WorldWideScience

Sample records for air temperature air

  1. Fast Air Temperature Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on a newly developed sensor for making fast temperature measurements on the air flow in the intake ports of an SI engine and in the EGR input line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, the author (IAU......) and Spencer C. Sorenson (ET). The theory which decribes in detail the overall dynamic chracteristics of the sensor was developed at IAU, DTU....

  2. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    This study investigated if low air temperature, which is known to improve the perception of air quality, also can reduce the intensity of some SBS symptoms. In a low-polluting office, human subjects were exposed to air at two temperatures 23 deg.C and 18 deg.C both with and without a pollution...... source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  3. NOAA NOS SOS, EXPERIMENTAL - Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have air temperature data. *These services are for testing and evaluation...

  4. Controllability of room air temperature. Huonelaempoetilan saeaetoe

    Energy Technology Data Exchange (ETDEWEB)

    Laitila, P.; Katajisto, K.; Karjalainen, S.; Lassila, K. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). LVI-tekniikan Laboratorio)

    1991-01-15

    At first, the control loop of room air temperature was studied as a unit process to find out the characteristic controllability factors of the process as well as possible. Step-response tests were made to the process. Furthermore, the choice of the control law, the adjustment of the controller parameters and the applicability of the controller parameters were analyzed. The results are based mainly on the simulation studies of the office building using the TRNSYS, HVACSIM{sup +} and PIPNET simulation programs. When making a step-change, e.g. to inlet air temperature, it takes a long time before the room air temperature achieves its final steady state. In addition, the gain of the process is slow. The time constant of the process is 30 min - 100 min. The steady state in terms of controllability is achieved in approximately four hours. The control difficulty of the process is significant below 0,1 independently of a heating or air conditioning system of the room space. The centralized and the distributed control of the room air temperature was studied as well. When the loads in different spaces differed greatly from one another, temperature conditions could not be controlled using centralized control. In that case the distributed temperature control based on room or zone space should be used. The integrated control of the air conditioning and heating systems proved to be quite difficult on the basis of the simulation studies especially when external loads vary a lot. The measurements made in a building in prevailing conditions did not support the integrated control of the air conditioning and heating systems. However, the heating system was under-dimensioned compared to the air conditioning system.

  5. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  6. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) errors for grass minimum temperature and the 4-h nowcasts.

  7. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  8. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    Science.gov (United States)

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  9. Research of the Temperature and Humidity Processes in the Air Conditioning Apparatus Varying Air Ion Concentration

    Directory of Open Access Journals (Sweden)

    Marchenko V. G.

    2015-12-01

    Full Text Available To create comfortable conveniences for people in the room, we have to process the indoor air in the AC apparatus. Depending on given air parameters in the room, the air processing comprises the next steps: heating, cooling, wetting, drying. Except the compliance of the temperature and humidity parameters of air, we must control its ionic composition. Thereby, the experimental analysis of the air preparing in the AC apparatus is given in this article. Thank to that analysis, we can estimate the ionic and deionic impact on the air space in the specific processes of the air preparing. According to the results of experiments, we have identified, that the air temperature varying does not have significant effect on the ionic concentration. The ionic increasing after electric heater is not associated with air temperature. It is the consequence of the electron extrication from the surface of the heating element. Reducing ion moving the high air humidity decreases the concentration of the lightweight ions. The increasing of the ions in the spray-type air washers is explained by ballo-electric effect of spraying water drops, but not the air humidity rising.

  10. Impact of air temperature, relative humidity, air movement and pollution on eye blinking

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Lyubenova, Velina S.; Skwarczynski, Mariusz;

    2011-01-01

    The effect of indoor air temperature, relative humidity, velocity and pollution on occupants’ eye blink frequency (BF) was examined. In total sixty subjects participated in eight 4 hour experiments without and with facially applied air movement under individual control of the subjects. Air movement...... of either polluted room air supplied isothermally or clean and cool air was used. Eye blinking video record for the last 15 min of each exposure were analysed. The increase of the room air temperature and relative humidity from 23 °C and 40% to 26 °C and 70% or to 28 °C and 70% decreased the BF....... At temperature of 26 °C and relative humidity of 70% facially applied flow of polluted room air didn’t have significant impact on BF in comparison without air movement. The increase of BF due to decrease of temperature and humidity and increase of velocity may be compensated due to the increase in air cleanness....

  11. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  12. Energy savings from extended air temperature setpoints and reductions in room air mixing

    OpenAIRE

    Hoyt, Tyler; Lee, Kwang Ho; Zhang, Hui; Arens, Edward; Webster, Tom

    2005-01-01

    Large amounts of energy are consumed by air-conditioning systems to maintain tight control of air temperature in rooms--a narrow range of temperature excursion from neutral, and a uniform temperature in the ambient space. However, both field and lab studies are showing that neither narrow range nor uniformity is really necessary for providing occupant comfort. Data from several large field studies shows occupants accepting a much wider temperature range than is typically applied in practice (...

  13. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  14. Temperature distribution of air source heat pump barn with different air flow

    Science.gov (United States)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  15. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  16. Correlation of air temperature above water-air sections with the forecasted low level clouds

    Science.gov (United States)

    Huseynov, N. Sh.; Malikov, B. M.

