WorldWideScience

Sample records for air temperature air

  1. Fast Air Temperature Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on a newly developed sensor for making fast temperature measurements on the air flow in the intake ports of an SI engine and in the EGR input line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, the author (IAU...

  2. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  3. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  4. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.;

    2002-01-01

    This study investigated if low air temperature, which is known to improve the perception of air quality, also can reduce the intensity of some SBS symptoms. In a low-polluting office, human subjects were exposed to air at two temperatures 23 deg.C and 18 deg.C both with and without a pollution so...

  5. Precision temperature controlled filtered laminar air enclosure

    International Nuclear Information System (INIS)

    We demonstrate a novel temperature controlled filtered laminar air enclosure composed of primarily off-the-shelf components that can be applied to a broad class of systems to significantly enhance their performance. An air mixing method is employed to provide variable cooling of the incoming filtered air, providing a temperature stability of ± 0.02 °C within the enclosure. The method is inexpensive to implement, and is suitable for a wide range of temperature controlled enclosures, with dimensions in the approximate range from 1 m to 5 m, making it ideal for many scientific applications. (technical design note)

  6. NOAA NOS SOS, EXPERIMENTAL - Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have air temperature data. *These services are for testing and evaluation...

  7. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) errors for grass minimum temperature and the 4-h nowcasts.

  8. Modeling monthly mean air temperature for Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  10. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  11. 14 CFR 23.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    Science.gov (United States)

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  14. 14 CFR 25.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. Impact of air temperature, relative humidity, air movement and pollution on eye blinking

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Lyubenova, Velina S.; Skwarczynski, Mariusz;

    2011-01-01

    The effect of indoor air temperature, relative humidity, velocity and pollution on occupants’ eye blink frequency (BF) was examined. In total sixty subjects participated in eight 4 hour experiments without and with facially applied air movement under individual control of the subjects. Air movement...... of either polluted room air supplied isothermally or clean and cool air was used. Eye blinking video record for the last 15 min of each exposure were analysed. The increase of the room air temperature and relative humidity from 23 °C and 40% to 26 °C and 70% or to 28 °C and 70% decreased the BF....... At temperature of 26 °C and relative humidity of 70% facially applied flow of polluted room air didn’t have significant impact on BF in comparison without air movement. The increase of BF due to decrease of temperature and humidity and increase of velocity may be compensated due to the increase in air cleanness....

  17. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  19. Temperature distribution of air source heat pump barn with different air flow

    Science.gov (United States)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  20. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  1. INTRA URBAN AIR TEMPERATURE DISTRIBUTIONS IN HISTORIC URBAN CENTER

    OpenAIRE

    Elmira Jamei; Dilshan Remaz Ossen

    2012-01-01

    The study investigates the urban heat island effect in Malaysian historic town Malacca through seven mobile traverses, as carried out on 10 December 2011. It aims to identify the intra-urban air temperature differences between heritage core zone, new development area and outskirts of the city. Air temperature variations were also analyzed across three different zones; namely the outskirts, the heritage site and the city center district. Heat index values were then calculated based on air temp...

  2. Is Air Temperature Enough to Predict Lake Surface Temperature?

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  3. Control of the outlet air temperature in an air handling unit

    DEFF Research Database (Denmark)

    Brath, P.; Rasmussen, Henrik; Hägglund, T.

    1998-01-01

    This paper discuss modeling and control of the inlet temperature in an Air Handling Unit, AHU. The model is based on step response experiments made at a full scale test plant. We use gain scheduling to lower the correlation of the air flow with the process dynamic which simplify the control task....... A simple way to determine the air flow with no extra equipment or experiments is suggested. Tuning of PI(D) controller based on step response identification is made using two different tuning methods. The paper describes the basic ideas, which are illustrated by simulations and plant experiments....

  4. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  5. Associations of endothelial function and air temperature in diabetic subjects

    Science.gov (United States)

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  6. NOS CO-OPS Meteorological Data, Air Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Air Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  7. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Air Temperature data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  8. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperatur...... accurate measurements of occupant's thermal microenvironment....

  9. OSCILLATIONS AND CYCLES OF AIR TEMPERATURE IN SOUTH AMERICA

    OpenAIRE

    Ion Isaia

    2013-01-01

    This paper is seeking to prove that on the South American continent there are the same cycles of air temperature (almost perfect) as those proven to exist in Europe (Romania), New Zeeland and North America (the U.S.A.) The oscillations and air temperature cycles of South America have their own characteristics, due to the large expansion of this continent in both latitude and longitude. The absence of important mountain chains with longitudinal display allows quick and intense advection of bot...

  10. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  11. Study of the Vertical Distribution of Air Temperature in Warehouses

    Directory of Open Access Journals (Sweden)

    César Porras-Amores

    2014-02-01

    Full Text Available Warehouses are usually large, plain industrial buildings commonly used for storage of goods. Vertical distribution of air temperature is an important aspect for indoor environment design, which must be taken into account by architects and engineers in the early stages of warehouse design. The aim of this work is to analyze the vertical temperature gradients existing in warehouses, quantifying their value and analyzing their evolution along the year. To do so, the study outlines the monitoring of several warehouses with different building typology and height located in different areas of Spain for a complete annual cycle. The results obtained when applying a simple linear regression analysis to 175,200 vertical temperature profiles show that there is a strong influence of the outdoor temperature over the stratification of the indoor air. During warm months, the ceiling and the upper strata get warmer, whereas the cold air accumulates in the lower levels, increasing the stratification of indoor air (maximum values between 0.3 °C/m and 0.7 °C/m. During cold months, the ceiling gets cold due to its contact with the outdoor air, therefore, the colder, heavier air moves down to the lower strata, registering insignificant vertical temperature differences. Air conditioning of the warehouse, besides controlling the temperature, limits the influence of the outdoor environment on the stratification of temperatures. The results of the study may be of great use for warehouses for products sensitive to temperature, which may suffer a different evolution, conservation or maturation when the temperature differences are maintained for a long time.

  12. Novel solar air Heater for high temperatures; Novedoso Calentador solar de aire para altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, E. A.; Duran, M. D.; Lentz, A. E.

    2008-07-01

    A novel solar air heater that allows to reach temperatures of the order of 100 degree centigrade with thermal efficiencies superior to 50% due to a solar concentrator and the reduction of thermal losses from the air when circulating between the absorber and mirrors of section of circular arc, well isolated of the outside surrounding. The receiver consists of a concentrator with wedges of plastic transparency that make the function of lenses. The light refracted by the wedges enters to a series of concentrators PC type truncated optimally so that the space among them allows the positioning of the absorber, who are covered metallic segments with selective film. Its excellent performance makes ideals applications as Sauna bath, the drying at high temperature, and systems for conditioning of air. (Author)

  13. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  14. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......-conditioning and ventilation was carried out for the different climates of major cities in Spain. Such climates can be characterized as cool and dry, hot and dry, cool and humid and hot and humid. In this study, the indoor air temperature had to be maintained for all climates at 23oC with a relative humidity of 40......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...

  15. EFFECT OF AIR TEMPERATURE ON LEAF PHOTOSYNTHESIS IN ELDER

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2012-12-01

    Full Text Available Temperature with solar radiation intensity is the main external factor affecting photosynthesis process. Measurements were collected in the 2011 growing season. Photosynthesis and respiration measurements were made at Sambucus nigra leaves with a CO2 analyzer. The aim was to develop a model of photosynthesis in relation to temperature (which is in close relationship with air humidity. Photosynthesis of Sambucus nigra leaves is sensitive to temperature with an optimum around 25-28oC and rates declining by 18% with air temperature around 33-35oC.

  16. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  17. Urban heat : natural and anthropogenic factors influencing urban air temperatures

    NARCIS (Netherlands)

    Theeuwes, N.E.

    2015-01-01

    The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. The main goal of this thesis is to understand the processes that drive the urban air temperature and the urban he

  18. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  19. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as...

  20. The Effects of Air Pollution and Temperature on COPD.

    Science.gov (United States)

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  1. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  2. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  3. Response of global lightning activity to air temperature variation

    Institute of Scientific and Technical Information of China (English)

    MA Ming; TAO Shanchang; ZHU Baoyou; L(U) Weitao; TAN Yongbo

    2005-01-01

    It is an issue of great attention but yet not very clear whether lightning activities increase or decrease on a warmer world. Reeve et al. presented that lightning activities in global land and the Northern Hemisphere land have positive response to the increase of wet bulb temperature at 1000hPa. Is this positive response restricted only to wet bulb temperature or in land? What is the response of global lightning activities (in both land and ocean) to the global surface air temperature variation like? This paper, based on the 5-year or 8-year OTD/LIS satellite-based lightning detecting data and the NCEP reanalysis data, makes a reanalysis of the response of the global and regional lightning activities to temperature variations. The results show that on the interannual time scale the global total flash rate has positive response to the variation in global surface air temperature, with the sensitivity of 17±7% K-1. Also, the seasonal mean flash rate of continents all over the world and that of continents in the Northern Hemisphere have sensitive positive response to increase of global surface air temperature and wet bulb temperature, with the sensitivity of about 13±5% K-1, a bit lower than estimation of 40% K-1 in Reeve et al. However, the Southern Hemisphere and other areas like the tropics show no significant correlation.

  4. Temperature gradients and clear-air turbulence probabilities

    Science.gov (United States)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  5. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  6. Land surface air temperature retrieval from EOS-MODIS images

    OpenAIRE

    Niclòs Corts, Raquel; Valiente, José Antonio; Barberà, María Jesús; Caselles Miralles, Vicente

    2014-01-01

    The knowledge of the spatial and temporal patterns of Surface Air Temperature (SAT) is essential to monitor a region¿s climate and meteorology, quantify surface exchange processes, improve climatic and meteorological model results, and study health and economic impacts. This work analyzed correlations between SAT and geophysical land surface variables, Land Surface Temperature (LST) mainly, to establish operative techniques to obtain spatially-continuous land SAT maps from satellite data, unl...

  7. INTRA URBAN AIR TEMPERATURE DISTRIBUTIONS IN HISTORIC URBAN CENTER

    Directory of Open Access Journals (Sweden)

    Elmira Jamei

    2012-01-01

    Full Text Available The study investigates the urban heat island effect in Malaysian historic town Malacca through seven mobile traverses, as carried out on 10 December 2011. It aims to identify the intra-urban air temperature differences between heritage core zone, new development area and outskirts of the city. Air temperature variations were also analyzed across three different zones; namely the outskirts, the heritage site and the city center district. Heat index values were then calculated based on air temperature and relative humidity to gauge the level of outdoor thermal comfort within the study area. Based on the indications, one may conclude that the heritage place’s core zone is currently threatened by escalating temperatures and that its current temperature range falls within the “caution” and “extreme caution” categories. Furthermore, no significant difference was observed between the peak temperatures of the old city quarters and newer areas; despite the disparities in their urban forms. Therefore, it is hoped that the study, with its implications, will be able to influence future environmental consideration in heritage city of Melaka.

  8. Geomagnetic activity and polar surface air temperature variability

    Science.gov (United States)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  9. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  10. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  11. Air Cooling for High Temperature Power Electronics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  12. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-09-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  13. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-12-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  14. Air Temperature Estimation over the Third Pole Using MODIS LST

    Science.gov (United States)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  15. Pulsed positive streamer discharges in air at high temperatures

    Science.gov (United States)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  16. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    Science.gov (United States)

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  17. Monofractal nature of air temperature signals reveals their climate variability

    CERN Document Server

    Deliège, Adrien

    2014-01-01

    We use the discrete "wavelet transform microscope" to show that the surface air temperature signals of weather stations selected in Europe are monofractal. This study reveals that the information obtained in this way are richer than previous works studying long range correlations in meteorological stations. The approach presented here allows to bind the H\\"older exponents with the climate variability. We also establish that such a link does not exist with methods previously carried out.

  18. Spatial interpolation of monthly mean air temperature data for Latvia

    Science.gov (United States)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  19. Critical Ignition Temperature of Fuel-air Explosive

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2004-10-01

    Full Text Available The charge of fuel-air explosive (FAE warhead usually is solid-liquid mixed fuel. The solid component is aluminium powder. To meet the demand of FAE weapon usage and storage safety, in the mixed-fuel medium, there must be gaps where adiabatic compression occurs during launchin-e overloading- of warhead. Adiabatic compression makes the temperature of the mediumin the gaps to rise. High temperature can cause dxplosion of the mixed fuel during launching acceleration of the warhead, which is very dangerous. Because the fuel is a multicomponentmixture, the critical ignitioh temperature can't be determined only by one component. Through experiment, the critical ignition temperature of the mixed fuel is attained, and the changingregularity of the pressure following the temperature is shown in this paper.

  20. On extreme rainfall intensity increases with air temperature

    Science.gov (United States)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  1. Ambient air temperature effects on the temperature of sewage sludge composting process

    Institute of Scientific and Technical Information of China (English)

    HUANG Qi-fei; CHEN Tong-bin; GAO Ding; HUANG Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5℃ when ambient air temperature changed 13℃. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3℃ when ambient air temperature changed 8-15 ℃. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent(at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate(at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  2. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  3. Acoustic tomographic imaging of temperature and flow fields in air

    International Nuclear Information System (INIS)

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter–receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results

  4. Modeling of Air Temperature using ANFIS by Wavelet Refined Parameters

    Directory of Open Access Journals (Sweden)

    Karthika. B. S

    2016-01-01

    Full Text Available The precise modeling of average air temperature is a significant and much essential parameter in frame of reference for decision-making in agriculture field, drought detection and environmental related issues. The aim of this research is to construct an accurate model to modeling average air temperature using hybrid Wavelet-ANFIS techniques. Being cognizant of the fact, uncertainty handling capability is achieved with ANFIS technique; a cognitive approach to integrate ANFIS technique along with pre-processed data by using Wavelet transformation. Detailing on approach, in this work utilized Discrete Wavelet transform under Daubechies mother Wavelet up to 3rd level of decomposition. This study extends up to seven station’s meteorological data records. The following developed hybrid model’s performance is compared with single ANFIS models for all seven stations. The obtained results were evaluated using correlation coefficient, root mean square error and scatter index These results confirmed that the proposed hybridized Wavelet- ANFIS model has estimable potential in terms of modeling temperature than ANFIS model alone

  5. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    Science.gov (United States)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  6. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    Directory of Open Access Journals (Sweden)

    H.-J. Kang

    2015-05-01

    Full Text Available Uncertainties in the satellite-derived Surface Skin Temperature (SST data in the polar oceans during two periods (16–24 April and 15–23 September of 2003–2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST, the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU, and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992–0.999 method was greater than that of the MODIS IST to the AIRS/AMSU (0.968–0.994. The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of −0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade−1 in the northern high latitude regions (70–80° N as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  7. Air Temperature Fields inside Refrigeration Cabins: A Comparison of Results from CFD and ANN modelling

    OpenAIRE

    Conceição António, C.; Afonso, C.F.

    2011-01-01

    Abstract In refrigerated spaces, the inside air is cooled by a heat sink operating either by forced or natural convection. The last situation is more frequently used in small apparatus, such as domestic household refrigerators. The inside air temperature is not usually monitored in these refrigerated spaces. Therefore, knowledge of the air temperature field inside of these units is limited and large air temperature gradients often exist that can put the stored products at risk. Thi...

  8. Linking geomagnetic activity and polar surface air temperature variability

    Science.gov (United States)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  9. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality, a...... lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  10. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235....... min. Acceptability of PAQ and freshness of the air improved when air movement was applied. The elevated air movement diminished the negative impact of increased air temperature, relative humidity and pollution level on PAQ. The degree of improvement depended on the pollution level, the temperature...

  11. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  12. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    The sea surface air temperature is an important parameter required for computation of air-sea fluxes over oceans which at present cannot be directly measured from remote sensing. In the present article, an empirical approach is proposed to determine...

  13. The Climate Variabilities of Air Temperature Around the Korean Peninsula

    Institute of Scientific and Technical Information of China (English)

    Yong-Hoon YOUN

    2005-01-01

    In this study, changes in climatological conditions around the Korean Peninsula are estimated quantitatively using various types of high order statistical analyses. The temperature data collected from Incheon station have been analyzed for the assessment of the climate variation. According to our analysis,the climate changes observed over the Korean Peninsula for the last century are similar to the global observational data in many respects. First of all, the warming trend [+1.5℃ (100 yr)-1] and the overall evolving pattern throughout the century are quite similar to each other. The temperature change in the Korean Peninsula is about two to three times larger than that of the global scale which may partially be ascribed to the influence of urbanization at mid and high latitudes. In this work, a new Winter Monsoon Index (WMI) is suggested based on the European continental scale circulation index (EU1) pattern. Our WMI is defined as the normalized sea level pressure (SLP) difference in the winter period between the centers of the East Sea and west of Lake Baikal in Siberia, the two eastern centers of the EU1 action patterns. A strong similarity is found between the time series of the WMI and surface air temperature at Incheon. The WMI has decreased gradually since the 1920s but has shifted to a rapid increasing trend in the last two decades; it was in fact accompanied by a weakening of the Siberian High and a decreasing of the northerly during winter. Our findings of the close correlations between the surface air temperature at Incheon and the WMI strongly indicate that our newly suggested index is unique and can be used as an efficient tool to predict climate variability in Korea.

  14. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    Science.gov (United States)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  15. Low Temperature Drying With Air Dehumidified by Zeolite for Food Products: Energy Efficiency Aspect Analysis

    OpenAIRE

    M. Djaeni; Asselt, van, R.; Bartels, P.V.; Sanders, J. P. M.; Straten, van, FE; Boxtel, van, C.

    2011-01-01

    Developments in low temperature drying of food products are still an interesting issue; especially with respect to the energy efficiency. This research studies the energy efficiency that can be achieved by a dryer using air which is dehumidified by zeolite. Experimental results are fitted to a dynamic model to find important variables for the drying operation. The results show that ambient air temperature as well as the ratio between air flow for drying and air flow for regeneration, affect t...

  16. Temperature Difference Between the Air and Organs of Rice Plant and Its Relation to Spikelet Fertility

    Institute of Scientific and Technical Information of China (English)

    YAN Chuan; DING Yan-feng; LIU Zheng-hui; WANG Qiang-sheng; LI Gang-hua; HE Ying; WANG Shao-hua

    2008-01-01

    Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Row-spacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.

  17. A simple lumped model to convert air temperature into surface water temperature in lakes

    Directory of Open Access Journals (Sweden)

    S. Piccolroaz

    2013-03-01

    Full Text Available Water temperature in lakes is governed by a complex heat budget, where the single fluxes are hardly assessable over long time periods in the absence of high accuracy data. In order to address this issue, we developed Air2Water, a simple physically-based model to relate the temperature of the lake superficial layer (epilimnion to air temperature only. The model accounts for the overall heat exchanges with the atmosphere and the deeper layer of the lake (hypolimnion by means of simplified relationships, which contain a few parameters (from four to eight in the different proposed formulations to be calibrated with the combined use of air and water temperature measurements. In particular, the calibration of the parameters in a given case study allows one to estimate, in a synthetic way, the influence of the main processes controlling the lake thermal dynamics, and to recognize the atmospheric temperature as the main factor driving the evolution of the system. In fact, the air temperature variation implicitly contains proper information about the variation of other major processes, and hence in our approach is considered as the only input variable of the model. Furthermore, the model can be easily used to predict the response of a lake to climate change, since projected air temperatures are usually available by large-scale global circulation models. In this paper, the model is applied to Lake Superior (USA – Canada considering a 27-yr record of measurements, among which 18 yr used for calibration and the remaining 9 yr for model validation. The results show a remarkable agreement with measurements, over the entire data period. The use of air temperature reconstructed by satellite imagery is also discussed.

  18. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    Science.gov (United States)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  19. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    Science.gov (United States)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  20. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    DEFF Research Database (Denmark)

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    air velocity under personal control make the indoor environment acceptable at higher air temperatures. This will during summer season and in warmer countries improve thermal comfort without too high energy costs. There was significant individual difference in the preferred air velocities, which...

  1. Can air temperature be used to project influences of climate change on stream temperature?

    International Nuclear Information System (INIS)

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time. (letter)

  2. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    Science.gov (United States)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  3. Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms

    Institute of Scientific and Technical Information of China (English)

    Yanming Kang; Youjun Wang; Ke Zhong

    2011-01-01

    The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature.The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room,but could significantly influence the airflow pattern in the lower parts of the room,thus affecting the indoor air quality with contaminant sources located at the lower level,such as particles from working activities in an office.The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume,but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser.Comparison of the results for two different supply temperatures in a DV room shows that,although lower supply temperature means less incoming air volume,since the indoor flow is mainly driven by buoyancy,lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office).However,in the breathing zone it gives higher concentration as compared to higher supply air temperature.To obtain good indoor air quality,low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.

  4. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... with the temperature from two ocean data buoys (Buoy-T a ) of Japan Meteorological Agency (JMA) for a period of six months (July–December, 1988). Statistical relations between air-temperature and mixing ratio, using data from ocean data buoys are used to derive air...

  5. Enhanced Statistical Estimation of Air Temperature Incorporating Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Yunhao Chen

    2016-08-01

    Full Text Available Near surface air temperature (Ta is one of the most critical variables in climatology, hydrology, epidemiology, and environmental health. In situ measurements are not efficient for characterizing spatially heterogeneous Ta, while remote sensing is a powerful tool to break this limitation. This study proposes a mapping framework for daily mean Ta using an enhanced empirical regression method based on remote sensing data. It differs from previous studies in three aspects. First, nighttime light data is introduced as a predictor (besides land surface temperature, normalized difference vegetation index, impervious surface area, black sky albedo, normalized difference water index, elevation, and duration of daylight considering the urbanization-induced Ta increase over a large area. Second, independent components are extracted using principal component analysis considering the correlations among the above predictors. Third, a composite sinusoidal coefficient regression is developed considering the dynamic Ta-predictor relationship. This method was performed at 333 weather stations in China during 2001–2012. Evaluation shows overall mean error of −0.01 K, root mean square error (RMSE of 2.53 K, correlation coefficient (R2 of 0.96, and average uncertainty of 0.21 K. Model inter-comparison shows that this method outperforms six additional empirical regressions that have not incorporated nighttime light data or considered predictor independence or coefficient dynamics (by 0.18–2.60 K in RMSE and 0.00–0.15 in R2.

  6. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark; Damsgaard, Christian; Thomsen, Mikkel;

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... these data with present environmental temperatures throughout its distribution range, together with projected future temperatures and evolutionary ancient temperatures, leads us to conclude that present temperatures are sub-optimal in this economically important species....

  7. A Physically Based Spatial Expansion Algorithm for Surface Air Temperature and Humidity

    Directory of Open Access Journals (Sweden)

    Hongbo Su

    2013-01-01

    Full Text Available An algorithm was developed to expand the surface air temperature and air humidity to a larger spatial domain, based on the fact that the variation of surface air temperature and air humidity is controlled jointly by the local turbulence and the horizontal advection. This study proposed an algorithm which considers the advective driving force outside the thermal balance system and the turbulent driving force and radiant driving force inside the thermal balance system. The surface air temperature is determined by a combination of the surface observations and the regional land surface temperature observed from a satellite. The average absolute difference of the algorithm is 0.65 degree and 0.31 mb, respectively, for surface air temperature and humidity expansion, which provides a promising approach to downscale the two surface meteorological variables.

  8. Mapping air temperature using time series analysis of LST: the SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  9. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria;

    2013-01-01

    The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...... rate and tear film quality. In a test room with DV and six workstations 30 human subjects were exposed for four hours to each of the following 5 experimental conditions: 23 °C and DV only, 23 °C and DPV with air filter, 29 °C and DV only, 29 °C and DPV, and 29 °C and DPV with air filter. At warm...... environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film...

