the furnace working chamber. The castings are mainly made from the high-alloyed, austenitic chromium-nickel or nickel-chromium steel, selecting the grade in accordance with the furnace operating conditions described by the rated temperature, the type and parameters of the applied operating atmosphere, and the charge weight. Typical examples in this family of construction elements are: crucibles, roller tracks, radiant tubes and guides. The majority of castings are produced in sand moulds.

  12. Kaolinite Refractory Bricks for Blast Furnaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ This standard is suitable to the fireclay bricks for blast furnace. 1 Classification, Shape and Dimension 1 According to physical and chemical indexes, the brick can be divided into two trademarks: ZGN-42 and GN-42.

  13. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  14. Modular Distributed Concentrator for Solar Furnace Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  15. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998

  16. FY 1993-1999 report on all the results of the development of high performance industrial furnace; Koseino kogyoro no kaihatsu sogo seika hokokusho (1993 - 1999 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Since an phenomenon was found out that NOx emission, which was thought to be increased, will be decreased by burning the high temperature preheated air jetting it at high speed (high temperature air combustion) in industrial furnace, there appeared a possibility of technical breakthrough for achieving the heightening of energy utilization efficiency and NOx reduction by exhaust heat recovery at the same time. This project aims at conducting full-scale experiments based on the basement technology including the theoretical elucidation of the combustion mechanism and high temperature air combustion by using various experimental facilities. Further, making full use of the most up-to-date analysis methods and constructing general-purpose database, the development is also aimed at of high performance industrial furnaces such as various heating furnace, heat treat furnace and melting furnace, with the assumption of prompt commercialization of the results of the development. As a result, targets were achieved such as energy saving of 30% or more, downsizing of 20% and a remarkable NOx reduction. Core technologies of this project are in-system limit heat recovery technology, high temperature air combustion technology, temperature field control technology (furnace temperature leveling technology) and high exergy heat transfer technology (furnace temperature heightening technology). (NEDO)

  17. Regenerative burner use on reheat furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  18. Waste and dust utilisation in shaft furnaces

    OpenAIRE

    Senk, D.; Babich, A.; Gudenau, H. W.

    2005-01-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC) has been studied when injecting into shaft furnaces. Following sha...

  19. The use of blast furnace slag

    OpenAIRE

    Václavík, Vojtěch; Dirner, Vojtech; Dvorský, Tomáš; Daxner, J.

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of fi nely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on fi nely ground blast furnace slag were observed. Rad predstavlja rezultate eksperimentalnog istraživanja koja se bave mogućnostima primjene fi nozrnate troske iz visoke peći za Portland cement u jednostavnoj proiz...

  20. Coals characterization for blast furnace tuyeres injection

    International Nuclear Information System (INIS)

    The efficiency of blast furnace operation with pulverized coal injection (PCI) by tuyeres is determined by the composition and properties of the used coals and by the quality of the ferrous burden and coke. A study in thermo balance of coals to be injected by tuyeres is carried out, and the softening and melting temperatures of coals ash are determined. The coal performance and its influence in the blast furnace operation is estimated. (Author) 7 refs

  1. Voltage stabilizers for high temperature furnace

    International Nuclear Information System (INIS)

    The stabilization of furnace temperatures in the range 1500-2500 C has been achieved by controlling the effective (rms) value of the supply voltage of the heating element. Temperature variations are less than, or equal to, one degree C in the whole working range of the furnace. Two types of set-ups have been developed: one is static, the other takes use of a servo-motor. (author)

  2. Magnesia-Chrome Refractories for Flash Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yong; CHEN Kaixian; LU Xinghua; LIU Jianlong; SUN Jialin; HONG Yanruo

    2002-01-01

    The rapid development of our country's heavy nonferrous metallurgical technology and the revolution in new type of heavynon-ferrous metallurgical furnace have imposed more critical demand on the refractory materials ,i. e. high quality and long service life. This paper presents the domestic status of the refractories for flash furnace , briefly describes the wear of the refractory used , and it is considered that the domestic in refractories for flashfurnace can be surely realized.

  3. A double-regenerative burner for blast-furnace gas

    Energy Technology Data Exchange (ETDEWEB)

    Edmundson, J.T. (British Steel Corp., Port Talbot (UK)); Jenkins, D.P. (Bristol Polytechnic (GB))

    1990-12-01

    The purpose of this project was to demonstrate the operative reliability of a novel regenerative burner system utilising low-calorific-value fuel gas and capable of high-temperature performance at high efficiency. The system is based on the extension of the application of the self-generative principle to both fuel gas and air supplies. Two burners operate in tandem, of which one fires while the other regenerates both the fuel gas and combustion air preheat beds. Blast-furnace gas with a calorific value of 2.9 MJ m{sup -3} was the fuel source. 1500 hours of operative trials were carried out. For the duration of the trials all the planned investigations were completed satisfactorily, and the results successfully indicate the ability of the system to achieve high-temperature performance at high thermal efficiency. (author).

  4. Development of new burner systems for glass melting furnaces with regenerative air preheating in order to reduce NO{sub x} emissions and energy consumption; Entwicklung neuer Brennersysteme fuer Glasschmelzwannen mit regenerativer Luftvorwaermung zur NO{sub x}-Minderung und Energieeinsparung

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Giese, A.; Koesters, M. [Gaswaerme-Institut e.V., Essen (Germany)

    2005-07-01

    In several GWI R + D projects, burner systems for glass melting furnaces were investigated with a view to enhancing power supply to the glass melt and reduction of NOx emissions. Based on measurements in a semi-industrial experimental combustion chamber and on numeric simulations, modifications of common burner systems were made, and the effects of the burner system variations on energy release and pollutant formation in the flames were also analyzed exlperimentally and numerically. In a further step, CFD calculations were made of the effects of such burner system variations on the combustion process in glass melting furnaces during production. This contribution presents the findings of experimental investigations and numeric simulations of the combustion processes both in an experimental furnace and in a glass melting furnace during production. The methods applied are presented as well. (orig.)

  5. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-fen; ZHOU Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pcfired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the fumacs temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  6. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  7. 基于 ADPI 的房间空调器气流组织性能评价%Evaluation of Indoor Air Diffusion of Room Air-condition Based on ADPI

    Institute of Scientific and Technical Information of China (English)

    颜晓光; 敬成君; 李冰

    2013-01-01

      The thermal environment and air diffusion of an air-conditioned office was simulated by the AIRPAK software. Discusses the indoor velocity fields and temperature fields, at the same time, according to ISO7730 standard, evaluation of indoor thermal comfort is carried out using Effective Draft Temperature (ΔET) and Air Distribution Profile Index (ADPI ). It is helpful for the optimum design of the air distribution and comfortably study in the compartment with air conditioner.%  利用 Airpak 软件对某空调办公室的气流组织和热环境进行数值模拟,对该办公室速度场、温度场进行了分析研究,并按照 ISO7730标准,采用有效吹风感温度ΔET 和空气分布特性指标 ADPI 对室内气流组织性能进行评价,为空调室内气流组织形式的优化设计及热舒适性的改善提供了依据。

  8. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshpande, Vishal R.; Shendage, D.J.; Pillai, Indu R. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India)

    2010-12-15

    The jaggery making from sugarcane is one of the traditional process industries contributing to the local employment and entrepreneurship opportunities to the rural population. Jaggery is a condensed form of sugarcane juice produced by evaporation of moisture. Bagasse which is internally generated during juice extraction from sugarcane is used as the fuel for evaporation in a jaggery furnace. Any efficiency improvement in the thermal performance of a jaggery furnace leads to bagasse saving which provides additional revenue for the jaggery manufacturer. A procedure for thermal evaluation using mass and energy balance for a jaggery furnace is proposed to establish furnace performance and loss stream analysis. The proposed method is used to investigate a four pan traditional jaggery furnace in India. The loss stream analysis indicates that the theoretical energy required for jaggery processing is only 29% of total energy supplied by bagasse combustion. The major loss is associated with heat carried in flue gas and wall losses. The air available for combustion depends upon the draft created by chimney in natural draft furnaces. The oxygen content in the flue gas is a measure of degree of combustion. A controlled fuel feeding based on the oxygen percentage in the flue gases is proposed and demonstrated. The traditional practice of fuel feeding rate is changed to control feeding rate leading to reduction in specific fuel consumption from 2.39 kg bagasse/kg jaggery to 1.73 kg bagasse/kg jaggery. This procedure can be used for evaluation of jaggery furnaces for identification and quantification of losses, which will help in improving thermal energy utilization. (author)