    2009-04-01

    As a case study approach the development of low clouds forecasting methods in correlation with air temperature transformational variations on the sections "water-air" is surveyed. It was evident, that transformational variations of air temperature mainly depend on peculiarities and value of advective variations of temperature. DT is the differences of initial temperature on section water-air in started area, from contrast temperature of water surface along a trajectory of movement of air masses and from the temperature above water surface in a final point of a trajectory. Main values of transformational variations of air temperature at advection of a cold masses is 0.530C•h, and at advection of warm masses is -0.370C•h. There was dimensionless quantity K determined and implemented into practice which was characterized with difference of water temperature in forecasting point and air temperature in an initial point in the ratio of dew-points deficiency at the forecasting area. It follows, that the appropriate increasing or decreasing of K under conditions of cold and warm air masses advection, contributes decreasing of low clouds level. References: Abramovich K.G.: Conditions of development and forecasting of low level clouds. vol. #78, 124 pp., Hydrometcenter USSR 1973. Abramovich K.G.: Variations of low clouds level // Meteorology and Hydrology, vol. # 5, 30-41, Moscow, 1968. Budiko M.I.: Empirical assessment of climatic changes toward the end of XX century // Meteorology and Hydrology, vol. #12, 5-13, Moscow, 1999. Buykov M.V.: Computational modeling of daily evolutions of boundary layer of atmosphere at the presence of clouds and fog // Meteorology and Hydrology, vol. # 4, 35-44, Moscow, 1981. Huseynov N.Sh. Transformational variations of air temperature above Caspian Sea / Proceedings of Conference On Climate And Protection of Environment, 118-120, Baku, 1999. Huseynov N.Sh.: Consideration of advective and transformational variations of air temperature in

  17. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  18. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    %. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion....... Binary Ice as secondary refrigerant for air-conditioning purposes is an economical and technically feasible solution in any climate. Whatever chilled water can do in an air-conditioning installation ? Binary Ice can do it better....... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  19. Interactive Effect of Air-Water Ratio and Temperature on the Air Stripping of Benzene

    Directory of Open Access Journals (Sweden)

    M. E. Abdullahi

    2014-06-01

    Full Text Available High cost of pilot scale studies has led engineers to use simulation to study the factors that affect process performance. This study focuses on the interactive effect of air water ratio and temperature on the removal of volatile organic compounds from polluted water using packed column air stripper taking benzene as a case study. The process governing equations developed based on two-film model of mass transfer were solved using MATLAB and a surface response plot was done. The mass transfer coefficient increased from 0.1237x10-5 to 0.1932x10-5 s-1 as the temperature was raised from 293 to 323 K. Also, the Henry’s constant increased from 228.59 to 883.36 K as the temperature was raised from 293 to 323 K. Benzene removal efficiencies of over 99% were obtained for all combinations of temperature and air-water ratio. The result also indicated that air stripping of benzene from wastewater is most dependent on temperature and moderately on air-water ratio.

  20. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Air Temperature data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Air Temperature data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  2. NOS CO-OPS Meteorological Data, Air Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Air Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  3. Impact of temperature and humidity on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Lei

    1997-11-01

    This thesis deals with the impact of temperature and humidity on the emission of pollutants from five building materials and on the perception of air polluted by the material emissions. The impact was studied in the temperature range 18-28 deg. C and the humidity range 30-70%RH, corresponding to conditions often pertaining in normal non-industrial indoor environments. The five building materials used in the study were: PVC flooring, waterborne acrylic floor varnish, loomed polyamide carpet with latex backing, waterborn acrylic wall paint and acrylic sealant; all these materials are commonly use din buildings. The effect of temperature and humidity on emission and perception of air pollutant emitted from the five building materials is described, using a specially developed exposure system. A computer-controlled exposure system was developed. The design of the system allowed the impact of temperature and humidity on the emission of pollutants from the materials to be judged separately from the impact on perception. The effect of temperature and humidity on emission and on perception was investigated at nine different combinations of three temperature levels 18 deg. C, 23 deg. C, 28 deg. C and three relative humidity levels 30%, 50%, 70%. A sensory panel assessed the acceptability of the air after facial exposure. Chemical measurements of the pollutants emitted were also made. The impact of temperature and humidity on perception of air quality during whole-body exposure is discussed. The influence of the pre-exposure temperature/humidity on perception of air quality and the time course of adaptation of air quality perception with different combinations of temperature and humidity were also investigated. It is recommended that future ventilation standards should include the effect of indoor air temperature and humidity in ventilation requirements. (EG) 86 refs.