  10. Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products

    Directory of Open Access Journals (Sweden)

    Jinyoung Rhee

    2014-08-01

    Full Text Available The use of land surface temperature and vertical temperature profile data from Moderate Resolution Imaging Spectroradiometer (MODIS, to estimate high spatial resolution daily and monthly maximum and minimum 2 m above ground level (AGL air temperatures for regions with limited in situ data was investigated. A diurnal air temperature change model was proposed to consider the differences between the MODIS overpass times and the times of daily maximum and minimum temperatures, resulting in the improvements of the estimation in terms of error values, especially for minimum air temperature. Both land surface temperature and vertical temperature profile data produced relatively high coefficient of determination values and small Mean Absolute Error (MAE and Root Mean Square Error (RMSE values for air temperature estimation. The correction of the estimates using two gridded datasets, National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis and Climate Research Unit (CRU, was performed and the errors were reduced, especially for maximum air temperature. The correction of daily and monthly air temperature estimates using the NCEP/NCAR reanalysis data, however, still produced relatively large error values compared to existing studies, while the correction of monthly air temperature estimates using the CRU data significantly reduced the errors; the MAE values for estimating monthly maximum air temperature range between 1.73 °C and 1.86 °C. Uncorrected land surface temperature generally performed better for estimating monthly minimum air temperature and the MAE values range from 1.18 °C to 1.89 °C. The suggested methodology on a monthly time scale may be applied in many data sparse areas to be used for regional environmental and agricultural studies that require high spatial resolution air temperature data.

  11. Dust suppression in surface mines at low air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Ivanov, I.I.; Mekhov, K.S.

    1982-04-01

    Air pollution by dusts in coal surface mines in Siberia increases in winter. Some methods for increasing efficiency of dust control in winter are discussed. Due to adhesion between coal grains and snow or ice particles, mixing coal with snow or ice leads to moisture increase in coal. As there is a limited amount of fresh snow in coal surface mines, production of artificial snow using water and compressed air is investigated. Two systems were tested: a mobile system installed on a truck which moves on mine roads and a stationary system which uses air compressors, water pipes and blowers for increasing mixing intensity. The stationary system is superior to the mobile one. Design of nozzles used for snow production is shown in two schemes. Distribution of about 2 kg/m/sup 2/ of artificial snow on mine roads permits dust content in the air to be reduced from 60 g/m/sup 3/ to below 1.0 g/m/sup 3/. Design and parameters of the compressor system used for snow production are given. (In Russian)

  12. System and method for air temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  13. A simple lumped model to convert air temperature into surface water temperature in lakes

    Directory of Open Access Journals (Sweden)

    S. Piccolroaz

    2013-08-01

    Full Text Available Water temperature in lakes is governed by a complex heat budget, where the estimation of the single fluxes requires the use of several hydro-meteorological variables that are not generally available. In order to address this issue, we developed Air2Water, a simple physically based model to relate the temperature of the lake superficial layer (epilimnion to air temperature only. The model has the form of an ordinary differential equation that accounts for the overall heat exchanges with the atmosphere and the deeper layer of the lake (hypolimnion by means of simplified relationships, which contain a few parameters (from four to eight in the different proposed formulations to be calibrated with the combined use of air and water temperature measurements. The calibration of the parameters in a given case study allows for one to estimate, in a synthetic way, the influence of the main processes controlling the lake thermal dynamics, and to recognize the atmospheric temperature as the main factor driving the evolution of the system. In fact, under certain hypotheses the air temperature variation implicitly contains proper information about the other major processes involved, and hence in our approach is considered as the only input variable of the model. In particular, the model is suitable to be applied over long timescales (from monthly to interannual, and can be easily used to predict the response of a lake to climate change, since projected air temperatures are usually available by large-scale global circulation models. In this paper, the model is applied to Lake Superior (USA–Canada considering a 27 yr record of measurements, among which 18 yr are used for calibration and the remaining 9 yr for model validation. The calibration of the model is obtained by using the generalized likelihood uncertainty estimation (GLUE methodology, which also allows for a sensitivity analysis of the parameters. The results show remarkable agreement with

  14. Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Y.-P.; Mumma, S.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Architectural Engineering

    1997-06-01

    A criterion, based on optimization principles, for determining the SAT setpoint in VAV systems is presented. It is generally accepted that conventional SAT reset controls (SATRC), bounded by either space humidity or ductwork size, will save cooling and/or heating energy. However, the ventilation consequences and penalty resulting from increased fan power have generally been overlooked. Ventilation is impacted since changes in the SAT setpoint change the primary airflow rate and the operation of economizer cycles, i.e. the distribution of fresh outdoor air (OA). These changes may result in extra energy demand and ventilation inefficiency if the reset criterion is not appropriate. This optimization concept simultaneously reduces energy consumption and meets ventilation requirements. Simulation results illustrate that the use of the optimized SATRC saves more energy than a conventional one. (Author)

  15. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  16. Study of zircaloy-4 cladding air degradation at high temperature

    OpenAIRE

    Lasserre, Marina; COINDREAU, Olivia; Pijolat, Michèle; Peres, Véronique; Mermoux, Michel; Mardon, Jean Paul

    2013-01-01

    Zircaloy cladding, providing the first containment of UO2 fuel in Pressurised Water Reactors, can be exposed to air during accidental situations. This might occur during reactor operation (in case of a core meltdown accident with subsequent reactor pressure vessel breaching), under shutdown conditions with the upper head of the vessel removed, in spent fuel storage pools after accidental loss of cooling or during degraded transport situations. The fuel assemblies inadequately cooled, heat up ...

  17. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    Science.gov (United States)

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  18. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  19. Temperature control apparatus including air return bulkhead for mounting in a transportable body

    Energy Technology Data Exchange (ETDEWEB)

    Zajic, A.H.

    1988-02-23

    An air return bulkhead assembly for removable installation adjacent an inside surface of a front wall of a trailer also having two side walls extending from opposite ends of the front wall, through which front wall is disposed an air treatment apparatus for receiving air through an inlet, for temperature treating the air and for providing the temperature-treated air through an outlet is described comprising: a first vertical support member having a first web through which a first hole is defined; first attachment means for attaching the first vertical support member to the front wall of the trailer between one of the side walls of the trailer and the air treatment apparatus.

  20. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    OpenAIRE

    Jing-Nang Lee; Chien-Chih Chen; Chen-Ching Ting

    2014-01-01

    The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the...

  1. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    Science.gov (United States)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  2. Ignition of Lean Air / Hydrocarbon Mixtures at Low Temperature by a Single Corona Discharge Nanosecond Pulse

    OpenAIRE

    Bentaleb, S.; Blin-Simiand, N.; Jeanney, P.; Magne, L; Moreau, N; Pasquiers, S.; Tardiveau, P.

    2015-01-01

    A great number of experimental studies have demonstrated that non-thermal plasmas produced by high voltage pulse discharges, running at a given pulse repetition frequency, are able to ignite air / hydrocarbon mixtures at a low initial temperature and atmospheric pressure. In this paper, we show that ignition can also be achieved using a single nanosecond pulse corona discharge generated under a very strong overvoltage. Experiments were conducted in air / propane and air / n-heptane mixtures. ...

  3. Prediction of air temperature in the aircraft cabin under different operational conditions

    Directory of Open Access Journals (Sweden)

    Fišer J.

    2013-04-01

    Full Text Available This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  4. Prediction of air temperature in the aircraft cabin under different operational conditions

    Science.gov (United States)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  5. Research on software development of air temperature prediction in coal face

    Institute of Scientific and Technical Information of China (English)

    QIN Yue-ping; LIU Hong-bo; WANG Ke; LIU Jiang-yue

    2011-01-01

    With ever-increasing depth of coal mine and the continuous improvement of mechanization,heat damage has become one of the major disasters in coal mine exploitation.Established the temperature prediction models suitable for different kinds of tunnels through analysis of the heat of shafts,roadways and working faces.The average annual air temperature prediction equation from the inlets of shafts to the working faces was derived.The formula was deduced using combine method of iteration and direct calculation.The method can improve the precision of air temperature prediction,so we could establish the whole pathway air temperature prediction model with high precision.Emphasizing on the effects of leakage air to air temperature of working face and using the ideology of the finite difference method and considering the differential equation of inlet and outlet at different stages,this method can significantly improve the accuracy of temperature prediction.Program development uses Visual Basic 6.0 Language,and the Origin software was used to fit the relevant data.The predicted results shows that the air temperature generally tends to rapidly increase in the air inlet,then changes slowly on working face,and finally increases sharply in air outlet in the condition of goaf air leakage.The condition is in general consistent with the air temperature change tendency of working face with U-type ventilation system.The software can provide reliable scientific basis for reasonable ventilation,cooling measures and management of coal mine thermal hazards.

  6. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m3/h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  7. Air quality and temperature effects on exercise-induced bronchoconstriction.

    Science.gov (United States)

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested. PMID:25880506

  8. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    Science.gov (United States)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  9. Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor

    Directory of Open Access Journals (Sweden)

    Jaehyun Ha

    2016-09-01

    Full Text Available This study examines the relationship between air temperature and urban environment indices, mainly focusing on sky view factor (SVF in Seoul, Korea. We use air temperature data observed from 295 automatic weather stations (AWS during the day and night in Seoul. We conduct a spatial regression analysis to capture the effect of spatial autocorrelation in our data and identify changes in the effects of SVF on air temperature, while conducting the regression model for each dataset according to the floor area ratio (FAR. The findings of our study indicate that SVF negatively affects air temperature during both day and night when other effects are controlled through spatial regression models. Moreover, we address the environmental indices associated with day-time and night-time air temperatures and identify the changing effects of SVF on air temperature according to the areal floor area ratio of the analysis datasets. This study contributes to the literature on the relationship between SVF and air temperature in high-density cities and suggests policy implications for improving urban thermal environments with regard to urban design and planning.

  10. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  11. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    Science.gov (United States)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  12. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  13. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  14. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels ( M. margarifitera, Sweden)

    Science.gov (United States)

    Schöne, Bernd R.; Dunca, Elena; Mutvei, Harry; Norlund, Ulf

    2004-09-01

    Variations in annual shell growth of the freshwater pearl mussel Margritifera margritifera (L.) were utilized to reconstruct summer (June-August) air temperatures for each year over the period AD 1777-1993. Our study is based on 60 live-collected specimens with overlapping life-spans from six different Swedish rivers. Individual age-detrended and standardized chronologies ranging from 10 to 127 years in length were strung together to form one master chronology (AD 1777-1993) and three regional mean chronologies (Stensele, Uppsala, and Karlshamn). Standardized annual growth rates and air temperature (river water covaries with water temperature) exhibit a significant positive correlation and high running similarity confirming previous experimental findings. Up to 55% in the variability of annual shell growth is explained by temperature changes. From north to south this correlation slightly decreases. We establish a growth-temperature model capable of reconstructing summer air temperature from annual shell growth increments with a precision error of ±0.6-0.9°C (2SD). The validity of the model was tested against instrumentally determined air temperatures and proxy temperatures derived from tree rings. Our study demonstrates that freshwater pearl mussels provide an independent measure for past (i.e., prior to the 20th century greenhouse forcing) changes in air temperature. It can be used to test and verify other air temperature proxies and thus improve climate models.

  15. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and temperature corrections. 1065.670 Section 1065.670 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements §...

  16. Prediction the Spatial Air Temperature Distribution of an Experimental Greenhouse Using Geostatistical Methods

    NARCIS (Netherlands)

    Sapounas, A.; Nikita-Martzopoulou, Ch.; Spiridis, A.

    2008-01-01

    Concerning the greenhouse environment, the ultimate goal of an investigation would be to determine the climatic parameters for all locations in the study area. Objective of the present study is to analyse the distribution of air temperature and air velocity of an experimental greenhouse with tomato

  17. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  18. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    International Nuclear Information System (INIS)

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials

  19. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Science.gov (United States)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  20. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  1. Thin air

    OpenAIRE

    Jasanoff, Sheila

    2013-01-01

    Clearing the air How do we grasp the air? Without Michel Callon’s guidance, I might never have asked that question. Years ago, when I first entered environmental law practice, I took it for granted that problems such as air pollution exist “out there” in the real world for science to discover and law to fix. It is a measure of Callon’s influence that I understand the law today as a metaphysical instrument, no less powerful in its capacity to order nature than the tools of the ancient oracular...

  2. Influence of the ambient air temperature on the electrical contact reliability of electromagnetic relay

    Institute of Scientific and Technical Information of China (English)

    YAO Fang; ZHENG Jian-rong; HUANG Zhang-wu

    2007-01-01

    The dynamic contact resistances of HH52P electromagnetic relays are measured under different ambient air temperature. Their diagnostic parameters are extracted and determined. It is found that the ambient air temperature obviously influences some parameters. In order to research its influence on the electrical contact reliability of electromagnetic relay, the statistic analysis is applied to study the static contact resistance, the max of the dynamic contact resistance and the bounce time. It is found that the ambient air temperature regularly influences the three parameters. Thoroughly, the phenomenon is studied and analyzed in the point of material science so as to probe into the essential matter of it.

  3. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  4. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    Science.gov (United States)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  5. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: A time-series analysis

    Science.gov (United States)

    Background: Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we inv...

  6. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  7. Advanced air distribution

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2011-01-01

    The aim of total volume air distribution (TVAD) involves achieving uniform temperature and velocity in the occupied zone and environment designed for an average occupant. The supply of large amounts of clean and cool air are needed to maintain temperature and pollution concentration at acceptable....... Ventilation in hospitals is essential to decrease the risk of airborne cross-infection. At present, mixing air distribution at a minimum of 12 ach is used in infection wards. Advanced air distribution has the potential to aid in achieving healthy, comfortable and productive indoor environments at levels...... higher than what can be achieved today with the commonly used total volume air distribution principles....

  8. The Microclimate in Protective Fire Fighter Footwear: Foot Temperature and Air Temperature and Relative Humidity

    Directory of Open Access Journals (Sweden)

    Irzmańska Emilia

    2016-06-01

    Full Text Available The study material consisted of two models of protective firefighter footwear. The tests were conducted on subjects in a laboratory using an ergometric treadmill. The parameters of footwear microclimate were continuously recorded using T/RH sensors. For the leather footwear, the highest foot temperature was recorded in the 50th minute of the experiment (35.8°C in the dorsal region and 37.3°C in the plantar region and for the polymer footwear in the 60th minute of the experiment (35.4°C in the dorsal region and 37.0°C in the plantar region. In the leather footwear, the temperature of the air surrounding the feet rose from 31.0°C to 35.4°C, and then declined, but did not return to the initial level during the rest period. In turn, in the polymer footwear, the temperature rose from 29.0 to 34.7°C, and then decreased to 33.7°C following the rest period. The highest relative air humidity was recorded in the polymer footwear (96.6%, while in the leather footwear it amounted to 91%. Testing the dynamics of the microclimate during footwear use provides complete information about changes in the temperature of the skin of the foot and the temperature and relative humidity of the footwear microclimate.

  9. Air Pollution

    Science.gov (United States)

    ... to a close in June 2013 when the company, Conscious Clothing, was awarded the My Air grand ... Page Options: Request Translation Services Facebook Twitter LinkedIn Google+ Reddit Email Evernote More Increase Font Size Decrease ...

  10. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  11. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  12. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  13. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; SUN Chaoyang; LIU Jiyuan; HE Jianfeng; KUANG Wenhui; TAO Fulu

    2011-01-01

    Since the implementation of the reform and opening up policy in China in the late 1970s,some meteorological stations 'entered' cities passively due to urban expansion.Changes in the surface and built environment around the stations have influenced observations of air temperature.When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset,they could lead to overestimation of regional air temperature and inaccurate assessment of warming.In this study,the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that 'entered' into cities.Then,after removing the observational data from these stations which have been influenced by urban expansion,a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations.The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated.The result shows that urban heat island effect does occur due to urban expansion,with a higher intensity in winter than in other seasons.Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations' and rural stations' observational data.Spatially,the overestimation is relatively higher in eastern China than in the central part of China; however,both areas exhibit a much higher effect than is observed in western China.We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃,of which about 0.01℃ was attributed to urban expansion,with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.

  14. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  15. Baseline (1961-1990) average air temperature (degree C) for Alaska and Western Canada.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average air temperature (degree C) for Alaska and Western Canada. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU)...

  16. hermetically sealed compressor unit, temperature level, mathematical model, marine air conditioning syste

    OpenAIRE

    Lytosh, Olena V.; Dorosh, Vadym S.

    2014-01-01

    The mathematical model and calculation method of the temperature level of the hermetically sealed compressor unit for the marine self-contained air conditioners taking into account the operating conditions and machine design parameters have been given.

  17. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  18. TopoWx: Topoclimatic Daily Air Temperature Dataset for the Conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The TopoWx ('Topography Weather') dataset contains historical 30-arcsec resolution (~800-m) interpolations of daily minimum and maximum topoclimatic air temperature...

  19. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  20. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  1. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  2. Near surface spatially averaged air temperature and wind speed determined by acoustic travel time tomography

    Directory of Open Access Journals (Sweden)

    Armin Raabe

    2001-03-01

    Full Text Available Acoustic travel time tomography is presented as a possibility for remote monitoring of near surface airtemperature and wind fields. This technique provides line-averaged effective sound speeds changing with temporally and spatially variable air temperature and wind vector. The effective sound speed is derived from the travel times of sound signals which propagate at defined paths between different acoustic sources and receivers. Starting with the travel time data a tomographic algorithm (Simultaneous Iterative Reconstruction Technique, SIRT is used to calculate area-averaged air temperature and wind speed. The accuracy of the experimental method and the tomographic inversion algorithm is exemplarily demonstrated for one day without remarkable differences in the horizontal temperature field, determined by independent in situ measurements at different points within the measuring field. The differences between the conventionally determined air temperature (point measurement and the air temperature determined by tomography (area-averaged measurement representative for the area of the measuring field 200m x 260m were below 0.5 K for an average of 10 minutes. The differences obtained between the wind speed measured at a meteorological mast and calculated from acoustic measurements are not higher than 0.5 ms-1 for the same averaging time. The tomographically determined area-averaged distribution of air temperature (resolution 50 m x 50 m can be used to estimate the horizontal gradient of air temperature as a pre-condition to detect horizontal turbulent fluxes of sensible heat.

  3. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    Science.gov (United States)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  4. Natural Ventilation of Indoor Air Temperature: A Case Study of the Traditional Malay House in Penang

    Directory of Open Access Journals (Sweden)

    Ahmad S. Hassan

    2010-01-01

    Full Text Available Problem statement: It was the aim of the study to analyze the level of performance of natural air ventilation with a case study of the traditional Malay house in Penang, Malaysia. This study provided information on the architectural design in relation to natural air ventilation. It promoted passive design in contrast to most housing design which has poor natural air ventilation because the design was orientated to energy consumption that slightly more than one third of the electric energy was used for heating, ventilating and air conditioning systems. Approach: This analysis used quantitative method which measured temperature, humidity and wind speed of the traditional house. The result indicated the level of performance of cross air ventilation and stack effect. Results: The analysis showed that the traditional house has a design integrated with natural air ventilation system. The indoor house temperature and relative humidity had slightly lower than its outdoor area. However, the indoor area had lower wind speed level than the outdoor area. Conclusion: The study showed that maximum openings on the building walls created high air intakes outside the house to give poor performance of stack effect. The design had more emphasis to cross air ventilation.

  5. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele

    2004-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  6. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  7. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    OpenAIRE

    Jing-Nang Lee; Tsung-Min Lin; Chien-Chih Chen

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for con...

  8. Non-intrusive sensing of air velocity, humidity, and temperature using tunable diode laser absorption spectroscopy

    OpenAIRE

    Park, Suhyeon

    2015-01-01

    This work will report the non-intrusive sensing of air velocity, humidity, and temperature using tunable diode laser absorption spectroscopy (TDLAS), and discuss the potential applications of such sensors for in situ monitoring and active control for wind energy. The sensing technique utilizes the absorption features of water vapor in ambient air to monitor multiple flow parameters including velocity, humidity, and temperature simultaneously and non-intrusively [1-3]. The TDLAS technique does...

  9. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  10. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m3 increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  11. Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Our analyses of the monthly mean air temperature of meteorological stations show that altitude,global solar radiation and surface effective radiation have a significant impact on air temperature.We set up a physically-based empirical model for monthly air temperature simulation.Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological observation data,we also developed a method for the distributed simulation of monthly air temperatures over rugged terrain.Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean,the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin.Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature.Cross-validation shows that the proposed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃.Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity.The proposed model solely uses routine meteorological data and can be applied easily to other regions.

  12. Response of four foliage plants to heated soil and reduced air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bodnaruk, W.H. Jr.; Mills, T.W.; Ingram, D.L.

    1981-01-01

    Tip cuttings of Dieffenbachia maculata (Lodd.) G. Donn Exotic Perfection Compacta' and Aglaonema commutatum Schott Silver Queen and single eye cuttings of Epipremnum aureum (Linden and Andre) Bunt, and Philodendron scandens oxycardium (Schott) Bunt. were propagated in combinations of 4 minimum air temperatures, 45/sup 0/, 50/sup 0/, 55/sup 0/ and 60/sup 0/F (7.2/sup 0/, 10/sup 0/, 12.7/sup 0/, 15.5/sup 0/C), and 2 soil temperature treatments; controlled 70/sup 0/F (21/sup 0/C) minimum and variable. Maintaining minimum soil temperatures at 70/sup 0/F reduced production times for rooted Dieffenbachia and Aglaonema tips by 45% and of Epipremnum and Philodendron suitable for 3 inch pots by 35% and 25%, respectively, regardless of minimum air temperature. Minimum air temperature had little effect on Dieffenbachia or Aglaonema root number and length at 70/sup 0/F soil temperature. Similarly shoot length and number of leaves of Philodendron and Epipremnum were not affected by minimum air temperatures with 70/sup 0/F soil temperature. Plant quality was uniformly high in all crops at the 70/sup 0/F soil minimum for all air temperatures except Epipremnum which was chlorotic at 45/sup 0/F. A description of a warm water in-benching heating system is included. 6 references, 2 figures, 9 tables.

  13. Temperature Rise Comparison of Switchgear in SF6, N2, and Air

    Directory of Open Access Journals (Sweden)

    Feng Hao

    2013-01-01

    Full Text Available Based on the heat conduction equation, fluid flow governing equation and radiation heat transfer equation, a multi-physics coupled mathematical model is established, the convection heat transfer problem between solid and fluid is solved by wall function. The three dimensional thermal field in a type of switchgear filled respectively with SF6, N2, and air are calculated and analyzed to discuss the feasibility of using air or N2 as the substitution of SF6 by the finite volume method. The results show that the temperature field in three gases are similar in the switchgear. The temperature rise of current-carrying loop is the highest in SF6 and is the lowest in the air. So the conclusion could be made that air or N2 can replace SF6 as the insulating gas of switchgear on the perspective of temperature rise.

  14. Spatial Disaggregation of the 0.25-degree GLDAS Air Temperature Dataset to 30-arcsec Resolution

    Science.gov (United States)

    Ji, L.; Senay, G. B.; Verdin, J. P.; Velpuri, N. M.

    2015-12-01

    Air temperature is a key input variable in ecological and hydrological models for simulating the hydrological cycle and water budget. Several global reanalysis products have been developed at different organizations, which provide gridded air temperature datasets at resolutions ranging from 0.25º to 2.5º (or 27.8 - 278.3 km at the equator). However, gridded air temperature products at a high-resolution (≤1 km) are available only for limited areas of the world. To meet the needs for global eco-hydrological modeling, we aim to produce a continuous daily air temperature datasets at 1-km resolution for the global coverage. In this study, we developed a technique that spatially disaggregates the 0.25º Global Land Data Assimilation System (GLDAS) daily air temperature data to 30-arcsec (0.928 km at the equator) resolution by integrating the GLDAS data with the 30-arcsec WorldClim 1950 - 2000 monthly normal air temperature data. The method was tested using the GLDAS and Worldclim maximum and minimum air temperature datasets from 2002 and 2010 for the conterminous Unites States and Africa. The 30-arcsec disaggregated GLDAS (GLDASd) air temperature dataset retains the mean values of the original GLDAS data, while adding spatial variabilities inherited from the Worldclim data. A great improvement in GLDAS disaggregation is shown in mountain areas where complex terrain features have strong impact on temperature. We validated the disaggregation method by comparing the GLDASd product with daily meteorological observations archived by the Global Historical Climatology Network (GHCN) and the Global Surface Summary of the Day (GSOD) datasets. Additionally, the 30-arcsec TopoWX daily air temperature product was used to compare with the GLDASd data for the conterminous United States. The proposed data disaggregation method provides a convenient and efficient tool for generating a global high-resolution air temperature dataset, which will be beneficial to global eco

  15. Air surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  16. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  17. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    Science.gov (United States)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  18. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    Science.gov (United States)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  19. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    Science.gov (United States)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  20. Rate constants for chemical reactions in high-temperature nonequilibrium air

    Science.gov (United States)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  1. SPATIAL VARIABILTY OF AMBIENT TEMPERATURE, RELATIVE HUMIDITY AND AIR VELOCITY IN A COLD STORE

    OpenAIRE

    SERAP AKDEMIR; SELCUK ARIN

    2006-01-01

    Spatial distribution the ambient temperature, relative humidity and air velocity were determined for different storage temperatures such as 0 oC, 1 oC, 2 oC and 3 oC in an experimental cold store. Mapping software were used to show the variability. Spatial distribution of the temperature and the relative humidity was not uniform in the cold store. Reason of bad spatial distributions was bad spatial distribution of air velocity distributed by evaporator. A temperature and/or a relative humi...