  9. Numerical simulation study on the thermal environment of an air-conditioned office in summer based on Airpak%基于Airpak的夏季空调室内热环境数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    黄寿元; 赵伏军; 李刚

    2011-01-01

    基于Airpak软件,选用室内零方程湍流模型对一夏季空调办公室内热环境进行了三维数值模拟,得到室内气流组织下的流场、温度场分布.采用PMV-PPD与空气龄指标对室内人员热舒适性及空气品质进行了评价,并通过测试室内温度、风速参数,验证了数值模拟结果的准确性.研究表明:对于分体式空调器房间,气流组织分布与空调器的安装位置、室内设备的摆设以及室内人员的分布有关,不同的气流组织将形成不同速度场和温度场.室内温度场分布在水平方向比较均匀,在垂直方向产生明显的温度分层;室内零方程湍流模型能准确快速模拟空调通风房间气流组织分布,PMV-PPD与空气龄指标能对人体热舒适及空气品质进行数值预测与评价,为房间空调器送风温度、速度参数的合理设定提供参考依据;热环境数值模拟对空调系统的气流组织设计、运行调节具有重要的指导意义.%The thermal environment of an air - conditioned office in summer was simulated in three -dimension, which choose zero - equation turbulence model based on Airpak. The air distnbutions of velocity and temperature fields were obtained. The PMV - PPD ( Predicted Mean Vote - Predicted Percentage Dissatisfied) and air age indexes were applied that to evaluate the human tbermal comfort and air quality. Numerical simulation results were experimental verification by testing the air temperature and velocity. Numerical and experimental results indicate that the air distribution relations between air conditioner, the equipment and person ' s distributions in split type air conditioner room, the different air distribution for the different temperature and velocity distribution. It was uniform in horizontal direction and Iayered in vertical direction of temperature distribution. The air distribution in room by using of zero - equation turbulence model was reasonable and rapidly. PMV - PPD and air age

  10. Process furnace safety - How Neste could improve the safety of the furnaces in their Porvoo and Naantali refineries

    OpenAIRE

    Sandås, Emil

    2016-01-01

    Process furnaces are some of the main pieces of equipment in the refining industry. However, furnaces have some safety issues: no exact understanding, extreme temperatures and, if they fail, severe consequences. The extreme conditions in furnaces can result in elevated corrosion rate, which is why corrosion is a common reason for furnace failure. This thesis focuses on Neste's furnaces in their Porvoo and Naantali refineries, and how their safety could be improved. One of the biggest prob...

  11. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  12. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  13. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extensive use of carbon based fuel is the main inducement for global warming and more extreme weather.Reducing carbon dioxide emission and enhancing energy use is a common subject in steel industry.In the integrated steel plant,decreasing carbon dioxide emission must consider energy balance in the whole iron and steel works,and secondary energy must be actively utilized.As promising blast-furnaces,top gas recovery blast furnace(TGR-BF) and oxygen blast furnace have been investigated.In this paper,conceptual TGR blast furnace and oxygen blast furnace are proposed.Base on the idea of blast furnace gas de-CO2 circulating as reducing agent and the idea of pure oxygen blast decreasing the thermal reserve zone temperature,process modeling is conducted with ASPEN Plus.It is shown that the developed model reasonably describes the energy balance and mass balance feature of the furnace,and provides basic thermodynamic condition for furnaces.The effects of changes in different operation conditions are studied by sensitivity analysis and reference data from simulation.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  15. DESIGN OF A VRF AIR CONDITIONING SYSTEM WITH ENERGY CONSERVATION ON COMMERCIAL BUILDING

    Directory of Open Access Journals (Sweden)

    Shaik Gulam Abul Hasan*

    2015-07-01

    Full Text Available Today, the field if air conditioning design is more technologically challenging than ever before. While design innovations and product improvements promise sleeker, more versatile, more powerful and more energy – efficient air conditioners, the challenge today lies identifying the most appropriate product, or mix of products, for the application at hand. Indeed, today the emphasis is no more on understanding air conditioning products but on creating solutions and not just solutions, but customized solutions that suit specific cooling need of specific business and establishments. The consultant or designer who understands the dynamics of those clients business is more likely to offer better long term cooling solutions than who does not. Every air conditioning application has its own special needs and provided its own challenges. Airports, hotels, shopping malls, office complexes and banks need uniform comfort cooling in every corner of their sprawling spaces and activities involving computers, electronics, aircraft products, precision manufacturing, communication networks and operation in hospitals, infect many areas of programming will come to a halt, so air conditioning is no longer a luxury but an essential part of modern living. There are various stages in the complete design of an air conditioning system. One of the important modules in the process is the duct design. The efficient duct design process enables the proper supply of air quantity, equal distribution of air at every corner of the Air conditioned space. Further the proper designing ensures minimum losses and hence energy conservation is obtained. In the present paper design of Air conditioning is done by using VRF (Variable Refrigerant Flow for a commercial building. The main aim of his project is to conserve the energy by using VRF techniques when compared to conventional chille

  16. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  17. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  18. Development of method and equipment for energy recovery from the exhaust gases of the oil-fueled smelting and holding furnaces

    Science.gov (United States)

    Holm, A.

    1980-03-01

    A heat recovery system was tested. The system consists of a flat ceramic heat exchanger and a high temperature burner for preheated combustion air. The fuel saving tests were made with a smelting furnace for aluminum. The furnace can be used as a holding furnace and for a combination of smelting and holding. When the modified furnace is used for holding only, there is 50 percent reduction of fuel consumption. Combined use renders 30 to 35 percent saving of fuel. The yearly savings are about 75,000 Skr in this case. Long time tests (about 5000 h) show no change. The equipment can be adapted to various types of oil fueled furnaces for smelting, forging, and in the glass industry.

  19. Análise fluido-dinâmica do escoamento em ensaio de permeabilidade ao ar de argamassas preparadas com cimento Portland de alto-forno Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement

    Directory of Open Access Journals (Sweden)

    V. M. Pereira

    2008-06-01

    . These studies not only have evaluated the permeability of porous media, but also to analyze the behavior of the fluid during the flow. Being about to the cement based materials, the measuring of the permeability becomes basic so that the durability of these can be estimate, therefore is the permeability that controls the rate of ingression and movement of deleterious agents inside these materials. Thus, diverse methodologies and mathematical equations have been used to foresee the permeability of cementitious materials, however, some discrepancies and nonsense in the results have been found. Amongst the used methodologies to measure the permeability of porous media, one meets developed it by Thenoz, which it has demonstrated good results in cement based materials. Thus, this work aims at, by means of assay of permeability to air, carried through in accordance with the methodology of Thenoz, to evaluate the fluid-dynamic behavior of air during the assay of permeability in mortars. For this, mortars prepared with two types of Portland cement of blast furnace (CP IIE-32 and CP III - 32, two relations water/cement (0.5 and 0.6 and ages of 14 and 28 days were used. By means of the gotten results it was possible to observe that during the draining the compressibility of air can be ignored, the regimen of draining can be considered as to plate, demonstrating that the methodology proposal for Thenoz and used mathematical equations can result in coefficients of trustworthy air permeability, therefore phenomena and considerations that could influence in this type of flow can be neglected, in accordance with what it is considered by literature.