  4. Study of the Vertical Distribution of Air Temperature in Warehouses

    Directory of Open Access Journals (Sweden)

    César Porras-Amores

    2014-02-01

    Full Text Available Warehouses are usually large, plain industrial buildings commonly used for storage of goods. Vertical distribution of air temperature is an important aspect for indoor environment design, which must be taken into account by architects and engineers in the early stages of warehouse design. The aim of this work is to analyze the vertical temperature gradients existing in warehouses, quantifying their value and analyzing their evolution along the year. To do so, the study outlines the monitoring of several warehouses with different building typology and height located in different areas of Spain for a complete annual cycle. The results obtained when applying a simple linear regression analysis to 175,200 vertical temperature profiles show that there is a strong influence of the outdoor temperature over the stratification of the indoor air. During warm months, the ceiling and the upper strata get warmer, whereas the cold air accumulates in the lower levels, increasing the stratification of indoor air (maximum values between 0.3 °C/m and 0.7 °C/m. During cold months, the ceiling gets cold due to its contact with the outdoor air, therefore, the colder, heavier air moves down to the lower strata, registering insignificant vertical temperature differences. Air conditioning of the warehouse, besides controlling the temperature, limits the influence of the outdoor environment on the stratification of temperatures. The results of the study may be of great use for warehouses for products sensitive to temperature, which may suffer a different evolution, conservation or maturation when the temperature differences are maintained for a long time.

  5. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  6. Novel solar air Heater for high temperatures; Novedoso Calentador solar de aire para altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, E. A.; Duran, M. D.; Lentz, A. E.

    2008-07-01

    A novel solar air heater that allows to reach temperatures of the order of 100 degree centigrade with thermal efficiencies superior to 50% due to a solar concentrator and the reduction of thermal losses from the air when circulating between the absorber and mirrors of section of circular arc, well isolated of the outside surrounding. The receiver consists of a concentrator with wedges of plastic transparency that make the function of lenses. The light refracted by the wedges enters to a series of concentrators PC type truncated optimally so that the space among them allows the positioning of the absorber, who are covered metallic segments with selective film. Its excellent performance makes ideals applications as Sauna bath, the drying at high temperature, and systems for conditioning of air. (Author)

  7. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  8. Urban heat : natural and anthropogenic factors influencing urban air temperatures

    NARCIS (Netherlands)

    Theeuwes, N.E.

    2015-01-01

    The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. The main goal of this thesis is to understand the processes that drive the urban air temperature and the urban he

  9. Solar Eclipse Effect on Shelter Air Temperature

    Science.gov (United States)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  10. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  11. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  12. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  13. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  14. Response of global lightning activity to air temperature variation

    Institute of Scientific and Technical Information of China (English)

    MA Ming; TAO Shanchang; ZHU Baoyou; L(U) Weitao; TAN Yongbo

    2005-01-01

    It is an issue of great attention but yet not very clear whether lightning activities increase or decrease on a warmer world. Reeve et al. presented that lightning activities in global land and the Northern Hemisphere land have positive response to the increase of wet bulb temperature at 1000hPa. Is this positive response restricted only to wet bulb temperature or in land? What is the response of global lightning activities (in both land and ocean) to the global surface air temperature variation like? This paper, based on the 5-year or 8-year OTD/LIS satellite-based lightning detecting data and the NCEP reanalysis data, makes a reanalysis of the response of the global and regional lightning activities to temperature variations. The results show that on the interannual time scale the global total flash rate has positive response to the variation in global surface air temperature, with the sensitivity of 17±7% K-1. Also, the seasonal mean flash rate of continents all over the world and that of continents in the Northern Hemisphere have sensitive positive response to increase of global surface air temperature and wet bulb temperature, with the sensitivity of about 13±5% K-1, a bit lower than estimation of 40% K-1 in Reeve et al. However, the Southern Hemisphere and other areas like the tropics show no significant correlation.

  15. Temperature gradients and clear-air turbulence probabilities

    Science.gov (United States)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  16. INTRA URBAN AIR TEMPERATURE DISTRIBUTIONS IN HISTORIC URBAN CENTER

    Directory of Open Access Journals (Sweden)

    Elmira Jamei

    2012-01-01

    Full Text Available The study investigates the urban heat island effect in Malaysian historic town Malacca through seven mobile traverses, as carried out on 10 December 2011. It aims to identify the intra-urban air temperature differences between heritage core zone, new development area and outskirts of the city. Air temperature variations were also analyzed across three different zones; namely the outskirts, the heritage site and the city center district. Heat index values were then calculated based on air temperature and relative humidity to gauge the level of outdoor thermal comfort within the study area. Based on the indications, one may conclude that the heritage place’s core zone is currently threatened by escalating temperatures and that its current temperature range falls within the “caution” and “extreme caution” categories. Furthermore, no significant difference was observed between the peak temperatures of the old city quarters and newer areas; despite the disparities in their urban forms. Therefore, it is hoped that the study, with its implications, will be able to influence future environmental consideration in heritage city of Melaka.

  17. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  18. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    Science.gov (United States)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  19. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  20. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  1. Pulsed positive streamer discharges in air at high temperatures

    Science.gov (United States)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  2. Monofractal nature of air temperature signals reveals their climate variability

    OpenAIRE

    Deliège, Adrien; Nicolay, Samuel

    2014-01-01

    We use the discrete "wavelet transform microscope" to show that the surface air temperature signals of weather stations selected in Europe are monofractal. This study reveals that the information obtained in this way are richer than previous works studying long range correlations in meteorological stations. The approach presented here allows to bind the H\\"older exponents with the climate variability. We also establish that such a link does not exist with methods previously carried out.