  2. Numerical Simulation of Combustion Characteristics in High Temperature Air Combustion Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-hua; CAI Jiu-ju; XIE Guo-wei

    2009-01-01

    The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-e model with wall function, and radiation was handled using discrete ordi-nate radiation model. The PDF (probability density funetion)/mixture fraction combustion model was used to simu-late the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen eoncentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera-ture lessens the mixing of the fuel and air in primary combustion zone, ereates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly.

  3. Healthy Air Outdoors

    Science.gov (United States)

    ... lung.org > Our Initiatives > Healthy Air > Outdoor Healthy Air Outdoors The quality of the air we breathe ... families and can even shorten their lives. Outdoor Air Pollution and Health Outdoor air pollution continues to ...

  4. High Temperature Convective Drying of a Packed Bed with Humid Air at Different Humidities

    Directory of Open Access Journals (Sweden)

    J. Sghaier

    2009-01-01

    Full Text Available Problem statement: Drying a packed bed of porous particle at high temperature with varying humidity of hot air is an attractive process. Despite, many researches on experimental and simulation on a fixed bed drying at low and average temperature are proposed. Few studies showed drying at high temperature with humid air or using superheated steam. The latest is compared to dry air. Approach: In this study, we show an experimental and numerical study of humid air drying of a fixed bed of moist porous alumina particles. The air velocity, the air temperature and the vapor pressure were varied from 1.7-2.3 m.sec-1, 120-160°C and 0.1-0.65 bar, respectively and the experiments were performed at atmospheric pressure. Then a mathematical describing heat and mass transfer during drying is developed. This model is based on the averaging volume approach using two scale changes. Results: From the experimental works, the solid temperature and the bed moisture content have been presented at different drying conditions. The previous results show that an increase in humidity leads to an increase of the wet bulb temperature and a decrease in the drying time. At the same drying temperature, the variation in the gas velocity affects also the drying time. In addition, we note that the drying time increases if the bed depth increases. The predicted results deduced from the developed model were compared with the experiment. Conclusion: The experimental and predicted results obtained from this study describing drying of a packed bed illustrate clearly the effect of the air humidity on the drying kinetics.

  5. Surface Air Temperature Simulations over China with CMIP5 and CMIP3

    Institute of Scientific and Technical Information of China (English)

    GUO; Yan; DONG; Wen-Jie; REN; Fu-Min; ZHAO; Zong-Ci; HUANG; Jian-Bin

    2013-01-01

    Historical simulations of annual mean surface air temperature over China with 25 CMIP5 models were assessed.The observational data from CRUT3v and CN05 were used and further compared with historical simulations of CMIP3.The results show that CMIP5 models were able to simulate the observed warming over China from 1906 to 2005(0.84 C per 100 years)with a warming rate of 0.77 C per 100 years based on the multi-model ensemble(MME).The simulations of surface air temperature in the late 20th century were much better than those in the early 20th century,when only two models could reproduce the extreme warming in the 1940s.The simulations for the spatial distribution of the 20-yearmean(1986–2005)surface air temperature over China fit relatively well with the observations.However,underestimations in surface air temperature climatology were still found almost all over China,and the largest cold bias and simulation uncertainty were found in western China.On sub-regional scale,northern China experienced stronger warming than southern China during 1961–1999,for which the CMIP5 MME provided better simulations.With CMIP5 the diference of warming trends in northern and southern China was underestimated.In general,the CMIP5 simulations are obviously improved in comparison with the CMIP3 simulations in terms of the variation in regional mean surface air temperature,the spatial distribution of surface air temperature climatology and the linear trends in surface air temperature all over China.

  6. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  7. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    OpenAIRE

    Miqdam Tariq Chaichan

    2011-01-01

    A solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatur...

  8. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong

    2015-01-01

    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  9. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    Directory of Open Access Journals (Sweden)

    Kwang Rae Cho

    2014-12-01

    Full Text Available Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients.The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter and temperature selection (high, medium, low and ambient. All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant.Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG respectively (high, medium, low and ambient temperature set. ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances.ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  10. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2011-01-01

    Full Text Available A solar updraft tower power plant (solar tower is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009. The results show that the best chimney efficiency attained was 49.7% for pebbles base. The highest collected air temperature reached was 49ºC when using the black pebbles basement also.also, the maximum basement temperature measured was 59ºC for black pebbles. High increaments in collected air temperatures were achieved in comparison with the ambient air temperatures for the three basement kinds. The highest temperature difference reached was 22ºC with the pebble ground.

  11. Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    ZENG Yan; QIU XinFa; HE YongJian; SHI GuoPing; LIU ChangMing

    2009-01-01

    Our analyses of the monthly mean air temperature of meteorological stations show that altitude, global solar radiation and surface effective radiation have a significant impact on air temperature. We set up a physically-based empirical model for monthly air temperature simulation. Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological ob-servation data, we also developed a method for the distributed simulation of monthly sir temperatures over rugged terrain. Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean, the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin. Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature. Cross-validation shows that the pro-posed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃. Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity. The proposed model solely uses routine meteorological data and can be applied easily to other regions.

  12. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    Science.gov (United States)

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  13. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2012-07-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  14. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  15. The effect of air temperature on yield of Holstein dairy cattle

    Directory of Open Access Journals (Sweden)

    Anna Šimková

    2015-05-01

    Full Text Available The study was carried out in the agricultural company Petrovice during the summer and winter seasons. The experiment included Holstein dairy cattle. Air temperature was measured using a data logger with sensors (Datalogger COMET 3120 in the stable. Data on average yield were taken from farm records and then processed using Microsoft Excel. The aim of the study was to determine how the values of ambient temperature affect the welfare of the animals with regard to the average performance. The air temperature is very variable and its changes animals react immediately. Measured values of air temperature in the stable are important for optimal welfare. It affects the productivity of dairy cows, milk quality, reproduction and animal health.

  16. The temperature fields measurement of air in the car cabin by infrared camera

    Science.gov (United States)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  17. The temperature fields measurement of air in the car cabin by infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek M.

    2013-04-01

    Full Text Available The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  18. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    Institute of Scientific and Technical Information of China (English)

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  19. Temperature measurement at the end of a cantilever using oxygen paramagnetism in solid air

    CERN Document Server

    Thurber, K R; Smith, D D; Thurber, Kent R.; Harrell, Lee E.; Smith, Doran D.

    2003-01-01

    We demonstrate temperature measurement of a sample attached to the end of a cantilever using cantilever magnetometry of solid air ``contamination'' of the sample surface. In experiments like our Magnetic Resonance Force Microscopy (MRFM), the sample is mounted at the end of a thin cantilever with small thermal conductance. Thus, the sample can be at a significantly different temperature than the bulk of the instrument. Using cantilever magnetometry of the oxygen paramagnetism in solid air provides the temperature of the sample, without any modifications to our MRFM (Magnetic Resonance Force Microscopy) apparatus.

  20. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    Science.gov (United States)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  1. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  2. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    YANG XuChao; ZHANG YiLi; LIU LinShan; ZHANG Wei; DING MingJun; WANG ZhaoFeng

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysie surface air temperature data during 1960--1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal a significant warming trend (0.06"C/decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  3. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysis surface air temperature data during 1960-1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal warming about 0.12℃ /decade, 0.10℃/decade, 0.12 ℃ /decade, respectively. Woodland areas do not show a significant warming trend (0.06 ℃ /decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  4. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    OpenAIRE

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Byron A. Steinman; Stolpe, Martin B.; Way, Robert G.

    2015-01-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observation...

  5. Prediction of Air Flow and Temperature Distribution Inside a Yogurt Cooling Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    A Surendhar

    2015-01-01

    Full Text Available Air flow and heat transfer inside a yogurt cooling room were analysed using Computational Fluid Dynamics. Air flow and heat transfer models were based on 3D, unsteady state, incompressible, Reynolds-averaged Navier-Stokes equations and energy equations. Yogurt cooling room was modelled with the measured geometry using 3D design tool AutoCAD. Yogurt cooling room model was exported into the flow simulation software by specifying properties of inlet air, yogurt, pallet and walls of the room. Packing material was not considered in this study because of less thickness (cup-0.5mm, carton box-1.5mm and negligible resistance created in the conduction of heat. 3D Computational domain was meshed with hexahedral cells and governing equations were solved using explicit finite volume method. Air flow pattern inside the room and the temperature distribution in the bulk of palletized yogurt were predicted. Through validation, the variation in the temperature distribution and velocity vector from the measured value was found to be 2.0oC (maximum and 30% respectively. From the simulation and the measured value of the temperature distribution, it was observed that the temperature was non-uniform over the bulk of yogurt. This might be due to refrigeration capacity, air flow pattern, stacking of yogurt or geometry of the room. Required results were achieved by changing the location of the cooling fan.

  6. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    Science.gov (United States)

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively.

  7. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    Science.gov (United States)

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  8. The effect of air temperature on the sappan wood extract drying

    Science.gov (United States)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  9. An Experimental Study on High Temperature and Low Oxygen Air Combustion

    Institute of Scientific and Technical Information of China (English)

    W.B.Kim; D.H.Chung; 等

    2000-01-01

    High temperature preheated and diluted air combustion has been confirmed as the technolgy,mainly applied to industrial furnaces and kilns,to realize higher thermal efficiency and lower emissions.The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air.The test items were exhaust gas components of CO,NOx,flame shape and raidcal components of CH,OH and C2,which were measured with gas analyser,camera and ICCD(Intersified Charged-Coupled Device) camera.Many phenomena as results appeared in combustion with the oxidizer,low oxygen concentation and extremely high temperature air,such as expansion of the flammable limits,increased flame propagation speed,it looked so strange as compared with those in existing combustion technology,we confirmed that such extraordinary phenomena were believable through the hot-test experiment.

  10. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    Science.gov (United States)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  11. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  12. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  13. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposure...

  14. Development of Temperature-Humidity Independent Control Air-Conditioning Unit for Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    HAN Xing; ZHANG Xu; LIU Jin-tao; GA Si-yun; KANG yue

    2009-01-01

    Cooling panels are increasingly used in domestic residential buildings.To provide medium temper-ature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent eontrol systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the mois-ture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then, experimental work was carried out to in-vestigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrig-erant distribution can control the dehumidification capacity,but the former influences the EER more than the latter.while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion.valve.The energy consumption of this kind of unit was estimated and compared with present room air condition-ers,which shows that it can save about 41% cooling energy consumption.

  15. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  16. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  17. Prediction of Monthly Mean Surface Air Temperature in a Region of China

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Keon-Tae SOHN

    2007-01-01

    In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a region of China using a decomposition method in time series analysis. Applications to the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) Collaborative Reanalysis data in this region of China are discussed. The main finding was that the surface air temperature trend estimated for January 1948 to February 2006 was not statistically significant at 0.5904℃ (100 yr)-1.Forecasting aspects are also considered.

  18. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per;

    2007-01-01

    part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... irradiance, in order to achieve an accurate and reliable way to measure the air temperature reducing the error caused by radiation. Experiments include bare thermocouple, naturally and mechanically ventilated shielded thermocouples, mechanically ventilated thermocouple with double shielding, silver coated...

  19. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  20. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    Science.gov (United States)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  1. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  2. Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain

    Indian Academy of Sciences (India)

    D B Shah; M R Pandya; H J Trivedi; A R Jani

    2013-12-01

    Spatially distributed air temperature data are required for climatological, hydrological and environmental studies. However, high spatial distribution patterns of air temperature are not available from meteorological stations due to its sparse network. The objective of this study was to estimate high spatial resolution minimum air temperature (min) and maximum air temperature (max) over the Indo-Gangetic Plain using Moderate Resolution Imaging Spectroradiometer (MODIS) data and India Meteorological Department (IMD) ground station data. min was estimated by establishing an empirical relationship between IMD min and night-time MODIS Land Surface Temperature (s). While, max was estimated using the Temperature-Vegetation Index (TVX) approach. The TVX approach is based on the linear relationship between s and Normalized Difference Vegetation Index (NDVI) data where max is estimated by extrapolating the NDVI-s regression line to maximum value of NDVImax for effective full vegetation cover. The present study also proposed a methodology to estimate NDVImax using IMD measured max for the Indo-Gangetic Plain. Comparison of MODIS estimated min with IMD measured min showed mean absolute error (MAE) of 1.73°C and a root mean square error (RMSE) of 2.2°C. Analysis in the study for max estimation showed that calibrated NDVImax performed well, with the MAE of 1.79°C and RMSE of 2.16°C.

  3. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater

    Energy Technology Data Exchange (ETDEWEB)

    J. Menasha; D. Dunn-Rankin; L. Muzio; J. Stallings [University of California Irvine, Irvine, CA (United States). Department of Mechanical and Aerospace Engineering

    2011-07-15

    Ammonium bisulfate (ABS) forms in coal-fired power plant exhaust systems when ammonia slip from the NOx control system reacts with the sulfur oxides and water in the flue gas. The critical temperature range for ABS formation occurs in the air preheater, where ABS is known to cause corrosion and pluggage that can require unplanned outages and expensive cleaning. To develop mitigation strategies for the deleterious effects of ABS in air preheaters, it is important to know its formation temperature and deposition process. This paper describes a bench-scale experimental simulation of a single-channel air preheater, with the appropriate temperature gradient, used in conjunction with simulated coal combustion flue gas, including sulfur oxides, ammonia, and water vapor, to investigate the formation of ABS. Formation was observed optically, and the formation temperature, as well as deposition characteristics for a realistic range of reactant concentrations are presented and compared with previous studies on ABS formation. This study presents data at realistic concentrations not earlier tested, and the reported data has smaller experimental uncertainty than previously obtained. We found that the measured ABS formation temperatures under air preheater channel conditions lies between the temperatures reported by others, and is in the range of 500-520 K for typical flue gas concentrations of ammonia and sulfur oxide species. The results also show that, at least for this experimental configuration, ABS forms predominantly as an aerosol in the gas phase rather than as a condensate on the channel walls. 13 refs., 13 figs., 2 tabs.

  4. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NOx and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NOx but lower CO emissions, while the increase of equivalence ratio led to the increase of NOx and the decrease of CO emissions

  5. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    Science.gov (United States)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  6. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    Science.gov (United States)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET

  7. Modeling 2m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming

    OpenAIRE

    Ayala, A.; Pellicciotti, Francesca; J. M. Shea

    2015-01-01

    Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data f...

  8. 磨煤机出口风压及风温的热控安装%Thermal control installation of air pressure and air temperature of pulverizer outlet

    Institute of Scientific and Technical Information of China (English)

    任强

    2011-01-01

    According to the operation ot ZGM-95 type pulverizer produced by Beijing electric power equipment factory great used in northern region, formation and factors of air pressure and air temperature of pulverizer outlet, this paper made induction and analysis, and made technical reformation to the problems influence of the accuracy of air pressure and air temperature of pulverizer outlet, made its accurate measurement, normal operation.%针对北方地区大量使用的北京电力设备总厂生产的ZGM-95型磨煤机在运行过程中,磨出口风压及风温的形成关系和因素,归纳和分析,对影响磨出口风压及风温准确性的问题进行技术改造,使其测量准确,运行正常。

  9. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  10. Consequences of fluctuations in the ambient air temperature at Lake Tanganyika --- A wavelet analysis

    OpenAIRE

    Mbungu Tsumbu, Jean-Pierre; Antoine, Jean-Pierre; Bopili-Mbotia-Lepiba, Richard

    2014-01-01

    We study the fluctuations of the horizontal wind speed and of both the ambient air temperature and the water temperature according to the depth. Our study clearly shows how Lake Tanganyika is thermally stratified, showing four different water layers. The study shows how waters of upper layers tend to have the same temperature as the deepest water during the dry season. The water stratification tends then to disappear completely in the dry season. The study is based on the fact that water rele...

  11. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    Science.gov (United States)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  12. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    International Nuclear Information System (INIS)

    Surface air temperature (Ta) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of Ta from satellite remotely sensed land surface temperature (Ts) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured Ta and MODIS Ts. The relationships between the maximum Ta and daytime Ts depend significantly on land cover types, but the minimum Ta and nighttime Ts have little dependence on the land cover types. The largest difference between maximum Ta and daytime Ts appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum Ta were estimated from 1 km resolution MODIS Ts under clear-sky conditions with coefficients calculated based on land cover types, while the minimum Ta were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum Ta varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 °C.

  13. Released air during vapor and air cavitation

    Science.gov (United States)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  14. Effects of sunspot cycle length and CO2 on air temperature along Qinghai-Xizang railway and air temperature's trend prediction

    Institute of Scientific and Technical Information of China (English)

    LI; Dongliang; GUO; Hui; WANG; Wen

    2004-01-01

    There are well coherences between annual averaged air temperatures at every meteorological station along the Qinghai-Xizang railway, and its 10-year moving average correlation coefficient is 0.92. Thus, the regional averaged annual mean temperature series along the Qinghai-Xizang railway (Trw) from 1935 to 2000 are constructed. The investigation is suggested that: Trw had significant responses to the 5-year lagged sunspot cycle length (SCL) and 15-year lagged concentration of atmospheric carbon dioxide (CO2), and the correlation coefficients between them are -0.76 (SCL) and 0.88 (CO2), respectively. The future SCL is predicted by the model of average generated function constructed with its main cycles of 76a, 93a, 108a, 205a and 275a. The result shows that the SCL would be becoming longer in the first half of the 21st century, and then it could be becoming shorter in the second half of the 21st century. Based on the natural change of SCL and the effect of double CO2 concentration, Trw in the 21st century is forecasted. It could warm up about 0.50℃ in the first half of the 21st century compared with the last decade of last century. The mean maximum air temperature could be likely about 0.20℃ in July and from 0.40℃ to 1.10℃ in January. The annual air temperature difference would likely reduce 0.3-1.00℃. The probability of above predictions ranges from 0.64 to 0.73.

  15. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    Science.gov (United States)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  16. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  17. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  18. R9 Air Districts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Region 9 Air Districts layer is a compilation of polygons representing the California Air Pollution Control and Air Quality Management Districts, Arizona Air...

  19. Hazardous Air Pollutants

    Science.gov (United States)

    ... Facebook Twitter Google+ Pinterest Contact Us Hazardous Air Pollutants Hazardous air pollutants are those known to cause ... protect against adverse environmental effects. About Hazardous Air Pollutants What are hazardous air pollutants? Health and Environmental ...

  20. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  1. Applications Using AIRS Data

    Science.gov (United States)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  2. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2013-02-01

    Full Text Available Surface skin temperatures of the Level 3 products of MODIS Collection 5 (C5 and AIRS/AMSU version 5 (V5 have been compared in terms of monthly anomaly trends and climatologies over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS sea surface temperature (SST values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Meanwhile, the MODIS ice surface temperature product (MYD29E1D over the ocean is in better agreement with AIRS/AMSU temperatures, showing a root mean square error of 3.7–3.9 K. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times. Both MODIS and AIRS/AMSU show cooling rates from −0.05 ± 0.06 to −0.14 ± 0.07 K 9 yr−1 over the globe, but warming rates (0.02 ± 0.12 –0.15 ± 0.19 K 9 yr−1 in the high latitude regions.

  3. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  4. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  5. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus;

    2016-01-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six ...

  6. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  7. Air movement - good or bad?

    DEFF Research Database (Denmark)

    Toftum, Jørn

    2004-01-01

    Air movement - good or bad? The question can only be answered by those who are exposed when they are exposed. Human perception of air movement depends on environmental factors including air velocity, air velocity fluctuations, air temperature, and personal factors such as overall thermal sensation...... and activity level. Even for the same individual, sensitivity to air movement may change from day to day as a result of e.g. different levels of fatigue. Based on existing literature, the current paper summarizes factors influencing the human perception of air movement and attempts to specify in general terms...... influences the subjective perception of air movement. With occupants feeling warmer than neutral, at temperatures above 23oC or at raised activity levels, humans generally do not feel draught at air velocities typical for indoor environments (up to around 0.4 m/s). In the higher temperature range, very high...

  8. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    OpenAIRE

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria; Melikov, Arsen Krikor

    2013-01-01

    The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink rate and tear film quality. In a test room with DV and six workstations 30 human subjects were exposed for four hours to each of the following 5 experimental conditions: 23 °C and DV only, 23 °C and DP...

  9. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas;

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational...... and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  10. A new approach for highly resolved air temperature measurements in urban areas

    Directory of Open Access Journals (Sweden)

    M. Buttstädt

    2011-02-01

    Full Text Available In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  11. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  12. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2012-10-01

    Full Text Available Surface skin temperatures of the Version 5 Level 3 products of MODIS and AIRS/AMSU have been compared in terms of monthly anomaly trends and climatology over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Both MODIS and AIRS/AMSU show cooling trends from −0.05 ± 0.06 to −0.14 ± 0.07 K (9 yr−1 over the globe, but warming trends (0.02 ± 0.12–0.15 ± 0.19 K (9 yr−1 in the high latitude regions. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times.

  13. Oxygen-18 study of high-temperature air oxidation of SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.D.; Kumar, R.

    1984-01-01

    The oxygen-18 enrichment in sulfates formed at high temperatures (475-500/sup 0/C) by platinum-catalyzed air oxidation of SO/sub 2/ to SO/sub 3/ in humidified air, was found to be several parts per thousand higher than in the air oxygen, SO/sub 2/, or water vapor from which the sulfates were formed. Variation of the delta/sup 18/O in the sulfates showed little dependence on variation of the delta/sup 18/O in the water vapor. The mechanism of sulfate formation involved isotopic exchange between the air oxygen and water vapor, isotopic exchange between the water vapor and SO/sub 2/, and formation of the hydrate, H/sub 2/SO/sub 4/ x 3H/sub 2/O. When Fe/sub 2/O/sub 3/ or V/sub 2/O/sub 5/ was heated in mixtures of air, water vapor, and SO/sub 2/, some of the SO/sub 2/ was catalytically oxidized (via SO/sub 3/ formation) to sulfate of relatively high delta/sup 18/O and the remainder to chemisorbed sulfate of relatively low delta/sup 18/O. Charcoal and fly ash (containing unburned carbon and basic oxides) reacted with the SO/sub 2/ to yield chemisorbed sulfates of relatively low delta/sup 18/O. 12 references.

  14. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  15. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    OpenAIRE

    Li Hai-Jun; Zhou Guang-Hui; Li An-Gui; Li Xu-Ge; Li Ya-Nan; Chen Jie

    2014-01-01

    When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system i...

  16. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    OpenAIRE

    Keunchang Jang; Sinkyu Kang; John S. Kimball; Suk Young Hong

    2014-01-01

    Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb) retrievals from the Advanced Microw...

  17. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    Indian Academy of Sciences (India)

    Rajeev Ranjan Kumar; D V Ramana; R N Singh

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature–depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  18. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    Science.gov (United States)

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (PReco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (PReco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P 0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, PReco (Q10) and basal respiration (Rref P<0.05), respectively. PMID:26995905

  19. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    Science.gov (United States)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  20. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  1. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm. PMID:22562450

  2. Influence of Various Air Temperature on Duration of Drying Pumpkin Seed with Higher Water Content After Washing (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    S. Sito

    1998-12-01

    The samples dried at air temperature of 80 and 100°C were partly roasted, the seeds were dark coloured (burned, inferior taste, and problematic storage quality. Consequently air temperature above 60°C could not be recommended for pumpkin seed drying.

  3. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    Science.gov (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  4. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    Directory of Open Access Journals (Sweden)

    Li Hai-Jun

    2014-01-01

    Full Text Available When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.