  20. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  1. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Shen; B.Y. Guo; A.B. Yu; P.R. Austin; P. Zulli [University of New South Wales, Sydney, NSW (Australia). Lab for Simulation and Modelling of Particulate Systems

    2011-02-15

    A three-dimensional mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance-blowpipe-tuyere-raceway-coke bed to simulate in-furnace phenomena of pulverized coal injection in an ironmaking blast furnace. The model integrates not only pulverized coal combustion model in the blowpipe-tuyere-raceway-coke bed but also coke combustion model in the coke bed. The model is validated against the measurements under different conditions. The comprehensive in-furnace phenomena are investigated in the raceway and coke bed, in terms of flow, temperature, gas composition, and coal burning characteristics. The underlying mechanisms for the in-furnace phenomena are also analysed. The simulation results indicate that it is important to include recirculation region in the raceway and the coke bed reactions for better understanding in-furnace phenomena. The model provides a cost-effective tool for understanding and optimizing the in-furnace flow-thermo-chemical characteristics of the PCI operation in full-scale blast furnaces. 32 refs., 10 figs., 3 tabs.

  2. Graphite electrode DC arc furnace. Innovative technology summary report

    International Nuclear Information System (INIS)

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  3. Process and apparatus for blowing carbon dust into an industrial furnace

    Energy Technology Data Exchange (ETDEWEB)

    Rachner, H.-G.; Boiting, H.-H.

    1987-09-08

    A process for blowing dosed quantities of carbon dust, e.g. coal dust, to be burned into an industrial furnace having several burning points, especially a shaft furnace, is illustrated and described. In this process, the coal dust is fed in a dosed fashion to each of the individual burning points in a separate air stream which is under a predetermined pressure. The quantity of coal dust and conveying air fed to a particular burning point is blown into the furnace at supercritical speed, the conveying air being laden with a relatively high proportion of solids. Furthermore, the quantity of carbon fed to each burning point is detected directly as a result of volumetric measurement and is appropriately corrected by means of secondary air supplied, when the quantity exceeds or falls below a predetermined nominal-quantity tolerance. The invention also relates to an apparatus suitable for carrying out the process, in which conveyor lines each have at their outflow end located at a burning point, a nozzle which operates at a supercritical outflow speed and the diameter of which corresponds to a predetermined quantity blown in, with a predetermined pressure prevailing in the conveyor line. 1 fig.

  4. A heating partition for a coking furnace

    Energy Technology Data Exchange (ETDEWEB)

    Strelov, K.K.; Ivanova, A.V.; Kaufman, A.A.; Kuznetsov, G.I.; Likhogub, Ye.P.; Turman, D.S.; Varshavskiy, T.P.; Volfovskiy, G.M.

    1983-01-01

    A coking furnace heating partition (OPKT) is proposed in order to increase reliability by increasing its strength. The proposal includes equipping with a vertical wall (St) made of Dinas brick and positioning it along the longitudinal axis of the coking furnace heating panel. The dividing walls are made of Dinas brick and their faces are disposed between the bricks of the wall of the coking chamber (KK). The surface of the coking chamber wall is made from magnesite or corundum brick which makes up 70 to 80 percent of the operational surface (Pv) of the wall. The presence of the vertical wall in combination with the

  5. Optimization of Temperature Controller for Electric Furnace

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Genetic algorithms are based on the principle of natural selection and the optimization of natural generation. We can select the number of the bit strings and mutation rate reasonably, the global optimal solution can be obtained. GAs adopt the binary code as optimizing parameter and this binary code can be used in computer controller easily. This paper studies the application of the GAs to the electric furnace temperature control. When the electric furnace mathematics model varies with the working condition, the parameter of controller can be optimized on line. So the system performance can be improved effectively.

  6. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  7. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  8. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  9. Cast functional accessories for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2010-10-01

    Full Text Available The study gives examples of the cast functional accessories operating in furnaces for the heat treatment of metals and alloys. The describeddesign solutions of castings and their respective assemblies are used for charge preparation and handling. They were put in systematicorder depending on furnace design and the technological purpose of heat treatment. Basic grades of austenitic cast steel, used for castings of this type, were enumerated, and examples of general guidelines formulated for their use were stated. The functional accessories described in this study were designed and made by the Foundry Research Laboratory of West Pomeranian University of Technology.

  10. Energy efficiency standards for eight consumer products: public meeting clarification, questions and answers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    Eighteen corporations and manufacturers provided answers to many questions posed at a public meeting on energy efficiency standards for eight consumer products. Questions on the regulations concerning the manufacturing standards, performance standards, and testing standards are included. Questions were posed about air conditioners, refrigerators, refrigerator-freezers, stoves (ranges), ovens, clothes dryers, oil fired burners, water heaters, furnaces, etc. A presentation containing information pertaining to the values of average annual energy consumption per unit used by DOE in its analysis leading to proposed energy efficiency standards for nine types of consumer products is included. (MCW)

  11. Fuzzy logic controller implementation for a solar air-conditioning system

    International Nuclear Information System (INIS)

    The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 x 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control

  12. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  13. Effects of air pollution related respiratory symptoms in school children in industrial areas Rayong, Thailand

    Directory of Open Access Journals (Sweden)

    Paradee Asa

    2016-01-01

    Full Text Available The chronic effects of air pollution in school children living near industrial sites were investigated. The respiratory symptoms of 806 school children aged 9-12 years were examined by the American Thoracic Society's Division of Lung Diseases (ATS-DLD-78-C questionnaire during February- August 2013. The selected elementary schools in this survey was based on the distance from Map Ta Phut Industrial Estate, area A within 1 km., area B 5 km. and area C 10 km. Logistic regression techniques were used to assess the association between prevalence of respiratory symptoms and independent variables. The average 24 hrs PM10 and VOCs concentrations from 2011-2014 in area A were significantly higher than in area C (p < 0.05. Relatively, the prevalence of respiratory symptoms in area A were high with odds ratios (OR = 3.41, (95% confidence intervals (CI = 1.70-6.85 and in area B with OR = 1.36, (95% CI = 0.54-3.45, in comparison to area C. The prevalent of non-specific respiratory diseases (NSRD and Persistent Cough and Phlegm (PCP in boy student were higher than girls students with OR=2.17, (95%CI=1.33-3.53, whereas those factors such as age, residential years, home size, parental smoking habits, use of air conditioners and domestic pets were not associated. Exposure to particulate matter and volatile organic compounds arising from Industrial sites was associated with worse respiratory impairments in children.

  14. Analysis of the Impact of Urban Microclimate on Air Conditioning Load Control

    Directory of Open Access Journals (Sweden)

    Hu Xiaoqing

    2016-01-01

    Full Text Available Due to the presence of urban heat island effect (UHIE, high humidity and other urban microclimate, temperature of city central area rises. This causes that the actual air-conditioning energy consumption (ACEC in the urban central area is much higher than that in the suburbs. Load control of air-conditioners (ACs is considered to be equivalent to a power plant of the same capacity, and it can greatly reduce the system pressure to peak load shift. In this paper, a simplified second order transfer function control model of ACs is presented, and its parameters will be influenced by the ambient temperature and urban microclimate. The temperature is obtained by using the temperature inversion algorithm of the heat island effect. Then, the heat index is calculated by combining temperature and humidity. The ambient temperature index of urban central area is modified based on the above microclimate, and the second order linear time invariant model of aggregated ACs is upgraded to the linear time varying model. Furthermore, the consequent parameter changes of the second order transfer function model are studied and the influence of urban microclimate on AC load control is analyzed. The proposed method is verified on numerical examples

  15. Checking technical measurements on climatic data during sand blasting and spraying work in the condensation chamber of the boiling water reactor Gundremmingen

    International Nuclear Information System (INIS)

    During sand blasting and spraying work in the condensation chambers of boiling water reactors prescribed climatic data must be adhered to. For this purpose temporary air conditioners are used. The technical measurement examination here should provide information as to whether the air conditioners used were to fulfill the parameter curve specifications. (orig.)