  3. Influence of Cooling to Heating Load Ratio on Optimal Supply Water and Air Temperatures in an Air Conditioning System

    Science.gov (United States)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of energy saving and cost reduction. For example, lower temperature supply water and air for space cooling reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. It is also an important subject to evaluate the effect of the supply water and air temperatures on energy saving and cost reduction on the annual basis by considering not only cooling but also heating loads. The purposes of this paper are to propose an optimal planning method for an air conditioning system with large temperature difference, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures, and the influence of the cooling to heating load ratio on the long-term economics is clarified.

  4. Spatial interpolation of monthly mean air temperature data for Latvia

    Science.gov (United States)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  5. Effect of air conditioning and chair cushion on scrotal temperature.

    Science.gov (United States)

    Song, Gook-Sup; Kim, Wonwoo; Seo, Ju Tae

    2008-08-01

    The hypothesis of this study is that the air conditioning temperature and thickness of the chair cushion affect a man's scrotal, and consequently testicular, temperature. Ten healthy male subjects volunteered for the study (age: 23.4 +/- 2.4 years; height: 173.8 +/- 5.09 cm; weight: 71.6 +/- 9.7 kg; body fat ratio: 18.6 +/- 4.1%). The air conditioning temperature was controlled at 18 degrees C to represent the heating season, and at 26 degrees C to represent the cooling season. The thickness of the chair cushions was varied from 0 to 8 cm at 2 cm intervals. The changes in the scrotal surface temperature (SST) and buttock skin temperature were measured for 120 min. At the ambient temperatures (t(a)) of 18 and 26 degrees C, the average SST were 33.76 +/- 1.28 and 35.02 +/- 0.54 degrees C for the chair cushion thickness (C(thk)) of 0 cm, 33.87 +/- 1.07 and 34.96 +/- 0.75 degrees C for C(thk) 2 cm, 33.91 +/- 0.84 and 35.03 +/- 0.85 degrees C for C(thk) 4 cm, 34.42 +/- 0.89 and 35.02 +/- 0.63 degrees C for C(thk) 6 cm, and 34.65 +/- 1.21 and 34.99 +/- 0.62 degrees C for C(thk) 8 cm respectively. SST was significantly affected by the air conditioning temperature (p < 0.001), but was not statistically correlated with the chair cushion thickness.

  6. The Air Solar Collectors: Introduction of Chicanes to Favour the Heat Transfer and Temperature in the Air Stream Dynamics

    Directory of Open Access Journals (Sweden)

    Mahfoud Omar

    2015-01-01

    Full Text Available The thermal performance of a single pass solar air heater with chicanes attached was investigated numerically using a 2D model of solar air stream dynamics collectors where the turbulence standard (k-ε model has been implemented. The chicane is formed with two parts: the first is perpendicular to the air flow and the second part is titled (α, they are mounted in successive rows, oriented perpendicular to the air flow and soldered to the back plate. The predicted results are validated by comparing with the literatures semi-empirical and experimental data and shown a reasonable agreement. Effects of relevant parameters as the (Reynolds number, chicanes upper parts tilts angles and air mass flow rates on the heat transfer coefficient and temperature development are discussed. It is apparent that the turbulence created by the chicanes resulting in greater increase in heat transfer inside the air stream dynamics.

  7. Ambient air temperature effects on the temperature of sewage sludge composting process

    Institute of Scientific and Technical Information of China (English)

    HUANG Qi-fei; CHEN Tong-bin; GAO Ding; HUANG Ze-chun

    2005-01-01

    Using data obtained with a full-scale sewage sludge composting facility, this paper studied the effects of ambient air temperature on the composting temperature with varying volume ratios of sewage sludge and recycled compost to bulking agent. Two volume ratios were examined experimentally, 1: 0: 1 and 3: 1: 2. The results show that composting temperature was influenced by ambient air temperature and the influence was more significant when composting was in the temperature rising process: composting temperature changed 2.4-6.5℃ when ambient air temperature changed 13℃. On the other hand, the influence was not significant when composting was in the high-temperature and/or temperature falling process: composting temperature changed 0.75-1.3℃ when ambient air temperature changed 8-15 ℃. Hysteresis effect was observed in composting temperature's responses to ambient air temperature. When the ventilation capability of pile was excellent(at a volume ratio of 1:0:1), the hysteresis time was short and ranging 1.1-1.2 h. On the contrary, when the proportion of added bulking agent was low, therefore less porosity in the substrate(at a volume ratio of 3:1:2), the hysteresis time was long and ranging 1.9-3.1 h.

  8. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  9. Critical Ignition Temperature of Fuel-air Explosive

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2004-10-01

    Full Text Available The charge of fuel-air explosive (FAE warhead usually is solid-liquid mixed fuel. The solid component is aluminium powder. To meet the demand of FAE weapon usage and storage safety, in the mixed-fuel medium, there must be gaps where adiabatic compression occurs during launchin-e overloading- of warhead. Adiabatic compression makes the temperature of the mediumin the gaps to rise. High temperature can cause dxplosion of the mixed fuel during launching acceleration of the warhead, which is very dangerous. Because the fuel is a multicomponentmixture, the critical ignitioh temperature can't be determined only by one component. Through experiment, the critical ignition temperature of the mixed fuel is attained, and the changingregularity of the pressure following the temperature is shown in this paper.