  5. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.;

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...... between subjects. Preference for less air movement was linearly correlated with draught discomfort, but the percentage of subjects who felt draught was lower than the percentage who preferred less air movement....

  6. Prototype pump driven by air actuator for high-temperature molten material

    International Nuclear Information System (INIS)

    Safe conveyance of high-temperature molten materials is an essential factor for some advanced industries. The authors developed a new prototype pump for such applications. The pump utilized the pumping effect of a vibrating pipe system and featured a simple and novel configuration. Its structural and hydrodynamic features are different from those of previous conventional pumps. The pump structure constitutes a short vibrating pipe with a nonreturn valve, a long connecting rod and a cylindrical casing. It was driven by an air actuator. Tests were carried out with this prototype pump using high-temperature molten salt of 473 K to 673 K as a test fluid. Test results indicated that the air actuator was suitable to drive the pump and the pump performance was stable even at such high temperatures. (author)

  7. Spatiotemporal relationships between sea level pressure and air temperature in the tropics

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian Larry

    2014-01-01

    While surface temperature gradients have been highlighted as drivers of low-level atmospheric circulation, the underlying physical mechanisms remain unclear. Lindzen and Nigam (1987) noted that sea level pressure (SLP) gradients are proportional to surface temperature gradients if isobaric height (the height where pressure does not vary in the horizontal plane) is constant; their own model of low-level circulation assumed that isobaric height in the tropics is around 3 km. Recently Bayr and Dommenget (2013) proposed a simple model of temperature-driven air redistribution from which they derived that the isobaric height in the tropics again varies little but occurs higher (at the height of the troposphere). Here investigations show that neither the empirical assumption of Lindzen and Nigam (1987) nor the theoretical derivations of Bayr and Dommenget (2013) are plausible. Observations show that isobaric height is too variable to determine a universal spatial or temporal relationship between local values of air ...

  8. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time pe...... with the value of the subjects in this study. The comparison shows that the occupants in China had a shorter time period of thermal adaption than European occupants, which means that Chinese occupants can adapt to a new outdoor climate condition faster....... period of thermal adaption was obtained with the proposed method. The result revealed that the subjects needed to take 4.25 days to fully adapt to a step-change in outdoor air temperature. The time period of thermal adaption for the occupants in five European countries was also calculated and compared...

  9. Monthly Changes in the Influence of the Arctic Oscillation on Surface Air Temperature over China

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiayou; TAN Benkui; SUO Lingling; HU Yongyun

    2007-01-01

    Partial Least Squares Regression (PLSR) is used to study monthly changes in the influence of the Arctic Oscillation (AO) on spring, summer and autumn air temperature over China with the January 500 hPa geopotential height data from 1951 to 2004 and monthly temperature data from January to November at 160 stations in China. Several AO indices have been defined with the 500-hPa geopotential data and the index defined as the first principal component of the normalized geopotential data is best to be used to study the influence of the AO on SAT (surface air temperature) in China. There are three modes through which the AO in winter influences SAT in China. The influence of the AO on SAT in China changes monthly and is stronger in spring and summer than in autumn. The main influenced regions are Northeast China and the Changjiang River drainage area.

  10. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  11. Average historical annual temperature, projected air temperature, and change in air temperature (degree C) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  12. Average historical annual temperature, projected air temperature, and change in air temperature (degree F) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  13. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  14. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  15. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  16. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    International Nuclear Information System (INIS)

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (∼160 sec) would be significantly earlier than the previous predictions (∼150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected

  17. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  18. Experimental Investigation on Indoor Air Distribution in Low Temperature Air Supply Room%低温送风室内气流组织的实验研究

    Institute of Scientific and Technical Information of China (English)

    张瑞; 柳建华; 张良

    2015-01-01

    低温送风在空气调节系统的节能和提高体感舒适度上有着独特的优势。但同时,送风温度偏低也带来了冷风下坠、温度场不均匀、热舒适性下降的隐患。本文针对低温送风中存在的这些问题,首先确立了低温送风的气流组织评价标准,并设计了包含制冷系统、冰蓄冷系统和测量系统在内的一整套低温送风实验系统,最后对不同的送风温度下实验结果进行定性和定量的分析,从而得到了相应的解决方法和结论。%Low temperature air supply possesses unique advantages on energy conservation and thermal comfort improvement for the air conditioning system. However, the supply air with low temperature also brings possible defects of cold air draught, asymmetrical temperature field or thermal comfort reduction. Thus, in order to explore and solve the above problems, the evaluation standards on airflow distribution of the low temperature air are first defined, then the corresponding experimental system is designed and introduced, including its refrigeration system, ice storage system and measurement system. Finally, the qualitative and quantitative analysis on experiment results is carried out for different air supply temperatures, and the targeted solving methods and conclusions are acquired and presented.

  19. Urban air temperature anomalies and their relation to soil moisture observed in the city of Hamburg

    Directory of Open Access Journals (Sweden)

    Sarah Wiesner

    2014-09-01

    Full Text Available The spatial variability of the urban air temperature for the city of Hamburg is analyzed based upon a one-year dataset of meteorological and pedological measurements. As local air temperature anomalies are subject to land-use and surface cover, they are monitored by a network of measurement stations within three different urban structures. Mean annual temperature deviations are found to be +1.0K$+1.0\\,\\text{K}$ for inner city sites and +0.25K$+0.25\\,\\text{K}$ to -0.2K$-0.2\\,\\text{K}$ for suburban sites compared to a rural reference. The nocturnal urban heat island (UHI is identified and averages +1.7K$+1.7\\,\\text{K}$ at the inner city stations, +0.7K$+0.7\\,\\text{K}$ at a suburban district housing area and +0.3K$+0.3\\,\\text{K}$ at a nearby green space. The observed UHI effect is most prominent when the wind speed is low (≤2ms-1$\\leq2\\,\\text{ms}^{-1}$ and the sky is only partly cloudy (≤6∕8th$\\leq6/8^{\\text{th}}$. In spring 2011 an average inner city UHI of up to +5.2K$+5.2\\,\\text{K}$ is observed during situations matching these conditions, while the extraordinary dry fall of 2011 lead to remarkably high air temperature differences at all observed stations. As expected, no evidence for a significant impact of topsoil moisture on nighttime UHI effect is found. The analysis of air temperature anomalies during daytime results in an annual mean deviation of -0.5K$-0.5\\,\\text{K}$ above unsealed, vegetated surfaces from a sealed site during days with a turbulent mixing induced by wind speed >2ms-1$>2\\,\\text{ms}^{-1}$. Here, there is an indication for a relation between the water content of upper soil layers and the warming of air: 11 to 17 % of the variance of the diurnal air temperature span is found to be explained by the soil water content for selected relevant days.

  20. Seasonal trends in precipitation and surface air temperature extremes in mainland Portugal, 1941-2007

    Science.gov (United States)

    de Lima, M. I. P.; Santo, F. E.; Ramos, A. M.

    2012-04-01

    Several climate models predict, on a global scale, modifications in climate variables that are expected to have impact on society and the environment. The concern is on changes in the variability of processes, the mean and extreme events (maximum and minimum). To explore recent changes in precipitation and near surface air temperature extremes in mainland Portugal, we have inspected trends in time series of specific indices defined for daily data. These indices were recommended by the Commission for Climatology/Climate Variability and Predictability (CCl/CLIVAR) Working Group on Climate Change Detection, and include threshold indices, probability indices, duration indices and other indices. The precipitation and air temperature data used in this study are from, respectively, 57 and 23 measuring stations scattered across mainland Portugal, and cover the periods 1941-2007, for precipitation, and 1941-2006, for temperature. The study focuses on changes at the seasonal scale. Strong seasonality is one of the main features of climate in mainland Portugal. Intensification of the seasonality signal across the territory, particularly in the more sensitive regions, might contribute to endanger already fragile soil and water resources and ecosystems, and the local environmental and economic sustainability. Thus, the understanding of variations in the intensity, frequency and duration of extreme precipitation and air temperature events at the intra-annual scale is particularly important in this geographical area. Trend analyses were conducted over the full period of the records and for sub-periods, exploring patterns of change. Results show, on the one hand, regional differences in the tendency observed in the time series analysed; and, on the other hand, that although trends in annual indices are in general not statistically significant, there are sometimes significant changes over time in the data at the seasonal scale that point out to an increase in the already existing

  1. Detecting and Adjusting Temporal Inhomogeneity in Chinese Mean Surface Air Temperature Data

    Institute of Scientific and Technical Information of China (English)

    LI Qingxiang(李庆祥); LIU Xiaoning(刘小宁); ZHANG Hongzheng(张洪政); Thomas C. PETERSON; David R. EASTERLING

    2004-01-01

    Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.

  2. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  3. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  4. An improved method for correction of air temperature measured using different radiation shields

    Science.gov (United States)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  5. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    Science.gov (United States)

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  6. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    OpenAIRE

    Jinshun Wu; Chao Chen; Song Pan; Jun Wei; Tianquan Pan; Yixuan Wei; Yunmo Wang; Xinru Wang; Jiale Su

    2013-01-01

    Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, ...

  7. Evaluation of VIIRS Land Surface Temperature Using CREST-SAFE Air, Snow Surface, and Soil Temperature Data

    Directory of Open Access Journals (Sweden)

    Carlos L. Pérez Díaz

    2015-12-01

    Full Text Available In this study, the Visible Infrared Imager Radiometer Suite (VIIRS Land Surface Temperature (LST Environmental Data Record (EDR was evaluated against snow surface (T-skin and near-surface air temperature (T-air ground observations recorded at the Cooperative Remote Sensing Science and Technology Center—Snow Analysis and Field Experiment (CREST-SAFE, located in Caribou, ME, USA during the winters of 2013 and 2014. The satellite LST corroboration of snow-covered areas is imperative because high-latitude regions are often physically inaccessible and there is a need to complement the data from the existing meteorological station networks. T-skin is not a standard meteorological parameter commonly observed at synoptic stations. Common practice is to measure surface infrared emission from the land surface at research stations across the world that allow for estimating ground-observed LST. Accurate T-skin observations are critical for estimating latent and sensible heat fluxes over snow-covered areas because the incoming and outgoing radiation fluxes from the snow mass and T-air make the snow surface temperature different from the average snowpack temperature. Precise characterization of the LST using satellite observations is an important issue because several climate and hydrological models use T-skin as input. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Based on these results, empirical relationships to estimate T-air and T-skin for clear-sky conditions from remotely-sensed (RS LST were derived. Additionally, an empirical formula to correct cloud-contaminated RS LST was developed.

  8. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel;

    1993-01-01

    irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  9. Fast tomographic measurements of temperature in an air plasma cutting torch

    Science.gov (United States)

    Hlína, J.; Šonský, J.; Gruber, J.; Cressault, Y.

    2016-03-01

    Temperatures in an air plasma jet were measured using a tomographic experimental arrangement providing time-resolved scans of plasma optical radiation in the spectral band 559-601 nm from two directions. The acquired data and subsequent processing yielded time-resolved temperature distributions in measurement planes perpendicular to the plasma jet axis with a temporal resolution of 1 μs. The measurement system and evaluation methods afforded detailed information about the influence of high-frequency ripple modulation of the arc current on plasma temperature.

  10. [Elevated air temperatures tolerance of chufa (Cyperus esculentus L.), a phototroph component of life support systems].

    Science.gov (United States)

    Shklavtsova, E S; Ushakova, S A; Shikhov, V N

    2011-01-01

    Resistance of biotechnical life support systems (BTLSS) to stress-factors depends, in addition to some other conditions, on tolerance of higher plants as part of the photosynthesizing component. Purpose of the investigations with chufa Cyperus esculentus L. cultivation on mineralized solid and liquid human wastes (according to Yu. Kudenko) was to test plant tolerance of air temperature rise to 45 degrees C. Tolerance was assessed as a function of nitrogen form in nutrient solutions and PAR intensity during thermal shock. PAR intensity was controlled at 150 W/m2 and air temperature--at 25 degrees C. Thermal shock was induced in 30-day plants with PAR = 150 or 250 W/m2. Twenty hours at 45 degrees C did not cause irreversible damage of the plant photosynthetic apparatus. Higher PAR intensity (250 W/m2) and nitrates in nutrient solution mitigates substantially the damaging effect of the stress factor PMID:21848217

  11. Air oxidation behavior of fuel for the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Hironobu; Hayashi, Kimio; Fukuda, Kousaku (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1992-08-01

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400degC for maximum duration of 600 h (at 1300degC). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments. (author).

  12. Air oxidation behavior of fuel for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400degC for maximum duration of 600 h (at 1300degC). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments. (author)

  13. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes

    OpenAIRE

    Nicole GALLINA; Anneville, Orlane; Beniston, Martin

    2011-01-01

    Cyanobacteria are of major interest in freshwater ecosystems, since they are able to produce toxins with potentially negative impacts on the environment, health and thus on economics and society. It is therefore important for water management authorities to assess the manner in which cyanobacteria may evolve under climate change, especially in the Alpine Region where warming is projected by climate models to be more important than the global average. In this study, air temperature extremes un...

  14. EFFECT OF ELEVATED AIR TEMPERATURE ON PHYSIOLOGICAL INDICATORS OF BROILER CHICKENS OF DIFFERENT ORIGIN

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-08-01

    Full Text Available The objective of this study was to determine the effect of elevated air temperature in the first grow period on some physiological indicators of broiler chickens of different origin. Day-old Ross 308 and Hubbard Flex broiler chickens were assigned to 4 groups. Groups I (Ross 308 and II (Hubbard Flex were kept under standard thermal conditions throughout rearing, and groups III (Ross 308 and IV (Hubbard Flex were exposed to 10°C higher than recommended air temperature from 1 to 21 days of rearing. At 1, 21 and 42 days of the experiment, blood was collected from 10 birds in each group to determine T3 and T4, total protein, immunoglobulin complex, glucose, hemoglobin and hematocrit levels. The exposure to the thermal challenge decreased T3 and T4 levels at 21 days of rearing in both Ross 308 and Hubbard flex broilers compared to birds raised under standard thermal conditions. At 21 days of the experiment was observed a statistically significantly lower concentration of total protein in group I compared with group III and between group II and IV. There was no effect of elevated air temperature on the immunoglobulin complex concentration in the blood of birds of both genetic groups. In both genetic groups, the exposure to the thermal challenge caused a tendency to decrease the concentration of glucose. Statistically significant differences at 21 days of rearing of the hemoglobin content were observed between Ross 308 birds from groups I and III. The thermal challenge caused a statistically significant decrease in hematocrit levels in birds from both genetic groups at 21 days of the experiment. The thermal challenge upset the body’s homeostasis in both genetic groups of chickens, which possibly suggests that elevated air temperature during the first period of rearing has a negative effect on the welfare of broilers, regardless of their origin.

  15. Effects of Water Temperature on Male Fertility Alternation of the Sensitive TGMS Lines in Rice under the Simulated Low Air Temperature in High Summer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of water temperature on male fertility alternation of TGMS lines in rice were studied under the simulated low air temperature conditions in summer. The results indicate that warm water with temperature higher than the critical temperature of TGMS lines is able to keep the lines' male sterility stable under the air temperature below the critical temperature. These results provide theoretic basis for applying warm water as an effective measure to prevent the lines from the negative effects of the low air temperature occuring in summer in the course of seed production.

  16. Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice

    Directory of Open Access Journals (Sweden)

    Liu Qi-Hua

    2013-06-01

    Full Text Available As an indispensable environment element for crop growth, air temperature has brought challenge for the sustainable development of rice (Oryza sativa L. production. Elevated air temperature led to great loss in rice grain yield in many districts suffering from heat stress due to the greenhouse effect worldwide, which has received more and more attention from researchers. A field experiment was conducted to investigate impacts of high air temperature (HAT after rice heading stage on dynamics of SPAD values, soluble sugar, soluble protein, and malondialdehyde (MDA contents of flag leaves, and grain yield attributes. The results showed that HAT significantly reduced SPAD values, soluble sugar and protein contents, seed-setting rate, number of filled grains per panicles, 1000-grain weight, and grain yield, while increased MDA content. There exists strong correlation between each physiological parameter and days from heading stage to maturity, which can be simulated by quadratic curve equation or linear regression equation. Under HAT, the enhanced MDA content and decreased soluble sugar content demonstrated the damage of membrane structure and photosynthesis function of rice flag leaves, which was partially attributed to the reduced SPAD value and soluble protein content. In the present experiment, rice seed-setting rate was more vulnerable to HAT than grain weight. The disturbance of physiological metabolism in flag leaves was a fundamental reason for the reduction of rice grain yield under HAT.

  17. Modeling and imaging land-cover influences on air temperature in and near Baltimore, MD

    Science.gov (United States)

    Heisler, Gordon M.; Ellis, Alexis; Nowak, David J.; Yesilonis, Ian

    2016-04-01

    Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Δ widehat{T} R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the prediction equation included difference between the downtown reference and each of the other sites in upwind tree cover and impervious cover as obtained from 10-m resolution geographic information system (GIS) data. Other predictor variables included an index of atmospheric stability, topographic indices, wind speed, vapor pressure deficit, and antecedent precipitation. The model was used to map predicted hourly Δ widehat{T} R-p across the Baltimore region based on hourly weather data from the airport. Despite the numerous sources of variability in the regression modeling, the method produced reasonable map patterns of Δ widehat{T} R-p that, except for some areas evidently affected by sea breeze from the Chesapeake, closely matched results of mesoscale modeling. Potential applications include predictions of the effect of changing tree cover on air temperature in the area.

  18. Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Directory of Open Access Journals (Sweden)

    C. L. Pérez Díaz

    2015-08-01

    Full Text Available Land Surface Temperature (LST is a key variable (commonly studied to understand the hydrological cycle that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air and snow skin temperature (T-skin helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  19. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Science.gov (United States)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  20. Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2012-01-01

    Full Text Available This study examined the characteristics and photocatalytic activity of multiwall carbon nanotube-assisted TiO2 (MWNT-TiO2 nanocomposites calcined at different temperatures to assess their potential indoor air applications. It was confirmed that the composites calcined at low temperatures (300 and 400°C contained TiO2 nanoparticles bound intimately to the MWNT networks. Meanwhile, almost no MWNTs were observed when the calcination temperature was increased to 500 and 600°C. The MWNT-TiO2 composites calcined at low temperatures showed higher photocatalytic decomposition efficiencies for aromatic hydrocarbons at indoor concentrations than those calcined at high temperatures. The mean efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX by the composite calcined at 300°C were 32, 70, 79, and 79%, respectively, whereas they were 33, 71, 78, and 78% for the composite calcined at 400°C, respectively. In contrast, the efficiencies decreased to close to zero when the calcination temperature was increased to 600°C. Moreover, the MWNT-TiO2 exhibited superior photocatalytic performance for the decomposition efficiencies compared to TiO2 under conventional UV-lamp irradiations. Consequently, these carbonaceous nanomaterial-assisted photocatalysts can be applied effectively to indoor air applications depending upon the calcination temperature.

  1. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  2. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  3. Indoor Air Quality

    Science.gov (United States)

    ... protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  4. Air protection. Ochrana ovzdusia

    Energy Technology Data Exchange (ETDEWEB)

    Siska, F.

    1980-01-01

    This paper discusses problems of air pollution control, air pollution abatement and effects of air pollution. Air pollution caused by black and brown coal combustion, by fossil-fuel power plants and by coking plants is evaluated. Air pollution by dusts, sulfur oxides, nitrogen oxides, carbon monoxide, ammonia as well arsenic, barium, beryllium, boron, chromium, gallium, cobalt, manganese, copper, nickel, lead, plutonium, titanium and vanadium, which sometimes accompany ashes in coal, is analyzed. Methods of air pollution abatement such as fluidized bed combustion, coal preparation, desulfurization or dry coke quenching are described. Systems for air pollution control are presented: air filtration, cyclones, electrostatic precipitators. Systems of air pollution measurement and recording are evaluated. Propagation of air pollutants in the atmosphere as well as the factors which influence pollutant propagation are characterized. Problems associated with site selection for fossil-fuel power plants are also discussed. An analysis of economic aspects of air pollution abatement and air pollution control is made. (55 refs.)

  5. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  6. Bad Air Day

    Science.gov (United States)

    ... link, please review our exit disclaimer . Subscribe Bad Air Day Air Quality and Your Health In many parts of the country, summer has the worst air quality of any season. When the forecast says ...

  7. Semi-analytical analysis of the response of the air temperature over the land surface to the global vegetation distribution

    Institute of Scientific and Technical Information of China (English)

    LIU Fei; CHAO JiPing

    2009-01-01

    Response of the air temperature over the land surface to the global vegetation distribution is investigated, using a three-dimensional governing equation to simulate the steady, large-scale, limited amplitude perturbation of the free, inviscid and adiabatic atmosphere. The adoption of the static equation leads to a temperature governing equation in the terrain following coordinate. With the prescribed temperature as the upper boundary condition and the radiation balance as the lower boundary condition, the semi-analytical solution of the global circulation temperature can be calculated. In this article, only the air temperature (at 2 m height) over the land surface is analyzed, and the result suggests that this model can simulate the air temperature pattern over the land surface reasonably. A better simulation occurs when a simple feedback of the albedo on the temperature is included. Two sensitivity experiments are analyzed through this model. One suggests that the air temperature over the land surface descends obviously when the land surface is covered with ice all over, while another suggests that the air temperature rises a little when the land surface is covered with forest except the ice-covered area. This model appears to be a good tool to study the response of the air temperature to the vegetation distribution. Limitations of the model are also discussed.

  8. The EUSTACE break-detection algorithm for a global air temperature dataset

    Science.gov (United States)

    Brugnara, Yuri; Auchmann, Renate; Brönnimann, Stefan

    2016-04-01

    EUSTACE (EU Surface Temperature for All Corners of Earth) is an EU-funded project that has started in 2015; its goal is to produce daily estimates of surface air temperature since 1850 across the globe for the first time by combining surface and satellite data using novel statistical techniques. For land surface data (LSAT), we assembled a global dataset of ca. 35000 stations where daily maximum and minimum air temperature observations are available, taking advantage of the most recent data rescue initiatives. Beside quantity, data quality also plays an important role for the success of the project; in particular, the assessment of the homogeneity of the temperature series is crucial in order to obtain a product suitable for the study of climate change. This poster describes a fully automatic state-of-the-art break-detection algorithm that we developed for the global LSAT dataset. We evaluate the performance of the method using artificial benchmarks and present various statistics related to frequency and amplitude of the inhomogeneities detected in the real data. We show in particular that long-term temperature trends calculated from raw data are more often underestimated than overestimated and that this behaviour is mostly related to inhomogeneities affecting maximum temperatures.

  9. Atlantic Multi-decadal Oscillation and changes of summer air temperature in Montenegro

    Directory of Open Access Journals (Sweden)

    Doderovic Miroslav M.

    2015-01-01

    Full Text Available The paper has examined the impact of variations of Atlantic Multidecadal Oscillation (AMO on the change in air temperature during the summer season on the territory of Montenegro. Starting from the fact that in recent years more and more extreme weather events occur, as well as from the intention to comprehensively consider the temperature conditions in the territory of Montenegro, first analysis is of changes in air temperature in 8 parameters, of which 5 climate indices; connections with AMO have also been analyzed. To study changes in temperature extreme indexes proposed by the WMO CCL / CLIVAR are used. Research within the listed topics was realized using data from 23 meteorological stations for the period 1951-2010 and the calculations are done for the summer season. The results show that there is increased number of maximum and minimum daily temperatures of warmer value. Impact assessment AMO, teleconnection pattern that is quite distant, showed that its variability affects changes in summer temperatures in Montenegro, both in terms of mean values, and the frequency of extreme actions presented by climate indices.

  10. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  11. Dual Laser Beam Attenuation Processing: A Method for Line-averaging of Air Temperature

    Science.gov (United States)

    Afsharnaderi, H. R.; Pishvaei, M. R.

    2009-04-01

    In local scale there is a demand to measure horizontal air temperature averaged over farming and horticulture plots for frost point monitoring and evapotranspiration calculations. Using several dry bulb thermometers is problematic. This work then attends to laser instrumentation of air thermometry. The attenuation of laser beams from Rayleigh scattering has been applied for this purpose. The ratio of attenuation quantity for two isosceles parallel laser beams (850nm and 1064nm with 5W output) led to independent line-averaging of air temperature from transmission path-lengths. Typical measurements have been executed over 400x200 m2 garden. Digital resolution is 0.1°C but spatial resolution is quite fine. One of the advantages of dual signal processing is the filtration of ambiguities caused by beam scintillations. Usage of this instrument is recommended over plane area or in green-houses and limited by topography. Applicability may be extended to other studies such as micrometeorology and propagation experiments.

