WorldWideScience

Sample records for air vehicle ucav

  1. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    Directory of Open Access Journals (Sweden)

    Chang Luo

    2016-01-01

    Full Text Available An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restriction of gesture, a novel adaptive sliding mode control method is suggested to design the integrated guidance and control system of UCAV in the process of autonomous attack occupation. Key parameters of the control system are adaptively regulated, which further economize control energy at the same time. The simulation results show that compared with traditional methods our approach can guide the UCAV to the optimum attack position with stable gesture and economize nearly 25% control energy.

  2. A bat algorithm with mutation for UCAV path planning.

    Science.gov (United States)

    Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi

    2012-01-01

    Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.

  3. A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.

    Science.gov (United States)

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.

  4. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics

    Science.gov (United States)

    Luckring, James M.; Boelens, Okko J.

    2015-01-01

    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  5. The NRL MITE Air Vehicle

    National Research Council Canada - National Science Library

    Kellogg, James; Bovais, Christopher; Dahlburg, Jill; Foch, Richard; Gardner, John; Gordon, Diana; Hartley, Ralph; Kamgar-Parsi, Behrooz; McFarlane, Hugh; Pipitone, Frank; Ramamurti, Ravi; Sciambi, Adam; Spears, William; Srull, Donald; Sullivan, Carol

    2001-01-01

    .... The NRL Micro Tactical Expendable "MITE" air vehicle is a result of this research. The operational MITE is a hand-launched, dual-propeller, fixed-wing air vehicle, with a 9-inch chord and a wingspan of 8 to 18 inches, depending on payload weight...

  6. Compressed Air Production Using Vehicle Suspension

    OpenAIRE

    Ninad Arun Malpure; Sanket Nandlal Bhansali

    2015-01-01

    Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are co...

  7. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  8. Compressed Air Production Using Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Ninad Arun Malpure

    2015-08-01

    Full Text Available Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are collecting air in the cylinder and store this energy into the tank by simply driving the vehicle. This method is non-conventional as no fuel input is required and is least polluting.

  9. Canadian government motivators for clean air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J. [Transport Canada, Ottawa, ON (Canada)

    1999-07-01

    A slide presentation is included which covers: why support clean air vehicles, key areas of action including climate change and cleaner air and conclusions. Reasons for supporting clean air vehicles include: the environment is not a top of mind issue for Canadians but is a core issue, transportation contributes significantly to environmental problems, e.g., 40-50% of smog emissions, and 27% of greenhouse gas emissions, and clean air vehicles are part of the solution. The first area of action is that of climate change, and includes as elements: the Kyoto Protocol, First Ministers, and 15 Issue Tables. The second area of action is clean air. Action on climate change can have ancillary benefits, e.g., reduction in smog-related emissions. Government is taking action to address smog in concert with the provinces in the Federal Smog Management Plan. A key element in the Plan is that of ensuring that appropriate emissions standards are in place. Transport Canada supports clean air vehicles through research conducted at the Transporation Research and Development Centre. Further Transport Canada involvement includes: partnership in Montreal 2000, demonstration/conversion testing, development of advanced EV systems, and membership in the CEVEQ. In the longer term, new technologies hold the key to addressing many environmental challenges. This is particularly true with respect to climate change and air quality, and new vehicle technologies will play an important role.

  10. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  11. Air pollution and motor vehicles

    International Nuclear Information System (INIS)

    Bruzzi, L.

    1992-01-01

    An analysis is made of the effects of fuel chemical composition and fuel-air mixture on the composition of combustion exhaust gases produced by automotive spark ignition and diesel engines. This analysis considers several aspects: the merits of unleaded gasolines, Italian legal limits on the concentration of aromatic hydrocarbons in gasoline, limits on the sulfur content of diesel fuels, and proposed European Communities limits on automobile air pollution. The paper concludes with an assessment of the cost effective performance of different types of catalytic converters now available on the market

  12. A primer on motor vehicle air pollution.

    Science.gov (United States)

    1973-01-01

    This primer presents a brief state-of-the art review of motor vehicle air pollution. Its purpose is to aid highway personnel in understanding the nature of this environmental problem on our highways and to present possible solutions for its abatement...

  13. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  14. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  15. Nonlinear dynamics of biomimetic micro air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y; Kong, J [College of Mechanical Automation, Wuhan University of Science and Technology, Wuhan, 430081 (China)], E-mail: fly_houyu@163.com.cn

    2008-02-15

    Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force.

  16. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  17. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  18. Air-Conditioning for Electric Vehicles

    Science.gov (United States)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  19. OmniBird: a miniature PTZ NIR sensor system for UCAV day/night autonomous operations

    Science.gov (United States)

    Yi, Steven; Li, Hui

    2007-04-01

    Through a SBIR funding from NAVAIR, we have successfully developed an innovative, miniaturized, and lightweight PTZ UCAV imager called OmniBird for UCAV taxiing. The proposed OmniBird will be able to fit in a small space. The designed zoom capability allows it to acquire focused images for targets ranging from 10 to 250 feet. The innovative panning mechanism also allows the system to have a field of view of +/- 100 degrees within the provided limited spacing (6 cubic inches). The integrated optics, camera sensor, and mechanics solution will allow the OmniBird to stay optically aligned and shock-proof under harsh environments.

  20. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    Science.gov (United States)

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  1. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  2. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  3. Flexible Soldier and Machine Interface for Micro Air Vehicles

    National Research Council Canada - National Science Library

    Costello, Mark; Beyer, Eric

    2006-01-01

    ...) was to provide basic connectivity to the air vehicle sensor suite. This includes the ability to send and receive control parameters, servo calibration parameters, sensor calibration parameters, and mission waypoints...

  4. How motor vehicles contribute to global warming and air pollution

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, the authors describe ways in which motor vehicles are contributing to global climate change and health problems caused by air pollution. Globally, motor vehicles account for about a third of world oil consumption and about 14% of the world's carbon dioxide emissions from fossil fuel burning. For the US the figures are 50% of oil demand and about 25% of carbon dioxide emissions. Motor vehicles are the major source of ozone precursors and monitoring data suggest that ozone concentrations are increasing by about one percent per year in the northern hemisphere and are causing adverse effects on human health and on crops. A major source of chlorofluorocarbons in the atmosphere is motor vehicle air conditioning. Annually about 120,000 metric tons of CFCs are used in new vehicles and in serving air conditioners in older vehicles. According to the EPA, vehicle air conditioners accounted for about 16% of the total CFC use in the US during 1989. According to the Montreal Protocol, CFCs are to be completely phased out of new vehicles by the turn of the century, thus reducing the depletion of the stratospheric ozone layer

  5. On the Costs of Air Pollution from Motor Vehicles

    OpenAIRE

    Small, Kenneth A.; Kazimi, Camilla

    1995-01-01

    Air pollution is frequently the stated reason for special measures aimed at controlling motor vehicles. In the United States, motor vehicle emission standards are set explicitly in clean air legislation, while policies at several levels of government are designed to reduce the use of cars for particular purposes like commuting. In Europe, high fuel taxes and subsidies to urban mass transit and intercity rail travel in large part aim to reduce car use.

  6. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  7. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  8. 77 FR 3386 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program

    Science.gov (United States)

    2012-01-24

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program AGENCY: Environmental... vehicles (LEV II). The Clean Air Act (CAA) contains specific authority allowing any state to adopt new... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  9. Scaling Flight Tests of Unmanned Air Vehicles

    Science.gov (United States)

    2006-09-01

    wind tunnel experiments, the wind tunnel remains one of the most widely used, useful tools in the field of aerodynamics. Other Scaled Vehicles and...propensity of automobiles. In other research carried out at the University of Delft, Netherlands, the project DAVINCI was developed for

  10. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  11. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  12. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    Science.gov (United States)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  13. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  14. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  15. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  16. Motor vehicle-related air toxics study. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    Section 202 (1)(1) of the Clean Air Act (CAA), as amended (Section 206 of the Clean Air Act Amendments) (CAAA) of 1990 added paragraph (1) to Section 202 of the (CAA), directs the Environmental Protection Agency (EPA) to complete a study by May 15, 1992 of the need for, and feasibility of, controlling emissions of toxic air pollutants which are unregulated under the Act and associated with motor vehicles and motor vehicle fuels. The report has been prepared in response to Section 202 (1)(1). Specific pollutants or pollutant categories which are discussed in the report include benezene, formaldehyde, 1,3-butadiene, acetaldehyde, diesel particulate matter, gasoline particulate matter, and gasoline vapors as well as certain of the metals and motor vehicle-related pollutants identified in Section 112 of the Clean Air Act. The focus of the report is on carcinogenic risk. The study attempts to summarize what is known about motor vehicle-related air toxics and to present all significant scientific opinion on each issue

  17. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  18. Cooperative Electronic Attack using Unmanned Air Vehicles

    National Research Council Canada - National Science Library

    Mears, Mark J

    2006-01-01

    ... that are salient in the context of cooperative control. The utility of electronic attack is described in the context of integrated air defense systems that rely on RADAR sites that act as a network to gather information about potential airborne threats...

  19. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  20. Autonomous Flight of Flapping Wing Micro Air Vehicles

    NARCIS (Netherlands)

    Tijmons, S.

    2017-01-01

    Many types of drones have emerged over the last decade and new applications in various sectors are announced almost on a daily basis. In scientific literature, small drones are called Micro Air Vehicles (MAVs). Especially very small MAVs will play a significant role in indoor applications, since

  1. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  2. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  3. Dimensionless Energy Conversion Characteristics of an Air-Powered Hydraulic Vehicle

    OpenAIRE

    Dongkai Shen; Qilong Chen; Yixuan Wang

    2018-01-01

    Due to the advantages of resource conservation and less exhaust emissions, compressed air-powered vehicle has attracted more and more attention. To improve the power and efficiency of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer) is used to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy conversion characteristics of...

  4. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  5. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  6. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  7. Unmanned air vehicles - real time intelligence without the risk

    OpenAIRE

    Miller, James Bryan.

    1988-01-01

    Unmanned Air Vehicles (UAVs) are capable of supporting the officer in tactical command (OTC) by gathering intelligence in real- or near real-time. UAVs now under development will be able to collect high-resolution imagery, and thus provide the OTC with the option of gathering tactical intelligence without using manned reconnaissance platforms. This thesis asserts that UAVs should be used to supplement existing intelligence sensors, particularly in those cases where current sources are too amb...

  8. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  9. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    Science.gov (United States)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  10. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  11. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  12. Potential impacts of electric vehicles on air quality in Taiwan.

    Science.gov (United States)

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  14. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  15. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  16. Physics-Based Aeroelastic Analysis for Future Air Vehicle Concepts Using a Fully Nonlinear Methodology

    National Research Council Canada - National Science Library

    Strganac, Thomas W

    2007-01-01

    Future air vehicles will be highly flexible and will include deformable sub-systems resulting in new physical interactions between a vehicle's structure, the surrounding flowfleld, and the dynamics...

  17. Development of lithium air novel materials for electrical vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Aucher, Christophe; Knipping, E.; Amantia, D.; Almarza, A.; Faccini, M.; Gutierrez-Tauste, D.; Saez, J.A.; Aubouy, L. [Leitat Technological Center, Terrassa (Spain)

    2012-07-01

    Fluctuation of oil prices and effects of global warming have forced the scientific-technical community to look for the alternative energy storage and conversion systems, such as the smart grid. The maximum energy density of current lithium-ion batteries (LIB) is limited because of the intercalation chemistry of each electrode. Then actual LIBs are not fully satisfactory for the practical application of electric vehicles (EV). Therefore metal-air batteries have attracted much attention as a possible alternative, especially for the replacing of the diesel or gasoline, because of their energy density is extremely high compared to that of other rechargeable batteries and theoretically close to the energy density of the fossil energy. This technology leads to a very light dispositive where the limited intercalation chemistry is avoided. Li-air batteries are suitable for the development of the new generation of EVs. It is estimated that a well optimized Li-air battery can yield a specific energy of up to 3000 Wh/Kg, over a factor of 15 greater than the state of the art lithium ion batteries. Electrical cars today typically can travel only about 150 km on current LIB technology. The development of the lithium air batteries stands chance of being light enough to travel 800 km on a single charge and cheap enough to be practical for a typical family car. This problem is creating a significant barrier to electric vehicle adoption. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges which must be overcome as the cyclability or the wide gap between the practical (362 Wh/kg) and the theoretical (11 kWh/g) values of the specific energy.

  18. Impact of methanol vehicles on ozone air quality

    Science.gov (United States)

    Chang, T. Y.; Rudy, S. J.; Kuntasal, G.; Gorse, R. A.

    A single-cell trajectory model with an updated chemical mechanism has been used to evaluate the impact on ozone air quality of methanol fueled vehicle (MFV) substitution for conventional fueled vehicles (CFV) in 20 urban areas in the U.S. Recent measurement data for non-methane organic compound (NMOC) concentrations and NMOC/NO x ratios for each of the areas was used. The sensitivity of peak 1-h O 3 values to variations in many of the input parameters has been tested. The functional dependence of peak 1-h O 3 on NMOC/NO x, ratios shows that, for many cities, the maximum O 3 levels occur near the median urban-center 6-9 a.m. NMOC/NO x ratios. The results of the photochemical model computations, including several methanol-fuel substitution scenarios, have been used to derive relative reactivities of methanol and formaldehyde. Per-vehicle O 3 reduction potentials for MFV have also been derived. The reduction potentials and calculated percentage O 3 reductions for selected MFV market-penetrations have been used to estimate the impact of any MFV market-penetration or change in MFV emission factors. All substitution scenarios evaluated lead to projections of lower peak 1-h O 3 levels. Even with significant replacement of CFV by MFV, the reduction of urban O 3 levels appears to be modest. However, the reductions may be significant in comparison to other available O 3-reduction options.

  19. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    Science.gov (United States)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  20. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  1. Aspergillus prevalence in air conditioning filters from vehicles: taxis for patient transportation, forklifts, and personal vehicles.

    Science.gov (United States)

    Viegas, Carla; Moreira, Ricardo; Faria, Tiago; Caetano, Liliana Aranha; Carolino, Elisabete; Gomes, Anita Quintal; Viegas, Susana

    2018-05-04

    The frequency and importance of Aspergillus infections is increasing worldwide. This study aimed to assess the occupational exposure of forklifts and taxi drivers to Aspergillus spp. Nineteen filters from air conditioning system of taxis, 17 from forklifts and 37 from personal vehicles were assessed. Filters extract were streaked onto MEA, DG18 and in azole-supplemented media. Real-time quantitative PCR amplification of selected Aspergillus species-complex was also performed. Forklifts filter samples presented higher median values. Aspergillus section Nigri was the most observed in forklifts filters in MEA (28.2%) and in azole-supplemented media. DNA from Aspergillus sections Fumigati and Versicolores was successfully amplified by qPCR. This study enlightens the added value of using filters from the air conditioning system to assess Aspergillus spp. occupational exposure. Aspergillus azole resistance screening should be included in future occupational exposure assessments.

  2. Resources and Fact Sheets on Servicing Motor Vehicle Air Conditioners (Summary Page)

    Science.gov (United States)

    Page provides links to resources that can assist motor vehicle air-conditioning system technicians in understanding system servicing requirements and best practices, and learn about alternative refrigerants.

  3. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    Science.gov (United States)

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  4. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    Directory of Open Access Journals (Sweden)

    Natasha Maria Barnes

    2018-03-01

    Full Text Available Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5, total volatile organic compounds (TVOCs, carbon monoxide (CO, carbon dioxide (CO2, airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC concentration positively correlated with the age of the vehicle. Carbon monoxide (CO levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  5. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    Science.gov (United States)

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  6. An Improved Artificial Bee Colony Algorithm Based on Balance-Evolution Strategy for Unmanned Combat Aerial Vehicle Path Planning

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  7. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  8. 78 FR 57501 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Amendments to Vehicle...

    Science.gov (United States)

    2013-09-19

    ... Definitions, NR 485.04 Motor vehicle emission limitations; exemptions, and NR 485.045 Repair cost limit for... Promulgation of Air Quality Implementation Plans; Wisconsin; Amendments to Vehicle Inspection and Maintenance... Resources on June 7, 2012, concerning the state's vehicle inspection and maintenance (I/M) program in...

  9. The availability of unmanned air vehicles: a post-case study

    NARCIS (Netherlands)

    Smith, M.A.J.; Dekker, R.; Kos, J.; Hontelez, J.A.M.

    2001-01-01

    An Unmanned Air Vehicle (UAV) is an unmanned, remotely controlled, small air vehicle. It has an important role in antisurface warfare. This implies over-the-horizon detection, classification, targeting and battle damage assessment. To perform these tasks several UAVs are needed to assist or

  10. 9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  11. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  12. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  13. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  14. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.37 Section 3.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  15. 75 FR 51521 - Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness...

    Science.gov (United States)

    2010-08-20

    ....121) mandates antilock braking systems (ABS) on all new air-braked vehicles with a GVWR of 10,000...-0116] Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness of Antilock Braking Systems in Heavy Truck Tractors and Trailers AGENCY: National Highway Traffic...

  16. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  17. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  18. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  19. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  20. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    Science.gov (United States)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  1. Final Approval of California Air Plan Revision; Antelope Valley Air Quality Management District; VOCs From Motor Vehicle Assembly Coating Operations

    Science.gov (United States)

    EPA is taking final action to approve a revision to the Antelope Valley Air Quality Management District (AVAQMD) portion of the California SIP concerning the emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  2. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  3. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  4. The contribution of air cushioned vehicles in oil spill response

    International Nuclear Information System (INIS)

    McCarthy, M.W.; McGrath, J.