  10. On extreme rainfall intensity increases with air temperature

    Science.gov (United States)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  11. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  12. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    Science.gov (United States)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  13. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    The sea surface air temperature is an important parameter required for computation of air-sea fluxes over oceans which at present cannot be directly measured from remote sensing. In the present article, an empirical approach is proposed to determine...

  14. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    Science.gov (United States)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  15. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  16. Temperature Difference Between the Air and Organs of Rice Plant and Its Relation to Spikelet Fertility

    Institute of Scientific and Technical Information of China (English)

    YAN Chuan; DING Yan-feng; LIU Zheng-hui; WANG Qiang-sheng; LI Gang-hua; HE Ying; WANG Shao-hua

    2008-01-01

    Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Row-spacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.

  17. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    Science.gov (United States)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  18. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  19. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    Science.gov (United States)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  20. Control of the outlet air temperature in an air handling unit

    DEFF Research Database (Denmark)

    Brath, P.; Rasmussen, Henrik; Hägglund, T.

    1998-01-01

    . A simple way to determine the air flow with no extra equipment or experiments is suggested. Tuning of PI(D) controller based on step response identification is made using two different tuning methods. The paper describes the basic ideas, which are illustrated by simulations and plant experiments....

  1. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670... may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX...

  2. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    Science.gov (United States)

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  3. Climate change and river temperature sensitivity to warmer nighttime vs. warmer daytime air temperatures

    Science.gov (United States)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2011-12-01

    We investigated the July river temperature response to atmospheric warming over the diurnal cycle in a 36 km reach of the upper Middle Fork John Day River of Oregon, USA. The physical model Heat Source was calibrated and used to run 3 different cases of increased air temperature during July: 1) uniform increase over the whole day ("delta method"), 2) warmer daytime, and 3) warmer nighttime. All 3 cases had the same mean daily air temperatures - a 4 °C increase relative to 2002. Results show that the timing of air temperature increases has a significant effect on the magnitude, timing and duration of changes in water temperatures relative to current conditions. In all cases, river temperatures in the lower reach increased by at least 1.1 °C . For the delta case, water temperature increases never exceeded 2.3 °C. In contrast, under the warmer daytime case, water temperature increases exceeded 2.3 °C for 6.6 hours/day on average, with the largest increases occurring during mid-day. In the warmer night case the river temperature increases exceeded 2.3 °C for 4.3 hours/day on average with the largest increases occurring around midnight. In addition, an average increase of 4 °C in air temperature under the delta case increased the water temperature by an average of 1.9 °C uniformly during daytime and nighttime. Still, an average increase of 4 °C in air temperature under the warmer daytime case increased water temperature by an average of at least 1.6 °C during the daytime and by an average of up to 2.5 °C during the nighttime, while an average increase of 4 °C in air temperature under the warmer nighttime case increased the water temperature by an average of at least 1.4 °C during the nighttime and by an average of up to 2.4 °C during the daytime. The spatial response of temperature was different for each case. The lower 13 rkm warmed by at least 1.1 °C with the delta case, while only the lower 6 rkm warmed by at least 1.1 °C with the warmer daytime case

  4. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  5. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    , a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...... thermal sensation scale. The study could not confirm any preference regarding air and mean radiant temperature....

  6. Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms

    Institute of Scientific and Technical Information of China (English)

    Yanming Kang; Youjun Wang; Ke Zhong

    2011-01-01

    The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature.The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room,but could significantly influence the airflow pattern in the lower parts of the room,thus affecting the indoor air quality with contaminant sources located at the lower level,such as particles from working activities in an office.The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume,but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser.Comparison of the results for two different supply temperatures in a DV room shows that,although lower supply temperature means less incoming air volume,since the indoor flow is mainly driven by buoyancy,lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office).However,in the breathing zone it gives higher concentration as compared to higher supply air temperature.To obtain good indoor air quality,low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health.

  7. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    Science.gov (United States)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  8. Mapping air temperature using time series analysis of LST: the SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  9. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria;

    2013-01-01

    The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...... rate and tear film quality. In a test room with DV and six workstations 30 human subjects were exposed for four hours to each of the following 5 experimental conditions: 23 °C and DV only, 23 °C and DPV with air filter, 29 °C and DV only, 29 °C and DPV, and 29 °C and DPV with air filter. At warm...... environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film...

  10. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  11. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... emission of wall paint and floor varnish did increase significantly with increasing air humidity....

  12. Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.T. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR (China); Fong, K.F.; Lin, Zhang; Chan, A.L.S. [Division of Building Science and Technology, College of Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR (China); Givoni, B. [Department of Architecture, UCLA, Los Angeles, CA (United States); BGU, Beer Sheva (Israel)

    2010-10-15

    In the warm and humid climate zone, air-conditioning (AC) is usually provided at working places to enhance human thermal comfort and work productivity. From the building sustainability point of view, to achieve acceptable thermal sensation with the minimum use of energy can be desirable. A new AC design tactic is then to increase the air movement so that the summer temperature setting can be raised. A laboratory-based thermal comfort survey was conducted in Hong Kong with around 300 educated Chinese subjects. Their thermal sensation votes were gathered for a range of controlled thermal environment. The result analysis shows that, like in many other Asian cities, the thermal sensation of the Hong Kong people is sensitive to air temperature and speed, but not much to humidity. With bodily air speed at 0.1-0.2 m/s, clothing level 0.55 clo and metabolic rate 1 met, the neutral temperature was found around 25.4 C for sedentary working environment. Then recommendations are given to the appropriate controlled AC environment in Hong Kong with higher airflow speeds. (author)

  13. Dust suppression in surface mines at low air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Ivanov, I.I.; Mekhov, K.S.