  16. Modeling of In-vehicle Magnetic refrigeration

    OpenAIRE

    Olsen, Ulrik Lund; Bahl, Christian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Tasaki, Y.; Takahashi, H.; Y. Yasuda

    2012-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose the demands on cooling power density, temperature difference between hot and cold side, transient properties and COP, will be high.

  17. Modeling of in-vehicle magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian R.H.; Engelbrecht, Kurt;

    2014-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose the...

  18. Modeling of In-vehicle Magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian; Engelbrecht, Kurt;

    2012-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose the...

  19. 76 FR 30146 - Nationwide Categorical Waivers Under Section 1605 (Buy American) of the American Recovery and...

    Science.gov (United States)

    2011-05-24

    ... pump water heaters and ENERGY STAR rated through-the-wall air conditioners; (4) Grid tied solar... pump water heaters and ENERGY STAR rated through-the-wall air conditioners; (4) Grid tied solar... and receivers) for those CNG systems; (10) 8000W solar inverters for use with U.S. manufactured...

  20. 76 FR 26656 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2011-05-09

    ... energy conservation standards for clothes dryers and room air conditioners on April 21, 2011 (76 FR 22454... Part 430 RIN 1904-AA89 Energy Conservation Program: Energy Conservation Standards for Residential... adopted amended energy conservation standards for residential clothes dryers and room air conditioners....

  1. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  2. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mohiuddin, Kazi, E-mail: kazi.mohiuddin@students.mq.edu.au [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)

    2014-07-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  3. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    International Nuclear Information System (INIS)

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  4. First d. c. arc furnace for steelmaking in the world

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-06

    On June 25, 1982, a prototype d.c. arc furnace with a capacity of 12 t started trial operation at the Kreuztal-Buschhuetten steel foundry of Messrs. SMS Schloemann-Siemag AG, after its operating capability had been tested with same test charges. It is the world's first d.c. arc furnace to be operated in a production plant. The furnaces constructed so far were experimental furnaces, operated periodically for research purposes.

  5. Effect of furnace atmosphere on E-glass foaming

    OpenAIRE

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01

    The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. These findings do not contradict the generally accepte...

  6. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property....... Although the refined gaseous radiative property model shows great advantages in gaseous fuel combustion modelling, its impacts are largely compromised in pulverized solid fuel combustion, in which particle-radiation interaction plays the dominant role in radiation heat transfer due to high particle loading....... Use of conversion-dependent particle emissivity and scattering factor will not only change the particle heating and reaction history, but also alter the radiation intensity and thus temperature profiles in the furnace. For radiation modelling in pulverized fuel combustion, the priority needs to be...

  7. Atom diffusion in furnaces - models and measurements

    Czech Academy of Sciences Publication Activity Database

    Sadagoff, Y. M.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 3 (2002), s. 535-549. ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : diffusion coefficients * graphite furnace * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  8. INVESTIGATIONS ON OPERATION OF ROTARY TILTING FURNACES

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-02-01

    Full Text Available Rotary tilting furnace (RTF is a new type of fuel furnaces, that provide the most efficient heating and recycling of polydisperse materials. The paper describes results of the investigations on thermal processes in the RTF, movement of materials and non-isothermal gas flow during kiln rotary process. The investigations have been carried out while using physical and computer simulations and under actual operating conditions applying the pilot plant. Results of the research have served as a basis for development of recommendations on the RTF calculations and designing and they have been also used for constructional design of a rotary tilting furnace for heating and melting of cast iron chips, reduction smelting of steel mill scale, melting of aluminum scrap, melting of lead from battery scrap. These furnaces have a high thermal efficiency (~50 %, technological flexibility, high productivity and profitability. Proven technical solutions for recycling of ferrous and non-ferrous metals develop the use of RTF in the foundry and metallurgical industry as the main technological unit for creation of cost-effective small-tonnage recycling of metal waste generated at the plants. The research results open prospects for organization of its own production for high-quality charging material in Belarus in lieu of imported primary metal. The proposed technology makes it possible to solve environmental challenge pertaining to liquidation of multi-tonnage heaps of metal-containing wastes.

  9. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  10. Design of advanced industrial furnaces using numerical modeling method

    OpenAIRE

    Dong, Wei

    2000-01-01

    This doctoral thesis describes the fundamentals ofmathematical modeling for the industrial furnaces and boilersand presents the results from the numerical simulations of sometypical applications in advanced industrial furnaces andboilers. The main objective of this thesis work is to employcomputational fluid dynamics (CFD) technology as an effectivecomputer simulation tool to study and develop the newcombustion concepts, phenomena and processes in advancedindustrial furnaces and boilers. The ...

  11. 76 FR 34021 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Science.gov (United States)

    2011-06-10

    ...; Control of Nitrogen Oxides Emissions From Glass Melting Furnaces AGENCY: Environmental Protection Agency... in 40 CFR Part 52 Environmental protection, Air pollution control, Nitrogen dioxide, Ozone... oxide (NO X ) emissions from glass melting furnaces. This action is being taken under the Clean Air...

  12. Flameless Oxidation as a Means to Reduce NOx Emissions in Glass Melting Furnaces

    OpenAIRE

    Leicher, Jörg

    2013-01-01

    In the glass industry, very high process temperatures are required in order to melt the raw materials. These temperature levels are usually achieved by burning natural gas with strongly pre-heated air. However, this creates ideal conditions for a strong formation of nitrous oxides (NOX), a pollutant whose emissions are strictly regulated. The industry is therefore very much interested in technologies to suppress the production of NOX within the furnace itself. One possible approach is the so-...

  13. An Approach to Optimal Control of the Combustion System in a Reverberatory Furnace

    Directory of Open Access Journals (Sweden)

    Henry Copete-López

    2009-12-01

    Full Text Available In this work an optimal control technique is applied to control the excess air in the combustion process of a reverberatory furnace by the monitoring of O2 percentage in the stack, the controller is designed based on a nonlinear model estimated by artificial neural networks and a data base is used for the previous training; the data base has two subsets one for training and other to validate the net.

  14. Crude oil direct fired furnace model

    International Nuclear Information System (INIS)

    In this study, an accurate mathematical model was developed in order to describe the thermal behaviours of a crude oil preheat furnace and to predict the outlet temperature of the crude process at different operating conditions. Based on basic heat and mass transfer rules, and thermodynamic relations, all sub-sections of furnaces including the combustion system, the convection and radiation sections were modelled. The crude process flow was considered as the mixture of 21 different components. The empirical correlations for crude process were adopted for estimating the physical properties of components and the heat transfer coefficients of process fluid for single-phase and two-phase flow regimes at the convection and radiation sections, respectively. The effects of flame height and combustion process conditions were also considered on the furnace dynamics. Available information from operational, geometrical variables and design values were used to define the parameters of the models. In order to show the feasibility and accuracy of the proposed modelling approach, the performances of the developed model were evaluated by comparing its responses with the designed values (on design simulation). Finally, sensitivity analyses were performed by perturbing the model's inputs from nominal conditions to guarantee the capability of the developed model for long-term simulations. Obtained results indicate that the developed model for a direct fired furnace can be used for transient performance analysis at different operating conditions and real-time simulation experiments in MATALB® Simulink environment. - Highlights: • A semi-empirical dynamic mathematical model was developed for a crude oil preheat furnace. • Heat transfer in single and two phase flow regimes, combustion process were considered. • The model could be used for real-time simulation in MATALB® Simulink environment. • The developed model is an appropriate tool for monitoring, fault diagnosis, and

  15. Air Quality in Mecca and Surrounding Holy Places in Saudi Arabia during Hajj: Initial Survey

    Science.gov (United States)

    Simpson, I. J.; Aburizaiza, O. S.; Siddique, A.; Barletta, B.; Blake, N. J.; Gartner, A.; Khwaja, H. A.; Meinardi, S.; Zeb, J.; Blake, D. R.