    1993-01-01

    On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (US) to clean up. The incident initiated a joint response from the US and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support-as an experiment in ACV utility-to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions

  5. Partial camera automation in an unmanned air vehicle.

    Science.gov (United States)

    Korteling, J E; van der Borg, W

    1997-03-01

    The present study focused on an intelligent, semiautonomous, interface for a camera operator of a simulated unmanned air vehicle (UAV). This interface used system "knowledge" concerning UAV motion in order to assist a camera operator in tracking an object moving through the landscape below. The semiautomated system compensated for the translations of the UAV relative to the earth. This compensation was accompanied by the appropriate joystick movements ensuring tactile (haptic) feedback of these system interventions. The operator had to superimpose self-initiated joystick manipulations over these system-initiated joystick motions in order to track the motion of a target (a driving truck) relative to the terrain. Tracking data showed that subjects performed substantially better with the active system. Apparently, the subjects had no difficulty in maintaining control, i.e., "following" the active stick while superimposing self-initiated control movements over the system-interventions. Furthermore, tracking performance with an active interface was clearly superior relative to the passive system. The magnitude of this effect was equal to the effect of update-frequency (2-5 Hz) of the monitor image. The benefits of update frequency enhancement and semiautomated tracking were the greatest under difficult steering conditions. Mental workload scores indicated that, for the difficult tracking-dynamics condition, both semiautomation and update frequency increase resulted in less experienced mental effort. For the easier dynamics this effect was only seen for update frequency.

  6. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  7. Unmanned air vehicle (UAV) ultra-persitence research

    Energy Technology Data Exchange (ETDEWEB)

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  8. Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles Symposium. Technical Evaluation Report

    National Research Council Canada - National Science Library

    Decuypere, Roland; Selegan, David

    2007-01-01

    ...) of the Research and Technology Organization (RTO) of NATO organized a joint symposium on Platform Innovations and System Integration for Unmanned Air, Land and Sea Vehicles which met from 14-18 May 2007 in Florence Italy...

  9. Affordable High Power Density Engine Designs for Personal Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation General Aviation (GA) Sport Class air vehicles limited to 1200lbs, represent the first opportunity to overhaul the FAA certification process...

  10. Affordable High Power Density Engine Designs for Personal Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation General Aviation (GA) Sport Class air vehicles limited to 1200lbs, represent the first opportunity to overhaul the FAA certification process...

  11. Variable-Fidelity Conceptual Design System for Advanced Unconventional Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing work in unconventional air-vehicles, i.e. deformable mold-lines and bio-mimetics, is beginning to provide the insight necessary to exploit performance...

  12. Optimal Wind Corrected Flight Path Planning for Autonomous Micro Air Vehicles

    National Research Council Canada - National Science Library

    Zollars, Michael D

    2007-01-01

    ...) fixed sensor on a target in the presence of a constant wind. Autonomous flight is quickly becoming the future of air power and over the past several years, the size and weight of autonomous vehicles has decreased dramatically...

  13. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    Science.gov (United States)

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  14. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar; Ghommem, Mehdi

    2013-01-01

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras

  15. California; Antelope Valley Air Quality Management District; VOCs from Motor Vehicle Assembly Coating Operations

    Science.gov (United States)

    EPA is proposing to approve a revision to the Antelope Valley Air Quality Management District portion of the California SIP concerning emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  16. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  17. Dynamic Response Analysis of an Icosahedron Shaped Lighter Than Air Vehicle

    Science.gov (United States)

    2015-03-26

    Montgolfier brothers successfully achieved flight using a hot - air balloon . While this was not the first time a LTAV had been imagined, it was the...first time one had been successfully built and flown [3]. Hot - air balloons are able to stay afloat in the atmosphere by displacing a volume of air ...These possibilities have already been exploited by LTAVs using a lifting gas (hydrogen, helium, hot air ), but those vehicles require storage for the gas

  18. Dimensionless Energy Conversion Characteristics of an Air-Powered Hydraulic Vehicle

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2018-02-01

    Full Text Available Due to the advantages of resource conservation and less exhaust emissions, compressed air-powered vehicle has attracted more and more attention. To improve the power and efficiency of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer is used to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy conversion characteristics of air-powered hydraulic vehicle, dimensionless mathematical model of the vehicle’s working process was set up. Through experimental study on the vehicle, the dimensionless model was verified. Through simulation study on the vehicle, the following can be obtained: firstly, the increase of the hydraulic chamber orifice and the area ratio of the pistons can lead to a higher output power, while output pressure is just the opposite. Moreover, the increase of the output pressure and the aperture of the hydraulic chamber can lead to a higher efficiency, while area ratio of the pistons played the opposite role. This research can be referred to in the performance and design optimization of the HP transformers.

  19. Impact of the electric vehicles on the air pollution from a highway

    International Nuclear Information System (INIS)

    Ferrero, Enrico; Alessandrini, Stefano; Balanzino, Alessia

    2016-01-01

    Highlights: • A numerical chemical-dispersion model is applied to compute air pollution generated by traffic. • A measurements campaign is carried out collecting meteorological and chemical variables. • Measurement of traffic flows and related pollution emissions make the work original. • New fleet scenarios based on electric vehicle introduction are considered. • The benefits on air quality and human health due to electric vehicles are evaluated. - Abstract: We have quantified the impact that an introduction of electric vehicles into the car fleet has on air quality (regarding NO and NO_2) using a numerical dispersion model. An experimental campaign is conducted close to a highway in Milan, Italy. Meteorological parameters and chemical concentrations are measured along with the traffic emissions. We use a Lagrangian Stochastic Dispersion Model to create numerical simulations of the chemical reactions and dispersion involving pollutants from the highway. To evaluate the air pollution reductions, emission scenarios with different rates of electric vehicles introduction are simulated. We have found that only a significant replacement (50%) of non-electric vehicles with electric ones yields a remarkable reduction of the pollutant concentrations. However, even with lower electric vehicles introduction rates, the air quality improvements may be relevant during intense pollution episodes. The results provide useful information to decision makers and public administrators for planning measures to modify the car fleet composition aiming to improve the urban air quality.

  20. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    International Nuclear Information System (INIS)

    Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrations of benzene, MTBE, and formaldehyde ranged from 3--22 microg/m 3 , 3--90 microg/m 3 , and 0---22 microg/m 3 , respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 microg/m 3 and 6--22 microg/m 3 , respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels

  1. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  2. Road user charges for heavy goods vehicles (HGV):Tables with external costs of air pollution

    OpenAIRE

    Andersen, Mikael Skou

    2013-01-01

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air pollution from industrial facilities (EEA, 2011).

  3. Teaching case studies on the regulation of motor vehicle air pollution in China.

    Science.gov (United States)

    2009-12-23

    Motor vehicle air pollution is a critical component of China's severe air quality problem and has the potential to become an even greater issue in the years to come. On this project, the principal investigator and research staff are developing Harvar...

  4. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Science.gov (United States)

    2010-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...

  5. Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2014-03-27

    predicts forces and moments for the class of flapping wing fliers that makes up most insects and hummingbirds. Large bird and butterfly “clap- and...Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles DISSERTATION Garrison J. Lindholm, Captain, USAF AFIT-ENY-DS-14-M-02 DEPARTMENT...States Air Force, Department of Defense, or the United States Government. AFIT-ENY-DS-14-M-02 Closed-Loop Control of Constrained Flapping Wing Micro Air

  6. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    Science.gov (United States)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  7. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    International Nuclear Information System (INIS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-01-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs. (letter)

  8. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    Science.gov (United States)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  9. Distributed sensing and actuation over bluetooth for unmanned air vehicles

    OpenAIRE

    Afonso, José A.; Coelho, Ezequiel T.; Carvalhal, Paulo; Ferreira, Manuel João Oliveira; Santos, Cristina; Silva, Luís F.; Almeida, Heitor

    2006-01-01

    A short range wireless network platform, based on Bluetooth technology and on a Round Robin scheduling is presented. The objective is to build an application independent platform, to support a distributed sensing and actuation control system, which will be used in an Unmanned Aerial Vehicle (UAV). This platform provides the advantages of wireless communications while assuring low weight, small energy consumption and reliable communications.

  10. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  11. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    Science.gov (United States)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  12. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  13. UNMANNED AIR VEHICLE STABILIZATION BASED ON NEURAL NETWORK REGULATOR

    Directory of Open Access Journals (Sweden)

    S. S. Andropov

    2016-09-01

    Full Text Available A problem of stabilizing for the multirotor unmanned aerial vehicle in an environment with external disturbances is researched. A classic proportional-integral-derivative controller is analyzed, its flaws are outlined: inability to respond to changing of external conditions and the need for manual adjustment of coefficients. The paper presents an adaptive adjustment method for coefficients of the proportional-integral-derivative controller based on neural networks. A neural network structure, its input and output data are described. Neural networks with three layers are used to create an adaptive stabilization system for the multirotor unmanned aerial vehicle. Training of the networks is done with the back propagation method. Each neural network produces regulator coefficients for each angle of stabilization as its output. A method for network training is explained. Several graphs of transition process on different stages of learning, including processes with external disturbances, are presented. It is shown that the system meets stabilization requirements with sufficient number of iterations. Described adjustment method for coefficients can be used in remote control of unmanned aerial vehicles, operating in the changing environment.

  14. Experimental investigation of a quad-rotor biplane micro air vehicle

    Science.gov (United States)

    Bogdanowicz, Christopher Michael

    Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.

  15. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Miranda, Á.G.; Chen, T.S.; Hong, C.W.

    2013-01-01

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  16. Configuration Studies of Personal Air Vehicles. Personal Air Vehicle and Flying Jeep Concepts: A Commentary on Promising Approaches or What Goes Around Comes Around (About Every Twenty Years)

    Science.gov (United States)

    Hall, David W.

    2001-01-01

    The NASA/Langley Personal Air Vehicle (PAV) Exploration (PAVE) and the DARPA (Defense Advanced Research Projects Agency) Dual Air/Road Transportation System (DARTS) projects were established to investigate the feasibility of creating vehicles which could replace, or at the very least augment, personal ground and air transportation schemes. This overall goal implies integrating several technology areas with practical everyday transportation requirements to design a class of vehicles which will achieve the following goals: (1) Vertical, Extremely Short, or Short Takeoff and Landing (VTOL, ESTOL, STOL) capability; (2) Operation at block speeds markedly faster than current combinations of land and air transportation, particularly in critical market areas; (3) Unit cost comparable to current luxury cars and small general aviation aircraft; (4) Excellent reliability; (5) Excellent safety; (6) Ability to integrate with existing land and air transportation systems. The conclusions of these configuration studies are summarized as follows: (1) Creation of the five assigned configurations prompted added explorations, some of which were dead-ends; (2) Some components could be common to all configurations such as avionics and dual-mode suspension schemes; (3) Single-Mode PAVs can be created by removing dual-mode-specific items; (4) Aviation history provided some intriguing starting points, as in what goes around comes around; (5) CTOL (Conventional Take-off and Landing) and STOL dual-mode PAVs look feasible with single-mode PAVs being simplifications of the dual-mode approach; (6) VTOL PAVs will require development; (7) More exotic collapsing mechanisms mechanisms need development; (8) As a teaching tool, PAVs are not yet a well-enough bounded design problem.

  17. Comparative Studies on Vehicle Related Policies for Air Pollution Reduction in Ten Asian Countries

    Directory of Open Access Journals (Sweden)

    Keiko Hirota

    2010-01-01

    Full Text Available Asian countries are facing major air pollution problems due to rapid economic growth, urbanization and motorization. Mortality and respiratory diseases caused by air pollution are believed to be endemic in major cities of these countries. Regulations and standards are the first requirement for reducing emissions from both fixed and mobile sources. This paper emphasizes monitoring problems such as vehicle registration systems, inspection and maintenance (I/M systems and fuel quality monitoring systems for vehicles in use. Monitoring problems in developing countries share similar characteristics such as a weakness in government initiatives and inadequate operation of government agencies, which results from a lack of human resources and availability of adequate facilities. Finally, this paper proposes a method to assure air quality improvements under the different shares of emission regulations in these Asian countries and introduces an example of an evaluation method based on a policy survey to improve air quality.

  18. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  19. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  20. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  1. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    Science.gov (United States)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  2. 77 FR 73459 - California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act...

    Science.gov (United States)

    2012-12-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9759-4] California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act Preemption; California's 2010 Model Year Heavy-Duty Vehicle and... for CARB's own motor vehicle pollution control program based on lack of compelling and extraordinary...

  3. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    Science.gov (United States)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  4. Measuring concentrations of selected air pollutants inside California vehicles : final report

    Science.gov (United States)

    1998-12-01

    This study provided the data needed to characterize in-transit exposures to air pollutants for California drivers. It also demonstrated a number of in-situ monitoring techniques in moving vehicles and provided findings that shed new light on particle...

  5. DEFINITION OF OUTPUT ENERGY PARAMETERS OF A VEHICLE WITH AIR MOTOR

    Directory of Open Access Journals (Sweden)

    Voronkov, A.

    2013-06-01

    Full Text Available It was made trailer-speed motion analysis of minibus GAZ-2217 with air motor instead of the internal combustion engine and recommendations allowing to determine the output power of the power plant parameters for vehicle movement at low speed in urban cycle.

  6. Aerodynamics of flapping-wing Micro-Air-Vehicle : An integrated experimental and numerical study

    NARCIS (Netherlands)

    Deng, S.

    2016-01-01

    The interest in Micro Air Vehicles (MAVs) has stimulated continuous research activities, in view of their potential in civilian and military applications. An autonomous MAV with dedicated onboard sensors would be capable of executing mission in closed environments, such as surveillance, in door

  7. An Analysis of Skill Requirements for Operators of Amphibious Air Cushion Vehicles (ACVs).

    Science.gov (United States)

    McKnight, A. James; And Others

    This report describes the skills required in the operation of an amphibious air cushion vehicle (ACV) in Army tactical and logistic missions. The research involved analyzing ACV characteristics, operating requirements, environmental effects, and results of a simulation experiment. The analysis indicates that ACV operation is complicated by an…

  8. The scalable design of flapping micro air vehicles inspired by insect flight

    NARCIS (Netherlands)

    Lentink, D.; Jongerius, S.R.; Bradshaw, N.L.

    2009-01-01

    Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit

  9. Multi-rate path-following control for unmanned air vehicles

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Silvestre, C.J.; Cunha, R.

    2008-01-01

    A methodology is provided to tackle the path-following integrated guidance and control problem for unmanned air vehicles with measured outputs available at different rates. The path-following problem is addressed by defining a suitable non-linear path dependent error space to express the vehicle’s

  10. Estimates of the cost and energy consumption of aluminum-air electric vehicles

    Science.gov (United States)

    Cooper, J. F.

    1980-11-01

    Economic costs and primary energy consumption are estimated for general purpose electric vehicles using aluminum-air propulsion batteries within the time frame of the 1990's (earliest possible date of introduction). For an aluminum-air fuel economy of 36 tonne/km/kg-Al (optimized low-gallium alloys), a total refueling cost of 5.6 cents/km (1979$) was estimated for a 1.27 tonne vehicle. This is equivalent to $2 to 3/gal for automobiles of the same weight with fuel economies of 13.5 to 19.3 tonne-km/liter. The total primary energy consumption was estimated to be 1.3 to 1.7 kWh/km (coal) for the electric vehicle, which corresponds roughly to the energy cost of the automobiles using liquid fuels synthesized from coal. The energy consumption is 30 to 70 percent greater than the reference automobile using petroleum-derived gasoline.

  11. Road user charges for heavy goods vehicles (HGV). Tables with external costs of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Skou Andersen, M.

    2013-02-15

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). The amended Eurovignette Directive (2011/76/EU) relating to the charging of HGVs for use of major European motorways prescribes that from 2013, Member States may include air pollution costs in any charging structure for roads under the Trans-European Network (TEN-T) and for comparable domestic motorways. The tables published here provide the basis for the inclusion of a vehicle-specific air pollution component in road user charges. Air pollution costs have been calculated on the basis of the formula prescribed in the directive, taking into account the fact that road transport emissions are mixed in a low volume of air. Following Article 9 in the Eurovignette Directive, additional revenues from external-cost charges must be used by Member States to benefit the transport sector and promote sustainable mobility. Making use of scientific developments subsequent to the 2007 Handbook of external costs (Maibach et al., 2008), the EEA is able to provide an updated estimate of the external costs of air pollution from road transport. The tables in this report indicate for each country and for the relevant vehicle categories, estimates of the external costs of air pollution in 2010 prices. The high level of detail gives member countries an informed basis to group the vehicle categories for administrative purposes. The tables also include estimates for three non-EU member countries of the EEA, of which one (Switzerland) pioneered the first HGV road user charge in Europe. (LN)

  12. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  13. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data

    International Nuclear Information System (INIS)

    Gately, Conor K.; Hutyra, Lucy R.; Peterson, Scott; Sue Wing, Ian

    2017-01-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the ‘excess’ emissions from traffic congestion, finding modest congestion enhancement (3–6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated ‘excess’ consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. - Highlights: • A high resolution, bottom-up inventory of

  14. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  15. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    advantages over rocket - based systems for space access vehicles. The major advantage of using air-breathing engine is that the extra oxidizer is not...sideslip angle (β) is calculated as Vt = p u2 + v2 +w2, α= t an−1 ( wu ), β= si n−1 ( vVt ) The rotational dynamic equations of AHV are given as Ṗ = c1QR...inverse controller for hypersonic vehicle. In 2010 International Conference on Information, Networking and Automation (ICINA), volume 2, pages V2 –240

  16. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  17. Parameter Estimation and Verification of Unmanned Air Cushion Vehicle (UACV System

    Directory of Open Access Journals (Sweden)

    Ab Rashid Mohd Zamzuri

    2017-01-01

    Full Text Available This project is mainly about the dynamic modelling and parameter estimation of Unmanned Air Cushion Vehicle (UACV. The purpose of developing mathematical model of the Unmanned Air Cushion Vehicle (UACV is due to its under actuated nonlinearities where it has less input compared to the output required. This system able to maneuver over land, water and other surfaces either at certain speed or maintain at a stationary position. In order to model the UACV, the system is set to have two propellers which are responsible to lift the vehicle by forcing high pressure air under the system. The air inflates the “skirt” under the vehicle, causing it to rise above the surface while another two propellers are used to steer the UACV forward. UACV system can be considered as under actuated since it possess fewer controller inputs that its degree of freedom. The system’s motions are defined by the six degrees of freedom which are; heaved, sway and surge. Another three components are rotational motions which can be elaborated as roll, pitch and yaw. The problem related to UACV is normally related to obtaining accurate parameters of the system to be included into the mathematical model of the system. This is due to the body inertia of the system during the static and moving condition. Besides, the air that flows into the UACV skirt to create the cushion causes imbalance and will affect the system stability and controllability. In this research, UACV need to be mathematically modelled using Euler-Lagrange method. Then, parameters of the system can be obtained through direct calculation and Solidworks software. The parameters acquired are compared and verified using simulation and experimental studies.