    1982-04-01

    Air pollution by dusts in coal surface mines in Siberia increases in winter. Some methods for increasing efficiency of dust control in winter are discussed. Due to adhesion between coal grains and snow or ice particles, mixing coal with snow or ice leads to moisture increase in coal. As there is a limited amount of fresh snow in coal surface mines, production of artificial snow using water and compressed air is investigated. Two systems were tested: a mobile system installed on a truck which moves on mine roads and a stationary system which uses air compressors, water pipes and blowers for increasing mixing intensity. The stationary system is superior to the mobile one. Design of nozzles used for snow production is shown in two schemes. Distribution of about 2 kg/m/sup 2/ of artificial snow on mine roads permits dust content in the air to be reduced from 60 g/m/sup 3/ to below 1.0 g/m/sup 3/. Design and parameters of the compressor system used for snow production are given. (In Russian)

  14. Estimating the Surface Air Temperature by Remote Sensing in Northwest China Using an Improved Advection-Energy Balance for Air Temperature Model

    Directory of Open Access Journals (Sweden)

    Suhua Liu

    2016-01-01

    Full Text Available To estimate the surface air temperature by remote sensing, the advection-energy balance for the surface air temperature (ADEBAT model is developed which assumes the surface air temperature is driven by the local driving force and the advective driving force. The local driving force produces a local surface air temperature whereas the advective driving force changes it by adding an exotic air temperature. An advection factor f is defined to measure the quantity of the exotic air brought by the advection. Since the f is determined by the advection, this paper improves it to a regional scale by using the Inverse Distance Weighting (IDW method whereas the original ADEBAT model uses a constant of f for a block of area. Results retrieved by the improved ADEBAT (IADEBAT model are evaluated and comparison was made with the in situ measurements, with an R2 (correlation coefficient of 0.77, an RMSE (Root Mean Square Error of 0.31 K, and a MAE (Mean Absolute Error of 0.24 K. The evaluation shows that the IADEBAT model has higher accuracy than the original ADEBAT model. Evaluations together with a t-test of the MAD (Mean Absolute Deviation reveal that the IADEBAT model has a significant improvement.

  15. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  16. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  17. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus;

    2016-01-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six...... temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius–Clapeyron equation, ln(P) = −H/RT + a0, where...... changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R2>94%) of the variation in indoor air PCB levels...

  18. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  19. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available Adequate perception of nasal airflow (i.e., nasal patency is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  20. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  1. Emperor penguin body surfaces cool below air temperature.

    Science.gov (United States)

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  2. Prediction of air temperature in the aircraft cabin under different operational conditions

    Directory of Open Access Journals (Sweden)

    Fišer J.

    2013-04-01

    Full Text Available This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  3. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    Science.gov (United States)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  4. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    Science.gov (United States)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  5. Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor

    Directory of Open Access Journals (Sweden)

    Jaehyun Ha

    2016-09-01

    Full Text Available This study examines the relationship between air temperature and urban environment indices, mainly focusing on sky view factor (SVF in Seoul, Korea. We use air temperature data observed from 295 automatic weather stations (AWS during the day and night in Seoul. We conduct a spatial regression analysis to capture the effect of spatial autocorrelation in our data and identify changes in the effects of SVF on air temperature, while conducting the regression model for each dataset according to the floor area ratio (FAR. The findings of our study indicate that SVF negatively affects air temperature during both day and night when other effects are controlled through spatial regression models. Moreover, we address the environmental indices associated with day-time and night-time air temperatures and identify the changing effects of SVF on air temperature according to the areal floor area ratio of the analysis datasets. This study contributes to the literature on the relationship between SVF and air temperature in high-density cities and suggests policy implications for improving urban thermal environments with regard to urban design and planning.

  6. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  7. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  8. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Science.gov (United States)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  9. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  10. Influence of the ambient air temperature on the electrical contact reliability of electromagnetic relay

    Institute of Scientific and Technical Information of China (English)

    YAO Fang; ZHENG Jian-rong; HUANG Zhang-wu

    2007-01-01

    The dynamic contact resistances of HH52P electromagnetic relays are measured under different ambient air temperature. Their diagnostic parameters are extracted and determined. It is found that the ambient air temperature obviously influences some parameters. In order to research its influence on the electrical contact reliability of electromagnetic relay, the statistic analysis is applied to study the static contact resistance, the max of the dynamic contact resistance and the bounce time. It is found that the ambient air temperature regularly influences the three parameters. Thoroughly, the phenomenon is studied and analyzed in the point of material science so as to probe into the essential matter of it.