    2014-12-01

    The Arabian Peninsula experiences severe air pollution yet is highly understudied in terms of surface measurements of ozone and its precursors. Every year the air pollution in Saudi Arabia is intensified by additional traffic and activities during Hajj, the world's largest religious pilgrimage that draws 3‒4 million pilgrims to Mecca (population of 2 million). Using whole air sampling and high-precision measurements of carbon monoxide (CO) and 97 volatile organic compounds (VOCs), we performed an initial survey of air quality in Mecca, its tunnels, and surrounding holy sites during the 2012 Hajj (October 24-27; n = 77). This is the first time such a campaign has been undertaken. Levels of the combustion tracer CO and numerous VOCs were strongly elevated along the pilgrimage route, especially in the tunnels of Mecca, and are a concern for human health. For example CO reached 57 ppmv in the tunnels, exceeding the 30-min exposure guideline of 50 ppmv. Benzene, a known carcinogen, reached 185 ppbv in the tunnels, exceeding the 1-hr exposure limit of 9 ppbv. The gasoline evaporation tracer i-pentane was the most abundant VOC during Hajj, reaching 1200 ppbv in the tunnels. Even though VOC concentrations were generally lower during a follow-up non-Hajj sampling period (April, 2013), many were still comparable to other large cities suffering from poor air quality. Major VOC sources during Hajj included vehicular exhaust, gasoline evaporation, liquefied petroleum gas, and air conditioners. Of the measured compounds, reactive alkenes (associated with gasoline evaporation) and CO showed the strongest potential to form ground-level ozone. Therefore efforts to curb ozone formation likely require dual targeting of both combustive and evaporative fossil fuel sources. However, modeling and other measurements (e.g., nitrogen oxides) are also needed to fully understand Mecca's oxidative environment. We also present specific recommendations to reduce VOC emissions and exposure in

  16. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    European countries (Ignasi Gurruchaga); (21) Optimisation potential of a large solar adsorption cooling plant (Antoine Dalibard); (22) Planning, commissioning and practical experience with first summer of operation of a cost effective solar air conditioning system for a Canteen at Munich Airport (Carsten Hindenburg); (23) Energy and economic performance of solar cooling systems (Ursula Eicker); (24) Solar-driven adsorption chiller controlled by hot and cooling water temperature (Jan Albers); (25) Comparative results of monitored solar assisted heating and cooling installations (Wolfram Sparber); (26) Heating and cooling with a small scale solar driven adsorption chiller combined with a borehole system - recent results (Tomas Nunez); (27) Solar heating and cooling - Town hall Gleisdorf (Alexander Thuer); (28) Solar dessicant cooling system operating in Palermo (Italy): Results and Validation of simulation models (Marco Beccali); (29) The application of a liquid-dessicant air conditioner to solar cooling (Andrew Lowenstein); (30) A compact solid adsorption chiller for solar air conditioning (Robert Critoph); (31) Development of a two-stage absorption chiller for solar-assisted cooling and heating (Manuel Riepl); (32) Ionic liquids - a promising solution for solar absorption chillers? (Annett Kuehn);(33) Parabolic trough design optimization for high temperature lift solar cooling applications (Marcello Aprile); (34) Tentative R and D program forgetting adsorbents effective for solar air conditioning (Yury Aristov); (35) An energy efficient solar driven two-stage rotary desiccant cooling system: Experiment and case study (Yanjun Dai); (36) Performance of a flat plate collector-regenerator that uses earth-to-air heat exchangers for regeneration of water-lithium chloride solution in a solar coolant plant (Roberto Bruno); (37) 350 KW of dual solar cooling for optimal flexibility and economic performance (Roel de Coninck); (38) Global performance of a solar absorption cooling

  17. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    Science.gov (United States)

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential. PMID:26444147

  18. Additional vacuum pump switching system to the ME-11 furnace reduction

    International Nuclear Information System (INIS)

    A vacuum pump has been installed together with its switching system to increase the safety factor operation of the ME-11 furnace system for reduction process, because reduction process involving hydrogen gas which has potential eruption for a certain composition with air. The vacuum process will be conducted at the beginning of the reduction process. The switching system has been designed with interlock system base to protect any un-procedural action by the furnace's operator during the reduction process. A concept of additional mechanism in case of that powder sample inside the furnace chamber flow out the chamber during the vacuum process is given. The air pressure required for the vacuum activity is 500 mBar as it will be used to prevent the air-hydrogen composition causing eruption not to happen. The vacuum installation including its switching system has been tested, and the result shows that it works properly as what mention in the design document. (author)

  19. Reduction of nitrogen oxides in 46 MW oil heated furnace at Umeaa Energi

    International Nuclear Information System (INIS)

    This report shows trials to reduce nitric oxide outputs from an 46 MW oil heated hotwater furnace. The trials have been accomplished at Umeaa Energi's district heating production plant in Umeaa, during the winter and the spring 1998. The furnace has four oil burners, situated in pairs above each other. With basis from their placing, the possibility of reaching a gradual combustion by redistributing the effect and the secondary air was studied. The main purpose was to see if anyone of the parameters had significance for the production of NOx, and in that case how much the discharge could be reduced. The results of the trials showed that only the lower secondary air had significance for production of NOx in the furnace. If the secondary air was redistributed from the lower pair of burners to the upper pair, the following reduction could be reached: (1) 10.9% NO2-reduction at a load of 70% maximum effect, (2) 9.8% NO2-reduction at a load of 80% maximum effect, and 9.8% NO2-reduction at a load of 90% maximum effect. At maximum NO2-reduction the dust content in the fumes was increased from 0 - 0.5% to 0.5 - 0.8%. The increase is not estimated as harmful and is assumed to depend on the oil burners, which are not adjusted to be operated for attaining low production of NOx Examination paper. 5 refs, 9 figs, 8 tabs, 7 appendixes

  20. Material challenges in ethylene pyrolysis furnace heater service

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, S.

    1980-02-01

    Operating temperatures of pyrolysis furnaces are sometimes in excess of 2000/sup 0/F (1100/sup 0/C). These temperatures are very detrimental to the life of the typical HK-40 furnace tubes which normally have a three to five year life in the hot section of these furnaces. Short life is attributed to rapid carburization of ID surfaces which subjects tubes to higher than normal stresses and results in creep cracking of furnace tubes. As an aid to understanding the materials problems the ethylene process will be presented, along with data on the carburization of furnace tubes.

  1. Advanced control of walking-beam reheating furnace

    Institute of Scientific and Technical Information of China (English)

    Zhigang Chen; Chao Xu; Bin Zhang; Huihe Shao; Jianmin Zhang

    2003-01-01

    Reheating furnace is an important device with complex dynamic characteristics in steel plants. The temperature tracing control of reheating furnace has great importance both to the quality of slabs and energy saving. A model-based control strategy,multivariable constrained control (MCC) for the reheating furnace control is used. With this control method, the furnace is treated as a six-input-six-output general model with loops coupled in nature. Compared with the traditional control, the proposed control strategy gets better temperature tracing accuracy and exhibits some energy saving feature. The simulation results show that the performance of the furnace is greatly improved.

  2. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  3. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  4. Analysis of changes in the chemical composition of the blast furnace coke at high temperatures

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2012-12-01

    Full Text Available Purpose: The main purpose of this paper was to analyze the behavior of coke in the blast furnace. The analysis of changes in chemical composition of coke due to impact of inert gas and air at different temperatures was made. The impact of the application of the thermoabrasion coefficient on the porosity of coke was also analyzed.Design/methodology/approach: By applying the Computer Thermochemical Database of the TERMO system (REAKTOR1 and REAKTOR3 three groups of substances can be distinguished. The chemical composition of blast furnace coke and the results of calculations of changes of chemical composition of coke heat treated under certain conditions were compared. The structural studies of these materials were presented.Findings: The results of the analysis of ash produced from one of Polish cokes was taken for consideration. This is not the average composition of Polish coke ashes, nevertheless it is representative of most commonly occurring chemical compositions.Practical implications: Thanks to the thermochemical calculations it is possible to predict ash composition after the treatment in a blast furnace. Those information was crucial and had an actual impact on determining the coke quality.Originality/value: Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the heat treatment for blast furnaces cokes. The research pursued represents part of a larger project carried out within the framework of Department Extraction and Recycling of Metals, Czestochowa University of Technology.