  18. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  19. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  20. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles

    Science.gov (United States)

    Glaessgen, Edward H.; Stargel, D. S.

    2012-01-01

    Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.

  1. Design and analysis of biomimetic joints for morphing of micro air vehicles.

    Science.gov (United States)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-12-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  2. Design and analysis of biomimetic joints for morphing of micro air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick, E-mail: ricklind@ufl.ed [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2010-12-15

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  3. Design and analysis of biomimetic joints for morphing of micro air vehicles

    International Nuclear Information System (INIS)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-01-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  4. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles

    Science.gov (United States)

    Jacobson, M. Z.; Colella, W. G.; Golden, D. M.

    2005-06-01

    Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

  5. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  6. Weight and volume estimates for aluminum-air batteries designed for electric vehicle applications

    Science.gov (United States)

    Cooper, J. F.

    1980-01-01

    The weights and volumes of reactants, electrolyte, and hardware components are estimated for an aluminum-air battery designed for a 40-kW (peak), 70-kWh aluminum-air battery. Generalized equations are derived which express battery power and energy content as functions of total anode area, aluminum-anode weight, and discharge current density. Equations are also presented which express total battery weight and volume as linear combinations of the variables, anode area and anode weight. The sizing and placement of battery components within the engine compartment of typical five-passenger vehicles is briefly discussed.

  7. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Experimental Characterization of Wings for a Hawkmoth-Sized Micro Air Vehicle

    Science.gov (United States)

    2014-03-27

    butterfly where the modeshapes were found to be identical with the Hawkmoth, lending more credence to the assertion that the wing modal ratios...EXPERIMENTAL CHARACTERIZATION OF WINGS FOR A HAWKMOTH-SIZED MICRO AIR VEHICLE THESIS Zachary R. Brown, Lieutenant Commander, USN AFIT-ENY-14-M-10...of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-14-M-10 EXPERIMENTAL CHARACTERIZATION OF WINGS FOR A

  9. “Team Play” between Renewable Energy Sources and Vehicle Fleet to Decrease Air Pollution

    Directory of Open Access Journals (Sweden)

    Michela Longo

    2015-12-01

    Full Text Available The reduction of air pollutants for the purpose of maintaining or improving air quality across the globe is a fundamental concern to which all modern governments are allocating varying amounts of attention and resources. The successful amelioration of air pollution requires strategic investments in the commercialization and adoption of “clean energy technologies” by both private and public entities, the conversion of contemporary houses to “smart houses”, the diffusion of Renewable Energy Sources (RES including photovoltaic systems (PV, wind farms, and different forms of bioenergy, and the integration of electric-powered vehicles. In concert with these ideas, this paper aims to discuss the possibility of undertaking a feasibility study in two countries Canada and Italy concerning the integration of electric vehicles (EVs and electric motorcycles (EMs. The proposed feasibility study would seek to assess the prospect of replacing the current vehicle fleets in these two countries with EVs in a manner that utilizes renewable energy sources and, thus, does not generate new toxic emissions. In conclusion, this study demonstrated that a pronounced introduction and distribution of RES, EVs, and EMs can operate as a great opportunity for both the environment and the capacities and needs of energy production. Today, the EV is not widespread. With this contribution, it is shown how EVs can be well integrated with renewable energy. Therefore, it is the duty of governments to implement policy strategies, in order to spread them across more territory.

  10. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data.

    Science.gov (United States)

    Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian

    2017-10-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.

    Science.gov (United States)

    Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming

    2017-01-17

    There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM 2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM 2.5 concentrations by 0.4 to 1.1 μg m -3 during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM 2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO 2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.

  12. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    Science.gov (United States)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results

  13. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  14. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    Science.gov (United States)

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  15. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  16. Fuzzy logic speed control for the engine of an air-powered vehicle

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2016-03-01

    Full Text Available To improve the condition of air and eliminate exhaust gas pollution, this article proposes a compressed air power system. Instead of an internal combustion engine, the automobile is equipped with a compressed air engine, which transforms the energy of compressed air into mechanical motion energy. A prototype was built, and the compressed air engine was tested on an experimental platform. The output torque and energy efficiency were obtained from experimental results. When the supply pressure was set at 2 MPa and the speed was 420 r min−1, the output torque, the output power, and the energy efficiency were 56 N m, 1.93 kW, and 25%, respectively. To improve the efficiency of the system, a fuzzy logic speed control strategy is proposed and simulated. The experimental study verified that the theoretical evaluation of the system was reasonable, and this research can be referred to as the design and control of air-powered vehicles.

  17. Health effects associated with passenger vehicles: monetary values of air pollution.

    Science.gov (United States)

    Marzouk, Mohamed; Madany, Magdy

    2012-01-01

    Air pollution is regarded as one of the highest priorities in environmental protection in both developed and developing countries. High levels of air pollution have adverse effects on human health that might cause premature death. This study presents the monetary value estimates for the adverse human health effects resulted from ambient air pollution. It aids decision makers to set priorities in the public health relevance of pollution abatement. The main driver of policymaker is the need to reduce the avoidable cardiopulmonary morbidity and mortality from pollutant exposures. The monetary valuation involves 2 steps: (i) relate levels of pollutants to mortality and morbidity (concentration-response relationships) and (ii) apply unit economic values. Cost of air pollution associated with passenger vehicles running over a major traffic bridge (6th of October Elevated Highway) is presented as a case study to demonstrate the use of monetary value of air pollution. The study proves that the cost of air pollution is extremely high and should not be overlooked.

  18. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  19. Evolving Self-Organized Behavior for Homogeneous and Heterogeneous UAV or UCAV Swarms

    National Research Council Canada - National Science Library

    Price, Ian C

    2006-01-01

    This investigation uses a self-organization (SO) approach to enable cooperative search and destruction of retaliating targets with swarms of homogeneous and heterogeneous unmanned aerial vehicles (UAVs...

  20. Method for calculating steady-state waves in an air cushion vehicle. Part 2; Air cushion vehicle no teijo zoha keisanho ni tsuite. 2

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-10-01

    Discussions were given on a method to estimate resistance constituents in wave resistance made in an air chamber of an air cushion vehicle (ACV). An orthogonal coordinate system is considered, which uses the center of a hull as the zero point and is made dimensionless by using cushion length. Flow around the ACV is supposed as an ideal flow, whereas speed potential is defined in the flow field. Then, a linear free surface condition is hypothesized on water surface Z = 0. Number and density of waves were used to introduce a condition to be satisfied by the speed potential. A numerical calculation method arranged a blow-out panel on the water surface, and used a panel shift type Rankine source method which satisfies the free surface condition at Z = 0. Cushion pressure distribution becomes a step-like discontinuous function, and mathematical infinity is generated in the differentiation values. Under an assumption that the pressure rises per one panel where pressure jump is present, the distribution was approximated by providing one panel with inclination of the finite quantity therein. Estimation on wave height distribution in the cushion chamber showed a tendency of qualitatively agreeing with the experimental result, but the wave heights shown in the experiment had the average level decreased as it goes toward the rear of the hull. 5 refs., 5 figs.

  1. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  2. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  3. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    International Nuclear Information System (INIS)

    Yan, H.H.; Guo, H.; Ou, J.M.

    2014-01-01

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO 2 -equivelant (CO 2 -eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10 5 tons CO 2 -eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong

  4. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H.H.; Guo, H., E-mail: ceguohai@polyu.edu.hk; Ou, J.M.

    2014-08-15

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO{sub 2}-equivelant (CO{sub 2}-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10{sup 5} tons CO{sub 2}-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong.

  5. Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles

    International Nuclear Information System (INIS)

    Torregrosa-Jaime, B.; Corberán, J.M.; Payá, J.; Delamarche, J.L.

    2017-01-01

    The use of air conditioning in all-electric cars reduces their driving range by 33% in average. With the purpose of reducing the energy consumption of the vehicle and optimising the performance of the batteries, the mobile air-conditioning can be integrated with the temperature control system of the powertrain by means of a coolant loop. In such layouts, the air-to-coolant heat exchangers must operate efficiently in both air heating and cooling modes. Dynamic simulation tools comprising the entire thermal system are essential to assess its performance. In this context, fast but accurate models of the system components are required. This paper presents the thermal characterisation of a commercial compact louvered-fin flat-tube heat exchanger (heater core) for this novel application, based on an experimental campaign comprising 279 working points that reflect real air-conditioning (heating and cooling) working conditions. A general methodology to fit a single correlation of the global heat transfer coefficient for both dry and wet working conditions is explained. The semiempirical correlation developed is employed in a single-node model of the heat exchanger that requires minimal computation time. The present model predicts the heat transfer rate with an average deviation of 3.5% in the cases with dehumidification and 1.9% in the cases when the heat exchanger remains dry.

  6. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    Science.gov (United States)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the

  7. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  8. PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design

    Directory of Open Access Journals (Sweden)

    Huu-Khoa Tran

    2016-09-01

    Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.

  9. STUDY ABOUT MAGNUS EFFECT ON SPINNING CYLINDERS AND ITS USE ON MICRO AIR VEHICLES

    OpenAIRE

    Stafy, Victor ,; Neto, Aristeu S

    2017-01-01

    Abstract. It is described in this article a Magnus Effect research done on Magnus Effect on Spinning Cylinders and how the Drag and Lift varies as the Cylinder increase or decrease its tangential velocity, as other properties, vorticity and structures of the flow as well.The final objective of this study is to use a Spinning Cylinder, with success, instead of a wing as the component responsible for lift force on a Micro Air Vehicle, with this purpose in mind, some simulations were done in ...

  10. Vibration survey of internal combustion engines for use on unmanned air vehicles

    International Nuclear Information System (INIS)

    Duanis, B.

    1998-01-01

    This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method

  11. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  12. Economic analysis of Japanese air pollution regulation : an optimal retirement problem under the vehicle type regulation in the NOx-particulate matter law

    Science.gov (United States)

    2009-05-01

    This paper examines the vehicle type regulation that was introduced under the Automobile : Nitrogen OxidesParticulate Matter Law to mitigate air pollution in Japanese metropolitan : areas. The vehicle type regulation effectively sets the timing fo...

  13. Economic analysis of a Japanese air pollution regulation : an optimal retirement problem under vehicle type regulation in the NOx-particulate matter law

    Science.gov (United States)

    2008-06-01

    This paper empirically examines the vehicle type regulation that was introduced under the : Automobile Nitrogen OxidesParticulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively...

  14. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  15. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  16. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  17. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    Science.gov (United States)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  18. THE COMPLEX OF STANDS FOR TESTING THE AIR CUSHION CHASSIS OF AIRCRAFT AND VEHICLES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article deals with a set of stands made in NIMK TSAGI for testing and creating the air cushion chassis for the aircraft and vehicles. It allows to fully embrace the process of developing and constructing the air cushion chassis for air- craft and solve problems relating to peculiarities of such aircraft on the takeoff, landing and movement in the elementary prepared and unprepared soil runways, flat terrain and water areas. The complex includes: the experimental installation to study aeroelasticity phenomena of the chassis in the extending and retracting process with simulation of aircraft and ekran- oplane takeoff and landing modes in the air flow, including the wind tunnels; the experimental stand with vertical screen for testing of ekranoplane models in T-5 wind tunnel of NIMC TsAGI, permitting to simultaneously vary the model’s posi- tion relatively to the screen, roll, pitch (angle of attack, and banking; mobile experimental stand with contact crawler gear, for experimental determination and comparative evaluation of the chassis with different patterns of formation and air cush- ion fences for all-year-round testing in natural conditions at elementary-prepared and unprepared sites and water areas. Based on mathematical simulation of flow past in the wind tunnel the possibility of use booth stand with vertical screen and experimental installation to study aeroelasticity phenomena of the chassis for experimental studies, respectively, by defini- tion of the aerodynamic characteristics of forces and moments of the air cushion aircraft and ekranoplanes models and the research of phenomena of aeroelasticity of flexible fencing is substantiated.

  19. Standing steady-state wave-making calculation method for air cushion vehicles; Air cushion vehicle no teijo zoha keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-04-10

    The pulse-height distribution of a cushion room of air cushion vehicle (ACV) has been tried to be approached by means of the panel shift type Rankine source method. When using this method, it was not required to introduce the pressure distribution model simulating the fall-off effect for the step-formed cushion pressure distribution. The wave form and wave making resistance could be estimated precisely by assigning the pressure gradient to one longitudinal direction panel in the calculation. The waveform shape within the cushion room could be calculated rather precisely by comparing with the analytic solution. This calculation method did have an ability providing the pulse-height information in the cushion room of ACV for seal design and configuration of ships. The analytic solution using for the comparison was sufficient for determining the pulse-height in the high speed region. However, it was hard to respond to non-linear problems or optional shape problems. It was pointed out to be further improved. 5 refs., 8 figs.

  20. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    Science.gov (United States)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  1. Micro-structure and Air-tightness of Squeeze Casting Motor housing for New Energy Vehicle

    Science.gov (United States)

    Jiang, Y. F.; Kang, Z. Q.; Jiang, W. F.; Wang, K. W.; Sha, D. L.; Li, M. L.; Sun, J.

    2018-05-01

    In order to improve the performance of automobile parts, the influence of squeeze casting process parameters on casting defects, material structure and air-tightness of aluminum alloy motor housing for new energy vehicle was studied. The results show that the density of the castings increases with the increase in pressure and mold temperature. With increase in pouring temperature, it increases first and then decreases. Pressure has the greatest influence on the density of the castings. Under a certain pressure, with moderate increase in casting temperature and mold temperature, the grain growth begins to increase; the dendrites become less, the new α - Al grains are spherical and granular, the micro-structure is uniform. Also, with increase in pressure, this effect is more pronounced, the air-tightness of castings improve. In conclusion, when the pressure is 110MPa, pouring temperature is 680° C, mold temperature is 280° C, pressure holding for 30s, and punch speed of 0.1m/s, there is no clear shrinkage in the casting, the structure is uniform, the qualified rate of air-tightness of production reaches 86%, and the performance is excellent.

  2. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  3. Investigations on an energy efficient air conditioning of hybrid vehicles and electric-powered vehicles; Untersuchungen zur energieeffizienten Klimatisierung von Hybrid- und Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Danzer, Christoph; Unwerth, Thomas von [Technische Univ. Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-11-01

    The energy-efficient air conditioning of passenger cells is an ever-increasing challenge in the development of electric vehicles because the electric heating in particular reduces the cruising range significantly. For this reason, a simulation model has been developed at Chemnitz University of Technology, which simulates the whole air conditioning system including the passenger cell and the complete powertrain in electric cars. Using this model, different optimization approaches have been analyzed and evaluated concerning the cruising range. This paper first illustrates how much the cruising range of an exemplary electric vehicle is reduced by using the electric heating under different wintery weather conditions. Afterwards, the exploitation of the waste heat produced by the powertrain components (electric motor and power electronics) will be explained. Finally, it shall be described to what extent this exploitation increases the cruising range. (orig.)

  4. 0-6763 : accounting for electric vehicles in air quality conformity.

    Science.gov (United States)

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  5. Real-Time Fixed-Order Lateral H2 Controller for Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Meenakshi M.

    2011-01-01

    Full Text Available This paper presents the design and development of a fixed low-order, robust H2 controller for a micro air vehicle (MAV named Sarika-2. The controller synthesis uses strengthened discrete optimal projection equations and frequency-dependent performance index to achieve robust performance and stability. A single fixed gain low-order dynamic controller provides simultaneous stabilization, disturbance rejection, and sensor noise attenuation over the entire flight speed range of 16 m/sec to 26 m/sec. Comparative study indicates that the low-order H2-controller achieves robust performance levels similar to that of full order controller. Subsequently, the controller is implemented on a digital signal processor-based flight computer and is validated through the real time hardware in loop simulation. The responses obtained with hardware in loop simulation compares well with those obtained from the offline simulation.

  6. A QMU approach for characterizing the operability limits of air-breathing hypersonic vehicles

    International Nuclear Information System (INIS)

    Iaccarino, Gianluca; Pecnik, Rene; Glimm, James; Sharp, David

    2011-01-01

    The operability limits of a supersonic combustion engine for an air-breathing hypersonic vehicle are characterized using numerical simulations and an uncertainty quantification methodology. The time-dependent compressible flow equations with heat release are solved in a simplified configuration. Verification, calibration and validation are carried out to assess the ability of the model to reproduce the flow/thermal interactions that occur when the engine unstarts due to thermal choking. quantification of margins and uncertainty (QMU) is used to determine the safe operation region for a range of fuel flow rates and combustor geometries. - Highlights: → In this work we introduce a method to study the operability limits of hypersonic scramjet engines. → The method is based on a calibrated heat release model. → It accounts explicitly for uncertainties due to flight conditions and model correlations. → We examine changes due to the combustor geometry and fuel injection.

  7. Air-cushion vehicles as an alternative to conventional industrial trucks

    International Nuclear Information System (INIS)

    Marr, E.

    2003-01-01

    Protective shieldings must be used for the transportation of radioactive materials, such as drums and containers within the control area, in order to observe the activity classes of the rooms. As a result of the change in the radiation protection ordinance, the operating areas of the floor conveyors have to be protected even more, i.e. transportation weights are becoming even bigger. When using pallet lift trucks without drive, weights over 2 tons are virtually unable to be operated. A fork-lift truck must be used for higher loads. If the transportation weight (transportation load and net weight of the lift truck) is doubled, usage within buildings is very restricted through the ceiling net load. This is the range of application of air cushion vehicles, in particular if positioning accuracy and remote-controlled driving become necessary. (orig.)

  8. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    Science.gov (United States)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  9. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    Science.gov (United States)

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Improved State Feedback H∞ Control for Flexible Air-Breathing Hypersonic Vehicles on LMI Approach

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2017-01-01

    Full Text Available Focusing on a nonlinear longitudinal dynamical model for Air-breathing Hypersonic Flight Vehicles (AHFV, a linearized model on a nominal trim condition is proposed. To stabilize the flight of an AHFV in the presence of external disturbances and actuator uncertainties, a state feedback H∞ control is designed. With bounds on the uncertainties, a feedback stabilization problem is converted to an optimal control problem and the cost function is minimized by solving a set of linear matrix inequalities. Since uncertainties in the design of AHFV are inevitable, to make a comparison, a general H∞ robust controller is constructed by only considering the disturbances firstly. Then the results are extended by incorporating the actual existing uncertainties as well as the external disturbances in the AHFV system. Numerical simulation shows that the controller, which takes both disturbances and uncertainties into account, can effectively stabilize the AHFV system.