  12. Time-resolved LII signals from aggregates of soot particles levitated in room temperature air

    CERN Document Server

    Mitrani, James M

    2015-01-01

    We observed and modeled time-resolved laser-induced incandescence (LII) signals from soot aggregates. Time-resolved LII signals were observed from research-grade soot particles, levitated in room temperature air. We were able to measure sizes and structural properties of our soot particles ex situ, and use those measurements as input parameters when modeling the observed LII signals. We showed that at low laser fluences, aggregation significantly influences LII signals by reducing conductive cooling to the ambient air. At moderate laser fluences, laser-induced disintegration of aggregates occurs, so the effects of aggregation on LII signals are negligible. These results can be applied to extend LII for monitoring formation of soot and nanoparticle aggregates.

  13. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  14. Empirical analysis of the solar contribution to global mean air surface temperature change

    CERN Document Server

    Scafetta, Nicola

    2009-01-01

    The solar contribution to global mean air surface temperature change is analyzed by using an empirical bi-scale climate model characterized by both fast and slow characteristic time responses to solar forcing: $\\tau_1 =0.4 \\pm 0.1$ yr, and $\\tau_2= 8 \\pm 2$ yr or $\\tau_2=12 \\pm 3$ yr. Since 1980 the solar contribution to climate change is uncertain because of the severe uncertainty of the total solar irradiance satellite composites. The sun may have caused from a slight cooling, if PMOD TSI composite is used, to a significant warming (up to 65% of the total observed warming) if ACRIM, or other TSI composites are used. The model is calibrated only on the empirical 11-year solar cycle signature on the instrumental global surface temperature since 1980. The model reconstructs the major temperature patterns covering 400 years of solar induced temperature changes, as shown in recent paleoclimate global temperature records.

  15. Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Sharovsky R.

    2004-01-01

    Full Text Available An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure, air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate, and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001, with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05 for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

  16. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    Science.gov (United States)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  17. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  18. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  19. Bonding to dentin as a function of air-stream temperatures for solvent evaporation

    Directory of Open Access Journals (Sweden)

    Andréia Aquino Marsiglio

    2012-06-01

    Full Text Available This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1 Scotchbond Multi-Purpose (SBMP ; water-based; 2 Adper Single Bond 2 (SB ; ethanol/water-based, and 3 Prime & Bond 2.1 (PB ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%. SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05. Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive.

  20. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  1. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    Science.gov (United States)

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted. PMID:11288304

  2. MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2012-01-01

    Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and,if any,their poorly representative location designed for convenient operation.Fortunately,it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions.This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas.A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis.Regression analysis and spatio-temporal analysis of monthly mean Ts vs.monthly mean Ta are carried out,showing that recorded Ta is closely related to MODIS Ts in the study region.The regression analysis of monthly mean Ts vs.Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25 ℃ and 3.23℃).Thirdly,the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January,the coldest month) and 17.29 ℃ (in July,the warmest month),and for the warm season (May-September),it is from 13.1 ℃ to 17.29℃.Finally,the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October,dropping to 3500±500 m in January,and ascending back to 4500±500 m in May next year.This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.

  3. High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air

    Science.gov (United States)

    Gyekenyesi, John Z.; Bansal, Narottam P.

    2000-01-01

    High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.

  4. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  5. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  6. nowCOAST's Map Service for NOAA NWS NDFD Forecasts of Daily Min Surface Air Temperature (deg. F) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS daily minimum surface air temperature forecasts from the National Digital...

  7. nowCOAST's Map Service for NOAA NWS NDFD Forecasts of Daily Max Surface Air Temperature (deg. F) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS daily maximum surface air temperature forecasts from the National Digital...

  8. The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic

    Directory of Open Access Journals (Sweden)

    Dobrovolný Petr

    2015-09-01

    Full Text Available This study seeks to quantify the effects of a number of factors on the nocturnal air temperature field in a medium-sized central European city located in complex terrain. The main data sources consist of mobile air temperature measurements and a geographical database. Temperature measurements were taken along several profiles through the city centre and were made under a clear sky with no advection. Altogether nine sets of detailed measurements, in all seasons, were assembled. Altitude, quantity of vegetation, density of buildings and the structure of the transportation (road system were considered as explanatory variables. The result is that the normalized difference vegetation index (NDVI and the density of buildings were the most important factors, each of them explaining a substantial part (more than 50% of overall air temperature variability. Mobile measurements with NDVI values as a covariate were used for interpolation of air temperature for the entire study area. The spatial variability of nocturnal air temperature and UHI intensity in Brno is the main output presented. Air temperatures interpolated from mobile measurements and NDVI values indicate that the mean urban heat island (UHI intensity in the early night in summer is at its highest (approximately 5 °C in the city centre and decreases towards the suburban areas.

  9. Response of surface air temperature to small-scale land clearing across latitudes

    International Nuclear Information System (INIS)

    Climate models simulating continental scale deforestation suggest a warming effect of land clearing on the surface air temperature in the tropical zone and a cooling effect in the boreal zone due to different control of biogeochemical and biophysical processes. Ongoing land-use/cover changes mostly occur at local scales (hectares), and it is not clear whether the local-scale deforestation will generate temperature patterns consistent with the climate model results. Here we paired 40 and 12 flux sites with nearby weather stations in North and South America and in Eastern Asia, respectively, and quantified the temperature difference between these paired sites. Our goal was to investigate the response of the surface air temperature to local-scale (hectares) land clearing across latitudes using the surface weather stations as proxies for localized land clearing. The results show that north of 10°N, the annual mean temperature difference (open land minus forest) decreases with increasing latitude, but the temperature difference shrinks with latitude at a faster rate in the Americas [−0.079 (±0.010) °C per degree] than in Asia [−0.046 (±0.011) °C per degree]. Regression of the combined data suggests a transitional latitude of about 35.5°N that demarks deforestation warming to the south and cooling to the north. The warming in latitudes south of 35°N is associated with increase in the daily maximum temperature, with little change in the daily minimum temperature while the reverse is true in the boreal latitudes. (paper)

  10. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  11. REACH. Air Conditioning Units.

    Science.gov (United States)

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  12. Analisis Pengaruh Salinitas dan Temperatur Air Laut pada Wet Underwater Welding terhadap Laju Korosi

    OpenAIRE

    Adrian Dwilaksono; Heri Supomo; Triwilaswandio Wuruk Pribadi

    2013-01-01

    Struktur konstruksi badan kapal lambat laut mengalami kerusakan . Apabila kapal mengalami kerusakan pada konisi darurat, pekerjaan las bawah air menjadi hal yang diutamakan. Sedangkan faktor korosi pada pengelasan basah bawah air merupakan masalah yang pasti terjadi. Melalu penelitian ini dikaji perbandingan laju korosi sambungan las material baja karbon rendah yang diberi perlakuan pengelasan basah bawah air dengan salinitas 33‰ , 35‰ dan suhu 200C, 250C. Dari keempat variasi pengelasan ters...

  13. Natural Ventilation of Indoor Air Temperature: A Case Study of the Traditional Malay House in Penang

    OpenAIRE

    Ahmad S. Hassan; Mahyuddin Ramli

    2010-01-01

    Problem statement: It was the aim of the study to analyze the level of performance of natural air ventilation with a case study of the traditional Malay house in Penang, Malaysia. This study provided information on the architectural design in relation to natural air ventilation. It promoted passive design in contrast to most housing design which has poor natural air ventilation because the design was orientated to energy consumption that slightly more than one third of the electric energy was...

  14. Tritium release from a nonevaportable getter-pump cartridge exposed to moist air at ambient temperature

    International Nuclear Information System (INIS)

    The amount of tritium released when a commercially available getter-pump cartridge was exposed to moist air at ambient temperatures was measured. The cartridge consisted of Zr-Al powder pressed onto an iron substrate, which is the type of cartridge proposed for use in the Tokomak Fusion Test Reactor. While the initial release of tritium was rapid the total activity released was lss than 0.005% of the cartridge loading. Of this amount, at least 80% was released as tritiated water. 8 figures

  15. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    OpenAIRE

    Viktor A Utsal; Dobryakov, Yuri G; Vitenberg, Alexander G; Makarova, Svetlana V; Anna Yu Eshchenko; Igor G Zenkevich

    2007-01-01

    Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10) at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic) and 2,4,6-trihydroxybenzoic (phloroglucinic) a...

  16. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  17. Corona discharge as a temperature probe of atmospheric air microwave plasma jet

    International Nuclear Information System (INIS)

    We developed and tested a new method for temperature measurements of near-LTE air plasmas at atmospheric pressure. This method is specifically suitable for plasmas at relatively low gas temperature (800-1700 K) with no appropriate radiation for direct spectroscopic temperature measurements. Corona discharge producing cold non-equilibrium plasma is employed as a source of excitation and is placed into the microwave plasma jet. The gas temperature of the microwave plasma jet is determined as the rotational temperature of N2* produced in the corona discharge. The corona probe temperature measurement was tested by the use of a thermocouple. We found a fairly good agreement between the two methods after correcting the thermocouple measured temperatures for radiative losses. The corona probe method can be generally applied to determine the temperature of the near-LTE plasmas and contrary to the thermocouple it can be used for higher plasma temperatures and is not affected by radiative losses and problems of interaction with the microwave plasma and electromagnetic fields.

  18. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  19. Air temperature changes and their impact on permafrost ecosystems in eastern Siberia

    Directory of Open Access Journals (Sweden)

    Desyatkin Roman

    2015-01-01

    Full Text Available Significant increasing of mean annual air temperatures, freezing index and thawing index - have exerted a considerable impact on the state of permafrost landscapes and ecosystems in Eastern Siberia on the last few decades. Many animals and plants have shifted their ranges and this may be the precursor of northward shifts of the landscape zones. Landscapes that contain ground ice bodies in the underlying permafrost are especially sensitive to climate warming. Increase of mean annual air temperature for 2-3°C over the last three decades has resulted an increase in ground temperature by 0.4-1.3°C in the upper part of permafrost, which in turn has led intensification of negative cryogenic processes. Previous year’s measurements of greenhouses gases emission in the Middle Taiga forest of central Yakutia were found to show high values and spatial variability. The wet meadow soils and shallow lakes have highest methane fluxes, almost comparable with emissions from tropical peatlands. Permafrost ecosystems respond to global warming quite rapidly. This makes the study of their changes somewhat easier, but still requires meticulous attention to observations, research, and analysis of the processes under way.

  20. Analysis of Alternative Refrigerants to R22 for Air-Conditioning Applications at Various Evaporating Temperatures

    Directory of Open Access Journals (Sweden)

    S. Venkataiah

    2014-03-01

    Full Text Available This paper presents the simulation results of a 1.5 ton capacity room air conditioning system with some selected refrigerants that have been assessed for their suitability as alternative refrigerants to R22 for air conditioning applications. The refrigerants with zero Ozone depletion potential only are selected in this study. The performance of selected refrigerants viz, R22, R134a, R404A, R407C, R410A, R507A, R290 and R600a is considered in the present analysis. The thermodynamic analysis of these refrigerants has been carried out on these selected refrigerants using COOLPACK software. The analysis mainly focuses on obtaining results of parameters with fixed condenser temperature but with variable evaporator temperatures. The parameters like heat rejection rate, mass flow rate of refrigerant, displacement volume, power input, discharge temperature, cop, saturation pressure and pressures ratio are analyzed. The thermodynamic analysis of eight selected refrigerants is carried out using the simulation software COOL PACK version 1.49 and a comparative study of the different refrigerants is made.

  1. Study on the matching performance of a low temperature reverse Brayton air refrigerator

    International Nuclear Information System (INIS)

    Highlights: • A relation between operation parameters of expander and brake pressure was obtained. • A matching model was got based on the theoretical analysis and simulation. • Brake pressure feedback control was proposed and applied in the experiment. • The minimum free-load refrigerating temperature of 99.6 K was reached. - Abstract: A small reverse Brayton cycle air refrigerator was designed and fabricated. Bump-type air journal foil bearing, pressurized thrust gas bearing and centrifugal blower as brake were employed in the turboexpander. Usually, constant brake inlet pressure is set in a reverse Brayton refrigerator. However, the unchanged brake inlet pressure cannot adapt to the changing temperature and expansion ratio during the cooling down process, which could go against the system performance. In this article, the relationship between the turboexpander operation parameters and brake pressure was disclosed through theoretical analysis. The performance curve was analyzed through numerical simulation using CFX. A matching model was established based on the theoretical analysis and numerical simulation. Brake pressure feedback control was then proposed and applied in the experimental study. Thermal performance of the refrigerator was tested under varied operating conditions (different expansion ratios, temperatures and brake pressures). The results indicated that the appropriate brake pressure facilitated system good thermal performance under both design and off-design conditions, and the theoretical results agreed well with the experimental data

  2. Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    Directory of Open Access Journals (Sweden)

    Keunchang Jang

    2014-09-01

    Full Text Available Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS provides effective air temperature (Ta retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E for estimating surface level Ta under both clear and cloudy sky conditions in the United States for 2006. The instantaneous Ta retrievals showed favorable agreement with in situ air temperature records from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while root mean square errors (RMSE for the Ta retrievals were 4.58 K and 4.99 K for clear and cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous Ta retrievals from day/night overpasses, and showed favorable agreement with local tower measurements (R2 = 0.88; RMSE = 3.48 K. The results of this study indicate that the combination of MODIS and AMSR-E sensor data can produce Ta retrievals with reasonable accuracy and relatively fine spatial resolution (~5 km for clear and cloudy sky conditions.

  3. Room air temperature affects occupants' physiology, perceptions and mental alertness

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Kwok Wai; Willem, Henry Cahyadi [Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-01-15

    Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of {alpha}-Amylase level (P < 0.0001) and the Tsai-partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed. (author)

  4. Prediction of Air Flow and Temperature Profiles Inside Convective Solar Dryer

    Directory of Open Access Journals (Sweden)

    Marian Vintilă

    2014-11-01

    Full Text Available Solar tray drying is an effective alternative for post-harvest processing of fruits and vegetables. Product quality and uniformity of the desired final moisture content are affected by the uneven air flow and temperature distribution inside the drying chamber. The purpose of this study is to numerically evaluate the operation parameters of a new indirect solar dryer having an appropriate design based on thermal uniformity inside the drying chamber, low construction costs and easy accessibility to resources needed for manufacture. The research was focused on both the investigation of different operation conditions and analysis of the influence of the damper position, which is incorporated into the chimney, on the internal cabinet temperature and air flow distribution. Numerical simulation was carried out with Comsol Multiphysics CFD commercial code using a reduced 2D domain model by neglecting any end effects from the side walls. The analysis of the coupled thermal-fluid model provided the velocity field, pressure distribution and temperature distribution in the solar collector and in the drying chamber when the damper was totally closed, half open and fully open and for different operation conditions. The predicted results were compared with measurements taken in-situ. With progressing computing power, it is conceivable that CFD will continue to provide explanations for more fluid flow, heat and mass transfer phenomena, leading to better equipment design and process control for the food industry.

  5. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  6. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    Science.gov (United States)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  7. Relationships of photosynthetic photon flux density, air temperature and humidity with tomato leaf diffusive conductance and temperature

    Directory of Open Access Journals (Sweden)

    Evandro Zanini Righi

    2012-06-01

    Full Text Available The objective was to study the leaf temperature (LT and leaf diffusive vapor conductance (gs responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.

  8. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    Science.gov (United States)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly “trends” based on the first 7+ years of AIRS Version 5 Level3 data. We suggest that modelers should compare these with their (coupled) GCM’s performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Niño-related variability scales, and show the effects of El-Niño-La Niña activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  9. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  10. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship...... between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the...

  11. BOREAS TE-6 1994 Soil and Air Temperatures in the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Norman, John; Wilson, Tim

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains measurements of the air temperature at a single height and soil temperature at several depths in the NSA from 25-May to 08-Oct- 1994. Chromel-Constantan thermocouple wires run by a miniprogrammable data logger (Model 21X, Campbell Scientific, Inc., Logan, UT) provided direct measurements of temperature. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  12. Simulation and projection of summer surface air temperature over China: a comparison between a RCM and the driving global model

    Science.gov (United States)

    Li, Donghuan; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The regional climate model (version 3, RegCM3) with the horizontal resolution of 50 km was employed to downscale the historical and projected climate changes over CORDEX East Asia domain, nested within the global climate system model FGOALS-g2 (Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2). The simulated (1986-2005) and projected (2046-2065) summer surface air temperature changes under RCP8.5 scenario over China were compared between the RegCM3 and FGOALS-g2. The air temperature indices used in this study included tmx (daily maximum temperature), t2m (daily average temperature) and tmn (daily minimum temperature), and extreme high-temperature events included TXx (max tmx), TX90p (warm days) and WSDI (warm spell duration). Results indicated that both models could reasonably reproduce the climatological distribution of surface air temperature and extreme high-temperature events. Compared to the driving global climate model, the detailed characteristics of summer surface air temperature were better simulated in RegCM3 due to its higher horizontal resolution. Under the RCP8.5 scenario, summer surface air temperature over China will increase significantly during the middle of 21st century. RegCM3 projected larger increase of tmx than tmn over most regions of China, but in the western Tibet Plateau, the increase of tmn was larger. In the projection of FGOALS-g2, the projected changes of the three temperature indices (t2m, tmn, and tmx) were similar with larger increases over northeastern China and Tibet Plateau. Extreme high-temperature events were projected to increase significantly in both models. TX90p will increase more than 60% compared to present day, while WSDI will become twice of present day. Key words: Summer surface air temperature; Extreme high-temperature events; Regional climate model; Climate change

  13. Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2010-01-01

    A method, named the Approximate Distributions Integration Method (ADI-method), is proposed for calculation of parameters of the asymmetrical thermal plume above a heat source, such as maximum air temperature excess and velocity, their position in the plume cross-section, the widths......, generated by a thermal manikin resembling the complex body shape and heat generated by a sitting person, were measured. Using the measured data, the integral characteristics of the generated asymmetrical thermal plume were calculated by the ADI-method, and the uncertainty in determination...... of the temperature and velocity profiles, asymmetry parameters of the plume cross-section, and the integral characteristics. The method is based on an approximation of the measured profiles of air velocity and air temperature excess in the plume cross-section. A procedure for conversion of the air speed measured...

  14. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland

    Science.gov (United States)

    Wilson, Robert M.

    2010-01-01

    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  15. MODIS-based estimation of air temperature of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2013-01-01

    The immense and towering Tibetan Plateau acts as a heating source and,thus,deeply shapes the climate of the Eurasian continent and even the whole world.However,due to the scarcity of meteorological observation stations and very limited climatic data,little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau.This paper collected time series of MODIS land surface temperature (LST) data,together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007,to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas.Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted.Regression analysis shows that recorded Ta is rather closely related to Ts,and that the GWR estimation with MODIS Ts and altitude as independent variables,has a much better result with adjusted R2 > 0.91 and RMSE =1.13-1.53℃ than OLS estimation.For more than 80% of the stations,the Ta thus retrieved from Ts has residuals lower than 2℃.Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃.This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.

  16. Experimental study of the air-atomized spray cooling of high-temperature metal

    International Nuclear Information System (INIS)

    An experimental study of heat transfer between a hot metallic surface and water droplets sprayed by a commercial flat pattern air-atomized spray nozzle was conducted. A lattice grid was used to measure the local spray density (Q) along the horizontal (X) and vertical (Y) axes of the local spray region. By measuring the temperature evolution inside the test plate, the surface heat flux was calculated by the inverse heat conduction problem. In the case of no obvious run-off flow on the surface, the temperature TCHF and heat flux qCHF at the critical heat flux (CHF) point increased with Q. Besides, the values of TLeid and qLeid for the Leidenfrost point also showed similar variation. When V = 1.11 × 10−5 m3 s−1, the CHF points at locations around the spray center were forced to transfer to higher surface temperature, due to the run-off water flow from the spray center. Based on the results obtained, mathematical correlations were proposed, signifying the dependence of heat flux in different boiling regimes for water flow rates V ≤ 0.83 × 10−5 m3 s−1. The results obtained in this study will provide a theoretical basis for predicting the temperature of the cold-rolled strip during the spray-cooling process and for designing the cooling process. - Highlights: • Air-atomized water spray cooling of a very high temperature surface was studied. • Correlations of heat flux in different boiling regimes were established. • CHF shifted to higher surface temperature due to the serious run-off water flow

  17. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)

    2008-10-15

    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  18. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  19. Air Temperature and Death Rates in the Continental U.S., 1968–2013

    Directory of Open Access Journals (Sweden)

    John Hart

    2015-06-01

    Full Text Available A previous test of global warming theory, on a local level, for Texas revealed inverse correlations between air temperature and death rates. The present study expands the test field to the continental U.S. Using an ecological design, mean daily maximum air temperature (“temperature” in the 48 contiguous states plus the District of Columbia by year from 1968–2013 was compared to age-adjusted all-cause mortality (“deaths” in these same jurisdictions for the same years using Pearson correlation (n = 46 years. The comparison was made for three race categories, white, black, and all races, where each category included all ages and both genders. There was 5.0 degree F range for the years studied (62.7–67.7 degrees F. Correlations were moderate strength, inverse, and statistically significant, as follows. Whites: r = −0.576, p < 0.0001; Blacks: r = −0.556, p = 0.0001; and all races: r = −0.577, p < 0.0001. These correlations are consistent with the Texas study, both of which indicated that warmer years tended to correlate with decreased death rates. A limitation to this research is its (ecological design, but is an initial step towards further investigation.

  20. Mortality of inshore marine mammals in eastern Australia is predicted by freshwater discharge and air temperature.

    Science.gov (United States)

    Meager, Justin J; Limpus, Colin

    2014-01-01

    Understanding environmental and climatic drivers of natural mortality of marine mammals is critical for managing populations effectively and for predicting responses to climate change. Here we use a 17-year dataset to demonstrate a clear relationship between environmental forcing and natural mortality of inshore marine mammals across a subtropical-tropical coastline spanning a latitudinal gradient of 13° (>2000 km of coastline). Peak mortality of inshore dolphins and dugongs followed sustained periods of elevated freshwater discharge (9 months) and low air temperature (3 months). At a regional scale, these results translated into a strong relationship between annual mortality and an index of El Niño-Southern Oscillation. The number of cyclones crossing the coastline had a comparatively weak effect on inshore marine mammal mortality, and only in the tropics. Natural mortality of offshore/migratory cetaceans was not predicted by freshwater discharge, but was related to lagged air temperature. These results represent the first quantitative link between environmental forcing and marine mammal mortality in the tropics, and form the basis of a predictive tool for managers to prepare responses to periods of elevated marine mammal mortality. PMID:24740149

  1. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  2. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    Science.gov (United States)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  3. Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    CERN Document Server

    Ave, M; Bohacova, M; Buonomo, B; Busca, N; Cazon, L; Chemerisov, S D; Conde, M E; Crowell, R A; Di Carlo, P; Di Giulio, C; Doubrava, M; Esposito, A; Facal, P; Franchini, F J; Horandel, J; Hrabovsky, M; Iarlori, M; Kasprzyk, T E; Keilhauer, B; Klages, H; Kleifges, M; Kuhlmann, S; Mazzitelli, G; Nozka, L; Obermeier, A; Palatka, M; Petrera, S; Privitera, P; Rídky, J; Rizi, V; Rodríguez, G; Salamida, F; Schovanek, P; Spinka, H; Strazzeri, E; Ulrich, A; Yusof, Z M; Vacek, V; Valente, P; Verzi, V; Waldenmaier, T

    2007-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  4. The variability of radiative balance elements and air temperature on the Asian region of Russia

    Directory of Open Access Journals (Sweden)

    E. V. Kharyutkina

    2011-05-01

    Full Text Available The variability of spatial-temporal distribution of temperature and radiative and heat balances components is investigated for the Asian territory of Russia (45–80° N, 60–180° E using JRA-25, NCEP/DOE AMIP reanalysis data and observational data for the period of current global warming 1979–2008. It is shown that since the beginning of 90s of XX century the increase of back earth-atmosphere short-wave radiation is observed. Such tendency is in conformity with the cloud cover dynamics and downward short-wave radiation at the surface. Annual averaged radiative balance values at the top are negative; it is consistent with negative annual averaged air temperature, averaged over territory. The downward trend of radiative balance is the most obvious after the beginning of 90s of XX century.