  5. A new gasification and melting incineration process of MSW with co-current shaft furnace.

    Science.gov (United States)

    Zhao, Wei; Wang, Qi; Zou, Zongshu; Liu, Haixiao; Zheng, Hongxia; Zhang, Lei

    2009-01-01

    In all the municipal solid waste (MSW) disposal technology, incineration with gasification and melting has been taken as a environmentally sound and zero emission technology owing to avoiding second-pollution of heavy metals and dioxin. In this background, a new direct gasification and melting incineration process with co-current shaft furnace is put forward. In this process, MSW and combustion-supporting air are co-current from top to bottom in a shaft furnace. Fuel gas from pyrolysis and gasification burns completely in the bottom in order to offer energy for slag melting. The simulation experiment of the co-current shaft furnace has been done. The results of simulation experiment show that the temperature on the condition of co-current is much higher than on the condition of countercurrent at the bottom of reaction tube and so is the CO2 quantity discharged from reaction tube. It can be concluded that the co-current shaft furnace is more suitable for direct gasification and melting incineration process. PMID:25084404

  6. Feasibility of Furnace H-701 Energy Recovery in Sarkhoun and Qeshm Gas Refinery Using the Heat Exchanger

    OpenAIRE

    J. Khorshidi; B. Jahanshahi; M. Ezadi; H. Davari

    2013-01-01

    The aim of this study is the investigation and thermal analysis relating to emissions of the flue-furnace H-701 of Sarkhoun and Qeshm Gas Refinery in Bandarabbas (IRAN) and thermal load has been calculated. Then Study of the combustion process and calculation of required combustion air and the heating of air In order to increase its enthalpy using energy combustion gases is done by designing Heat Exchanger. This method helps to optimization of energy consumption and reduction of energy losses...

  7. Numerical analysis of an air condenser working with the refrigerant fluid R407C

    International Nuclear Information System (INIS)

    As CFC (clorofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants which have been used as refrigerants in a vapour compression refrigeration system were know to provide a principal cause to ozone depletion and global warming, production and use of these refrigerants have been restricted. Therefore, new alternative refrigerants should be searched for, which fit to the requirements in an air conditioner or a heat pump, and refrigerant mixtures which are composed of HFC (hydrofluorocarbon) refrigerants having zero ODP (ozone depletion potential) are now being suggested as drop-in or mid-term replacement. However also these refrigerants, as the CFC and HCFC refrigerants, present a greenhouse effect. The zeotropic mixture designated as R407C (R32/R125/R134a 23/25/52% in mass) represents a substitute of the HCFC22 for high evaporation temperature applications as the air-conditioning. Aim of the paper is a numerical-experimental analysis for an air condenser working with the non azeotropic mixture R407C in steady-state conditions. A homogeneous model for the condensing refrigerant is considered to forecast the performances of the condenser; this model is capable of predicting the distributions of the refrigerant temperature, the velocity, the void fraction, the tube wall temperature and the air temperature along the test condenser. Obviously in the refrigerant de-superheating phase the numerical analysis becomes very simple. A comparison with the measurements on an air condenser mounted in an air channel linked to a vapour compression plant is discussed. The results show that the simplified model provides a reasonable estimation of the steady-state response and that this model is useful to design purposes

  8. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  9. Danarc technology for electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, P.; Gensini, G.; Mavridis [Danieli Centro Met, Buttrio (Italy)

    1995-06-01

    Danarc electric arc furnace technology combines high-impedance technology with bottom tuyeres for oxygen and carbon injection. Together with lance injection and wall burners for both conventional operation and post-combustion, the concept provides full flexibility in the choice of energy sources. The basic philosophy of the concept is to have efficient systems for the supply of both electrical and alternative energy. Operational results from a Danarc furnace at Ferriere Nord show that it is possible to inject high specific amounts of oxygen and carbon as a substitute for electrical energy. The electrical power supply with a fixed or saturable reactor is beneficial because of the high voltage and low current operation. High-impedance operation results in low electrode consumption, reduced electrical losses and a reduction of the supply network disturbance, ie, flicker.

  10. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  11. The optimization of the quantity of coke and agglomerate in lead production in “Water-Jacket” furnace

    Directory of Open Access Journals (Sweden)

    E. Haxhiaj

    2012-01-01

    Full Text Available The dependence of technical lead production on the composition of the agglomerate has been analyzed on “Water-Jacket” furnace in Trepça. Additionally, the theoretical and real raport of coke consumption per ton of technical lead was studied. The goal of this study was to optimize the parameters of the process with respect to the amount of technical lead produced, the amounts of lead in the agglomerate and the air in the furnace. Special attention was also placed on minimization of energy consumption and environmental pollution.

  12. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  13. FLOX burner technology for wood furnaces

    International Nuclear Information System (INIS)

    Current research at IVD focuses on the development of FLOX burners for small furnaces, with the intention of making problematic biomass available for energetic utilisation. At the same time, soiling and emission problems are to be reduced or avoided by using innovative technologies. One of these is the technology of flameless oxidation, which is already applied successfully in the natural gas industry because of its low NOx emissions. The IVD is working on two different plant concepts. (orig.)

  14. Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2015-12-01

    Full Text Available The integration of large-scale renewable energy poses great challenges for the operation of power system because of its increased frequency fluctuations. More load frequency control (LFC resources are demanded in order to maintain a stable system with more renewable energy injected. Unlike the costly LFC resources on generation side, the thermostatically controlled loads (TCLs on the demand side become an attractive solution on account of its substantial quantities and heat-storage capacity. It generally contains air conditioners (ACs, water heaters and fridges. In this paper, the supplementary LFC is extracted by the modeling and controlling of aggregated ACs. We first present a control framework integrating the supplementary LFC with the traditional LFC. Then, a change-time-priority-list method is proposed to control power output taking into account customers’ satisfaction. Simulations on a single-area power system with wind power integration demonstrate the effectiveness of the proposed method. The impact of ambient temperature changes and customer preferences on room temperature is also involved in the discussion. Results show that the supplementary LFC provided by ACs could closely track the LFC signals and effectively reduce the frequency deviation.

  15. Combustion and emission formation in a biomass fueled grate furnace - measurements and modelling

    International Nuclear Information System (INIS)

    A study of turbulent combustion with special emphasis on the formation of nitrous oxide emissions in a biomass fueled grate furnace has been conducted with the aid of measurements, literature studies and CFD-computations. The literature study covers nitrous oxide formation and the pyrolysis, gasification and combustion of biomass fuel. The measurements were conducted inside the furnace and at the outlet, and temperature and some major species were measured. A tool for the treatment of the bed processes (pyrolysis, gasification and combustion) has been developed. The measurements show significantly higher concentrations of oxygen above the fuel bed than expected. The gas production in the bed was shown to be very unevenly distributed over the width of the furnace. The measured temperatures were relatively low and in the same order as reported from other, similar measurements. The computational results are in good quantitative agreement with the measurements, even for the nitrous oxide emissions. It was necessary to include tar as one of the combustible species to achieve reasonable results. The computations point out that the fuel-NO mechanism is the most important reaction path for the formation of nitrous oxide in biomass combustion in grate furnaces. The thermal NO mechanism is responsible for less than 10% of the total amount of NO-emissions. Although the results are quantitatively in good agreement with the measurements, a sensitivity study showed that the fuel-NO model did not respond to changes in the distribution of secondary air as the measurements indicate. The results from this work have lead to some guidelines on how the furnace should be operated to achieve minimum NO-emissions. Some proposals of smaller changes in the construction are also given. 33 refs, 37 figs, 7 tabs