  11. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  12. Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-01-01

    Full Text Available The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.

  13. Concise Neural Nonaffine Control of Air-Breathing Hypersonic Vehicles Subject to Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Xiangwei Bu

    2017-01-01

    Full Text Available In this paper, a novel simplified neural control strategy is proposed for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV directly using nonaffine models instead of affine ones. For the velocity dynamics, an adaptive neural controller is devised based on a minimal-learning parameter (MLP technique for the sake of decreasing computational loads. The altitude dynamics is rewritten as a pure feedback nonaffine formulation, for which a novel concise neural control approach is achieved without backstepping. The special contributions are that the control architecture is concise and the computational cost is low. Moreover, the exploited controller possesses good practicability since there is no need for affine models. The semiglobally uniformly ultimate boundedness of all the closed-loop system signals is guaranteed via Lyapunov stability theory. Finally, simulation results are presented to validate the effectiveness of the investigated control methodology in the presence of parametric uncertainties.

  14. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  15. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    Science.gov (United States)

    Tahmasian, Sevak; Woolsey, Craig A.

    2017-08-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  16. Plotting the Flight Envelope of an Unmanned Aircraft System Air Vehicle

    Directory of Open Access Journals (Sweden)

    Glīzde Nikolajs

    2017-08-01

    Full Text Available The research is focused on the development of an Unmanned Aircraft System. One of the design process steps in the preliminary design phase is the calculation of the flight envelope for the Unmanned Aircraft System air vehicle. The results obtained will be used in the further design process. A flight envelope determines the minimum requirements for the object in Certification Specifications. The present situation does not impose any Certification Specification requirements for the class of the Unmanned Aircraft System under the development of the general European Union trend defined in the road map for the implementation of the Unmanned Aircraft System. However, operation in common European Aerospace imposes the necessity for regulations for micro class systems as well.

  17. A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines

    Directory of Open Access Journals (Sweden)

    Devendra Sen

    2018-06-01

    Full Text Available This paper proposes a compression system for a scramjet, to be used as part of a combined cycle engine on a hypersonic transport vehicle that can achieve sustained flight at 8 Mach 8. Initially research into scramjet compression system and shock wave interaction was conducted to establish the foundation of the scramjet inlet and isolator sections. A Computational Fluid Dynamics (CFD campaign was conducted, where the shock structure and flow characteristics was analysed between Mach 4.5–8. The compression system of a scramjet is of crucial importance in providing air at suitable Mach number, pressure and temperature to the combustion chamber. The use of turbojet engines in over-under configuration with the scramjet was investigated as well as the study of a combined cycle scramjet-ramjet configuration. It was identified that locating the scramjet in the centre with a rotated ramjet on either side, where its ramps make up the scramjet wall was the most optimal configuration, as it mitigated the effect of the oblique shocks propagating from the scramjet walls into the adjacent ramjet. Furthermore, this meant that the forebody of the vehicle could solely be used as the compression surface by the scramjet. In this paper, the sizing of the scramjet combustion chamber and nozzle were modified to match the flow properties of the oncoming flow with the purpose of producing the most optimum scramjet configuration for the cruise speed of Mach 8. CFD simulations showed that the scramjet inlet did not provide the levels of compression and stagnation pressure recovery initially required. However, it was found that the scramjet provided significantly more thrust than the drag of the aircraft at sustained Mach 8 flight, due to its utilisation of a very aerodynamic vehicle design.

  18. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    Science.gov (United States)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  19. An adaptive dual-optimal path-planning technique for unmanned air vehicles

    Directory of Open Access Journals (Sweden)

    Whitfield Clifford A.

    2016-01-01

    Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.

  20. The development of aluminum-air batteries for application in electric vehicles

    Science.gov (United States)

    Rudd, E. J.; Lott, S.

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100 to 150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch or solids-free battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  1. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    Science.gov (United States)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  2. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  3. Incremental Nonlinear Dynamic Inversion and Multihole Pressure Probes for Disturbance Rejection Control of Fixed-wing Micro Air Vehicles

    NARCIS (Netherlands)

    Smeur, E.J.J.; Remes, B.D.W.; de Wagter, C.; Chu, Q.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    Maintaining stable flight during high turbulence intensities is challenging for fixed-wing micro air vehicles (MAV). Two methods are proposed
    to improve the disturbance rejection performance of the MAV: incremental nonlinear dynamic inversion (INDI) control and phaseadvanced pitch probes. INDI

  4. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Science.gov (United States)

    2010-07-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9173-5] Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty Diesel Engines Employing Selective Catalyst Reduction Technology... engine manufacturers have recently begun utilizing a NO X emission control technology called selective...

  5. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    Science.gov (United States)

    Ng, H. K.; Sekar, R. R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO(x) emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO(x) emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO(x) emissions could meet the 2004 Tier 2 emissions standards with 25%-oxygen-content air.

  6. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2011-09-01

    Full Text Available The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol, and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles. The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem, we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO, nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOCs, black carbon (BC, and organic carbon (OC from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3 mixing ratios and particulate matter (PM2.5 concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m−3 relative to NoPol in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in

  7. Control and design of multiple unmanned air vehicles for persistent surveillance

    Science.gov (United States)

    Nigam, Nikhil

    Control of multiple autonomous aircraft for search and exploration, is a topic of current research interest for applications such as weather monitoring, geographical surveys, search and rescue, tactical reconnaissance, and extra-terrestrial exploration, and the need to distribute sensing is driven by considerations of efficiency, reliability, cost and scalability. Hence, this problem has been extensively studied in the fields of controls and artificial intelligence. The task of persistent surveillance is different from a coverage/exploration problem, in that all areas need to be continuously searched, minimizing the time between visitations to each region in the target space. This distinction does not allow a straightforward application of most exploration techniques to the problem, although ideas from these methods can still be used. The use of aerial vehicles is motivated by their ability to cover larger spaces and their relative insensitivity to terrain. However, the dynamics of Unmanned Air Vehicles (UAVs) adds complexity to the control problem. Most of the work in the literature decouples the vehicle dynamics and control policies, but their interaction is particularly interesting for a surveillance mission. Stochastic environments and UAV failures further enrich the problem by requiring the control policies to be robust, and this aspect is particularly important for hardware implementations. For a persistent mission, it becomes imperative to consider the range/endurance constraints of the vehicles. The coupling of the control policy with the endurance constraints of the vehicles is an aspect that has not been sufficiently explored. Design of UAVs for desirable mission performance is also an issue of considerable significance. The use of a single monolithic optimization for such a problem has practical limitations, and decomposition-based design is a potential alternative. In this research high-level control policies are devised, that are scalable, reliable

  8. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  9. Final Rule for Control of Air Pollution From Motor Vehicles and New Motor Vehicle Engines; Increase of the Vehicle Mass for 3-Wheeled Motorcycles

    Science.gov (United States)

    This action changes the regulatory definition of a motorcycle to include 3-wheeled vehicles weighing up to 1749 pounds effective for 1998 and later model year motorcycles for which emission standards are in place.

  10. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle

    International Nuclear Information System (INIS)

    Nakata, T; Liu, H; Nishihashi, N; Wang, X; Sato, A; Tanaka, Y

    2011-01-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s −1 , operate in a Reynolds number regime of 10 5 or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4–3.0 g and a wingspan of 10–12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  11. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  12. Verification of a smart wing design for a micro-air-vehicle through simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wickramasinghe, V.; Chen, Y.; Nejad-Ensan, M.; Martinez, M. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Aerospace Research; Wong, F. [Defence Research and Development Canada, Valcartier, PQ (Canada); Kraemer, K. [Department of National Defence, Ottawa, ON (Canada). Directorate of Technical Airworthiness and Engineering Support

    2008-07-01

    Micro-air-vehicles (MAV) are small, light-weight aircraft that perform a variety of missions. This paper described a smart wing structure consisting of a composite spar and ailerons with integrated piezoceramic fibre actuators that was designed for MAV use. This fixed-wing MAV can hover vertically like a rotary-wing vehicle through a flight manoeuvre known as prop-hanging. In order to maintain MAV orientation, the hover manoeuvre requires roll control of the fixed-wing aircraft through differential aileron deflection. Since conventional aileron control systems have components that add weight, it is necessary to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV with less power requirements. This paper proposed a smart wing structure that consists of a composite spar and ailerons that have bimorph active ribs consisting of piezoceramic fiber actuators with interdigitated electrodes. Actuation is enhanced by preloading the piezoceramic fiber actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electro active polymer (EAP) skin that wraps around the airfoil. The EAP skin enhances the actuation by providing a electrostatic effect of the dielectric polymer. Analytical modeling and finite element analysis showed that the proposed smart wing concept achieved a target deflection of 30 degrees in both the wind-off and wind-on flight conditions. The smart structure approach with active materials enabled the design of a lightweight, robust wing by reducing the number of components typically associated with conventional aileron control systems. 11 refs., 2 tabs., 5 figs.

  13. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    Science.gov (United States)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  14. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  16. Accounting for electric vehicles in air quality conformity \\0x2012 final report.

    Science.gov (United States)

    2014-12-01

    Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...

  17. Single Operator Control of Multiple Uninhabited Air Vehicles: Situational Awareness Requirement

    National Research Council Canada - National Science Library

    Sebalj, Derek

    2008-01-01

    ... > 1. The ultimate goal, and the object of much research, is the technology to lower, or even invert the control ratio from many people to one vehicle to one operator of several vehicles, e.g., 1...

  18. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 76 FR 55859 - Federal Motor Vehicle Safety Standards No. 121; Air Brake Systems

    Science.gov (United States)

    2011-09-09

    ... during road tests for the braking system, a vehicle equipped with an interlocking axle system or a front... vehicle braking systems, tire characteristics related to lateral force and longitudinal force generation... stopping distance without activating the ABS system by braking the vehicle so that the brake pressure is...

  20. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2018-01-01

    Full Text Available Synthetic aperture radar (SAR equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  1. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    Science.gov (United States)

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  2. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  3. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    Science.gov (United States)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  4. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  5. Autonomous Micro-Air-Vehicle Control Based on Visual Sensing for Odor Source Localization

    Directory of Open Access Journals (Sweden)

    Kenzo Kurotsuchi

    2017-07-01

    Full Text Available In this paper, we propose a novel control method for autonomous-odor-source localization using visual and odor sensing by micro air vehicles (MAVs. Our method is based on biomimetics, which enable highly autonomous localization. Our method does not need any instruction signals, including even global positioning system (GPS signals. An experimenter simply blows a whistle, and the MAV will then start to hover, to seek an odor source, and to keep hovering near the source. The GPS-signal-free control based on visual sense enables indoor/underground use. Moreover, the MAV is light-weight (85 grams and does not cause harm to others even if it accidentally falls. Experiments conducted in the real world were successful in enabling odor source localization using the MAV with a bio-inspired searching method. The distance error of the localization was 63 cm, more accurate than the target distance of 120 cm for individual identification. Our odor source localization is the first step to a proof of concept for a danger warning system. These localization experiments were the first step to a proof of concept for a danger warning system to enable a safer and more secure society.

  6. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  7. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  8. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  9. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    International Nuclear Information System (INIS)

    University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Tutelea, L N; University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Boldea, I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Deaconu, S I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Popa, G N

    2014-01-01

    The actual e – continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper

  10. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  11. Utilization Assessment of Target Electrification Vehicles at Naval Air Station Whidbey Island: Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.

  12. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-10-01

    Full Text Available This article proposes an adaptive multivariable higher-order sliding mode control for the longitudinal model of an air-breathing vehicle under system uncertainties and actuator failures. Firstly, a fast finite-time control law is designed for a chain of integrators. Secondly, based on the input/output feedback linearization technique, the system uncertainty and external disturbances are modeled as additive certainty and the actuator failures are modeled as multiplicative uncertainty. By using the proposed fast finite-time control law, a robust multivariable higher-order sliding mode control is designed for the air-breathing hypersonic vehicle with actuator failures. Finally, adaptive laws are proposed for the adaptation of the parameters in the robust multivariable higher-order sliding mode control. Thus, the bounds of the uncertainties are not needed in the control system design. Simulation results show the effectiveness of the proposed robust adaptive multivariable higher-order sliding mode control.

  13. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  14. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  15. Power Requirements for Bi-Harmonic Amplitude and Bias Modulation Control of a Flapping Wing Micro Air Vehicle

    Science.gov (United States)

    2013-03-01

    nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...Insect exoskeletons are formed from a complex blend of polymer-based chains that make up the body, limbs, and wings, which act as a barrier between the...reducing weight, increasing agility, and integrating robotics in future forces. [38] Increasing agility and integrating robotics indicates that control is a

  16. Contribution to the study of nonstationary aerodynamic forces in problems of interest for Micro-Air Vehicles

    OpenAIRE

    Martín-Alcántara, Antonio

    2016-01-01

    The main aim of this dissertation is the quantitative characterization of the contributions of individual fluid elements (vortices) to aerodynamic forces, explaining and quantifying the mechanisms by which both drag and lift are generated. For this purpose, a vorticity forces formulation was used to the two problems addressed in this thesis. Thus, a novel physical point of view of the flow dynamics is provided which is expected to be useful for the Micro-Air Vehicles (MAVs) design. Firstl...

  17. The model for calculation of emission and imisson of air pollutants from vehicles with internal combustion engine

    International Nuclear Information System (INIS)

    Tashevski, Done; Dimitrovski, Mile

    1994-01-01

    The model for calculation of emission and immision of air pollutants from vehicles with internal combustion engine on the crossroads in urban environments, with substitution of a great number of exhaust-pipes with one chimney in the centre of the crossroad has been made. The whole calculation of the pollution sources mentioned above is, in the fact, the calculation of the emission and imisson of pollutants from point sources of pollution. (author)

  18. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  19. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  20. AIR VEHICLES INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction Phase 1 - Identification of Knowledge Gaps

    Science.gov (United States)

    2010-08-01

    fly two X-30 manned reusable air-breathing SSTO vehicles. Competing contractors developed vehicle and system concepts and identified critical...computational analysis would reduce the time and cost required to produce two man-rated SSTO vehicles. The planned total program cost of $3.3 Billion...varied strengths of the contractors a National Team was formed instead of down-selecting. The ambitious airbreathing SSTO goal made nearly every

  1. Fuzzy logic speed control for the engine of an air-powered vehicle

    OpenAIRE

    Qihui Yu; Yan Shi; Maolin Cai; Weiqing Xu

    2016-01-01

    To improve the condition of air and eliminate exhaust gas pollution, this article proposes a compressed air power system. Instead of an internal combustion engine, the automobile is equipped with a compressed air engine, which transforms the energy of compressed air into mechanical motion energy. A prototype was built, and the compressed air engine was tested on an experimental platform. The output torque and energy efficiency were obtained from experimental results. When the supply pressure ...

  2. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    Science.gov (United States)

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-03-06

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  3. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-08-01

    Full Text Available Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet – Macau, EMBEV–Macau, this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other

  4. 77 FR 50969 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Low Emission Vehicle...

    Science.gov (United States)

    2012-08-23

    ... fuel economy of new light- and medium-duty vehicles sold beyond the 2016 model year. This proposed rule..., from new motor vehicles sold in Maryland. The second objective of the program is to reduce greenhouse... pounds or less that are sold as new cars or are transferred in Maryland to meet the applicable California...

  5. Performance of an air sampler and a gamma-ray detector in a small unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Roy Poellaenen; Harri Toivonen; Kari Peraejaervi; Tero Karhunen; Petri Smolander; Tarja Ilander; Kimmo Rintala; Tuure Katajainen; Jarkko Niemelae; Marko Juusela; Timo Palos

    2009-01-01

    The performance of an air sampler and a small gamma-ray spectrometer was tested in an unmanned aerial vehicle (UAV) able to carry payload with mass up to 0.5 kg. Operation of the sampler was investigated with the aid of radon progeny normally present in outdoor air. Detection limits for several transuranium nuclides in air are of the order of 0.3 Bq m -3 assuming 0.5 h sampling time and 1 h counting time in direct alpha spectrometry. Unshielded 137 Cs and 60 Co point sources at the ground level were used to test the CsI spectrometer. Detection limits are approximately 1 GBq or larger depending on the flying altitude. (author)

  6. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  7. Method and system for estimating and predicting airflow around air vehicles

    KAUST Repository

    Claudel, Christian G.; Salama, Khaled N.; Calo, Victor M.; Ghommem, Mehdi; Eslshurafa, Amro; Shaqura, Mohammad

    2015-01-01

    A method, system, and sensor for air flow sensing. The system can include a cantilever, a transducer, and a processing module. The method can include measuring beam deflections of one or more cantilevers, extracting information about air flow

  8. Nonlinear Adaptive Rotational Speed Control Design and Experiment of the Propeller of an Electric Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2016-01-01

    Full Text Available Micro Air Vehicles (MAVs driven by electric propellers are of interest for military and civilian applications. The rotational speed control of such electric propellers is an important factor for improving the flight performance of the vehicles, such as their positioning accuracy and stability. Therefore, this paper presents a nonlinear adaptive control scheme for the electric propulsion system of a certain MAV, which can not only speed up the convergence rates of adjustable parameters, but can also ensure the overall stability of the adjustable parameters. The significant improvement of the dynamic tracking accuracy of the rotational speed can be easily achieved through the combination of the proposed control algorithm and linear control methods. The experimental test results have also demonstrated the positive effect of the nonlinear adaptive control scheme on the flight performance of the MAV.

  9. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions

    Science.gov (United States)

    Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.

    2016-10-01

    Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.

  10. 2007 motor vehicle occupant safety survey. Volume 3, air bags report

    Science.gov (United States)

    2008-11-01

    The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant : protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted : b...

  11. Drag Identification & Reduction Technology (DIRECT) for Elastically Shaped Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and Boeing Phantom Works have been working on the Elastically Shaped Future Vehicle Concept (ESFVC) and have shown that aircraft with elastically shaped wings...