  5. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  6. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  7. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...... across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally...

  8. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  9. The design of an air-cooled metallic high temperature radial turbine

    Science.gov (United States)

    Snyder, Philip H.; Roelke, Richard J.

    1988-01-01

    Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.

  10. Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

    OpenAIRE

    Smirnova, Olena; Fend, Thomas; Schwarzbözl, Peter; Schöllgen, Daniel

    2010-01-01

    Results of calculations on flow and heat transfer in a porous Silicon Carbide honeycomb structure applied as a solar air receiver are presented. In this application porous materials are put in concentrated solar radiation. Flux densities of up to 1000 MW/m² are reached. Simultaneously, ambient air flows through the material to be heated up to temperatures of app. 800°C. This hot air is then used to feed the steam generator of a steam turbine to generate solar electricity (solar tower technolo...

  11. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    Science.gov (United States)

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  12. Simulation of the Effect of an Increase in Methane on Air Temperature

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    The infrared radiative effect of methane was analyzed using the 2D. interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experiment, with the methane volume mixing ratio increased by 10%. was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%. the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor.The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of solar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.

  13. Air temperature fluctuations in Guadalajara, Mexico, from 1926 to 1994 in relation to urban growth

    Science.gov (United States)

    Tereshchenko, I. E.; Filonov, A. E.

    2001-03-01

    Daily, monthly and annual mean air temperatures in Guadalajara, Mexico, were gathered from the time periods: 1926-1994, 1957-1994, 1978-1994. The heat island effect was detected in a trend analysis of the series of minimum temperatures over the period 1926-1994. Also, it was found that the annual mean temperature increased 0.05°C per year. A sharp increase has occurred over the last 20 years because of the abrupt expansion and industrialization of the city of Guadalajara. This study revealed the presence of a cool island in the centre of the metropolitan zone of Guadalajara (MZG) during the wet season. A cross-spectral analysis was used to study the thermal variations with different frequencies. Temperature oscillations in the MZG occurred in time intervals ranging from 3-5 days up to 22 years. The study suggests a relationship between urban growth and temperature variations. The temperature rise relates to urban growth with a correlation co-efficient equal to 0.857.

  14. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  15. MARSpline model for lead seven-day maximum and minimum air temperature prediction in Chennai, India

    Indian Academy of Sciences (India)

    K Ramesh; R Anitha

    2014-06-01

    In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short-term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1°C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1°C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87°C for day-one to 1.27°C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2°C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.

  16. SOLAR DRYING KINETICS OF DATE PALM FRUITS ASSUMING A STEP-WISE AIR TEMPERATURE CHANGE

    Directory of Open Access Journals (Sweden)

    ABDELGHANI BOUBEKRI

    2009-09-01

    Full Text Available The effect of drying using a step-wise temperature change was studied considering the case of indirect solar drying of the date palm fruit (Phoenix dactylifera L.. The followed procedure consists of building drying kinetics by stages of temperatures resulting from drying, in constant conditions, of the same variety of dates from Algerian and Tunisian origin. A law of daily temperature variation prevailed by 60°C, was deduced from a statement of temperature collected on a laboratory solar dryer prototype. Two drying curve equation models were used and some comparisons were discussed. The results obtained for dates from the two origins highlighted different response times by changing the air temperature and showed the possibility of reaching a fruit with standard moisture content in only one day of drying on the basis of initial water contents ranging from 0.40 to 0.65. This moisture range is in practice allotted to rehydrated dates by water immersion in order to enhance their quality. Experiments conducted in a laboratory solar drier under temperatures oscillating around 50°C and 60°C led to the same end up regarding the drying time ensuring a visually appreciable fruit quality. Results obtained by a simple sensorial test revealed a better quality of date fruits treated by solar drying comparing to those issued from industrial heat treatment units.

  17. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback

    Science.gov (United States)

    Austin, Jay A.; Colman, Steven M.

    2007-03-01

    Lake Superior summer (July-September) surface water temperatures have increased approximately 2.5°C over the interval 1979-2006, equivalent to a rate of (11 +/- 6) × 10-2°C yr-1, significantly in excess of regional atmospheric warming. This discrepancy is caused by declining winter ice cover, which is causing the onset of the positively stratified season to occur earlier at a rate of roughly a half day per year. An earlier start of the stratified season significantly increases the period over which the lake warms during the summer months, leading to a stronger trend in mean summer temperatures than would be expected from changes in summer air temperature alone.

  18. Influence of climate on emergency department visits for syncope: role of air temperature variability.

    Directory of Open Access Journals (Sweden)

    Andrea Galli

    Full Text Available BACKGROUND: Syncope is a clinical event characterized by a transient loss of consciousness, estimated to affect 6.2/1000 person-years, resulting in remarkable health care and social costs. Human pathophysiology suggests that heat may promote syncope during standing. We tested the hypothesis that the increase of air temperatures from January to July would be accompanied by an increased rate of syncope resulting in a higher frequency of Emergency Department (ED visits. We also evaluated the role of maximal temperature variability in affecting ED visits for syncope. METHODOLOGY/PRINCIPAL FINDINGS: We included 770 of 2775 consecutive subjects who were seen for syncope at four EDs between January and July 2004. This period was subdivided into three epochs of similar length: 23 January-31 March, 1 April-31 May and 1 June-31 July. Spectral techniques were used to analyze oscillatory components of day by day maximal temperature and syncope variability and assess their linear relationship. There was no correlation between daily maximum temperatures and number of syncope. ED visits for syncope were lower in June and July when maximal temperature variability declined although the maximal temperatures themselves were higher. Frequency analysis of day by day maximal temperature variability showed a major non-random fluctuation characterized by a ∼23-day period and two minor oscillations with ∼3- and ∼7-day periods. This latter oscillation was correlated with a similar ∼7-day fluctuation in ED visits for syncope. CONCLUSIONS/SIGNIFICANCE: We conclude that ED visits for syncope were not predicted by daily maximal temperature but were associated with increased temperature variability. A ∼7-day rhythm characterized both maximal temperatures and ED visits for syncope variability suggesting that climate changes may have a significant effect on the mode of syncope occurrence.

  19. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    Science.gov (United States)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  20. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  1. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    Science.gov (United States)

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing

  2. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures

    CERN Document Server

    Gu, Ziyu; van de Water, Willem; Ubachs, Wim

    2013-01-01

    Rayleigh Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of 366.8 nm detect spontaneous RB scattering at a 90 degree scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1 percent rms noise level or better. The elusive transport coefficient, the bulk viscosity, is effectively derived by a comparing the measurements to the model, yielding an increased trend. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2 percent, meeting the requirements for the future RB scattering LIDAR missions in the Earth's atmosphere. However, the systematic 2 percent deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it...

  3. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  4. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    Science.gov (United States)

    Szymanowski, Mariusz; Kryza, Maciej

    2015-11-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  5. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other...

  6. Airing It Out.

    Science.gov (United States)

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  7. AirCompare

    Data.gov (United States)

    U.S. Environmental Protection Agency — AirCompare contains air quality information that allows a user to compare conditions in different localities over time and compare conditions in the same location...

  8. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals...

  9. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  10. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    Science.gov (United States)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  11. Effects of urban green areas on air temperature in a medium-sized Argentinian city

    Directory of Open Access Journals (Sweden)

    Alejandra S. Coronel

    2015-07-01

    Full Text Available Urban climate is the result of both atmospheric and geographic factors affecting a region, as well as the morphology, structures and human activities in a city. Urban vegetation in particular affects this climate at a local scale and provides many other social, economic and ecological benefits. Thus, it is important to explore the effects of different green areas used for urban and periurban agriculture and forestry activities (UPAF on daily atmospheric temperature and the required degrees of cooling or refrigerating temperature. Comfort temperatures were defined using a range 18-24°C and analyzed using actual measured as well as forecasted temperatures using a future scenario. Actual temperatures were recorded from September 2013 to August 2014 using digital sensors across eight sites in Rosario, Argentina: three in the central core with no vegetation, one in the central core with street trees, one in an urban agriculture site, one in a public park and two in periurban agricultural areas. Results show that air temperature in the central core with no vegetation were higher than those in other sites with vegetation during day and night, with the exception of the temperatures measured at the central core site with street trees. Findings also show that temperature effects in urban agricultural gardens of approximately 0.2 ha were similar to those of gardens and public parks 2-3 ha in size. Three UPAF types were classified according to cooling degree days, which decreased in order from (1 central core with no trees; (2 central core with street trees and public parks; and (3 urban and periurban agriculture areas. Conversely, the opposite trends for heating degree days were found. Results from this study can be used for integrating UPAF measures into climate change mitigation and urban planning policies in medium-sized cities in the developing world.

  12. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  13. AIRS/Aqua Level 1B HSB geolocated and calibrated brightness temperatures V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  14. Air Pollution Training Programs.

    Science.gov (United States)

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  15. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel ...

  16. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  17. We Pollute the Air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    1.Clean air is important to good health.If the aircontains impurities,they may be absorbed by ourbodies and make us ill.We need clean air,butunfortunately,air pollution is generally present,especially in cities. 2.Our cities have many factories,which we need tomake food products,clothing and many other things.

  18. Air Travel Health Tips

    Science.gov (United States)

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  19. The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina

    Science.gov (United States)

    Alchapar, Noelia Liliana; Cotrim Pezzuto, Claudia; Correa, Erica Norma; Chebel Labaki, Lucila

    2016-07-01

    This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.

  20. Response of tomato to radiation intensity and air temperature under plastic-house ultraviolet protection

    International Nuclear Information System (INIS)

    Enhance of ultraviolet radiation intensity on the earth surface affected by ozon depletion on stratospheric layer cause changing on the response of plant to radiation quality. One technique for reducing photo destructive UV radiation is micro climate modification by using mulch and plastic-cover UV protection. So that, growth and yield of plant can be optimalized. This research designed an experiment to find out the effect of two kinds of plastic-cover, UV plastic and conventional plastic, on microclimate condition and tomato performance under plastic-house. The result of this research described that mulch and plastic cover can modify radiation and air temperature under plastics-house, but it can not improve growth and yield of the tomato

  1. Investigation into the behaviour of HEPA filters at high temperature, air humidity, and elevated differential pressure

    International Nuclear Information System (INIS)

    Investigations into the response of full-size HEPA filters to extended operation under high humidity airflows were continued with tests of 47 commercial and 13 prototypical filter units. The parameters studied were relative air humidity or liquid moisture content, temperatures between 20 and 800C, filter loading with dust, exposure time, and filter orientation to airflow. In view of complementary investigations with samples of HEPA-filter media, a laboratory test facility was built and put into operation. Based on the establishment of the main failure mechanisms, new prototype filters, incorporating a filter medium reinforced by glass-fiber cloth and a new separator design with modified corrugations, were built and tested. (orig./DG)

  2. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  3. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  4. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    Science.gov (United States)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  5. Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies

    Science.gov (United States)

    Chen, Wei; Hong, Xiaowei; Lu, Riyu; Jin, Aifen; Jin, Shizhu; Nam, Jae-Cheol; Shin, Jin-Ho; Goo, Tae-Young; Kim, Baek-Jo

    2016-01-01

    This study investigates the interannual variation of summer surface air temperature over Northeast Asia (NEA) and its associated circulation anomalies. Two leading modes for the temperature variability over NEA are obtained by EOF analysis. The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode. This anomaly extends from southeast of Lake Baikal to Japan, with a central area in Northeast China. The second EOF mode is characterized by a seesaw pattern, showing a contrasting distribution between East Asia (specifically including the Changbai Mountains in Northeast China, Korea, and Japan) and north of this region. This mode is named the East Asia (EA) mode. Both modes contribute equivalently to the temperature variability in EA. The two leading modes are associated with different circulation anomalies. A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet. On the other hand, a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet. In addition, the NEA mode tends to be related to the Eurasian teleconnection pattern, while the EA mode is associated with the East Asia-Pacific/Pacific-Japan pattern.

  6. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  7. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  8. Air ions and aerosol science

    Science.gov (United States)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  9. Air ions and aerosol science

    Energy Technology Data Exchange (ETDEWEB)

    Tammet, H. [Department of Environmental Physics, Tartu University, Tartu, Estonia (Estonia) 2400

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4{endash}1.8 nm. {copyright} {ital 1996 American Institute of Physics.}

  10. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  11. Long-term air temperature changes in Ljubljana (Slovenia in comparison to Trieste (Italy and Zagreb (Croatia

    Directory of Open Access Journals (Sweden)

    Ogrin Darko

    2015-09-01

    Full Text Available The cities of Ljubljana, Trieste and Zagreb are proximate in terms of distance but differ in terms of geographical and climatic conditions. Continuous meteorological measurements in these cities began in the mid-19th century. The 100-year trends of changes in mean annual and seasonal air temperatures for these cities are presented here, evaluating the differences between them which result from their different geographical and climatic positions. Differences in trends between Ljubljana and Zagreb that result from different measurement histories and the impact of urban climate are also presented: the impact of city growth on air temperatures in Ljubljana after 1950 was not completely eliminated in the process of data homogenization. The lowest air warming trends occur in the maritime climate of Trieste (mean annual air temperature: + 0.8 °C × 100 yr−1, where measurements were continuously performed in the densely built-up section of the city. The strongest trends occur in Ljubljana, mainly due to city growth (mean annual air temperature: + 1.1 °C × 100 yr−1. Comparing the linear trends in Zagreb-Grič and in Ljubljana, the impact of Ljubljana's urban heat island on the 100-year warming trend was assessed at about 0.2 °C, at 0.3–0.4 °C for the trend after 1950, and if non-homogenized data are used, at about 0.5 °C.

  12. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  13. Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis

    International Nuclear Information System (INIS)

    Highlights: • Based on RHTAC technology, RRTC has been developed, and was adopted by Shenwu Pyrolysis Process (SPP). • For RRTC, the low calorific value gas fuel can be used and the heat loss in fume exhausted is low. • The RRTCs can realize accurate temperature control and the separation of volatile materials and fume in the pyrolyzer. • Tar yield and gas quality is improved. Moreover, SPP could solve some technical problems for low-rank coal pyrolysis. - Abstract: Regenerative High Temperature Air Combustion (RHTAC) technology is composed of circular-ceramic regenerator, burners, small four-way reversing valve and control system. RHTAC technology works by using the regenerator in burners to complete heat exchange between the high-temperature fume exhausted and the combustion air. Based on RHTAC technology, Regenerative Radiant Tube Combustor (RRTC) has been developed, and was adopted by Shenwu Pyrolysis Process (SPP), which is a new pyrolysis technology with the heat-carrier-free rotating bed. SPP was researched and developed to upgrade low-rank coal into the upgraded coal, tar and pyrolyzing gas. Presently, various coals from China and other countries have been conducted, including Lignite and Long flame coal. To understand the function of the RRTCs in SPP, a pilot plant has been constructed and used to investigate the effects of the RRTCs on the fume and pyrolyzer temperature distributions and pyrolyzing products. The results show that low calorific value gas fuel (>700 kcal/Nm3) can be used, the heat loss in fume exhausted is low (temp. about 150 °C), so thermal efficiency of the RRTC is greatly improved; the RRTCs can realize accurate temperature control and the separation of volatile materials and fume in the pyrolyzer, so as to increase tar yield and improve gas quality. The tar yield is more than 90% of the Gray-King tar yield; the pyrolyzing gas contains high contents of CH4, H2 and CO. Moreover, SPP could solve some technical problems, such as

  14. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  15. 非等温送风机柜空调的性能研究%Performance Analysis of Machine Cabinet Air Conditioner when Supplying Air with Different Temperature

    Institute of Scientific and Technical Information of China (English)

    牛倩倩; 臧润清; 郝莹

    2011-01-01

    The equipments in the machine room have great calorie power. The calorie power of different cabinet and the different part of a cabinet are also different. The position of the cabinets with different caloricity is indefinite, as a result, the machine room air conditioning can not satisfy the cooling. A cabinet on inequitable internal heat to cool "peer-to-peer" was presented. Through the experiment study ,for an evaporator with multi-channel ,increase the length of the boiling tube and supply the refrigerant separately ,can supply air with different temperature and realize a higher cooling efficiency. Another system equipped back pressure valves on the return gas pipe can realize supplying air with different temperature but the efficiency is lower.%机房设备具有发热量大、每个机柜发热量不同和个体机柜各个局部发热量不一致的特点.由于机房内不同发热量机柜摆放的不确定性,目前在用的机房空调不能满足降温要求.本文提出一种针对于个体机柜内部发热量不均进行"点对点"降温的机柜空调.通过试验研究可知,在一个机体上的多通路蒸发器,通过增加两个通路蒸发管长度,并与其它通路分开供液,可以实现非等温送风,且制冷系统具有较高的工作效率.另一种回气管路装有背压阀的系统虽能实现非等温送风,但制冷系统的效率较低.

  16. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  17. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2013-01-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model that only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I (Special Sensor Microwave Imager and AMSR-E (Advanced Microwave Scanning Radiometer for EOS data. Under nearly cloud-free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 70% for Barrow, using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Trajectories based on 10-m wind fields from both reanalyses show large spatial differences in the Central Arctic, leading to differences in the correlations between modeled and observed 2-m air temperatures. They are most pronounced at Tara, where explained variances amount to 70% using JRA and 80% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 200 km radius around the site.

  18. Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter

    Science.gov (United States)

    Yang, Shuangyan; Li, Tim

    2016-10-01

    The intraseasonal oscillation (ISO) of air temperature over the mid- and high-latitude Eurasia in boreal winter was investigated by NCEP-NCAR reanalysis data. It is found that the intraseasonal temperature disturbances exhibit maximum variability near the surface in the region of 50°-75°N, 80°‒120°E and they propagate southeastwards at average zonal and meridional phase speeds of 3.2 and 2.5 m s-1, respectively. The low-level temperature signal is tightly coupled with upper-tropospheric height anomalies, and both propagate southeastward in a similar phase speed. A diagnosis of the temperature budget reveals that the southeastward propagation is primarily attributed to the advection of the temperature anomaly by the mean wind. A wave activity flux analysis indicates that the southeastward propagating wave train is likely a result of Rossby wave energy propagation. The source of the Rossby wave train appears at the high latitude Europe/Atlantic sector, where maximum wave activity flux convergence resides. During its southeastward journey, the ISO perturbation gains energy from the mean flow through both kinetic and potential energy conversions. A physics-based empirical model was constructed to predict the intraseasonal temperature anomaly over southeast China. The major predictability source is the southeastward-propagating ISO signal. The data for 1979‒2003 were used as a training period to construct the empirical model. A 10-yr (2004‒2013) independent forecast shows that the model attains a useful skill of up to 25 days.

  19. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. PMID:23664304

  20. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  1. On the Controlling Factor of Catalyst Temperature in C3H8-Air Mixture

    Institute of Scientific and Technical Information of China (English)

    Goro ONUMA; Mitsuaki TANABE; Kiyoshi AOKI

    2001-01-01

    Catalytic combustion of propane-air mixture was investigated. Platinum catalysts over a flat stainless steel with y alumina washcoat were employed. The employed burner has three catalysts set parallel to the mixture flow, spaced at an interval of 5, 10 and 15 mm. Both experiment and numerical simulation were made at inlet temperature of 553 K, inlet velocity of 3 to 7 rn/s and equivalence ratio of 0.3 to 0.5. In the numerical simulation, two-dimensional,steady state model was developed to calculate the temperature and species concentration in gas-phase. In this model,chemical reaction on the catalyst surface and that in the gas phase were assumed to occur in three-steps. The numerical results show good agreement with experimental results. It was found that the properties of the catalyst strongly affect the catalyst surface temperature. Especially, the thermal conductivity of catalyst has a great effect,while the emissivity of catalyst has less effect.

  2. Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model

    Science.gov (United States)

    Wu, Y.; Latif, M.; Park, W.

    2016-08-01

    The multiyear predictability of Northern Hemisphere surface air temperature (SAT) is examined in a multi-millennial control integration of the Kiel Climate Model, a coupled ocean-atmosphere-sea ice general circulation model. A statistical method maximizing average predictability time (APT) is used to identify the most predictable SAT patterns in the model. The two leading APT modes are much localized and the physics are discussed that give rise to the enhanced predictability of SAT in these limited regions. Multiyear SAT predictability exists near the sea ice margin in the North Atlantic and mid-latitude North Pacific sector. Enhanced predictability in the North Atlantic is linked to the Atlantic Multidecadal Oscillation and to the sea ice changes. In the North Pacific, the most predictable SAT pattern is characterized by a zonal band in the western and central mid-latitude Pacific. This pattern is linked to the Pacific Decadal Oscillation, which drives sea surface temperature anomalies. The temperature anomalies subduct into deeper ocean layers and re-emerge at the sea surface during the following winters, providing multiyear memory. Results obtained from the Coupled Model Intercomparison Project Phase 5 ensemble yield similar APT modes. Overall, the results stress the importance of ocean dynamics in enhancing predictability in the atmosphere.

  3. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  4. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized.

  5. High-temperature stability of polycrystalline cubic boron nitride cutting tool materials in air

    International Nuclear Information System (INIS)

    Highlights: ► Oxidation of cBN–TiC composites is not passive within 550–1100 °C, obeying a linear rate law. ► Outward diffusion of Ti, Al and C, and inward diffusion of O2 controlled this oxidation. ► Ultimately, the oxidation scale is made of a porous outer layer (TiO2 and Al2O3 sub-layers) and an inner layer. ► Constitution and morphology of the inner layer vary with temperature. ► Formation and evaporation of B2O3 keeps the porosity within the oxidation scale. - Abstract: Thermal stability of cubic boron nitride (cBN)–TiC cutting tool material in air was analyzed using TGA and oxidation tests in a muffle furnace within the temperature range 550–1100 °C for a holding time of 60 min. A scanning electron microscope equipped with an energy dispersive X-ray spectroscopy analysis system was particularly used for the characterization of the oxidation scales obtained thereafter. The significance of the results obtained was discussed in terms of oxidation kinetics law, oxidation mechanisms as well as variation of constitution and morphology of the oxidation scale with temperature, keeping focus on the machining context.

  6. Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability.

  7. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  8. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Science.gov (United States)

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  9. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags.