  11. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    Science.gov (United States)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  12. Influence of intake air temperature on internal combustion engine operation

    Science.gov (United States)

    Birtok-Băneasă, C.; Raţiu, S.; Hepuţ, T.

    2017-01-01

    This paper presents three methods for reduce thermal losses in the intake system with improvement of airflow and thermal protection. In the experiment are involved two patented devices conceived by the author and one PhD theme device: 1- Dynamic device for air transfer, 2-Integrated thermal deflector, and, 3-Advanced thermal protection. The tests were carried on different vehicle running in real traffic and in the Internal Combustion Engines Laboratory, within the specialization “Road vehicle” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timişoara. The results have been processed and compared whit the ones obtained without these devices.

  13. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  14. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    Science.gov (United States)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  15. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  16. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...

  17. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  18. Electronic rhinological thermometer for three-point air temperature measurement in nasal cavity

    Science.gov (United States)

    Śnieg, Marcin; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    This article describes the design and construction of diagnostic medical system for air temperature measurement in nasal cavity. Concept of three-point thermometer is connected with single point electronic thermometer for air temperature measurement in nasal cavity that was previously constructed [1]. Researches were done in Microsystems and Sensors Research Group (WUT) with cooperation of physicians and laryngologists from Otolaryngology Department, Military Medical Institute, Warsaw. Measurement system consist of microprocessor module which periodically collects samples of air temperature from different part of nasal cavity, measurement head with three temperature sensors, and computer software presenting on-line results, calculating breathing parameters and storing data in database. Air temperature is measured in nasal cavity, middle part cavity and nasopharynx during regular respiration process.

  19. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  20. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  1. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  2. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  3. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  4. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    Science.gov (United States)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2016-10-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  5. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; SUN Chaoyang; LIU Jiyuan; HE Jianfeng; KUANG Wenhui; TAO Fulu

    2011-01-01

    Since the implementation of the reform and opening up policy in China in the late 1970s,some meteorological stations 'entered' cities passively due to urban expansion.Changes in the surface and built environment around the stations have influenced observations of air temperature.When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset,they could lead to overestimation of regional air temperature and inaccurate assessment of warming.In this study,the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that 'entered' into cities.Then,after removing the observational data from these stations which have been influenced by urban expansion,a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations.The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated.The result shows that urban heat island effect does occur due to urban expansion,with a higher intensity in winter than in other seasons.Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations' and rural stations' observational data.Spatially,the overestimation is relatively higher in eastern China than in the central part of China; however,both areas exhibit a much higher effect than is observed in western China.We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃,of which about 0.01℃ was attributed to urban expansion,with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.

  6. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  7. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Air Temperature data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  8. TopoWx: Topoclimatic Daily Air Temperature Dataset for the Conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The TopoWx ('Topography Weather') dataset contains historical 30-arcsec resolution (~800-m) interpolations of daily minimum and maximum topoclimatic air temperature...

  9. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  10. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  11. Baseline (1961-1990) average air temperature (degree C) for Alaska and Western Canada.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average air temperature (degree C) for Alaska and Western Canada. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU)...

  12. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  13. 48-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  14. Climate Prediction Center (CPC) U.S. Daily Minimum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  15. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  16. Baseline (1961-1990) average air temperature (degree F) for Alaska and Western Canada.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average air temperature (degree F) for Alaska and Western Canada. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS...

  17. Near surface spatially averaged air temperature and wind speed determined by acoustic travel time tomography

    Directory of Open Access Journals (Sweden)

    Armin Raabe

    2001-03-01

    Full Text Available Acoustic travel time tomography is presented as a possibility for remote monitoring of near surface airtemperature and wind fields. This technique provides line-averaged effective sound speeds changing with temporally and spatially variable air temperature and wind vector. The effective sound speed is derived from the travel times of sound signals which propagate at defined paths between different acoustic sources and receivers. Starting with the travel time data a tomographic algorithm (Simultaneous Iterative Reconstruction Technique, SIRT is used to calculate area-averaged air temperature and wind speed. The accuracy of the experimental method and the tomographic inversion algorithm is exemplarily demonstrated for one day without remarkable differences in the horizontal temperature field, determined by independent in situ measurements at different points within the measuring field. The differences between the conventionally determined air temperature (point measurement and the air temperature determined by tomography (area-averaged measurement representative for the area of the measuring field 200m x 260m were below 0.5 K for an average of 10 minutes. The differences obtained between the wind speed measured at a meteorological mast and calculated from acoustic measurements are not higher than 0.5 ms-1 for the same averaging time. The tomographically determined area-averaged distribution of air temperature (resolution 50 m x 50 m can be used to estimate the horizontal gradient of air temperature as a pre-condition to detect horizontal turbulent fluxes of sensible heat.