  12. Anti-Windup Control for an Air-Breathing Hypersonic Vehicle Model

    National Research Council Canada - National Science Library

    Groves, Kevin P; Serrani, Andrea; Yurkovich, Stephen; Bolender, Michael A; Doman, David B

    2005-01-01

    .... Anti-windup control allows the input constraints to be considered explicitly in the design of linear controllers to track a reference trajectory for the vehicle velocity, altitude, and angle of attack...

  13. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  14. 78 FR 24373 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Amendments to Vehicle...

    Science.gov (United States)

    2013-04-25

    ... requirements for non-OBDII equipped vehicles. This change impacted MY 1968 through 1995 vehicles. These....134 0.193 0.060 0.097 0.037 0.063 0.027 0.041 \\3\\ Volatile organic compound. \\4\\ Oxides of nitrogen... part of the 110(l) demonstration. Table 3--(SIP I/M Program vs. Current I/M Program) SIP I/M program...

  15. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  16. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    Science.gov (United States)

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as...

  17. [Risk for environment-induced diseases due to air pollution from motor vehicles in road-patrol officers].

    Science.gov (United States)

    Mikhaĭlichenko, K Iu; Kas'ianenko, A A; Shchelkunova, I G; Grechko, A V

    2010-01-01

    The paper describes risk factors for environment-induced diseases in road-patrol (RP) officers under the existing working conditions: noise and chemical ambient air pollution from motor vehicles. There is evidence for a significant increase in the incidence of diseases of the cardiovascular and nervous system, sense organs, digestive and endocrine metabolic systems in the State Road Safety Inspectorate officers who are directly engaged in traffic management. Potential and real risks from motor transport to the health of RP roads have been estimated. Recommendations on optimizing the working conditions are given.

  18. Estimation of the ability to use a mass of air from a moving vehicle in wind turbine propulsion

    Directory of Open Access Journals (Sweden)

    Adam BAWORSKI

    2015-09-01

    Full Text Available This work presents division and classification of wind turbines according to the location of the axis of rotation and generated power. The work introduces applications of the wind turbines in electric energy generation with their direct development. The paper discusses indicators and exploitation parameters that characterize particular types of wind rotators. Dimension and construction factors, as well as work parameters, have been analyzed in order to choose the optimal rotator in the road infrastructure application. The aim of the analysis was to conduct further investigation to restore a mass of air from passing vehicles.

  19. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    OpenAIRE

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, l...

  20. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  1. Optic Flow Based State Estimation for an Indoor Micro Air Vehicle

    NARCIS (Netherlands)

    Verveld, M.J.; Chu, Q.P.; De Wagter, C.; Mulder, J.A.

    2010-01-01

    This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude

  2. Air pollution in southern Africa: The case of motor vehicle exhaust contribution in Dar Es Salaam city

    International Nuclear Information System (INIS)

    Jackson, M.M.

    2005-01-01

    The aim of this study was to review air pollution problems in the Southern Africa region and establish the quality of ambient air in Dar Es Salaam city in Tanzania with respect to three vehicular pollutants which are sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and suspended particulate matters (SPM). These pollutants were measured in eight different locations in Dar-Es Salaam city which are Fire, Morocco, Tazara, Kariakoo, Ubungo, Posta, UCLAS, and Akiba. With the exception of South Africa and Botswana, other countries in the Southern Africa Region which include Tanzania, Mozambique, Malawi. Zambia, Zimbabwe. Angola and Namibia do not have air pollution standards, and regular air pollution monitoring is not carried out in these countries. Diesel fueled vehicles in South Africa are responsible for one third of all smog-forming nitrogen dioxides and almost two-thirds of all particulate pollution emitted by all vehicles. The measurement methods used in Dar Es Salaam study were pararosaniline method for SO 2 , Saltzman for measuring nitrogen dioxide, and filtration method for suspended particulate matters. The following was observed from the analysis: Hourly sulphur dioxide concentration ranged from 558 -1385 μg/m 3 . These measured values were above the recommended WHO guidelines with an hourly objective value of 350 μg/m 3 . Hourly nitrogen dioxide concentration was found to range from 18 to 53 μg/m 3 . The maximum hourly nitrogen dioxide concentration at 53 μg/m 3 was below the recommended WHO guidelines with a value of 200 μg/m 3 . The hourly suspended particulate matter (SPM) was found to range from 744 to 1161 μg/m 3 . The measured suspended particulate matter concentrations were above the recommended hourly maximum value by WHO guidelines which is 230μg/m 3 . The correlation coefficient of pollutants and the number of vehicles counted for different sampling points was determined and found to be fair reasonable with a value of 0.906 for suspended

  3. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed.

    Science.gov (United States)

    Yu, Haofei; Stuart, Amy L

    2017-01-15

    'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive

  4. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  5. Final Rule for Control of Air Pollution From New Motor Vehicles: Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is announcing more protective tailpipe emissions standards for all passenger vehicles, including sport utility vehicles (SUVs), minivans, vans and pick-up trucks.

  6. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    Science.gov (United States)

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  7. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  8. Method and system for estimating and predicting airflow around air vehicles

    KAUST Repository

    Claudel, Christian G.

    2015-12-31

    A method, system, and sensor for air flow sensing. The system can include a cantilever, a transducer, and a processing module. The method can include measuring beam deflections of one or more cantilevers, extracting information about air flow, and determining one or more of an airspeed, an angle of attack, and a sideslip, based on extracted information. The system and method can exploit nonlinearities in the behavior of the cantilever in fluid flow.

  9. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    Science.gov (United States)

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  10. Analysing the effects of air flow on a formula prototype vehicle to optimize its performance

    Science.gov (United States)

    Rastogi, Nisha; Shetty, Siddhanth; Ashok, B.

    2017-11-01

    FSAE (Formula Society of Automotive Engineers) is an_engineering design competition which challenges students to design and build their own Formula Style race-car. The race-car is being judged on basis of various criteria namely, design, cost, business and performance. For the race-car to participate in the dynamic events and traverse through different sorts of challenging tracks in the least time possible, the tyres must generate appropriate amount of lateral and longitudinal force. The car must not topple even at high speeds and needs to manoeuvre quickly. To achieve the above-mentioned criterion, there is a need of implementing aerodynamics in the car. The optimum amount of downforce necessary to execute a smooth and rapid active behaviour of our car with maximum achievable performance is to be measured keeping vehicle dynamics into consideration. In this paper, vehicle dynamics and aerodynamics are related to an extent where all the above criterion can be achieved successfully, thereby bringing about a trade-off without any sort of compromises in either of them. The co-ordination between aerodynamics and vehicle dynamics has been depicted with a detailed methodology, accompanied by Computational Fluid Dynamics (CFD) simulations of the wings and the full body of the car using STAR CCM+. Further the results has been discussed properly in the later sections of this paper. With a systematic approach, thoroughly done with several iterations on MATLAB followed by CFD simulations and analysis, the desired performance was accomplished.

  11. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    Science.gov (United States)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  12. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment

    Directory of Open Access Journals (Sweden)

    Jens Seedorf

    2017-08-01

    Full Text Available Research that investigates bioaerosol emissions from animal transport vehicles (ATVs and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m3/h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  13. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    Science.gov (United States)

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  14. Presentation of an innovative and efficient air conditioning system for electrical powered vehicles; Vorstellung eines innovativen und effizienten Klimasystems fuer elektrisch angetriebene Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Oleg [IAV GmbH, Muenchen (Germany); Ackermann, Jan; Fang, Fang [IAV GmbH, Gifhorn (Germany)

    2012-11-01

    An air-conditioning system for battery electric vehicles requires an efficient approach to provide heat and cool during operation in winter and summer. The required energy expenditure to ensure comfort and safety is enormous especially during the winter. The heat input into the cabin amounts up to 10 kW and above when considering conventional vehicles with an internal combustion engine. In this context IAV is developing an efficient overall air conditioning system. The combination of new system components, such as surface heaters and a heat pump with improved components such as a PTC-heater, can solve the discrepancy between acceptable range and the aspects of comfort and safety. (orig.)

  15. Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs.

    Science.gov (United States)

    Cecchel, S; Chindamo, D; Turrini, E; Carnevale, C; Cornacchia, G; Gadola, M; Panvini, A; Volta, M; Ferrario, D; Golimbioschi, R

    2018-02-01

    This study presents a modelling system to evaluate the impact of weight reduction in light commercial vehicles with diesel engines on air quality and greenhouse gas emissions. The PROPS model assesses the emissions of one vehicle in the aforementioned category and its corresponding reduced-weight version. The results serve as an input to the RIAT+ tool, an air quality integrated assessment modelling system. This paper applies the tools in a case study in the Lombardy region (Italy) and discusses the input data pre-processing, the PROPS-RIAT+ modelling system runs, and the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Design and Simulation of the Modular Vehicle Air Suspension Height Control System Based on ECAS

    Directory of Open Access Journals (Sweden)

    Yang Peigang

    2014-02-01

    Full Text Available Based on ECAS, this paper intended to develop a modular air suspension height control system with WABCO4728800010 two-position three way solenoid valves and Free scale MC9S12D64 microprocessor as its core components. And a simulation test was conducted in MATLAB/Simulink environment. The air suspension height control strategy of this system was divided into four modules: start control module, dynamic adjustment module, manual adjustment module and errors adjustment module, which were controlled by module select switch. Simulation tests indicated that the air suspension height control strategy is featured by its logical control accuracy and debug convenience, and the modular design greatly reduced the system complexity and software development cycle and costs as well.

  17. Proposed MIL Standard and Handbook - Flying Qualities of Air Vehicles. Volume 2. Proposed MIL Handbook

    Science.gov (United States)

    1982-11-01

    aft c.g. 1.0 1) heo, nedium , Viin to 0 ma. CO RRFFCR Chingesho 00 LO iTAI I Category C 3.4.1.1 Rel atnion in transonicI Transonic 0 SnOB )N 3.5...methods for dealing with lead/lag systems like those of Table 5; unfortunately, neither is physically very appeal - ing. And in each, there is an underlying...cable). A change in the damping ratio requirements would mean that either: a) we restrict unaugmented vehicles as well; this is not appealing 119 - -o

  18. Technology Options for Improved Air Vehicle Fuel Efficiency: Executive Summary and Annotated Brief

    Science.gov (United States)

    2006-05-01

    turbine cycle, and detonation-based engine cycles. Aerodynamic Solutions. In the near term, wing retrofits such as winglets have demonstrated the...Release 30 Public Release Aerodynamic Solutions: Benefits/Cost • Near term (0-5 years): ∆ FE ∆ FE/Cost • Wing retrofits, e.g., winglets 5% High • Mid...engine’s overall efficiency, ηo), by improved vehicle aerodynamic characteristics (e.g., through an increase in the lift-to-drag or L/D ratio), and

  19. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Real-time approaches to the estimation of local wind velocity for a fixed-wing unmanned air vehicle

    International Nuclear Information System (INIS)

    Chan, W L; Lee, C S; Hsiao, F B

    2011-01-01

    Three real-time approaches to estimating local wind velocity for a fixed-wing unmanned air vehicle are presented in this study. All three methods work around the navigation equations with added wind components. The first approach calculates the local wind speed by substituting the ground speed and ascent rate data given by the Global Positioning System (GPS) into the navigation equations. The second and third approaches utilize the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), respectively. The results show that, despite the nonlinearity of the navigation equations, the EKF performance is proven to be on a par with the UKF. A time-varying noise estimation method based on the Wiener filter is also discussed. Results are compared with the average wind speed measured on the ground. All three approaches are proven to be reliable with stated advantages and disadvantages

  1. Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)

    International Nuclear Information System (INIS)

    Chiu, Chien-Chin; Tsai, Nan-Chyuan; Lin, Chun-Chi

    2014-01-01

    This work is aimed to investigate the regulation problem for thermal comfortableness and propose control strategies for cabin environment of EVs (electric vehicles) by constructing a reduced-scale A/C (air-conditioning) system which mainly consists of two modules: ECB (environmental control box) and AHU (air-handling unit). Temperature and humidity in the ECB can be regulated by AHU via cooling, heating, mixing air streams and adjusting speed of fans. To synthesize the near-optimal controllers, the mathematical model for the system thermodynamics is developed by employing the equivalent lumped heat capacity approach, energy/mass conservation principle and the heat transfer theories. In addition, from the clustering pattern of system eigenvalues, the thermodynamics of the interested system can evidently be characterized by two-time-scale property. That is, the studied system can be decoupled into two subsystems, slow mode and fast mode, by singular perturbation technique. As to the optimal control strategies for EVs, by taking thermal comfortableness, humidity and energy consumption all into account, a series of optimal controllers is synthesized on the base of the order-reduced thermodynamic model. The feedback control loop for the experimental test rig is examined and realized by the aid of the control system development kit dSPACE DS1104 and the commercial software MATLAB/Simulink. To sum up, the intensive computer simulations and experimental results verify that the performance of the near-optimal order-reduced control law is almost as superior as that of standard LQR (Linear-Quadratic Regulator). - Highlights: • A reduced-scale test rig for A/C (air-conditioning) system to imitate the temperature/humidity of cabin in EV (electric vehicle) is constructed. • The non-linear thermodynamic model of A/C system can be decoupled by singular perturbation technique. • The temperature/humidity in cabin is regulated to the desired values by proposed optimal

  2. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  3. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  4. 75 FR 38023 - Approval and Promulgation of Air Quality Implementation Plans; California; Motor Vehicle...

    Science.gov (United States)

    2010-07-01

    ...)(2)). List of Subjects in 40 CFR Part 52 Air pollution control, Carbon monoxide, Incorporation by... Facility License'' (operative June 23, 1995); Article 10 (Gold Shield Program), sections 3392.1, ``Gold... Certified as Gold Shield'' (operative August 1, 2007); 3392.3, ``Eligibility for Gold Shield Certification...

  5. A Comparative Analysis of Single-Stage-To-Orbit Rocket and Air-Breathing Vehicles

    Science.gov (United States)

    2006-06-01

    passion to explore. I am indebted to my friends and co-workers who, through their humor and shenanigans , have made this educational experience both...the Nixon administration canceling the program, NASA enlisted financial support from the Air Force in exchange for USAF use of the Shuttle

  6. Integrated systems and modules for engine cooling and vehicle air-conditioning; Integrierte Systeme und Module zur Motorkuehlung und Innenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, M.; Kern, J.; Kampf, H. [Behr GmbH (Germany)

    1998-12-01

    The high level of function and quality achieved today in modern vehicles cannot be simply increased by the isolated development of advanced single components alone. By contrast, the holistic optimization of systems opens up new potential. Modern cooling modules and integrated HVAC systems by Behr GmbH and Co. combine several components to form a single compact module whose integrated parts are perfectly matched to each other. Developing complete cockpits at such a high level of integration is another step towards advancing the system concept. Understanding a holistic system allows engineers to develop concepts for an efficient thermal management in the cooling system and to improve ecological compatibility of the vehicle air-conditioning system by using suitable simulation tools. (orig.) [Deutsch] Die gesamtheitliche Optimierung von Systemen eroeffnet neue Potentiale in der Automobilentwicklung. Moderne Kuehlmodule und integrierte Heiz-/Klimageraete der Behr GmbH and Co. fassen zahlreiche Komponenten zu einem kompakten Modul zusammen, dessen Einzelteile aufeinander abgestimmt sind. Die Entwicklung vollstaendiger Cockpits mit einem hohen Integrationsgrad fuehrt den Systemgedanken konsequent weiter. Das Verstaendnis des gesamten Systems erlaubt im Verbund mit geeigneten Simulationswerkzeugen die Entwicklung von Konzepten fuer ein effizientes Thermomanagement im Kuehlsystem und fuer die Verbesserung der Umweltvertraeglichkeit der Kaelteanlage. (orig.)

  7. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  8. The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles

    OpenAIRE

    Delucchi, Mark A.; Murphy, James; Kim, Jin; McCubbin, Donald R.

    1996-01-01

    The detrimental effects of ambient ozone on crops, even at relatively low concentrations, are well-established (Thompson et al., 1976; Heck and Brandt, 1977; Heck et al., 1982; Environmental Protection Agency, 1984; California Air Resources Board, 1987; Olszyk et al., 1988a, 1988b; Heagle et al., 1986; McCool et al., 1986, Ashmore, 1991). Ozone enters plant leaves through the stomatal openings in the leaf surface and then produces byproducts that reduce the efficiency of photosynthesis (CARB...

  9. A trajectory design method via target practice for air-breathing hypersonic vehicle

    Science.gov (United States)

    Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao

    2017-11-01

    There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.

  10. Passivity-Based Control for a Micro Air Vehicle Using Unit Quaternions

    Directory of Open Access Journals (Sweden)

    Maria Eusebia Guerrero-Sanchez

    2016-12-01

    Full Text Available In this paper the development and practical implementation of a Passivity-Based Control (PBC algorithm to stabilize an Unmanned Aerial Vehicle (UAV described with unit quaternions are presented. First, a mathematical model based on Euler-Lagrange formulation using a logarithmic mapping in the quaternion space is introduced. Then, a new methodology: a quaternion-passivity-based control is derived, which does not compute excessive and complex Partial Differential Equations (PDEs for synthesizing the control law, making a significant advantage in comparison with other methodologies. Therefore, the control design to a system as the quad-rotor is easily solved by the proposed methodology. Another advantage is the possibility to stabilize quad-rotor full dynamics which may not be possible with classical PBC techniques. Experimental results and numerical simulations to validate our proposed scheme are presented.

  11. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  12. Design and development of an unconventional VTOL micro air vehicle: The Cyclocopter

    Science.gov (United States)

    Benedict, Moble; Chopra, Inderjit

    2012-06-01

    This paper discusses the systematic experimental and vehicle design/development studies conducted at the University of Maryland which culminated in the development of the first flying Cyclocopter in the history. Cyclocopter is a novel Vertical Take-Off and Landing (VTOL) aircraft, which utilizes cycloidalrotors (cyclorotors), a revolutionary horizontal axis propulsion concept, that has many advantages such as higher aerodynamic efficiency, maneuverability and high-speed forward flight capability when compared to a conventional helicopter rotor. The experimental studies included a detailed parametric study to understand the effect of rotor geometry and blade kinematics on cyclorotor hover performance. Based on the experimental results, higher blade pitch angles were found to improve thrust and increase the power loading (thrust per unit power) of the cyclorotor. Asymmetric pitching with higher pitch angle at the top than at the bottom produced better power loading. The chordwise optimum pitching axis location was observed to be around 25-35% of the blade chord. Because of the flow curvature effects, the cycloidal rotor performance was a strong function of the chord/radius ratio. The optimum chord/radius ratios were extremely high, around 0.5-0.8, depending on the blade pitching amplitude. A flow field investigation was also conducted using Particle Image Velocimetry (PIV) to unravel the physics behind thrust production of a cyclorotor. PIV studies indicated evidence of a stall delay as well as possible increases in lift on the blades from the presence of a leading edge vortex. The goal of all these studies was to understand and optimize the performance of a micro-scale cyclorotor so that it could be used in a flying vehicle. An optimized cyclorotor was used to develop a 200 gram cyclocopter capable of autonomous stable hover using an onboard feedback controller.