    Science.gov (United States)

    Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network. PMID:26966662

  10. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected

  11. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2014-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric Distributed Temperature Sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such virtual cable would not be affected by

  12. Variation in surface air temperature of China during the 20th century

    Science.gov (United States)

    Soon, Willie; Dutta, Koushik; Legates, David R.; Velasco, Victor; Zhang, Weijia

    2011-10-01

    The 20th century surface air temperature (SAT) records of China from various sources are analyzed using data which include the recently released Twentieth Century Reanalysis Project dataset. Two key features of the Chinese records are confirmed: (1) significant 1920s and 1940s warming in the temperature records, and (2) evidence for a persistent multidecadal modulation of the Chinese surface temperature records in co-variations with both incoming solar radiation at the top of the atmosphere as well as the modulated solar radiation reaching ground surface. New evidence is presented for this Sun-climate link for the instrumental record from 1880 to 2002. Additionally, two non-local physical aspects of solar radiation-induced modulation of the Chinese SAT record are documented and discussed.Teleconnections that provide a persistent and systematic modulation of the temperature response of the Tibetan Plateau and/or the tropospheric air column above the Eurasian continent (e.g., 30°N-70°N; 0°-120°E) are described. These teleconnections may originate from the solar irradiance-Arctic-North Atlantic overturning circulation mechanism proposed by Soon (2009). Also considered is the modulation of large-scale land-sea thermal contrasts both in terms of meridional and zonal gradients between the subtropical western Pacific and mid-latitude North Pacific and the continental landmass of China. The Circum-global teleconnection (CGT) pattern of summer circulation of Ding and Wang (2005) provides a physical framework for study of the Sun-climate connection over East Asia. Our results highlight the importance of solar radiation reaching the ground and the concomitant importance of changes in atmospheric transparency or cloudiness or both in motivating a true physical explanation of any Sun-climate connection. We conclude that ground surface solar radiation is an important modulating factor for Chinese SAT changes on multidecadal to centennial timescales. Therefore, a

  13. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  14. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen;

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  15. Analisis Pengaruh Salinitas dan Temperatur Air Laut pada Wet Underwater Welding terhadap Laju Korosi

    Directory of Open Access Journals (Sweden)

    Adrian Dwilaksono

    2013-03-01

    Full Text Available Struktur konstruksi badan kapal lambat laut mengalami kerusakan . Apabila kapal mengalami kerusakan pada konisi darurat, pekerjaan las bawah air menjadi hal yang diutamakan. Sedangkan faktor korosi pada pengelasan basah bawah air merupakan masalah yang pasti terjadi. Melalu penelitian ini dikaji perbandingan laju korosi sambungan las material baja karbon rendah yang diberi perlakuan pengelasan basah bawah air dengan salinitas 33‰ , 35‰ dan suhu 200C, 250C. Dari keempat variasi pengelasan tersebut diberikan variasi ketebalan pelat sebagai pembanding. Penelitian laju korosi dilakukan dengan pengujian terhadap material baja A36 yang dilas menggunakan metode SMAW pada pengelasan basah bawah air pada posisi 1G (datar dengan elektroda AWS E-6013 yang dilapisi isolasi yang bersifat kedap air. Dari data pengujian laju korosi  diketahui bahwa pengelasan basah bawah air dengan salinitas 35‰ lebih tinggi di bandingkan dengan pengelasan basah bawah air dengan salinitas 33‰, sedangkan untuk pengujian laju korosi dengan variasi suhu diketahui bahwa dengan suhu 250C cenderung lebih besar, meskipun hasil nya tidak signifikan dibandingkan dengan suhu 200C, dan semakin tebal pelat, laju korosinya juga cenderung lebih tinggi. Hasil pengujian menunjukkan bahwa ketebalan yang berkurang pada Salinitas 33‰ dan Suhu 200C yaitu sebesar 0.2124 (mm/year , untuk Suhu 250C yaitu sebesar 0.2139(mm/year pada plat 10mm, Sedangkan untuk plat 12 mm , suhu 200C yaitu sebesar 0.3203 (mm/year , untuk Suhu 250C yaitu sebesar 0.3205 (mm/year. Untuk Salinitas 35‰ dan Suhu 200C yaitu sebesar 0.4521 (mm/year , untuk Suhu 250C yaitu sebesar 0.4538(mm/year pada plat 10mm, Sedangkan untuk plat 12 mm , suhu 200C yaitu sebesar 0.5547 (mm/year , untuk Suhu 250C yaitu sebesar 0.5550 (mm/year.

  16. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  17. Effects of Photosynthetically Active Radiation and Air Temperature on CO2 Uptake of Pterocarpus macrocarpus in the Open Field

    Institute of Scientific and Technical Information of China (English)

    Sureeporn Kerdkankaew; Jesada Luangjame; Pojanie Khummongkol

    2005-01-01

    Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2℃ intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as:A= [(-0.0575 Ta2+ 2.6691 Ta-23.264)I/(-4.8794Ta2+227.13Ta-2456.9)+I](-0.00766Ta2+0.40666Ta-3.99924)

  18. Aeromicrobiology/air quality

    Science.gov (United States)

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  19. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    Institute of Scientific and Technical Information of China (English)

    Weichun MA; Liguo ZHOU; Hao ZHANG; Yan ZHANG; Xiaoyan DAI

    2016-01-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island,carbon emissions,climate change,etc.This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai,China.The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales.Secondly,the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature.The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250 m resolution in spring and autumn on an annual scale than observed at a 1 km resolution.Although the distribution pattern of the air temperature thermal field varies in different seasons,the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers,with the central urban area as the primary center and the built-up regions in each district as the subcenters.This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai,but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  20. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  1. A decadal microwave record of tropical air temperature from AMSU-A/aqua observations

    Science.gov (United States)

    Shi, Yuan; Li, King-Fai; Yung, Yuk L.; Aumann, Hartmut H.; Shi, Zuoqiang; Hou, Thomas Y.

    2013-09-01

    Atmospheric temperature is one of the most important climate variables. This observational study presents detailed descriptions of the temperature variability imprinted in the 9-year brightness temperature data acquired by the Advanced Microwave Sounding Unit-Instrument A (AMSU-A) aboard Aqua since September 2002 over tropical oceans. A non-linear, adaptive method called the Ensemble Joint Multiple Extraction has been employed to extract the principal modes of variability in the AMSU-A/Aqua data. The semi-annual, annual, quasi-biennial oscillation (QBO) modes and QBO-annual beat in the troposphere and the stratosphere have been successfully recovered. The modulation by the El Niño/Southern oscillation (ENSO) in the troposphere was found and correlates well with the Multivariate ENSO Index. The long-term variations during 2002-2011 reveal a cooling trend (-0.5 K/decade at 10 hPa) in the tropical stratosphere; the trend below the tropical tropopause is not statistically significant due to the length of our data. A new tropospheric near-annual mode (period ~1.6 years) was also revealed in the troposphere, whose existence was confirmed using National Centers for Environmental Prediction Reanalysis air temperature data. The near-annual mode in the troposphere is found to prevail in the eastern Pacific region and is coherent with a near-annual mode in the observed sea surface temperature over the Warm Pool region that has previously been reported. It remains a challenge for climate models to simulate the trends and principal modes of natural variability reported in this work.

  2. Ocean and atmosphere coupling, connection between sub-polar Atlantic air temperature, Icelandic minimum and temperature in Serbia

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2009-01-01

    Full Text Available In the presented paper correlation between the northern part of the Atlantic ocean (belt between 50-65°N and the atmospheric pressure is examined. Connection between the ocean temperature and atmospheric pressure is the most obvious in the El Nino southern oscillation mechanism. Thus, so far it is not known that such a mechanism exist in the Atlantic ocean. The main accent in the presented paper is focused on the connection between Iceland low and the sea surface temperature (SST in the subpolar part of the Atlantic ocean (used data are in grid 5x5°. By hierarchical cluster analysis five relatively unified clusters of sea surface temperatures grid cells are defined. By multiple linear regression, we examined the correlation between each of the depicted clusters with position and intensity of Iceland low, and identified the most important grid cells inside every cluster. The analysis of the relation between Iceland low and air temperature in Serbia and Belgrade has shown the strongest correlation for the longitude of this centre of action. .

  3. Influence of air temperature and humidity on simultaneous collection of H-3 and C-14 by mono-ethanolamine solution

    International Nuclear Information System (INIS)

    Lumagel Plus scintillator was selected as the most suitable scintillator for simultaneous collection of H-3 and C-14 by using mono-ethanolamin (MEA) solution. The influence of air temperature and humidity on the collection efficiency of H-3 and C-14 was examined. As the result, when the weight of water in MEA was less than 1000 mg, the samples became colorless without separation into two phases, and the collection efficiency of 99% and more was obtained for C-14 within the collection time of 3.7 hours. On the other hand, the collection efficiency for H-3 decreased with increase of the weight of water in the collected air, but it was more than 90% even at high temperature of 30°C and high relative humidity of 90%. It was found that this method is practically useful for simultaneous determination of H-3 and C-14 concentration in air. (author)

  4. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  5. Effects of warm air-drying on intra-pulpal temperature.

    Science.gov (United States)

    Galan, D; Kasloff, Z; Williams, P T

    1991-08-01

    This study was designed to determine what effects different warm air-drying conditions have on the intra-pulpal temperature (IPT), with or without chamber preparation and with or without an acid-etching treatment of the enamel. Four human maxillary centrals and four cuspids had lingual access openings prepared to accommodate a thermal sensor probe. Half of the specimens received a labial chamber preparation and half were acid-etched. All specimens were stored in water at 37 degrees C prior to testing. Labial aspects were positioned at 2 cm and 6 cm from the nozzle of a 500W hair dryer and IPTs were recorded after 15, 30, 45, and 60-second exposures. Exposure times for the acid-etched samples were modified to 10 seconds at 2 cm and 15 seconds at 6 cm. Results showed that for unetched teeth, increases in the IPT were greater at the 2 cm/15-second exposure (a 10.4-12.0 degrees C increase) than at the 6 cm/15-second exposure (a 3.9-6.6 degrees C increase). Even greater temperature changes were seen as the exposure times were increased to 30, 45, and 60 seconds. When the teeth were acid-etched, IPT rises of 5.6-10.1 degrees C and 5.8-8.7 degrees C were measured at 2 cm/10 seconds and at 6 cm/15 seconds, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  7. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  8. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  9. Estimation of Pan Evaporation Using Mean Air Temperature and Radiation for Monsoon Season in Junagadh Region

    Directory of Open Access Journals (Sweden)

    Manoj J. Gundalia

    2013-11-01

    Full Text Available The abstract should summarize the content of the paper. Try to keep the abstract below 200 words. Do not make references nor display equations in the abstract. The journal will be printed from the same-sized copy prepared by you. Your manuscript should be printed on A4 paper (21.0 cm x 29.7 cm. It is imperative that the margins The significance of major meteorological factors, that influence the evaporation were evaluated at daily time-scale for monsoon season using the data from Junagadh station, Gujarat (India. The computed values were compared. The solar radiation and mean air temperature were found to be the significant factors influencing pan evaporation (Ep. The negative correlation was found between relative humidity and (Ep, while wind speed, vapour pressure deficit and bright sunshine hours were found least correlated and no longer remained controlling factors influencing (Ep. The objective of the present study is to compare and evaluate the performance of six different methods based on temperature and radiation to select the most appropriate equations for estimating (Ep. The three quantitative standard statistical performance evaluation measures, coefficient of determination (R2 root mean square of errors-observations standard deviation ratio (RSR and Nash-Sutcliffe efficiency coefficient (E are employed as performance criteria. The results show that the Jensen equation yielded the most reliable results in estimation of (Ep and it can be recommended for estimating (Ep for monsoon season in the study region.

  10. The Effect of Roof Angles on Indoor Air Temperatures in Terrace Houses in Malaysia

    Directory of Open Access Journals (Sweden)

    A. B. Ramly

    2006-12-01

    Full Text Available The main aim of energy efficiency in building design is to create buildings that utilise minimum amount of energy while meeting the comfort standards as high as or higher than those provided by conventional buildings.To achieve these standards, it is necessary to study the local environment in order to assess its positive and negative features (impact on the building. The results will provide a basic understanding of heat transfer and human thermal comfort requirements. It also provides foundation for which an energy efficient design of buildings can be established. The design of residential buildings has a significant impact on everyday lives of people. It includes the types and forms of buildings that are commonly occupied by people. In Malaysia, the 'terrace house' constitutes the majority of the residential building stock on which this study is based. The study considers the effects of the different roof angles on reducing solar gain and indoor temperatures through eight directions within 24 hours. To analyse and explain that effect, five different angles of roof were chosen for the simulations. In general, all the angles were chosen due 10 their architectural design characteristics. These angles start from 0 degree as a horizontal flat roof to 60 degrees, i.e. increment of every 15 degrees. The research is seen as providing a tool in evaluating the dynamic indoor air temperature and the effect of roof angles. The evaluation is derived from a series of computer simulations using commercially available software called BLAST.

  11. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  12. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    Science.gov (United States)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

  13. Air Temperature Changes over the Tibetan Plateau and Other Regions in the Same Latitudes and the Role of Ozone Depletion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Renhe; ZHOU Shunwu

    2009-01-01

    Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.

  14. The Influence of Urbanization on Air Temperature in Nagqu County, Tibetan Plateau

    Science.gov (United States)

    Lin, Yun; Hu, Zeyong

    2016-04-01

    According to meteorological data obtained at Nagqu meteorological station, which is in the Nagqu County (NQ) and at site BJ of Nagqu Station of Plateau Climate and Environment (BJ), which is outside Nagqu County, the differences in air temperature (Ta) variations at NQ and BJ from 2001 to 2014 were compared and analyzed with respect of urbanization. Both the natural processes and human activities that could lead to the differences in Ta between NQ and BJ were studied in this study. Natural processes are characterized by meteorological variables such as wind, precipitation, sunshine hours, vapor pressure and the human activities are characterized by urbanization index. The results show that the annual mean temperature (Ta_mean) and annual mean minimum temperature (Ta_min) at NQ are higher than those at BJ from 2001 to 2014. But the annual mean maximum temperature (Ta_max) at NQ is smaller than that at BJ. The urbanization of Nagqu County has increased in the past fifteen years and reached to 27.24% in 2014. There are good agreements between Ta_max and natural factors including sunshine hours and water vapor pressure at NQ and BJ. And Ta_min has a positive relationship with human activities such as the GDP and population of Nagqu County. But the relationship between Ta_min with human activities at NQ is stronger than that at BJ. This is because BJ is a field site and the strength of human activity is weak. The Natural processes has a stronger influence on the variation of Ta_min at BJ than human activities do.

  15. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  16. Effects of free-air CO2 and temperature enrichment on soybean growth and development

    Science.gov (United States)

    Ruiz Vera, U. M.; Bernacchi, C. J.

    2012-12-01

    According to the growing degree days approach, the progression of plant developmental stages requires certain accumulation of heat; therefore greenhouse gas-induced warming of the atmosphere could contribute to more rapid plant development. However, the influence of rising carbon dioxide concentration ([CO2]) on development of crops is uncertain, accelerating and other times delaying certain developmental stages. In soybean, the increase of [CO2] is shown to delay reproductive development, which is attributed to a higher investment of resources into extra nodes. The combined effects of elevated temperature and [CO2] can have significant changes in the progression through development that can influence on total grain production, carbon uptake, and susceptibility to early end-of-season frosts. We designed the Temperature by Free Air CO2 Enrichment (T-FACE) experiment to test over two growing seasons (2009 and 2011) and under field conditions the impact of increased temperature and/or [CO2] on soybean. The heated T-FACE subplots were situated in the larger FACE plots at 385 or 585 ppm of [CO2] and subjected to either ambient or heated (+~3.5°C) temperatures. The experiment is full factorial with ambient temperature and [CO2] (control), elevated temperature (eT), elevated [CO2] (eC) and combined (eT+eC) treatments. We hypothesized that soybean grown (1) under elevated [CO2] will produce more nodes than control, (2) under high temperature will produce nodes faster than control and (3) under both elevated temperature and [CO2] will produce more nodes in less time than control. For reproductive development, we hypothesized that (1) reproductive development will initiate simultaneously regardless of increased [CO2] or temperature because soybean reproduction is triggered by day length, (2) elevated temperature will accelerate the progression through key reproductive stages and (3) the delay in soybean reproductive development by elevated [CO2] will be ameliorated by the

  17. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  18. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  19. Oxidation of high-temperature alloys J(superalloys) at elevated temperatures in air.II

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, N.; Shahid, K.A.; Rahman, S. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan)] [and others

    1995-04-01

    In continuation of previous work, the oxidation behavior of three more alloys, namely UHBA 25L, Sanicro 28, and Inconel 690, was studied at high temperatures (600 to 1200{degrees}C). The oxidation kinetics of UHBA 25L and Sanicro 28 followed the parabolic-rate law at 800 and 1000{degrees}C. At 600{degrees}C oxidation rates were very low, while at 1200{degrees}C the parabolic-rate law was initially observed, followed by {open_quotes}breakaway.{close_quotes} Both alloys suffered extensive spalling at all temperatures, despite their high Cr contents of about 25% and 27%, respectively. This is attributed to significant amounts of Mn present. Sanicro 28, with higher Cr, suffered an early breakaway at 100{degrees}C because of the presence of Mo, which forms a low-melting oxide. Inconel 690 showed mixed behavior at 600 and 800{degrees}C, parabolic at 1000{degrees}C and cubic at 1200{degrees}C. Inconel 690 and Incoloy 800H have the best overall performance for the range of temperature and exposure time under study. This may be ascribed to the absence of Mo, the presence of small amounts of Ti and Al, and relatively small amount of Mn in these alloys.

  20. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  1. Health Effects of Air Pollution

    Science.gov (United States)

    ... air pollution How to protect yourself from air pollution Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home The environment and your health Air Health effects of air pollution ... Health effects of air pollution Breathing air that ...

  2. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  3. The Microclimate in Protective Fire Fighter Footwear: Foot Temperature and Air Temperature and Relative Humidity

    OpenAIRE

    Irzmańska Emilia

    2016-01-01

    The study material consisted of two models of protective firefighter footwear. The tests were conducted on subjects in a laboratory using an ergometric treadmill. The parameters of footwear microclimate were continuously recorded using T/RH sensors. For the leather footwear, the highest foot temperature was recorded in the 50th minute of the experiment (35.8°C in the dorsal region and 37.3°C in the plantar region) and for the polymer footwear in the 60th minute of the experiment (35.4°C in th...

  4. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    Science.gov (United States)

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  5. Effect of eggshell temperature and a hole in the air cell on the perinatal development and physiology of layer hatchlings

    NARCIS (Netherlands)

    Molenaar, R.; Vries, de S.; Anker, van den I.; Meijerhof, R.; Kemp, B.; Brand, van den H.

    2010-01-01

    To investigate the effect of incubation conditions on layer hatchlings, an experiment was performed in which layer eggs were incubated at a normal (37.8°C) or high (38.9°C) eggshell temperature (EST) and a hole was punctured in the air cell of half of the eggs in both EST treatments from d 14 of inc

  6. Diurnal, Seasonal and Interannual Variations of Surface Temperature Over Greenland As Observed In AIRS, MODIS and In-Situ Measurements

    Science.gov (United States)

    Lee, J. N.; Susskind, J.; Wu, D. L.; Iredell, L. F.; Nowicki, S.; Hall, D. K.; Liu, Y.

    2014-12-01

    The near surface temperature record is an important indicator of Greenland ice mass loss. During the summer of 2012, almost the entirety of the Greenland ice sheet simultaneously experienced surface melt, including Summit. In this presentation, we will show the spatial distribution of the seasonal and interannual variability of surface skin and surface air temperatures (Ts and Ta) as depicted in the AIRS Version-6 data set for the 12 year period since 2002 to present. We will compare these variability with those obtained from MODIS Ice Surface Temperature (IST), and from two in situ stations at Summit. The comparison between AIRS Ts and MODIS IST is in good agreement within ~3K during the summer season (JJA) except near the coast. The differences are most pronounced during the winter season (DJF), in the south of the Greenland near the coast, as MODIS IST is more than 10K lower than AIRS Ts. The temporal correlation at Summit between two temperature data set is ~0.85 during 10 years of analysis period. Large seasonal dependence on diurnal variability is found over Summit. The most significant diurnal variation is found during warm season (March to August), when interannual variability is low.

  7. A model on the effect of temperature and moisture on pollen longevity in air-dry storage environments

    NARCIS (Netherlands)

    Hong, T.D.; Ellis, R.H.; Buitink, J.; Walters, J.; Hoekstra, F.A.; Crane, J.

    1999-01-01

    Data on the survival of pollen ofTypha latifoliaL. stored for up to 261 d over seven different saturated salt solutions (providing 0.5 to 66% relative humidity) and six different constant temperatures (from −5 to +45 °C) were analysed to quantify the effect of air-dry storage environment on pollen l

  8. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    Science.gov (United States)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary

  9. Indonesia's Clean Air Program

    OpenAIRE

    Budy P. Resosudarmo

    2002-01-01

    Unprecedented industrial development in Indonesia during the last two decades, accompanied by a growing population, has increased the amount of environmental damage. One of the most important environmental problems is that the level of air pollution in several large cities has become alarming, particularly in the last few years. This high pollution level has stimulated the government to develop a national clean air program designed to control the quantity of pollutants in the air. However, th...

  10. Air Quality in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Pietilae, P. [Tampere University of Technology / ECAT-Lithuania (Lithuania); Kliucininkas, L. [Department for Environmental Engineering, Kaunas University of Technology (Lithuania)

    2000-07-01

    Sustainable monitoring of the ambient air is the major preventive measure of ensuring its proper quality. Only with a monitoring procedure going-on a continuous basis it is possible to make an objective evaluation of air pollution trends, of the efficiency of air protection measures and, partially, to a certain extent of the impact the pollution exerts on a human health. The information stemming from the monitoring procedure must be reliable, sustainable and efficient. (orig.)

  11. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  12. Bad traffic, bad air

    OpenAIRE

    Duca, Edward

    2012-01-01

    Air pollution is one of Malta’s greatest concerns. Transportation is the principal source with over 300,000 vehicles belching out smoke, which damages our environment and health. Emissions from vehicles need to be monitored and controlled, and the information used to improve the current system and ensure an acceptable air quality. By using the pollution data set, Nicolette Formosa (supervised by Dr Kenneth Scerri) mapped the air pollution levels and major sources around Malta. http://www....

  13. 走近Air

    Institute of Scientific and Technical Information of China (English)

    马华

    2007-01-01

    @@ 大家对air这个单词并不陌生,它通常用作名词,表示"空气".例如: 1.Better let in fresh air. 最好让新鲜空气进来. 2.The air smells of paint. 空气里散发着油漆味. 3.The air was heavy with perfume of the flowers. 空气里弥漫着花朵的芳香.

  14. Picosecond laser filamentation in air

    Science.gov (United States)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  15. Oxidation characteristics of nickel-base superalloys at high temperature in air and helium atmospheres

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for piping and structural materials in a very high temperature gas cooled reactor (VHTR). They are subjected to the environmental degradation caused by a continuous process for oxidation due to small amount of impurities in He coolant during long term operation. In the present study, the oxidation behaviors of several nickel-base superalloys such as Alloy-617, Haynes-214 and Haynes-230 in particular, were studied at the temperature of 900 and 1100 C degrees in air, and in the high purity He environment. Oxide layers were analyzed by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray analysis). The differences in oxidation behaviors of these alloys were mainly caused by different protective oxide layers on surface. In the case of Alloy-617 and Haynes-230, Cr2O3 layer formed on the surface which is not stable at 1100 C degrees. Therefore, the weight increased significantly due to oxidation at the initial stage, which followed by a decrease due to the scaling and volatilization of Cr2O3 layer. On the other hand, since Haynes-214 has mainly Al2O3 oxide layer on surface which is more stable and has more dense structure at higher temperature, the weight gain eventually reaches to parabolic. Microstructural characteristics of internal carbides and carbide depletion zone were analyzed. With oxidation time, continuous grain boundary carbides of M23C6 type were getting thin or it disappeared partially. Especially, carbides on grain boundary disappeared entirely below oxide layer (carbide depletion zone). It was getting wide with oxidation time. For Haynes-214, the size of carbide depletion zone was smaller than other alloys because Al2O3 layer acted as a diffusion layer prevented effectively the penetration of oxygen into base metal. (authors)

  16. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation

    Directory of Open Access Journals (Sweden)

    Ola M. Johannessen

    2016-05-01

    Full Text Available Arctic amplification of temperature change is theorised to be an important feature of the Earth's climate system. For observational assessment and understanding of mechanisms of this amplification, which remain uncertain, thorough and detailed analyses of surface air temperature (SAT variability and trends in the Arctic are needed. Here we present an analysis of Arctic SAT variability in comparison with mid-latitudes and the Northern Hemisphere (NH, based on an advanced SAT dataset – NansenSAT. We define an index for the Arctic amplification as the ratio between absolute values of the Arctic (65–90°N and NH 30-yr running linear SAT trends. It is demonstrated that the temperature amplification in the Arctic is characteristic not only for the recent warming but also the early 20th century warming (ETCW and subsequent cooling. The amplification appears to be weaker during the recent warming than in the ETCW, simply because the index values reflect the more pervasive nature of the recent warming that reflects the background of anthropogenic global warming. We also produced a new Arctic regionalisation created from hierarchical cluster analysis, which identifies six major natural regions in the Arctic that reflect SAT variability. Statistical comparison with several climate indices shows that the Atlantic Multidecadal Oscillation (AMO is the mode of variability that is most significantly associated with the amplified warming–cooling in the Arctic, with a stronger correlation during the ETCW and recent warming than during the intermediate period. Regionally, differences are identified in terms of annual and seasonal rates of change and in their correlations with modes of variability.