  16. Second generation rotary furnaces, an even more viable alternative to cupola and electric induction furnaces; La seconde generation de fours rotatifs, un appareil qui peut se substituer avantageusement au cubilot et au four electrique a induction

    Energy Technology Data Exchange (ETDEWEB)

    Lever, D. [Air Liquide 38 - Sassenage (France)

    2001-10-01

    Rotary furnaces are a well established alternative to cupola furnaces. Recent innovations in oxygas furnaces have made them the preferred choice even over medium-frequency electric furnaces in many European foundries. The article explains in what respects the rotary furnace is a new iron smelting concept, as different from the cupola furnace as the medium-frequency electric furnace. (author)

  17. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (modification of heating furnaces of three refineries at Kuiibyshev, Syzran, and Novokuibyshev); 1998 nendo chosa hokokusho. Kuiibyshev, Syzran, Novokuibyshev 3 seiyusho kanetsuro kaizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A study is conducted about the CO2 reduction effect to be achieved by modernizing the 130 tube-type heating furnaces of the above-named three refineries in Russia. Chosen especially for the study are 39 heating furnaces which are the essential refinery facilities that require urgent energy related measures. Based on the outcome of the study, modification plans are formulated and rough designs are drawn, which involve the replacement of antiquated furnaces by high-performance new-design furnaces, installation of waste heat recovery facilities such as preheating convection sections and air preheaters, reinforcement of furnace wall insulation materials, installation of optimal control systems for furnace operation, modification of fuel supply systems for higher efficiency, installation of decoking systems, etc. After the modification, the heating furnace thermal efficiency will be secure at 90% at the lowest. After the application of this energy efficiency enhancement project, CO2 emission will be reduced by approximately 480,000 tons/year for the 39 chosen furnaces or by approximately 1,200,000 tons/year for all the 130 heating furnaces. (NEDO)

  18. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    In the Uranium Powder Manufacturing Plant at CAC, U3O8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  19. Investigation of Lignite and Firewood Co-combustion in a Furnace for Tobacco Curing Application

    Directory of Open Access Journals (Sweden)

    Nakorn Tippayawong

    2006-01-01

    Full Text Available Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO2, CO2, O2 and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW and high (150 kW thermal output was achieved with average CO and SO2 content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

  20. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    Energy Technology Data Exchange (ETDEWEB)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  1. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  2. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  3. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  4. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  5. Determination of leakage in blast furnaces cooling plates

    International Nuclear Information System (INIS)

    Blast furnace walls are cooled by the circulation of water through copper plates inserted into the blast furnace refractory lining. Plates are fed by circular pipelines, called distribution rings, installed at different levels of the reactor. Because of normal corrosion, plates wear away and can eventually perforate, allowing the leakage of cooling water inside the blast furnace. A system has been designed and installed in order to confirm the eventual occurrence of leakages in the cooling plates of a blast furnace refractory lining. The system injects a solution of tritium into the feeding pipeline and determines, by means of liquid scintillation counting, the concentration of tritium in the exhausting gases at the top of the blast furnace. The system was tested under different blast furnace operating conditions, and allowed the detection and determination of leakages greater than 0.5 1/min. Following necessary maintenance, the system also confirmed the satisfactory results of the corrective actions. (author). 48 refs., 13 figs., 29 tabs

  6. Simulation study of UO2 kernel reduction furnace design

    International Nuclear Information System (INIS)

    Based on the N-S equations and the k-ε turbulence model, different kinds of UO2 kernel reduction furnace equipment in PBMR, South Africa and INET, China were numerically simulated using computational fluid dynamics method. The simulation results show that these two kinds of furnace designs can not be achieved on the uniform distribution of gas flow in the axial direction, but show large volume at the top and small volume at the bottom of the furnace, and this is one of the reasons of non-uniform particle reduction. Improved design was proposed based on the analysis of changes of axial pressure in the furnace. Simulation results demonstrate that the improved furnace design is suitable for obtaining a more uniform distribution of the gas in the axial direction. It can be concluded that the improved furnace design will improve particle reduction effects. (authors)

  7. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow

  8. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  9. Investigation of Pollution Emits By Cupola Furnace in Gujarat Foundry

    OpenAIRE

    Hardikkumar Patil1 , Gajanan Patange2 , M.P.Khond

    2013-01-01

    The foundry industry is the major contributor in pollution among all other industries in India. At present only few foundries in India have pollution controllable system. Most of these casting industries use cupola furnace that emits gases namely carbon dioxide, carbon monoxide, nitrogen dioxide, sulphur dioxide, suspended particle matter, dust and ash. Though, emission from single furnace is not considerable but it has huge impact if much such type of furnaces located in particular area. A i...

  10. Compacting of fly dusts from cupola and electric arc furnace

    OpenAIRE

    D. Baricová; P. Futáš; A. Pribulová; G. Fedorko; P. Demeter

    2012-01-01

    Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace) and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with ...

  11. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  12. Assessment of selected furnace technologies for RWMC waste

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  13. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  14. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  15. Carbon Tubular Morphologies in Blast Furnace Coke

    OpenAIRE

    Stanislav S. Gornostayev; Jouko J. Härkki

    2008-01-01

    The paper reports on the first occurrence of microscale carbon tubular morphologies (CMTs) in a blast furnace (BF) coke. The CMTs were probably formed as a result of the conversion of solid disordered carbon via liquid phase metal particles involving a gas phase containing a substantial amount of N 2 and O 2 . The presence of CMTs may lie behind the generation of the smallest fraction of fines in BF exhaust dust. If the amount of CMTs present in the BF exhausts gases at any particular metallu...

  16. Carbon Tubular Morphologies in Blast Furnace Coke

    Directory of Open Access Journals (Sweden)

    Stanislav S. Gornostayev

    2008-01-01

    Full Text Available The paper reports on the first occurrence of microscale carbon tubular morphologies (CMTs in a blast furnace (BF coke. The CMTs were probably formed as a result of the conversion of solid disordered carbon via liquid phase metal particles involving a gas phase containing a substantial amount of N2 and O2. The presence of CMTs may lie behind the generation of the smallest fraction of fines in BF exhaust dust. If the amount of CMTs present in the BF exhausts gases at any particular metallurgical site proves to be substantial, it could become a subject of environmental concern.

  17. Intelligent temperature control system of quench furnace

    Institute of Scientific and Technical Information of China (English)

    胡燕瑜; 桂卫华; 唐朝晖; 唐玲

    2004-01-01

    A fuzzy-neural networks intelligent temperature control system of quench furnace was presented. Combined genetic algorithm with back-propagation algorithm, the weight values of neural networks, parameters of fuzzy membership functions and inference rules can be adjusted automatically, which realizes the optimal control of temperature. The results show that this control system can run effectively with satisfied temperature precision: in temperature uprising stage, overshot of temperature is under 4 ℃; in stable stage, the scope of temperature change is controlled within ±2 ℃, which meets the need of control veracity of temperature.

  18. PERFORMANCE TESTING AND ANALYSIS OF CUPOLA FURNACE

    OpenAIRE

    PROF.HEMANT R. BHAGAT-PATIL; MEGHA S. LONDHEKAR

    2013-01-01

    In today’s industrial scenario huge losses/wastage occur in the manufacturing shop floor and foundry industries. The efficiency of any foundry largely depends on the efficiency of the melting process amulti-step operation where the metal is heated, treated, alloyed, and transported into die or mold cavities to form a casting. In this paper we represents the performance testing and analysis of Cupola Furnace, and reduces the problems occurs to give the best results. Our main focus in this work...