  13. Implementation of the Rauch-Tung-Striebel smoother for sensor compatibility correction of a fixed-wing unmanned air vehicle.

    Science.gov (United States)

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.

  14. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    Science.gov (United States)

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  15. Air toxics exposure from vehicle emissions at a U.S. border crossing: Buffalo Peace Bridge Study.

    Science.gov (United States)

    Spengler, John; Lwebuga-Mukasa, Jamson; Vallarino, Jose; Melly, Steve; Chillrud, Steve; Baker, Joel; Minegishi, Taeko

    2011-07-01

    The Peace Bridge in Buffalo, New York, which spans the Niagara River at the east end of Lake Erie, is one of the busiest U.S. border crossings. The Peace Bridge plaza on the U.S. side is a complex of roads, customs inspection areas, passport control areas, and duty-free shops. On average 5000 heavy-duty diesel trucks and 20,000 passenger cars traverse the border daily, making the plaza area a potential "hot spot" for emissions from mobile sources. In a series of winter and summer field campaigns, we measured air pollutants, including many compounds considered by the U.S. Environmental Protection Agency (EPA*) as mobile-source air toxics (MSATs), at three fixed sampling sites: on the shore of Lake Erie, approximately 500 m upwind (under predominant wind conditions) of the Peace Bridge plaza; immediately downwind of (adjacent to) the plaza; and 500 m farther downwind, into the community of west Buffalo. Pollutants sampled were particulate matter (PM) days. Other metals (beryllium, sodium, magnesium, potassium, titanium, manganese, cobalt, strontium, tin, cesium, and lanthanum) showed significant increases downwind as well. Sulfur, arsenic, selenium, and a few other elements appeared to be markers for regional transport as their upwind and downwind concentrations were correlated, with ratios near unity. Using positive matrix factorization (PMF), we identified the sources for PAHs at the three fixed sampling sites as regional, diesel, general vehicle, and asphalt volatilization. Diesel exhaust at the Peace Bridge plaza accounted for approximately 30% of the PAHs. The NPAH sources were identified as nitrate (NO3) radical reactions, diesel, and mixed sources. Diesel exhaust at the Peace Bridge plaza accounted for 18% of the NPAHs. Further evidence for the impact of the Peace Bridge plaza on local air quality was found when the differences in 10-minute average UFP counts and pPAH concentrations were calculated between pairs of sites and displayed by wind direction. With

  16. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  17. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  18. Real world vehicle fleet emission factors: Seasonal and diurnal variations in traffic related air pollutants

    Science.gov (United States)

    Wang, Jonathan M.; Jeong, Cheol-Heon; Zimmerman, Naomi; Healy, Robert M.; Evans, Greg J.

    2018-07-01

    Temporal variations of vehicle emissions are affected by various compounding factors in the real world. The focus of this study is to determine the effects of ambient conditions and post-tailpipe changes on traffic emissions measured in the near-road region. Emission factors allowed for the isolation of the traffic signal and accounted for effects of local meteorology and dilution. Five month-long measurement campaigns were conducted at an urban near-road site that exhibited a broad range of ambient conditions with temperatures ranging between -18 and +30 °C. Particle number emission factors were 2.0× higher in the winter relative to the summer, which was attributed to changes in particles post-tailpipe. Conversely, toluene emissions were 2.5× higher in the summer relative to the winter, attributed to changes in fuel composition. Diurnal trends of emission factors showed substantial increases in emissions during the morning rush hour for black carbon (1.9×), particle number (2.4×), and particle-bound polycyclic aromatic hydrocarbons (3.0×), affected by fleet make-up. In contrast, particle number emission factors were highest midday with mean values 3.7× higher than at night. This midday increase was attributed to particle formation or growth from local traffic emissions and showed different wind direction dependence than regional events.

  19. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    Science.gov (United States)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  20. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  1. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB beacon and lidar to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV visual localization and robotics control.

  2. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    Science.gov (United States)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  3. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua

    2016-01-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  4. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    Science.gov (United States)

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  5. Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory

    Directory of Open Access Journals (Sweden)

    B. Jing

    2016-03-01

    Full Text Available This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal–spatial resolution (HTSVE for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54  ×  104, 42.51  ×  104 and 2.13  ×  104 and 0.41  ×  104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016.

  6. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    Science.gov (United States)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M.; Karakas, Zeynep N.; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A.; Smela, Elisabeth

    2013-08-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω μɛ-1 and the gauge factor was 28; in compression, the gauge factor was -5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.

  7. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  8. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  9. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    Science.gov (United States)

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  10. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  12. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    International Nuclear Information System (INIS)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M; Karakas, Zeynep N; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A; Smela, Elisabeth

    2013-01-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω με −1 and the gauge factor was 28; in compression, the gauge factor was −5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle. (paper)

  13. Analysis of impacts on urban air quality by restricting the operation of passenger vehicles during Asian Game events in Busan, Korea

    Science.gov (United States)

    Lee, Byeong-Kyu; Jun, Na-Young; Lee, Haengah Kim

    This study is an analysis of the impacts on urban air quality of restricting the operation of passenger vehicles during the 24th Asian Games (AG). Passenger vehicles in Busan were not allowed to operate on the alternative days during the AG period. This restricted operation of passenger vehicles was enforced to improve an urban air quality in Busan during the AG period. The average usage rate of passenger vehicles under an alternate (or restricted) operation was 95.4% and thus the average traffic flow rate (vehicle operation speed) increased approximately 28.1% as compared to normal periods. We analyzed the ambient concentrations of criteria air pollutants measured at 13 air-monitoring stations in Busan (Pusan), Korea, for the three periods of "before (13-28 September 2002)", "during (29 September-14 October 2002)" and "after (15-30 October 2002)" the AG. The 1-h, 24-h and 16-day averages or median concentrations of each classified term were compared to those of other terms. The median concentrations, based on 24-h average data of each day, of PM 10, CO, NO 2, and SO 2 in the ambient during the alternate operation period of 16 days substantially increased as compared to the terms before or after. However, the median concentration of O 3 during the AG period was slightly less than that of the term before. The ambient O 3 concentrations during daytime (12:00-19:00) under alternate operation substantially increased as compared to the terms before or after. However, the ambient O 3 concentrations during nighttime (22:00-07:00) under alternate operation decreased when compared to the terms before or after. For the alternate operation period of passenger vehicles, the average concentrations of PM 10, NO 2, SO 2, and daytime O 3 measured at the air-monitoring stations near the stadiums were much higher than those of the other areas excluding the stadium areas. However, average CO concentrations at the other areas were higher than those nearby the stadiums during the

  14. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    Science.gov (United States)

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  15. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009.

    Science.gov (United States)

    Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg

    2014-07-01

    On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of

  16. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon.

    Science.gov (United States)

    Liu, Shi V; Chen, Fu-Lin; Xue, Jianping

    2017-12-15

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with -0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate that

  17. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    Directory of Open Access Journals (Sweden)

    Shi V. Liu

    2017-12-01

    Full Text Available An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD, All-Traffic Density (ATD and Heavy-Traffic Density (HTD which represent the proportions of major roads, major road with annual average daily traffic (AADT, and major road with commercial annual average daily traffic (CAADT in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC, a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS. The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with −0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m that were analyzed. Generalized linear model (GLM analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses

  18. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  19. The valuation of air emission externalities of vehicles: a comparison between fossil fuels and ethanol in Brazil

    International Nuclear Information System (INIS)

    Fernandes, E.S.L.; Zylbersztain, D.

    1997-01-01

    The National Alcohol Program, Proalcool has had an important strategic role as an alternative fuel. Nevertheless, Proalcool has faced economic difficulties that endanger the Program's future. From the environmental point of view, the introduction of hydrated ethanol as an automobile fuel was beneficial because initially it reduced vehicle emissions. The lack of investment in technology for a neat-alcohol vehicle has delayed further development of an alcohol engine relative to the gasoline engine, which is reflected in current exhaust gas emissions. This paper discusses the evolution of ethanol vehicle emissions and the monetary effect of these emissions in the urban area of Sao Paulo, Brazil. (author)

  20. Overestimation of on-road air quality surveying data measured with a mobile laboratory caused by exhaust plumes of a vehicle ahead in dense traffic areas.

    Science.gov (United States)

    Woo, Sang-Hee; Kwak, Kyung-Hwan; Bae, Gwi-Nam; Kim, Kyung Hwan; Kim, Chang Hyeok; Yook, Se-Jin; Jeon, Sangzin; Kwon, Sangil; Kim, Jeongsoo; Lee, Seung-Bok

    2016-11-01

    The unintended influence of exhaust plumes emitted from a vehicle ahead to on-road air quality surveying data measured with a mobile laboratory (ML) at 20-40 km h -1 in dense traffic areas was investigated by experiment and life-sized computational fluidic dynamics (CFD) simulation. The ML equipped with variable sampling inlets of five columns by four rows was used to measure the spatial distribution of CO 2 and NO x concentrations when following 5-20 m behind a sport utility vehicle (SUV) as an emitter vehicle equipped with a portable emission monitoring system (PEMS). The PEMS measured exhaust gases at the tailpipe for input data of the CFD simulations. After the CFD method was verified with experimental results of the SUV, dispersion of exhaust plumes emitted from a bus and a sedan was numerically analyzed. More dilution of the exhaust plume was observed at higher vehicle speeds, probably because of eddy diffusion that was proportional to turbulent kinetic energy and vehicle speed. The CO 2 and NO x concentrations behind the emitter vehicle showed less overestimation as both the distance between the two vehicles and their background concentrations increased. If the height of the ML inlet is lower than 2 m and the ML travels within 20 m behind a SUV and a sedan ahead at 20 km h -1 , the overestimation should be considered by as much as 200 ppb in NO x and 80 ppm in CO 2 . Following a bus should be avoided if possible, because effect of exhaust plumes from a bus ahead could not be negligible even when the distance between the bus and the ML with the inlet height of 2 m, was more than 40 m. Recommendations are provided to avoid the unintended influence of exhaust plumes from vehicles ahead of the ML during on-road measurement in urban dense traffic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. How private vehicle use increases ambient air pollution concentrations at schools during the morning drop-off of children

    Science.gov (United States)

    Adams, Matthew D.; Requia, Weeberb J.

    2017-09-01

    A child's exposure to environmental pollutants can have life-long health effects. Thus it is critical to understand the potential exposure pathways. In this paper, we examine the increase in ambient PM2.5 concentrations at schools from private vehicle use for dropping children off at school. In North America, students are commonly driven to school in a private vehicle. Additionally, students walk or cycle, or take a school bus. Our vehicle surveys recorded between 23 and 116 personal vehicles at 25 schools, where enrolment ranged from 160 to 765 students. We fit a linear regression model to predict the number of vehicles at schools we did not observe within our study area, which explained 57% of the variation in our surveys. A microsimulation traffic model was created for each of the 86 schools we studied. Outputs from the traffic model were used to determine the emissions generated at each school. PM2.5 emissions varied from 0.14 to 6.38 g. Lastly, we dispersed the emissions produced by private vehicles dropping off students, which are emissions generated by unnecessary trips because students further than walking distance are provided transportation by the school board. At the drop-off location in front of the school, we found ambient concentration increases of at least 5 μg/m3, 10 μg/m3, 25 μg/m3 and 50 μg/m3 during 16.8%, 7.6%, 2.0% and 0.5% of the mornings, respectively. This research was conducted in a medium-sized North American city and should allow transferability to similar cities. We conclude that the use of private vehicles can significantly increase local concentrations, regardless of background conditions.

  2. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment; FINAL

    International Nuclear Information System (INIS)

    K. Stork; R. Poola

    1998-01-01

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO(sub x)) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM(sub 2.5)). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO(sub x) and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles

  3. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    Science.gov (United States)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  4. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  5. A Noise-Insensitive Semi-Active Air Suspension for Heavy-Duty Vehicles with an Integrated Fuzzy-Wheelbase Preview Control

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2013-01-01

    Full Text Available Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW, is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP. It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.

  6. Final Rule for Control of Air Pollution From Motor Vehicles and New Motor Vehicle Engines; Modification of Federal Onboard Diagnostic Regulations for Light-Duty Vehicles and Light-Duty Trucks; Extension of Acceptance of California OBD

    Science.gov (United States)

    This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).

  7. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  8. Mobile air quality studies (MAQS in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    Directory of Open Access Journals (Sweden)

    Uibel Stefanie

    2012-10-01

    Full Text Available Abstract Background Particulate matter (PM is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.

  9. Remote Operated Vehicle geophysical surveys on land (underground), air and submarine archaeology: General peculiarities of processing and interpretation

    Science.gov (United States)

    Eppelbaum, Lev

    2016-04-01

    The last Remote Operation Vehicles (ROV) generation - small and maneuvering vehicles with different geophysical sensors - can fly at levels of a few meters (and even tens of centimeters) over the earth's surface, to move on the earth's surface and in the inaccessible underground areas and to explore in underwater investigations (e.g., Mindel and Bingham, 2001; Rowlands and Sarris, 2006; Wilson et al., 2006; Rigaud, 2007; Eppelbaum, 2008; Patterson and Brescia, 2008; Sarris, 2008; Wang et al., 2009; Wu and Tian, 2010; Stall, 2011; Tezkan et al., 2011; Winn et al., 2012; El-Nahhas, 2013; Hadjimitsis et al., 2013; Hajiyev and Vural, 2013; Hugenholtz et al., 2013; Petzke et al., 2013; Pourier et al., 2013; Casana et al., 2014; Silverberg and Bieber, 2014). Such geophysical investigations should have an extremely low exploitation cost and can observe surface practically inaccessible archaeological sites (swampy areas, dense vegetation, rugged relief, over the areas of world recognized religious and cultural artifacts (Eppelbaum, 2010), etc.). Finally, measurements of geophysical fields at different observation levels could provide a new unique geological-geophysical information (Eppelbaum and Mishne, 2011). Let's consider ROV airborne magnetic measurements as example. The modern magnetometric equipment enables to carry out magnetic measurements with a frequency of 50 times per second (and more) that taking into account the low ROV flight speed provides a necessary density of observations. For instance, frequency of observation of 50 times per second by ROV velocity of 40 km/hour gives density of observation about 0.2 m. It is obvious that the calculated step between observation points is more than sufficient one. Such observations will allow not only reduce the influence of some small artificial sources of noise, but also to obtain some additional data necessary for quantitative analysis (some interpretation methodologies need to have observations at two levels; upward

  10. An Ownership/Lease Cost Comparison Analysis of Heavy Equipment Motor Vehicles in Air Force Materiel Command

    Science.gov (United States)

    1994-09-01

    costs are the costs associated with a particular piece of equipment that do not change despite change in variable operating cost ( Horngren and Foster...The Operating and maintenance costs account for direct and indirect costs associated with their respective functions and vary with the utilization of...each vehicle. The operating direct cost includes all on-base and off- base fuel cost . Indirect operations costs account for bench 28 stock items

  11. Injury and side impact air bag deployment in near and far sided motor vehicle crashes, United States, 2000-2005.

    Science.gov (United States)

    Stadter, Greg; Grabowski, Jurek G; Burke, Christine; Aldaghlas, Tayseer A; Robinson, Linda; Fakhry, Samir M

    2008-12-01

    Side impact crashes, the most lethal type, account for 26% of all motor vehicle crashes in the United States. The purpose of this study is to delineate side impact airbag (SIAB) deployment rates, injury rates, and analyze crash factors associated with SIAB deployment and occupant injury. All passenger vehicles equipped with SIABs that were involved in a side impact crash were identified from the National Automotive Sampling System database. Crashes with multiple impacts, ejections, unbelted drivers or rollovers were excluded from the study. The outcome variables of interest were SIAB deployment and driver injury. SIAB deployment was compared in similar crashes to analyze the impact on driver's injury severity score. Other crash factors were also examined to analyze what role they play in SIAB deployment rates and injury rates, such as plane of contact, striking object and Delta-V. The data set for this study contained 247 drivers in near and far side crashes in vehicles with installed SIABs. Overall SIAB deployment was 43% in side impact crashes. A significant factor associated with both the SIAB deployment rate and the driver's injury rate was increased Delta-V. SIABs do not deploy consistently in crashes with a high Delta-V or with a lateral primary direction of force and a front plane of contact. In these two scenarios, further research is warranted on SIAB deployments. With SIAB deployment, it appears drivers are able to sustain a higher Delta-V impact without serious injury.

  12. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  13. Bio ethanol use in light vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches vehicles emissions and air quality, Unite States context, Brazilian context, bio ethanol impact on engine emissions, bioethanol and engine technologies for emission control, bioethanol impact on engine emissions, flex-fuel vehicles, impact of bioethanol use in light vehicles, evolution perspectives for light vehicles: energy issues, and hybrid vehicles.

  14. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    Science.gov (United States)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  15. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  16. 77 FR 16988 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Science.gov (United States)

    2012-03-23

    ... procedure, Air pollution control, Reporting and recordkeeping requirements, Stratospheric ozone layer. Dated... FURTHER INFORMATION CONTACT: Margaret Sheppard, Stratospheric Protection Division, Office of Atmospheric... Reduction Act, 44 U.S.C. 3501 et seq. and has assigned OMB control numbers 2060-0226 (EPA ICR No. 1596.08...

  17. An investigation of drag reduction for tractor trailer vehicles with air deflector and boattail. [wind tunnel tests

    Science.gov (United States)

    Muirhead, V. U.