  17. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    Science.gov (United States)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  18. Efficiency Testing of the Air Cleaning System for a High Temperature Reactor

    International Nuclear Information System (INIS)

    The Los Alamos Ultra High Temperature Reactor Experiment (UHTREX) utilizes a helium-cooled, graphite-moderated reactor, employing refractory fuel elements. Under accident conditions, the effluent that may be released from this reactor requires an air-cleaning system capable of reducing radioactive gas and particulate contaminants to safe levels. Dioctyl phthalate and iodine-131 were used as test aerosols for the HEPA and activated carbon filters, respectively. Methods of aerosol generation and test procedures are detailed for the preinstallation tests of the carbon and in-place testing of the carbon and HEPA filters. The importance of visual inspection of the HEPA filters prior to installation and supervision of filter installation is discussed. In-place tests indicated desirable design changes which would (1) simplify in-place testing procedures, (2) expedite installation and future changing of the filters, and (3) ensure operation of a more efficient system. Problems encountered during in-place testing, recommendations for the design of similar systems, and acceptance criteria used at LASL are discussed. (author)

  19. The statistical inhomogeneity of surface air temperature in global atmospheric reanalyses

    Science.gov (United States)

    Ferguson, C. R.; Lee, M. H.

    2015-12-01

    Recently, a new generation of so-called climate reanalyses has emerged, including the 161-year NOAA—Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES) Twentieth Century Reanalysis Version 2c (20CR V2c), the 111-year ECMWF pilot reanalysis of the twentieth century (ERA-20C), and the 55-year JMA conventional reanalysis (JRA-55C). These reanalyses were explicitly designed to achieve improved homogeneity through assimilation of a fixed subset of (mostly surface) observations. We apply structural breakpoint analysis to evaluate inhomogeneity of the surface air temperature in these reanalyses (1851-2011). For the modern satellite era (1979-2013), we intercompare their inhomogeneity to that of all eleven available satellite reanalyses. Where possible, we distinguish between breakpoints that are likely linked to climate variability and those that are likely due to an artificial observational network shift. ERA-20C is found to be the most homogenous reanalysis, with 40% fewer artificial breaks than 20CR V2c. Despite its gains in homogeneity, continued improvements to ERA-20C are needed. In this presentation, we highlight the most spatially extensive artificial break events in ERA-20C.

  20. THE IMPACT OF LABORATORY AIR TEMPERATURE AND RELATIVE HUMIDITY ON BENTONITE WATER ABSORPTION CAPACITY

    Directory of Open Access Journals (Sweden)

    Helena Strgar

    2011-12-01

    Full Text Available Bentonite, which is a mineral component of geosynthetic clay liners, has important physical and chemical properties that ensure very small hydraulic permeability. The main component of bentonite is a clay mineral called sodium montmorillonite whose very low permeability is due to its ability to swell. The deposits of bentonite are spread all over the world, however, only a very small number of those deposits satisfies all the quality and durability demands that must be met if the bentonite is to be used in the sealing barriers. Depending on the location of installation and their purpose, geosynthetic clay liners must meet certain requirements. Their compatibility with the prescribed criterion is confirmed through various laboratory procedures. Amongst them are tests examining the index indicators (free swell index, fluid loss index, and water absorption capacity. This paper presents results regarding the impact of laboratory air temperature and relative humidity of the testing area on the water absorption capacity. This is one of the criteria that bentonite must satisfy during the quality and durability control of the mineral component of geosynthetic clay liner (the paper is published in Croatian.

  1. Detection and Attribution of the surface air temperature during last millennium

    Science.gov (United States)

    Peng, Dongdong; Zhou, Tianjun; Man, Wenmin

    2016-04-01

    An optimal detection method was employed to compare the reconstructed and model-simulated changes of surface air temperature during last millennium. Model simulations are from CESM1-CAM5, which include 28-member ensembles in total, i.e., 5-member ensembles volcanic forcing runs, 4-member ensembles solar forcing runs, 3-member ensembles forcing runs for land use, orbital, greenhouse gases, and 10-member ensembles runs from combined 5 individual external forcing. Analyses were conducted from hemispherical to continental scale. Results show that combined effect of all the external forcings can be detected for both Northern and Southern Hemisphere, and for the continent of Europe, Arctic and Antarctic. The influence of volcanic eruption and solar activity can be detected for all the hemispheres and nearly all the continents of North Hemisphere. Land use forcing can be detected for all the continents of Northern Hemisphere, but only detected for one continent of Southern Hemisphere, i.e., South America. The orbital forcing is detected for all the continents of Northern Hemisphere, but not detected for the Northern Hemisphere as whole. Influence of greenhouse gases can rarely be detected from hemispherical to continental scale.

  2. Flexible inverted polymer solar cells fabricated in air at low temperatures

    Science.gov (United States)

    Kuwabara, Takayuki; Wang, Xiaofan; Kusumi, Takuji; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2016-08-01

    A series of modified indium tin oxide (ITO) materials, including sol-gel zinc-oxide-coated ITO (ITO/ZnO), ZnO nanoparticle-coated ITO (ITO/ZnO-NP), 1,4-bis(3-aminopropyl)piperazine (BAP)-modified ITO, and polyethylenimine ethoxylated (PEIE)-modified ITO, were used for electron-collection electrodes in inverted polymer solar cells (PSCs). The modified ITO electrodes were prepared in air at temperatures below 100 °C, using various ITO films on flexible poly(ethylene terephthalate) substrates (PET-ITO) with sheet resistances ranging from 12 to 60 Ω sq-1. The PET-ITO (12 Ω sq-1)/ZnO-NP PSC exhibited an improved power conversion efficiency (PCE) (2.93%), and this PCE was ˜90% of that observed for a cell using glass-ITO/ZnO-NP (sheet resistance = 10 Ω sq-1 PCE = 3.28%). Additionally, we fabricated a flexible inverted ZnO-NP PSC using an indene-C60 bisadduct (ICBA) as the acceptor material in place of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and obtained a PCE of 4.18%.

  3. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    Science.gov (United States)

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1. PMID:27058743

  4. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.

  5. Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions

    International Nuclear Information System (INIS)

    Highlights: • ACW ceramics have been successfully tested under ACAES operating conditions. • ACW ceramics have been successfully tested under gas turbine based CSP conditions. • Under 600 °C-30 bars of air, ACW ceramics Cp is slightly lowered by 5%. • Thermal conductivity of ACW ceramics is advantageously enhanced by 30%. - Abstract: Recycled ceramics made of inertized asbestos containing wastes have been submitted to high pressure/temperature cycling tests in the operating range of ACAES and CSP applications. Ten successive cycles between room conditions and 610 °C/30 bars for a cumulated duration of 2500 h lead to a validation of the ability of the material to resist to those constrains. The Wollastonite/Augite initial structure is gradually transformed in a unique Augite containing material. While mechanical parameters and density are unchanged, thermal capacity is reduced by 5% and thermal conductivity increased by 30%. This last result offers an advantageous way to enhance the thermal conductivity of those recycled ceramics, a key parameter to control the charge/discharge power in TES systems

  6. Variability of the Coupling Between Surface Air Temperature and Northern Annular Mode at Various Levels

    Institute of Scientific and Technical Information of China (English)

    TAN Benkui; SUO Lingling; HUANG Jiayou

    2008-01-01

    This article focuses on the variability of the coupling between surface air temperature(SAT)and northern annular mode(NAM)at various levels.To measure the coupling intensity between the SAT and the NAM anomaly fields.the coupling index has been defined as the leading principal component of the partial least squares regression model of the SAT and NAM anomalies.Both a composite analysis and the coupling index have been used to reveal level-by-level and month-to-month variability of the coupling between the upper anomalous NAM and the SAT in the Northern Hemisphere.The major results are as follows:the January SAT anomaly is more strongly coupled with the January NAM anomaly at the middle-upper tropospheric levels than that at the other levels,while the same is true for the February SAT anomaly with the January NAM anomaly at the lower stratospheric levels.The January NAM anomaly at the middleupper tropospheric levels is most strongly coupled with the January SAT anomaly,and the coupling intensity is successively reduced month by month and becomes trivial after April.The January NAM anomaly at the lower stratospheric levels is more strongly coupled with January,Febrnary and March SAT anomalies,but the coupling becomes trivial after April.

  7. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    Science.gov (United States)

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1.

  8. Exergoeconomic optimization of an irreversible regenerated air refrigerator with constant-temperature heat reservoirs

    Directory of Open Access Journals (Sweden)

    Yi Zhang, Lingeng Chen, Guozhong Chai

    2015-01-01

    Full Text Available Based on the finite time exergoeconomic method, the performance analysis and optimization of an irreversible regenerated air refrigerator cycle are carried out by taking the profit rate as the optimization objective. The profit rate is defined as the difference between the revenue rate of output exergy and the cost rate of input exergy. The analytical expression for profit rate is derived, taking into account several irreversibilities, such as heat resistance, losses due to the pressure drop and the effects of non-isentropic expansion as well as compression. The influences of several parameters such as the temperature ratio of reservoirs, the efficiencies of both compressor and expander, the pressure recovery coefficient and so on are discussed by numerical examples. According to the simulation results, the double-maximum profit rate can be achieved when the pressure ratio and the distributions of heat conductance reach their optimal values respectively. By varying the price ratio, the relationship between the profit rate objective and other objectives can be established and the implementation of profit rate as objective can achieve higher COP compared to the cases using ecological function and cooling load as objectives.

  9. Flexible inverted polymer solar cells fabricated in air at low temperatures

    Science.gov (United States)

    Kuwabara, Takayuki; Wang, Xiaofan; Kusumi, Takuji; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2016-08-01

    A series of modified indium tin oxide (ITO) materials, including sol–gel zinc-oxide-coated ITO (ITO/ZnO), ZnO nanoparticle-coated ITO (ITO/ZnO-NP), 1,4-bis(3-aminopropyl)piperazine (BAP)-modified ITO, and polyethylenimine ethoxylated (PEIE)-modified ITO, were used for electron-collection electrodes in inverted polymer solar cells (PSCs). The modified ITO electrodes were prepared in air at temperatures below 100 °C, using various ITO films on flexible poly(ethylene terephthalate) substrates (PET–ITO) with sheet resistances ranging from 12 to 60 Ω sq‑1. The PET–ITO (12 Ω sq‑1)/ZnO-NP PSC exhibited an improved power conversion efficiency (PCE) (2.93%), and this PCE was ∼90% of that observed for a cell using glass–ITO/ZnO-NP (sheet resistance = 10 Ω sq‑1 PCE = 3.28%). Additionally, we fabricated a flexible inverted ZnO-NP PSC using an indene-C60 bisadduct (ICBA) as the acceptor material in place of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and obtained a PCE of 4.18%.

  10. Separate-effects experiments on the hydrodynamics of air ingress phenomena for the very high temperature reactor

    International Nuclear Information System (INIS)

    The present study performs scaled separate-effects experiments to investigate the hydrodynamics in the air-ingress phenomena following a Depressurized Condition Cooldown in the Very High Temperature Gas-Cooled Reactor. First, a scoping experiment using water and brine is performed. The volumetric exchange rate is measured using a hydrometer, and flow visualizations are performed. Next, Helium-air experiments are performed to obtain three-dimensional oxygen concentration transient data using an oxygen analyzer. It is found that there exists a critical density difference ratio, before which the ingress rate increases linearly with time and after which the ingress rate slows down significantly. In both the water-brine and Helium-air experiments, this critical ratio is found to be approximately 0.7. (author)

  11. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    Science.gov (United States)

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature. PMID:27246941

  12. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  13. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  14. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  15. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  16. Grassland species will not necessarily benefit from future elevated air temperatures. A chlorophyll fluorescence approach to study autumn physiology

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, B.; Boeck, H.J. De; Lemmens, C.M.H.M.; Nijs, I.; Ceulemans, R. [Univ. of Antwerp, Dept. of Biology, Wilrijk (Belgium); Valcke, R. [Limburgs Univ. Centrum, Dept. SBG, Diepenbeek (Belgium)

    2005-09-01

    Model ecosystems were Brown in 12 sunlit, climate-controlled chambers to gain insight into the effects of elevated (+3 deg. C) air temperature (T{sub air}) on temperate grasslands. In this study, the hypothesis of delayed senescence in response to elevated T{sub air} was tested for Rumex acetosa L. and Plantago lanceolata L. During the autumn of the first treatment year, frequent measurements were made of leaf chlorophyll a (Chla) fluorescence transients. Chl fluorescence images of individual teaves as well as digital colour images of these ecosystems were captured. Chl fluorescence variables, such as the maximum quantum yield of primary photochemistry (F{sub v}/F{sub m}), indicated a decreasing efficiency with time. Despite no treatment effect on F{sub v}/F{sub m}, other variables derived from the Chl fluorescence transients showed a strong trend towards a positive effect of a 3 deg. C temperature increase on the photosynthetic performance of R. acetosa and P. lanceolata in the first year. After mid-September, the initial positive treatment effect disappeared for R. acetosa, strongly suggesting that leaf lifespan of this species was shortened by higher T{sub air}. One possibly explanation is more intense drought stress in the elevated compared to the ambient temperature treatments. Second-year measurements were possibly too limited in time to confirm this trend. These results show that temperate grassland species may take advantage of a future increase in T{sub air} during autumn. This will ultimately depend on the species' degree of acclimation to a temperature change and on the resistance to drought stress. (au)

  17. Restoran Buenos Aires = Restaurant Buenos Aires

    Index Scriptorium Estoniae

    2008-01-01

    Restorani Buenos Aires (Narva mnt. 5, Tallinn) sisekujundusest. Sisearhitektid: Janno Roos ja Andres Labi (Ruumilabor OÜ). Laudu eraldavad 400 vardasse aetud puukuuli. Sisearhitektidest, nende tähtsamad tööd. I-III korruse plaan, 12 värv. vaadet, fotod sisearhitektidest

  18. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  19. Over the air test

    DEFF Research Database (Denmark)

    2015-01-01

    [1] This invention relates to over-the-air testing of a device in an anechoic chamber. In particular, the invention is suitable for simulating both uplink and downlink over-the-air communication with a device under test even when the anechoic chamber has different numbers of uplink and downlink...

  20. Energy and air quality

    International Nuclear Information System (INIS)

    This is one of a series of handbooks designed to provide nontechnical readers with a general understanding of the interaction between energy development and environmental media and to provide a rudimentary data base from which estimates of potential future impacts can be made. This handbook describes the air quality impacts of energy development and summarizes the major federal legislation which regulates the potential air quality impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which can be used as the basis for measurement, and in some cases, prediction of the potential conflicts between energy development and achieving and maintaining clean air. Energy utilization is the largest emission source of man-made air pollutants. Choices in energy resource development and utilization generate varying emissions or discharges into the atmosphere, the emissions are affected by the assimilative character of the atmosphere, and the resultant air pollutant concentrations have biological and aesthetic effects. This handbook describes the interrelationships of energy-related air emissions under various methods of pollution control, the assimilative character of the air medium, and the effects of air pollution. The media book is divided into three major sections: topics of concern relating to the media and energy development, descriptions of how to use available data to quantify and examine energy/environmental impacts, and the data

  1. Air Pollution, Teachers' Edition.

    Science.gov (United States)

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  2. Air Pollution and Industry.

    Science.gov (United States)

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  3. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  4. Air-Conditioning Mechanic.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  5. International Air Services

    OpenAIRE

    Productivity Commission

    2001-01-01

    On 12 December 1997 the Treasurer referred international air services arrangements to the Industry Commission for inquiry and report within nine months. The Commission was asked to report on the arrangements for negotiating entitlements under air services agreements and the process of allocating capacity entitlements to Australian carriers.

  6. Air pollution and air cleaning equipment in buildings

    OpenAIRE

    Evdokimova, Ekaterina

    2011-01-01

    The subject of this thesis work is air pollution and air cleaners in building. Clean air has big significance for human health because different pollutions can cause allergy and disease. The quality of indoor air affects health and effective working. The aim of this thesis is to present methods and devices for cleaning the air.

  7. AIRE-Linux

    Science.gov (United States)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  8. A fiber air-gap Fabry-Pérot temperature sensor demodulated by using frequency modulated continuous wave

    Science.gov (United States)

    Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong

    In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.

  9. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  10. Numerical simulation and experimental study of three-stage coal ignition burner by high-temperature air

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Z.Z.; Sun, B.M. [North China Electric Power Univ., Beijing (China). Key Laboratory of Condition Monitoring and Control for Power Plant Equipment; Liu, Y. [Beijing Guolineng Technology Co. Ltd., Beijing (China)

    2008-07-01

    Coal is in short supply in China. In addition, the quality of power derived from coal is both poor and unstable. Several million tons of oil are needed annually to ignite pulverized coal (PC) during boiler start-up. Since the calorific capacity of some of China's coal is lower than 13 MJ/kg, flameout often occurs in the PC fired boiler, which severely affect the safety of utility boilers. In order to stabilize combustion, several kinds of oil-saving ignition methods are being used, such as plasma ignition technology, hot-wall ignition combustion and small oil gun burners. This paper focused on a new burner, high-temperature air oil-free ignition burner, in which air is heated to 1000 degrees C by an intermediate frequency electricity heater. When the combustion is not stable, the burner is put into operation to prevent flameout. Experiments and numerical simulations were carried out to research the combustion in the burner. The factors influencing the ignition of PC were analyzed, including PC concentration, the inlet velocity of primary air flow, the velocity of high temperature air and PC fineness. The simulation results were in good agreement with experimental data. It was concluded that the results can be useful for optimizing the design of three-stage coal ignition burners. 8 refs., 2 tabs., 12 figs.

  11. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    Science.gov (United States)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition

  12. Effects of convective air drying temperature on nutritional quality and colour of watercress (Nasturtium officinale)

    OpenAIRE

    Pichmony, E. K.; Araújo, Ana C.; Oliveira, Sara M.; Ramos, Inês N.; Teresa R.S. Brandão; Silva, Cristina L. M.

    2015-01-01

    Watercress (Nasturtium officinale) is one of the most popular leafy vegetables consumed in the world, either fresh or cooked, presenting high contents of phytochemicals and bioactive compounds. However, due to its high moisture content (91% w.b.), this vegetable is easily perishable. To prolong shelf life and provide the convenient transportation, dried watercress might be a novel product for consumption in soups and other recipes. Convective air drying is an affordable process, b...

  13. Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC)in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century andmeteorological reanalyses for its second half, it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates. Nevertheless, some exceptions exist. The positive correlationbetween these two variables is found over the two desert regions: in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans. Southward of the characteristic annual mean snow-ice boundary (SIB) position, the shape ofthe SAT AC becomes more sinusoidal under climate warming. In contrast, northward of it, this shapebecomes less sinusoidal. The latter is also found for the above-mentioned two desert regions. In theFar East (southward of about 50°N), the SAT AC shifts as a whole: here its spring and autumn phasesoccur earlier if the annual mean SAT increases. From energy-balance climate considerations, those trendsfor SAT AC APC in the middle and high latitudes are associated with the influence of the albedo-SATfeedback due to the SIB movement. In the Far East the trends are attributed to the interannual cloudinessvariability, and in the desert regions, to the influence of a further desertification and/or scattering aerosolloading into the atmosphere. In the north Pacific, the exhibited trends could only be explained as aresult of the influence of the greenhouse-gases loading on atmospheric opacity. The trends for SAT ACAPC related to the SIB movement are simulated reasonably well by the climate model of intermediatecomplexity (IAP RAS CM) in the experiment with greenhouse gases atmospheric loading. In contrast,the tendencies resulting from the cloudiness variability are not reproduced by this model. The model alsopartly simulates the tendencies related to the desertification

  14. High-temperature oxidation behavior of Ti3AlC2 in air

    Institute of Scientific and Technical Information of China (English)

    XU Xue-wen; LI Yang-xian; ZHU Jiao-qun; MEI Bing-chu

    2006-01-01

    Not only the isothermal oxidation behaviors at 900-1 300 ℃ for 20 h in air of bulk Ti3AlC2 with 2.8% TiC which was sintered by hot pressing with the additive of silicon,but also the cyclic oxidation behavior at 1 100-1 300 °C for 30 cycles,were investigated by using TG,XRD,SEM. The isothermal and cyclic oxidation behaviors generally follow a parabolic rate law. The parabolic rate constants of the former increased from 1.39×10-10 kg2/(m4·s) at 900 ℃ to 5.56×10-9 kg2/(m4·s) at 1 300 ℃. The calculated activation energy is 136.45 kJ/mol. The oxidation products are á-Al2O3 and little TiO2 at 900-1 000 ℃,however when the temperature is raised up to 1 200 ℃,TiO2 partially reacts to Al2TiO5,and the reaction is completed at 1 300 ℃. This demonstrates that Ti3AlC2 has excellent oxidation resistance and good thermal shock because the dense continuous oxide scale consists of mass á-Al2O3 and little TiO2 and/or Al2TiO5. Generally,the oxide scale is grown by the inward diffusion of O2- and the outward diffusion of Ti4+ and Al3+.

  15. Air Baltic: Estonian Air on nurka surutud / Teele Tammeorg

    Index Scriptorium Estoniae

    Tammeorg, Teele

    2010-01-01

    Air Balticu asepresidendi Janis Vanagsi hinnangul on Estonian Air aastaid jätnud tähelepanuta oma peamised turismiturud ning on praegu halvas seisus. Air Baltic on endiselt huvitatud Estonian Airi ostust. Majandus- ja kommunikatsiooniminister Juhan Partsi seisukoht

  16. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  17. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  18. Variations in air and ground temperature and the POM-SAT model: results from the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    R. N. Harris

    2007-10-01

    Full Text Available The POM-SAT model for comparing air and ground temperatures is based on the supposition that surface air temperature (SAT records provide a good prediction of thermal transients in the shallow subsurface of the Earth. This model consists of two components, the forcing function and an initial condition, termed the pre-observational mean (POM. I explore the sensitivity of this model as a function of forcing periods at time scales appropriate for climate reconstructions. Synthetic models are designed to replicate comparisons between borehole temperatures contained in the global database of temperature profiles for climate reconstructions and gridded SAT data. I find that the root mean square (RMS misfit between forcing functions and transient temperature profiles in the subsurface are sensitive to periods longer than about 50 years, are a maximum when the period and the 150-year time series are equal and then decreases for longer periods. The magnitude of the POM is a robust parameter for periods equal to or shorter than the length of this time series. At longer periods there is a tradeoff between the amplitude of the forcing function and the POM. These tests provide guidelines for assessing comparisons between air and ground temperatures at periods appropriate for climate reconstructions. The sensitivity of comparisons between the average Northern Hemisphere gridded SAT record and subsurface temperature-depth profile as a function of forcing period is assessed. This analysis indicates that the Northern Hemisphere extratropical average SAT and reduced temperature-depth profile are in good agreement. By adding modest heat to the subsurface at intermediate periods some improvement in misfit can be made, but this extra heat has negligible influence on the POM. The joint analysis of borehole temperatures and SAT records indicate warming of about 1.1°C over the last 500 years, consistent with previous studies.

  19. Depicting the Dependency of Isoprene in Ambient Air and from Plants on Temperature and Solar Radiation by Using Regression Analysis

    Science.gov (United States)

    Saxena, Pallavi; Ghosh, Chirashree

    2016-07-01

    Among all sources of volatile organic compounds, isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. In the present study, isoprene emission capacity at the bottom of the canopies of plant species viz. Dalbergia sissoo and Nerium oleander and in ambient air at different sites selected on the basis of land use pattern viz. near to traffic intersection with dense vegetation, away from traffic intersection with dense vegetation under floodplain area (Site I) and away from traffic intersection with dense vegetation under hilly ridge area (Site II) during three different seasons (monsoon, winter and summer) in Delhi were measured. In order to find out the dependence of isoprene emission rate on temperature and solar radiation, regression analysis has been performed. In case of dependency of isoprene in ambient air on temperature and solar radiation in selected seasons it has been found that high isoprene was found during summer season as compared to winter and monsoon seasons. Thus, positive linear relationship gives the best fit between temperature, solar rdaiation and isoprene during summer season as compared to winter and monsoon season. On the other hand, in case of isoprene emission from selected plant species, it has been found that high temperature and solar radiation promotes high isoprene emission rates during summer season as compared to winter and monsoon seasons in D. sissoo. Thus, positive linear relationship gives the best fit between temperature, solar radiation and isoprene emission rate during summer season as compared to winter and monsoon season. In contrast, in case of Nerium oleander, no such appropriate relationship was obtained. The study concludes that in ambient air, isoprene concentration was found to be high during summer season as compared to other seasons and gives best fit between temperature, solar radiation and isoprene. In case of plants, Dalbergia sissoo comes under high isoprene emission category

  20. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.