  19. Transport phenomena in the flash smelting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Teppo, O.; Yang, Y.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1994-12-31

    Fluid flow and some basic heat transfer phenomena taking place in an industrial scale Outokumpu type flash smelting furnace were simulated with Phoenics. For now, only the standard features of the software(k-{epsilon} model of turbulence, six flux radiation model) has been used. Both Lagrangian and Eulerian treatment were used in two phase flow calculation to describe the particle phase. All the two-phase simulations presented in this article are isothermal, where the particles exchange only momentum with the gas phase. As a first attempt, combustion of gaseous sulphur with oxygen was used to represent the heat release from the copper concentrate oxidation reactions. (author)

  20. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  1. Phase chemical composition of slag from a direct nickel flash furnace and associated slag cleaning furnace

    International Nuclear Information System (INIS)

    During the recovery of base metals from the Bushveld Igneous Complex ores, South Africa, a two-stage process is used to ensure complete recovery of nickel from the ore. A nickel flash smelting furnace is initially used to obtain the valuable metal but the loss of nickel in the slag amounts to about 4 % and thus an electric slag-cleaning furnace has to be subsequently used to reduce the loss of the valuable metal to less than 0.5 % nickel oxide in the slag. The Fe2 + /Fe3 +  ratio and mineralogy in the two different furnaces differ and can be used as a tool to determine the efficiency of the nickel recovered in the two-stage process. By means of XRD, SEM/EDS and Mössbauer spectroscopy the Fe2 + /Fe3 +  ratio and the amount of magnetite was determined in each furnace, which was then used as an indicator of the effectiveness of the whole process.

  2. Phase chemical composition of slag from a direct nickel flash furnace and associated slag cleaning furnace

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, F. B., E-mail: frans.waanders@nwu.ac.za [North-West University, School of Chemical and Minerals Engineering (South Africa); Nell, J., E-mail: Johannes.Nell@hatch.co.za [Hatch (South Africa)

    2013-04-15

    During the recovery of base metals from the Bushveld Igneous Complex ores, South Africa, a two-stage process is used to ensure complete recovery of nickel from the ore. A nickel flash smelting furnace is initially used to obtain the valuable metal but the loss of nickel in the slag amounts to about 4 % and thus an electric slag-cleaning furnace has to be subsequently used to reduce the loss of the valuable metal to less than 0.5 % nickel oxide in the slag. The Fe{sup 2 + }/Fe{sup 3 + } ratio and mineralogy in the two different furnaces differ and can be used as a tool to determine the efficiency of the nickel recovered in the two-stage process. By means of XRD, SEM/EDS and Moessbauer spectroscopy the Fe{sup 2 + }/Fe{sup 3 + } ratio and the amount of magnetite was determined in each furnace, which was then used as an indicator of the effectiveness of the whole process.

  3. Phase chemical composition of slag from a direct nickel flash furnace and associated slag cleaning furnace

    Science.gov (United States)

    Waanders, F. B.; Nell, J.

    2013-04-01

    During the recovery of base metals from the Bushveld Igneous Complex ores, South Africa, a two-stage process is used to ensure complete recovery of nickel from the ore. A nickel flash smelting furnace is initially used to obtain the valuable metal but the loss of nickel in the slag amounts to about 4 % and thus an electric slag-cleaning furnace has to be subsequently used to reduce the loss of the valuable metal to less than 0.5 % nickel oxide in the slag. The Fe2 + /Fe3 + ratio and mineralogy in the two different furnaces differ and can be used as a tool to determine the efficiency of the nickel recovered in the two-stage process. By means of XRD, SEM/EDS and Mössbauer spectroscopy the Fe2 + /Fe3 + ratio and the amount of magnetite was determined in each furnace, which was then used as an indicator of the effectiveness of the whole process.

  4. Assessment of Air Environmental Factor Pollution to the Steelmaking (Pădureni Area)

    OpenAIRE

    Iluţiu-Varvara, Dana-Adriana; Pică, Elena-Maria; Liviu BRÂNDUŞAN

    2011-01-01

    The steelmaking process in the electric arc furnace causes environmental pollution in all its components: water, air and soil. The electric arc furnace steelmaking is considered to be an industrial process with high degree of pollution because the following pollutants are transferred in the air environment factor: carbon oxide, sulphur oxide, nitrogen oxide, volatile organic compounds, particulate matter, dioxins and furans. The purpose of the paper constitutes the assessment of air environme...

  5. Electric arc furnace models for flicker study

    Directory of Open Access Journals (Sweden)

    Catalina González Castaño

    2016-06-01

    Full Text Available Objective: The aim of this paper is to evaluate voltage fluctuations or flicker of two electric arc furnace models through comparison with real data.Method: The first proposed model is founded on the energy conservation principle, which generates a non-linear differential equation modelling the electric arc voltage – current characteristics. Voltage fluctuations are generated using a chaotic circuit that modulates the amplitude of arc voltage. The second model is based on the empirical relationship between the arc diameter or length as well as voltage and electrical current on the arc. Voltage fluctuations are considered adding a random signal in the arc length. Both models are implemented in PSCADTM.Results: The results of both models are compared with real data taken at the most critical stage of the operation of the furnace, and they show that the model based on energy conservation has a lower average mean square error in the voltages and currents 5.6 V and 1.7 kA against 27,2 V y 3.38 kA obtained with the second model.Conclusions: Both models consider the nonlinearity and random behavior present in this type of load, validating their inclusion in computer models of electric power systems.

  6. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  7. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  8. Artificial neural networks in predicting current in electric arc furnaces

    International Nuclear Information System (INIS)

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania

  9. Blast furnace lining and cooling technology: experiences at Corus IJmuiden

    Energy Technology Data Exchange (ETDEWEB)

    Stokman, R.; van Stein Cellenfels, E.; van Laar, R.

    2004-11-01

    This article describes the blast furnace lining and cooling concept as originally developed and applied by Hoogovens (Corus IJmuiden). The technology has also been applied by Danieli Corus in all its blast furnace projects executed in the last 25 years. The technology has helped Corus increase its PCI rate to over 200 kg/thm. 4 refs., 13 figs., 1 tab.

  10. Reduction Mechanism of Chromite Ore in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di

    2004-01-01

    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  11. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  12. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  13. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    Science.gov (United States)

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  14. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  15. Heat Exchange and Thermal Modes of Modern Ring Furnaces

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolsky

    2014-06-01

    Full Text Available The paper considers an accumulated experience concerning investigation of heat exchange and thermal modes of ring furnaces applied for heating simulation. Physical and mathematical model and methodology for theoretical investigation of round billet heating in the ring furnace are proposed in the paper.

  16. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 k...

  17. Experimental studies on heat transfer of oxy-coal combustion in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    A number of issues arise in the transition from air-firing to oxy-firing. In situations where the furnace should be retrofitted for oxy-firing, a similar heat transfer performance is crucial for operation of power plants. A survey of recent literature turned up very little detailed research on the characterization of pulverized oxy-coal flames generated by staged feed-gas burners and the impacts of burner settings on heat transfer performance. A large number of studies applied either O2 fraction upstream of the burner or recycle ratio as main parameter to characterize oxy-fired conditions. For this reason, this study applies other characteristic parameters, as for example swirl number and feed gas flow ratio between the burner registers, rather than only O2 concentration for operation of the test facility. Experiments were conducted in a test facility with a rated capacity of 0.40 MWth fired by an industry-type burner. A theoretical study was also carried out to calculate combustion parameters, e.g., adiabatic flame temperature, in order to define burner settings and assess the experimental results. The burner was set to operate at three levels of secondary swirl number (1.15, 1.65, and 2.05), while part of the feed gas was divided between the secondary and tertiary registers using flow ratios between 0.40 and 2.00. For completeness, three levels of O2 fraction upstream of the burner (29, 31, and 33 vol% O2) were also tested under oxy-fired conditions. Measurements of peak flame temperature, absorbed heat flux at the water-cooled walls, and total radiative heat flux were performed and applied besides heat balance calculations to evaluate heat transfer performance. Experimental data indicated the feed gas distribution among the burner registers control the heat transfer in the furnace in parallel with the swirl strength of the secondary flow for both air-fired and oxy-fired conditions. Even though lower flame temperatures were obtained in oxy-firing, the results

  18. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  19. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    Science.gov (United States)

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted. PMID:11288304

  20. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e