    1981-01-01

    A wind tunnel investigation was conducted to determine the influence of several physical variables on the aerodynamic drag of a trailer model. The physical variables included: a cab mounted wind deflector, boattail on trailer, flow vanes on trailer front, forced transition on trailer, and decreased gap between tractor and trailer. Tests were conducted at yaw angles (relative wind angles) of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 10 to the 5th power 6.12 x 10 to the 5th power based upon the equivalent diameter of the vehicles. The wind deflector on top of the cab produced a calculated reduction in fuel consumption of about 5 percent of the aerodynamic portion of the fuel budget for a wind speed of 15.3 km/hr (9.5 mph) over a wind angle range of 0 deg to 180 deg and for a vehicle speed of 88.5 km/hr (55 mph). The boattail produced a calculated 7 percent to 8 percent reduction in fuel consumption under the same conditions. The decrease in gap reduced the calculated fuel consumption by about 5 percent of the aerodynamic portion of the fuel budget.

  18. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation.

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p health.

  19. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation

    OpenAIRE

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic ar...

  20. Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries, was implemen......This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries......, was implemented in a small electrical vehicle. A dynamic model was developed using Matlab-Simulink to describe the system characteristics, select operating conditions and to size system components. Preheating of the fuel cell stack with electrical resistors was investigated and found to be an unrealistic approach...

  1. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    Science.gov (United States)

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  3. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    Science.gov (United States)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  4. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    Science.gov (United States)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  5. Modeling of in-vehicle magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian R.H.; Engelbrecht, Kurt

    2014-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  6. Modeling of In-vehicle Magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian; Engelbrecht, Kurt

    2012-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  7. Analysis of the Sustainment Organization and Process for the Marine Corps’ RQ-11B Raven Small Unmanned Aircraft System (SUAS)

    Science.gov (United States)

    2012-03-01

    Vehicle UAS Unmanned Aircraft System UCAV Unmanned Combat Air Vehicles xvii UNS Universal Needs Statement USMC United States Marine Corps VLC ...she helped motivate me to finish this project—as challenging as it may be to work under the conditions set by an infant. And, finally, thanks to...In every aspect of program management, the DoD acquisition workforce is constantly challenged to balance cost, schedule, and performance. In a

  8. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Research on the mobile strategy of micro air vehicles with limited energy%能量受限的微型无人机移动策略研究

    Institute of Scientific and Technical Information of China (English)

    徐马蒙; 刘航; 夏宁

    2016-01-01

    针对无线中继网络场景中微型无人机能量优化的目的,提出一种基于传输速率梯度变化最大的移动策略。通过理论仿真,并且和传统的直线移动策略进行对比,对比结果表明:依据所提出的移动策略,微型无人机转发的数据量提高6%,单位数据量消耗的能量降低8%,从而提升了无人机执行任务的效率。%Aiming at the problem of energy optimization for micro air vehicles in relay networks, a mobile strategy based on maximum gradient change of transmission rate is presented. Through theoretical simulation and comparison with the conventional strategy of linear movement, the results of simulation show that based on the proposed mobile strategy, the data size forwarded by UAV is increased by 6%and the consuming energy per unit data size is reduced by 8%.,so as to improve the efficiency of the implementation of the task.

  10. Modelling and hardware-in-the-loop simulation of the blowout tract components for passenger compartment air conditioning of motor vehicles; Modellierung und Hardware-in-the-Loop-Simulation der Komponenten des Ausblastraktes zur Kraftfahrzeuginnenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, David

    2009-07-01

    The author investigated the modelling and hardware-in-the-loop simulation of components of the blowout tract of motor car air conditioning systems. The control systems and air conditioning systems are gone into, from the air entering the car to the control systems and sensors for monitoring state variables. The function of the control equipment hardware and software was to be analyzed reproducibly in order to save time and cost. The models were verified using available data. Validation criteria were established for the hardware-in-the-loop simulator. On the basis of selected operating conditions, the performance of the air conditioning control unit inside the vehicle was compared with the simulation results and was evaluated on the basis of the established criteria. (orig.)

  11. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Evaporative and Refueling Emission Regulations for Gasolineand Methanol-Fueled Light-Duty Vehicles and Light-Duty Trucks and Heavy-Duty Vehicles; Technical Amen

    Science.gov (United States)

    On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.

  12. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  13. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    Science.gov (United States)

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  14. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  15. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    Science.gov (United States)

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  16. Communication Technologies for Vehicles

    DEFF Research Database (Denmark)

    Vinel, Alexey

    This book constitutes the proceedings of the 8th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2015, held in Sousse, Tunisia, in May 2015. The 20 papers presented in this volume were carefully reviewed and selected from 27 submissions....... The contributions are organized in topical sections named: road; rail; and air....

  17. Unmanned Aircraft Systems Roadmap, 2005-2030

    Science.gov (United States)

    2005-01-01

    UCAV Unmanned Combat Air Vehicle ISS Integrated Sensor Suite UCS Unmanned Control System ITU International Telecommunications Union UFO UHF...RDC) at Groton, CT. These have included alien and drug interdiction along the Texas coast and in the Caribbean, UA launch and recovery systems...altitude aircraft and UA; and narrowband services to support mobile and handheld services as a replacement or follow-on for the UHF Follow-On ( UFO

  18. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  19. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  20. Bad traffic, bad air

    OpenAIRE

    Duca, Edward

    2012-01-01

    Air pollution is one of Malta’s greatest concerns. Transportation is the principal source with over 300,000 vehicles belching out smoke, which damages our environment and health. Emissions from vehicles need to be monitored and controlled, and the information used to improve the current system and ensure an acceptable air quality. By using the pollution data set, Nicolette Formosa (supervised by Dr Kenneth Scerri) mapped the air pollution levels and major sources around Malta. http://www....

  1. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  2. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  3. 40 CFR 85.1505 - Final admission of certified vehicles.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor... vehicle or engine from the previous test (e.g., adjusting the RPM, timing, air-to-fuel ratio, etc.) other... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Final admission of certified vehicles...

  4. Evaluation of the Flush/Fill and High-Pressure Air Purge Procedures for Converting Army Vehicles to Silicone Brake Fluid.

    Science.gov (United States)

    1982-02-01

    Inhlalation Ally lnon-lethal C’AR. NiLO FTA . TELR LDLo Acute or chronic All except inhalation Decath tDeathl LD50 Acute All except inhalation Not applic-ihle D...Improved Tow Vehicle US Army Europe & Seventh Army US Army Tank-Automotive Command ATTN: AEAGC- FMD ATTN: DRCPM-ITV-T APO NY 09403 Warren, Mi 48090

  5. Unified Collection and Coordination for UCAVs

    National Research Council Canada - National Science Library

    Mahler, Ronald

    2004-01-01

    Lockheed Martin Tactical Systems (LMTS) and Scientific Systems Company, Inc., (SSCI) are conducting a research program aimed at the problem of managing autonomous, self-reconfiguring swarms of intelligent sensors and weapons...

  6. 40 CFR 85.1703 - Definition of motor vehicle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Definition of motor vehicle. 85.1703... (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exclusion and Exemption of Motor Vehicles and Motor Vehicle Engines § 85.1703 Definition of motor vehicle. (a) For the purpose of determining the...

  7. EPA and California Air Resources Board Approve Remedy to Reduce Excess NOx Emissions from Automatic Transmission “Generation 2” 2.0-Liter Diesel Vehicles

    Science.gov (United States)

    On May 17, 2017, EPA and the California Air Resources Board (CARB) approved an emissions modification proposed by Volkswagen that will reduce NOx emissions from automatic transmission diesel Passats for model years 2012-2014.

  8. Vehicle regulations.

    NARCIS (Netherlands)

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  9. Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems

    National Research Council Canada - National Science Library

    Dullerud, Geir E; Bullo, Francesco; Feron, Eric; Frazzoli, Emilio; Kumar, P. R; Lall, Sanjay; Liberzon, Daniel; Lynch, Nancy A; Mitchell, John C; Mitter, Sanjoy K

    2007-01-01

    ... and semi-autonomous air vehicles. The research is specifically aimed at the critical reliability and performance issues facing autonomous vehicle systems which operate in highly uncertain environments, and enables the vehicles...

  10. Tactical Vehicle Climate Control Testing

    Science.gov (United States)

    2017-03-31

    1979. b. TOP 02-2-708, Vehicle Personnel Heater Compatibility, 18 July 1980. c. Society of Automotive Engineers (SAE) J381, Surface Vehicle...Total Irradiance Second Class minimum, First Class recommended Engine speed ± 10 revolutions per minute (rpm) Air pressure (as appropriate) ± 1...digital camera is suggest to photograph all instrumentation locations. A tape measure, a graduated cylinder and an electric paint sprayer are required

  11. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  12. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  13. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  14. 40 CFR 85.1506 - Inspection and testing of imported motor vehicles and engines.

    Science.gov (United States)

    2010-07-01

    ... motor vehicles and engines. 85.1506 Section 85.1506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines § 85.1506 Inspection and testing of imported motor vehicles and...

  15. 40 CFR 85.1509 - Final admission of modification and test vehicles.

    Science.gov (United States)

    2010-07-01

    ... test vehicles. 85.1509 Section 85.1509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor Vehicles and Motor Vehicle Engines § 85.1509 Final admission of modification and test vehicles. (a) Except...

  16. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  17. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    Science.gov (United States)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  18. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  19. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Science.gov (United States)

    2010-10-01

    ... compressed air (air brakes) or a commercial motor vehicle towing a vehicle with service brakes activated by compressed air (air brakes) must be equipped with a pressure gauge and a warning signal. Trucks, truck... vehicles which were not subject to FMVSS No. 105 on the date of manufacture.) (c) Air brakes. A commercial...

  20. Technology & Mechanics Overview of Air-Inflated Fabric Structures

    National Research Council Canada - National Science Library

    Cavallaro, Paul V

    2006-01-01

    .... Examples include air ships, weather balloons, inflatable radomes, shelters, pneumatic muscles, inflatable boats, bridging, and energy absorbers such as automotive air bags and landing cushions for space vehicles...

  1. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  2. Environmental Assessment for the Operation and Launch of the Falcon 1 and Falcon 9 Space Vehicles at Cape Canaveral Air Force Station Florida

    Science.gov (United States)

    2007-11-01

    Florida, the Pacific Ocean off the coast of California, or the Pacific Ocean near the Marshall Islands . Dragon Capsule Re-entry and Recovery The...California and a third location is in the equatorial Pacific near the Marshall Islands . The capsule would be directed along a pre-planned trajectory to...Water Separator PAE Potentially Adverse Effect PAFB Patrick Air Force Base PAH Poly-nuclear aromatic hydrocarbons Pb lead PCB Poly

  3. 36 CFR 1192.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-07-01

    .... Vertical alignment may be accomplished by vehicle air suspension or other suitable means of meeting the... vehicles and systems. 1192.173 Section 1192.173 Parks, Forests, and Public Property ARCHITECTURAL AND... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.173 Automated guideway transit vehicles and systems. (a...

  4. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  5. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  6. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  7. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  8. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  9. The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    Science.gov (United States)

    O'Hara, Ryan P.

    Collateral damage presents a significant risk during air drops and airstrikes, risking citizens' lives and property, straining the relationship between the United States Air Force and host nations. This dissertation presents a methodology to determine the optimal location for making supply airdrops in order to minimize collateral damage while maintaining a high likelihood of successful recovery. A series of non-linear optimization algorithms are presented along with their relative success in finding the optimal location in the airdrop problem. Additionally, we present a quick algorithm for accurately creating the Pareto frontier in the multi-objective airstrike problem. We demonstrate the effect of differing guidelines, damage functions, and weapon employment selection which significantly alter the location of the optimal aimpoint in this targeting problem. Finally, we have provided a framework for making policy decisions in fast-moving troops-in-contact situations where observers are unsure of the nature of possible enemy forces in both finite and infinite time horizon problems. Through a recursive technique of solving this Markov decision process we have demonstrated the effect of improved intelligence and differing weights in the face of uncertain situations.

  10. Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface (Problemes de Dynamique des Fluides des Vehicules Evoluant dans ou pres de L’interface Air-Mer).

    Science.gov (United States)

    1999-02-01

    traitement du signal fournit effectivement un effort nul. La pression initiale dans la fosse pi est mesuree par un capteur statique eau - eau . Pour...est de plusieurs minutes en presence d’ecoulement et avec une interface air- eau de grande surface. L’hypothese principale du modele elementaire...fonction des parametres de similitude. A l’aide d’un traitement d’images on peut extraire des visualisations le contour exterieur des bulles et en

  11. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements...

  12. 40 CFR 86.1807-01 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-01 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  13. 40 CFR 86.1807-07 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-07 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  14. 40 CFR 86.1822-01 - Durability data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  15. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  16. 40 CFR 86.1828-10 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  17. 40 CFR 86.411-78 - Maintenance instructions, vehicle purchaser.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance instructions, vehicle...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES... instructions, vehicle purchaser. (a) The manufacturer shall furnish or cause to be furnished to the ultimate...

  18. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    OpenAIRE

    Rachana Vidhi; Prasanna Shrivastava

    2018-01-01

    Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030....

  19. Trends in Aggregate Vehicle Emissions: Do We Need To Emissions Test?

    OpenAIRE

    Matthew Kahn

    1995-01-01

    Vehicle emissions are falling. As the oldest vehicles in the fleet are scrapped and are replaced by cleaner vehicles, aggregate emissions decline. Given this trend, must costly used car regulation continue? The Clean Air Act of 1990 requires more stringent used car testing without considering the counter-factual of how aggregate emissions would evolve in the absence of more regulation. This paper use data on vehicle scrappage rates, vehicle emissions by model year, and county air quality leve...

  20. [A transportation vehicle for laparoscopically obtained follicular specimens].

    Science.gov (United States)

    Fliess, F R; Sudik, R

    1984-01-01

    Structure, function and first results with a vehicle for transportation were described. This apparatus allows to store laparoscopic harvested follicular fluids for a while in constant temperature and in air condition with 5% CO2 in compressed air. Simultaneously the follicular fluids were transported in this vehicle from operating theatre to the laboratory.

  1. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  2. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  3. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  4. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  5. Gap in air pollution reduction measures

    International Nuclear Information System (INIS)

    Kamphuis, E.; Spijker, E.

    2006-01-01

    The air quality dossier in the Netherlands requires drastic cleaning of the vehicles fleet. However, the present measures are too much focused on the installation and use of soot filters. Other options to improve the air quality are discussed [nl

  6. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Centers Contact Us Share Transportation, Air Pollution, and Climate Change Overview Learn about pollutants from vehicles and engines that cause harmful health effects and climate change. Overview of air pollution from transportation Key issues, ...

  7. Impact of Vehicle Hybridization on Fuel Consumption Economy

    OpenAIRE

    Rezaei, Javad

    2018-01-01

    Air pollution, limited number of knownpetroleum resources and increasing of greenhouse gases have led the governmentsand researchers to have more investigation on Hybrid Electric Vehicles.Considering technical availability and manufacturing facilities with regardingto the final vehicle price, hybridization of conventional vehicles could be abetter choice than designing and manufacturing a new hybrid electric car.Parallel-Series hybrid electric vehicles(power-split) which is used in this study...

  8. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  9. Study on high reliability safety valve for railway vehicle

    Science.gov (United States)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  10. Air quality

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter of the 'Assessment of the state of the environment in Lebanon' describes the air quality and identifies the most important air quality issues. Baseline information about the factors affecting dispersion and the climate of Lebanon presents as well and overall estimation of total emissions in Lebanon. Emissions from vehicles, electricity and power plants generation are described. Industrial emitters of air pollutants are described for each kind of industry i.e.cement plants, Selaata fertilizer factory, sugar-beet factory, refineries and for those derived from the use of leaded fuel . Impact of economic and human activities on air quality in Lebanon (especially in Beirut and Tripoli) are quantified by quantities of CO 2 , SO 2 , NO x , total suspended particulates(TSP), deposition and their environmental effects on health. In abscence of emissions monitoring, data available are expressed in terms of fuel use, output and appropriate empirical factors, national output and workfores sizes. Finally key issues and some potential mitigation /management approaches are presented

  11. 49 CFR 38.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-10-01

    ... accomplished by vehicle air suspension or other suitable means of meeting the requirement. (c) In stations... 49 Transportation 1 2010-10-01 2010-10-01 false Automated guideway transit vehicles and systems... DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  12. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...

  13. Air quality inside passenger cars

    OpenAIRE

    Joanna Faber; Krzysztof Brodzik

    2017-01-01

    Vehicle interior is a specific environment of relatively small volume, with variety of materials placed inside, including hard and soft plastics, adhesives, paints, lubricants and many others. As a result, particularly in case of newly produced vehicles, large amounts and numbers of volatile species, especially volatile organic compounds (VOCs), may be emitted and have influence vehicle interior air quality (VIAQ). Despite the fact that many of these compounds may not be harmful for human hea...

  14. 76 FR 68381 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean...

    Science.gov (United States)

    2011-11-04

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean Vehicles Program AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. This SIP revision contains Pennsylvania's Clean Vehicle Program, which adopts California's second generation low emission vehicle program...

  15. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  16. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  19. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  20. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  1. Biological Inspiration for Agile Autonomous Air Vehicles

    National Research Council Canada - National Science Library

    Evers, Johnny H

    2007-01-01

    .... Flying animals exhibit capabilities for aerial acrobatics, insensitivity to wind gusts, avoiding collision with or intercepting fixed and moving objects, landing and take off from small perches...

  2. Biological Inspiration for Agile Autonomous Air Vehicles

    Science.gov (United States)

    2007-11-01

    half of one wing, bees with legs packed with pollen , butterflies or moths with torn and frayed wings likewise are capable of apparently normal flight...technologies. To appreciate this, consider a not unreasonable extension of a wide area autonomous search (WAAS) munition operational scenario. Here...detect and destroy missile launchers that are operating in the back alleys of an urban areas or search Evers, J.H. (2007) Biological Inspiration for Agile

  3. Center for Micro Air Vehicle Studies

    Science.gov (United States)

    2013-02-01

    from a Gauss - Seidel method to a different iterative process to allow pressures to converge properly. Additionally, the updates to the Cradle...the thorax. After many design iterations , including variations in spring count and spring constants, a feasible model was selected based on the...wings. Many iterations of this wing were made to prevent breakage. The iterations involved increasing spar thicknesses, which increased the weight of

  4. Air Vehicle Technology Modeling and Simulation

    National Research Council Canada - National Science Library

    Marino, John

    2001-01-01

    ... design, leading to a detailed design for production. Many critical design decisions are made at the conceptual level where the least amount of information is available to assist in the design evaluation and tradeoff...

  5. Advanced Composites for Air and Ground Vehicles

    Science.gov (United States)

    2015-08-01

    Identification 140 9.3.4 Materials and Process 142 9.3.5 Trials 145 9.3.6 Results 146 9.4 Interlaminar Reinforcement of Glass Fiber /Epoxy...carbon fiber – reinforced polymer (CFRP) (left) and 8-layer quasi-isotropic CFRP laminate (right...Halloysite Density 2.5 g/cc Elastic Modulus 140 GPa Poisson Ratio 0.4 Polypropylene Density 0.9 g/cc Elastic Modulus 1.3+ 0.04 GPa

  6. Intelligent Control Management of Autonomous Air Vehicles

    National Research Council Canada - National Science Library

    Innocenti, Mario; Pollini, Lorenzo; Bracci, Andrea

    2006-01-01

    .... The report briefly overviews some existing procedures used to solve both path planning and mission planning problems, and then proposes alternative algorithms which have a lower computational cost...

  7. Self repairing composites for drone air vehicles

    Science.gov (United States)

    Dry, Carolyn

    2015-04-01

    The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.

  8. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  9. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  10. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  11. Canada's Clean Air Act

    International Nuclear Information System (INIS)

    2006-01-01

    This paper provided an outline of Canada's Clean Air Act and examined some of the regulatory changes that will occur as a result of its implementation. The Act is being introduced to strengthen the legislative basis for taking action on reducing air pollution and GHGs, and will allow the government to regulate both indoor and outdoor air pollutants and GHGs. The Act will require the Ministers of the Environment and Health to establish national air quality objectives, as well as to monitor and report on their attainment. The Canadian Environmental Protection Act will be amended to enable the government to regulate the blending of fuels and their components. The Motor Vehicle Fuel Consumption Standards Act will also be amended to enhance the government's authority to regulate vehicle fuel efficiency. The Energy Efficiency Act will also be expanded to allow the government to set energy efficiency standards and labelling requirements for a wider range of consumer and commercial products. The Act will commit to short, medium and long-term industrial air pollution targets. Regulations will be proposed for emissions from industry; on-road and off-road vehicles and engines; and consumer and commercial products. It was concluded that the Government of Canada will continue to consult with provinces, territories, industries and Canadians to set and reach targets for the reduction of both indoor and outdoor air pollutants and GHG emissions. 6 figs

  12. Reducing Air Pollution from Passenger Cars and Trucks (Text Only)

    Science.gov (United States)

    This is the text explanation of an infographic about reducing air pollution viaTier 3 Vehicles & fuel standards. Tier 3 vehicle and fuel standards will provide substantial pollution reduction at lower cost.

  13. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  14. The Federal Air Pollution Program.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  15. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  16. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  17. Optimal Path Determination for Flying Vehicle to Search an Object

    Science.gov (United States)

    Heru Tjahjana, R.; Heri Soelistyo U, R.; Ratnasari, L.; Irawanto, B.

    2018-01-01

    In this paper, a method to determine optimal path for flying vehicle to search an object is proposed. Background of the paper is controlling air vehicle to search an object. Optimal path determination is one of the most popular problem in optimization. This paper describe model of control design for a flying vehicle to search an object, and focus on the optimal path that used to search an object. In this paper, optimal control model is used to control flying vehicle to make the vehicle move in optimal path. If the vehicle move in optimal path, then the path to reach the searched object also optimal. The cost Functional is one of the most important things in optimal control design, in this paper the cost functional make the air vehicle can move as soon as possible to reach the object. The axis reference of flying vehicle uses N-E-D (North-East-Down) coordinate system. The result of this paper are the theorems which say that the cost functional make the control optimal and make the vehicle move in optimal path are proved analytically. The other result of this paper also shows the cost functional which used is convex. The convexity of the cost functional is use for guarantee the existence of optimal control. This paper also expose some simulations to show an optimal path for flying vehicle to search an object. The optimization method which used to find the optimal control and optimal path vehicle in this paper is Pontryagin Minimum Principle.

  18. How important is vehicle safety in the new vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features

  19. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  20. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  1. Alternative fuels and advanced technology vehicles : issues in Congress

    Science.gov (United States)

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  2. How important is vehicle safety for older consumers in the vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaan; Clark, Belinda; Hoareau, Effie; Charlton, Judith L; Newstead, Stuart V

    2013-01-01

    This study aimed to investigate the importance of vehicle safety to older consumers in the vehicle purchase process. Older (n = 102), middle-aged (n = 791), and younger (n = 109) participants throughout the eastern Australian states of Victoria, New South Wales, and Queensland who had recently purchased a new or used vehicle completed an online questionnaire about their vehicle purchase process. When asked to list the 3 most important considerations in the vehicle purchase process (in an open-ended format), older consumers were mostly likely to list price as their most important consideration (43%). Similarly, when presented with a list of vehicle factors (such as price, design, Australasian New Car Assessment Program [ANCAP] rating), older consumers were most likely to identify price as the most important vehicle factor (36%). When presented with a list of vehicle features (such as automatic transmission, braking, air bags), older consumers in the current study were most likely to identify an antilock braking system (41%) as the most important vehicle feature, and 50 percent of older consumers identified a safety-related vehicle feature as the highest priority vehicle feature (50%). When asked to list up to 3 factors that make a vehicle safe, older consumers in the current study were most likely to list braking systems (35%), air bags (22%), and the driver's behavior or skill (11%). When asked about the influence of safety in the new vehicle purchase process, one third of older consumers reported that all new vehicles are safe (33%) and almost half of the older consumers rated their vehicle as safer than average (49%). A logistic regression model was developed to predict the profile of older consumers more likely to assign a higher priority to safety features in the vehicle purchasing process. The model predicted that the importance of safety-related features was influenced by several variables, including older consumers' beliefs that they could protect themselves

  3. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation

    Science.gov (United States)

    2012-09-01

    hydraulic energy stored in the accumulators. Park Mechanism Not Required – Vehicle air brake system used to immobilize vehicle when parked – Same...power to the transmission to accelerate the vehicle forward and maintain a desired speed. For regenerative braking , the switching valve is set to...assist, brake energy recovery, dual mode braking ( regenerative and service brakes ), engine stop/start, silent watch mode, and stationary tool use

  4. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  5. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  6. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  7. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Balm, S.H.; Hogt, Roeland

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight

  8. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  9. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  10. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    A Navigation Test Vehicle (NTV) is being developed at the Center for Intelligent Machines and Robots at the University of Florida under the sponsorship of the Air Force Research Laboratory at Tyndall Air Force Base...

  11. 40 CFR 1051.330 - May I sell vehicles from an engine family with a suspended certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.330 May I sell vehicles from an... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell vehicles from an engine...

  12. 29 CFR 1917.155 - Air receivers.

    Science.gov (United States)

    2010-07-01

    .... This section applies to compressed air receivers and equipment used for operations such as cleaning... transportation applications as railways, vehicles or cranes. (b) Gauges and valves. (1) Air receivers shall be... 29 Labor 7 2010-07-01 2010-07-01 false Air receivers. 1917.155 Section 1917.155 Labor Regulations...

  13. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  14. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  15. Measurement of in-vehicle volatile organic compounds under static conditions.

    Science.gov (United States)

    You, Ke-wei; Ge, Yun-shan; Hu, Bin; Ning, Zhan-wu; Zhao, Shou-tang; Zhang, Yan-ni; Xie, Peng

    2007-01-01

    The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 microg/m3 in the new vehicle A, 1240 microg/m3 in used vehicle B, and 132 microg/m3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h(-1) to 0.67 h(-1), and in-vehicle TVOC concentration decreases from 1780 to 1201 microg/m3.

  16. Hybrid Aerial/Rover Vehicle

    Science.gov (United States)

    Bachelder, Aaron

    2003-01-01

    A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.

  17. Modeling Languages Refine Vehicle Design

    Science.gov (United States)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  18. Bridge vehicle impact assessment.

    Science.gov (United States)

    2011-12-01

    Bridges in New York State have been experiencing close to 200 bridge hits a year. These : accidents are attributed to numerous factors including: improperly stored equipment on trucks; : violation of vehicle posting signs; illegal commercial vehicles...

  19. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  20. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  1. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  2. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  3. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  4. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  5. 40 CFR 1051.1 - Does this part apply for my vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Overview and Applicability § 1051.1 Does this part apply for my vehicles or engines? (a) The regulations in this part 1051... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Does this part apply for my vehicles...

  6. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.501 Section 1051.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test Procedures § 1051.501 What procedures must I use to test my vehicles or engines? This section describes test...

  7. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... are motor vehicle diesel fuel credits generated? (a) Generation of credits from June 1, 2006 through...

  8. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations. Motor...

  9. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  10. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  11. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  12. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  13. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  14. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  15. Air quality inside passenger cars

    Directory of Open Access Journals (Sweden)

    Joanna Faber

    2017-02-01

    Full Text Available Vehicle interior is a specific environment of relatively small volume, with variety of materials placed inside, including hard and soft plastics, adhesives, paints, lubricants and many others. As a result, particularly in case of newly produced vehicles, large amounts and numbers of volatile species, especially volatile organic compounds (VOCs, may be emitted and have influence vehicle interior air quality (VIAQ. Despite the fact that many of these compounds may not be harmful for human health, some of them may be toxic, and this is the reason for increasing concern of vehicle manufacturers and users recently. The level of contamination varies from one vehicle to another and may be influenced by atmospheric conditions, external pollution, user habits, quality of materials used and others. The main aim of this paper was to present current knowledge status on VIAQ, with indication of main air pollutants and their concentrations. Vehicle interior air quality is discussed on the basis of studies on new and used cars in different conditions and locations. Main sources of VOCs presence inside car cabin are discussed in this paper with additional information regarding materials emissions. Differences in sampling and analytical methodologies were not debated, however, since the results differs largely in the scope of both number and amount of VOCs, a need of testing methods harmonization is indicated. Presented data may be helpful for legislative requirements introduction.

  16. 76 FR 51120 - Denial of Motor Vehicle Defect Petition

    Science.gov (United States)

    2011-08-17

    ... investigation into the ``air bag systems failure'' that they experienced in their model year (MY) 2008 Toyota... investigation of MY 2008 Toyota Corolla vehicles is unlikely to result in a determination that a safety-related... allege that the frontal air bags in their Toyota Corolla failed to deploy during a crash into a deer...

  17. Road user charges for heavy goods vehicles (HGV)

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air...

  18. 29 CFR 1926.306 - Air receivers.

    Science.gov (United States)

    2010-07-01

    ... transportation vehicles such as steam railroad cars, electric railway cars, and automotive equipment. (2) New and... manholes therein are easily accessible. Under no circumstances shall an air receiver be buried underground...

  19. 29 CFR 1910.169 - Air receivers.

    Science.gov (United States)

    2010-07-01

    ... and equipment used on transportation vehicles such as steam railroad cars, electric railway cars, and... therein are easily accessible. Under no circumstances shall an air receiver be buried underground or...

  20. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  1. Vehicle emissions and consumer information in car advertisements

    Directory of Open Access Journals (Sweden)

    Thomson George

    2008-04-01

    Full Text Available Abstract Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements. This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%, and engine size (39%; but hardly any provided information on fuel efficiency (3%, or emissions (4%. Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2 emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting. The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale. The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km, as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union. Similar regulations are already in place for the marketing of many other consumer products.

  2. Vehicle emissions and consumer information in car advertisements

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-01-01

    Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products. PMID:18445291

  3. Vehicle emissions and consumer information in car advertisements.

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-04-29

    The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001-2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1-10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products.

  4. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  5. Positive impact of electric vehicle and ngv on environment

    International Nuclear Information System (INIS)

    Shahidul I Khan; Kannan, K.S.; Md Shah Majid

    1999-01-01

    Electric Vehicle uses electricity from batteries as fuel and is environment friendly with zero emission. The occurrence of haze in 1997 in Malaysia and neighbouring countries has called for new studies about motor vehicle emission as it aggravates the problem. In big cities like Kuala Lumpur, Penang and Johor Bahru where it is estimated that over 300,000 vehicles enter the city everyday, smoke pollution from vehicles is identified as the major contributor to air quality. One of the solutions to air pollution problem could be the use of Electric Vehicles (EV) and Natural Gas for Vehicle (NGV). The NGV uses compressed natural gas mainly methane, is lead free and clean burning with low emission. The electric vehicles use batteries as power source. These batteries are charged off-peak hour, specifically after mid-night when the electric load curve has its least demand period. The number of electric vehicles and NGV in future years is calculated considering the penetration level. The reduction in pollution is estimated considering the number of automobiles replaced by electric vehicles and NGV. Finally, it is concluded that EV and NGV could be the ultimate solution for pollution control and could improve the environment specifically that of congested cities of Malaysia. (Author)

  6. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  7. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  8. Transportation and air quality

    International Nuclear Information System (INIS)

    Roseland, M.

    1992-01-01

    In the greater Vancouver regional district (GVRD), some 80% of the annual production of 600,000 tonnes of air pollutants come from motor vehicles. Three critical air quality issues in the GVRD are discussed: local air pollution, ozone layer depletion, and greenhouse gas emissions, all of which are fundamentally linked to transportation. Overall air quality in the GVRD has been judged acceptable by current federal standards, but ground-level ozone has exceeded maximum tolerable levels at some locations and concentrations of suspended particulates are above maximum acceptable levels. Serious deterioration in air quality has been predicted unless a concerted effort is made to manage air quality on an airshed-wide basis. The GVRD is developing Canada's first Air Management Plan with the goal of halving atmospheric emissions by 2000. GVRD transportation priorities stress public transit, walking, cycling, car pooling, and reducing of travel demand; however, the viability of such strategies depends on decisions made outside the transportation sector. Restricted authority and jurisdiction also hinder GVRD goals; the regional level of government has no authority over highways or transit and only has authority for pollution control in some parts of the Fraser Valley. Airshed quality management, using the Los Angeles example, is seen as a possible direction for future GVRD policymaking in the transportation sector. A single regional planning agency with responsibility for transportation, land use, and air quality management appears as the best option for an integrated approach to solve multiple problems. 19 refs

  9. Air pollution and mortality in Barcelona.

    OpenAIRE

    Sunyer, J; Castellsagué, J; Sáez, M; Tobias, A; Antó, J M

    1996-01-01

    STUDY OBJECTIVES: Studies conducted in Barcelona reported a short term relation between daily air pollutant values and emergency department admissions for exacerbation of chronic obstructive pulmonary diseases and asthma. Air pollution in Barcelona is mainly generated by vehicle exhaust and is below the World Health Organization air quality guidelines. The acute relation between air pollution and mortality was assessed. DESIGN: Daily variations in total mortality, mortality in subjects older ...

  10. General Motors natural gas vehicle initiatives

    International Nuclear Information System (INIS)

    Weber, J.; Koplow, M.D.

    1992-01-01

    General Motors (GM) has a number of natural gas vehicle (NGV) programs in progress that address various marketing, technical, and production planning issues that lean on the introduction of NGVs from GM. The initial target is light and medium duty trucks sold in non-attainment air quality regions. GM has also embarked on a longer term program that encompasses vehicle and systems development, gas supply and infrastructure development, and customer and market development. The major long-term issues are gas quality, supplier participation, and infrastructure

  11. Vehicles with fuel cells: dream or reality

    Energy Technology Data Exchange (ETDEWEB)

    van den Broeck, H; Hovestreydt, G

    1979-01-01

    Elenco N.V. is developing a hydrogen/potassium hydroxide/air fuel cell system of 10-50 kw with a specific performance of 72 mw/sq cm and a practical operating life of 5000 hr, which will be available in 1981-82. A comparative cost study was performed for vehicles with 100% fuel cells, 100% batteries, hybrid systems of fuel cells combined with batteries that provide high power for acceleration, hydrogen combustion engines, and conventional diesel engines, for city bus fleets, light commercial vehicles, forklifts, and trucks in Holland and Belgium. Hybrid systems give the best economy and they should become competitive with diesel engines after 1990.

  12. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  13. Functional design of heat exchange for pneumatic vehicles

    Science.gov (United States)

    Xu, Z. G.; Yang, D. Y.; Shen, W. D.; Liu, T. T.

    2017-10-01

    With the increasingly serious environmental problems, especially the impact of fog and haze, the development of air powered vehicles has become an important research direction of new energy vehicles. Quadrature test was done with different materials, i.e. stainless steel and aluminum alloy, at different inlet pressures, using different expansion gases, i.e. air, CO2, for heat exchanging properties for pneumatic vehicles. The mathematics as well as simulation methods are used to analyze the different heat exchanging effects in the multistage cylinder. The research results showed that the stainless steel has better effects in heat exchanging than Aluminum Alloy; the intake pressure has little effect on CO2 than the air in heat exchanging effect. CO2 is better in heat exchanging than air.

  14. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  15. DEVELOPING CONVENIENT MOTOR SELECTION ALGORITHM ACCORDING TO ROAD CONDITIONS IN ELECTRIC VEHICLES

    OpenAIRE

    BAŞER, EKREM; ALTUN, YUSUF

    2016-01-01

    Nowadays, automotive industry is tending to electric vehicles due to reduction of fuel reserves in order to save energy, reduce air pollution and carbon emission. With the impact of technological advencements on battery and power electronics, the studies on electric vehicles have been gradually increased and many of automobile manifacturers have produced new electric vehicles. Different type of electric motors has been tried on electric vehicles until today. This motors have difference feautu...

  16. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  17. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  18. 76 FR 45741 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor...

    Science.gov (United States)

    2011-08-01

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor Vehicle Idling Act AGENCY... the Commonwealth's Diesel-Powered Motor Vehicle Idling Act (Act 124 of 2008, or simply Act 124) into... allowable time that heavy-duty, commercial highway diesel vehicles of over 10,000 pounds gross vehicle...

  19. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Science.gov (United States)

    2010-07-01

    .... If engine stalling occurs during cycle operation, follow the provisions of § 86.136-90 to restart the... minimum of 30 second intervals. (d) Test sequence. (1) Connect the vehicle exhaust system to the raw..., close the vehicle's hood, fully close all the vehicle's windows, ensure that all the vehicle's air...

  20. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.