  18. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    Science.gov (United States)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  19. Natural Ventilation of Indoor Air Temperature: A Case Study of the Traditional Malay House in Penang

    Directory of Open Access Journals (Sweden)

    Ahmad S. Hassan

    2010-01-01

    Full Text Available Problem statement: It was the aim of the study to analyze the level of performance of natural air ventilation with a case study of the traditional Malay house in Penang, Malaysia. This study provided information on the architectural design in relation to natural air ventilation. It promoted passive design in contrast to most housing design which has poor natural air ventilation because the design was orientated to energy consumption that slightly more than one third of the electric energy was used for heating, ventilating and air conditioning systems. Approach: This analysis used quantitative method which measured temperature, humidity and wind speed of the traditional house. The result indicated the level of performance of cross air ventilation and stack effect. Results: The analysis showed that the traditional house has a design integrated with natural air ventilation system. The indoor house temperature and relative humidity had slightly lower than its outdoor area. However, the indoor area had lower wind speed level than the outdoor area. Conclusion: The study showed that maximum openings on the building walls created high air intakes outside the house to give poor performance of stack effect. The design had more emphasis to cross air ventilation.

  20. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  1. Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Our analyses of the monthly mean air temperature of meteorological stations show that altitude,global solar radiation and surface effective radiation have a significant impact on air temperature.We set up a physically-based empirical model for monthly air temperature simulation.Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological observation data,we also developed a method for the distributed simulation of monthly air temperatures over rugged terrain.Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean,the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin.Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature.Cross-validation shows that the proposed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃.Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity.The proposed model solely uses routine meteorological data and can be applied easily to other regions.

  2. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    Science.gov (United States)

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects.

  3. Response of four foliage plants to heated soil and reduced air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bodnaruk, W.H. Jr.; Mills, T.W.; Ingram, D.L.

    1981-01-01

    Tip cuttings of Dieffenbachia maculata (Lodd.) G. Donn Exotic Perfection Compacta' and Aglaonema commutatum Schott Silver Queen and single eye cuttings of Epipremnum aureum (Linden and Andre) Bunt, and Philodendron scandens oxycardium (Schott) Bunt. were propagated in combinations of 4 minimum air temperatures, 45/sup 0/, 50/sup 0/, 55/sup 0/ and 60/sup 0/F (7.2/sup 0/, 10/sup 0/, 12.7/sup 0/, 15.5/sup 0/C), and 2 soil temperature treatments; controlled 70/sup 0/F (21/sup 0/C) minimum and variable. Maintaining minimum soil temperatures at 70/sup 0/F reduced production times for rooted Dieffenbachia and Aglaonema tips by 45% and of Epipremnum and Philodendron suitable for 3 inch pots by 35% and 25%, respectively, regardless of minimum air temperature. Minimum air temperature had little effect on Dieffenbachia or Aglaonema root number and length at 70/sup 0/F soil temperature. Similarly shoot length and number of leaves of Philodendron and Epipremnum were not affected by minimum air temperatures with 70/sup 0/F soil temperature. Plant quality was uniformly high in all crops at the 70/sup 0/F soil minimum for all air temperatures except Epipremnum which was chlorotic at 45/sup 0/F. A description of a warm water in-benching heating system is included. 6 references, 2 figures, 9 tables.

  4. Temperature Rise Comparison of Switchgear in SF6, N2, and Air

    Directory of Open Access Journals (Sweden)

    Feng Hao

    2013-01-01

    Full Text Available Based on the heat conduction equation, fluid flow governing equation and radiation heat transfer equation, a multi-physics coupled mathematical model is established, the convection heat transfer problem between solid and fluid is solved by wall function. The three dimensional thermal field in a type of switchgear filled respectively with SF6, N2, and air are calculated and analyzed to discuss the feasibility of using air or N2 as the substitution of SF6 by the finite volume method. The results show that the temperature field in three gases are similar in the switchgear. The temperature rise of current-carrying loop is the highest in SF6 and is the lowest in the air. So the conclusion could be made that air or N2 can replace SF6 as the insulating gas of switchgear on the perspective of temperature rise.

  5. Air Pollution

    Science.gov (United States)

    ... to view this content or go to source URL . What NIEHS is Doing on Air Pollution Who ... Junction Last Reviewed: February 06, 2017 This page URL: NIEHS website: https://www.niehs.nih.gov/ Email ...

  6. Transfer function models to quantify the delay between air and ground temperatures in thawed active layers

    Directory of Open Access Journals (Sweden)

    E. Zenklusen Mutter

    2011-10-01

    Full Text Available Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps.

    The relation between air and ground temperature is influenced by various factors such as ground surface cover, snow depth, water or ground ice content. To avoid complications induced by the insulating properties of the snow cover and by phase changes in the ground, only the mostly snow-free summer period when the ground at 0.5 m depth is thawed has been considered here. All summers from 2006 to 2009 have been analysed, with the main focus on summer 2006.

    The results reveal that in summer 2006 daily air temperature changes influence ground temperatures at 0.5 m depth with a delay ranging from one to six days, depending on the site. The fastest response times are found for a very coarse grained, blocky rock glacier site whereas slower response times are found for blocky scree slopes with smaller grain sizes.

  7. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  8. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  9. Model Based Sensor System for Temperature Measurement in R744 Air Conditioning Systems

    CERN Document Server

    Reitz, Sven; Schneider, Peter

    2008-01-01

    The goal is the development of a novel principle for the temperature acquisition of refrigerants in CO2 air conditioning systems. The new approach is based on measuring the temperature inside a pressure sensor, which is also needed in the system. On the basis of simulative investigations of different mounting conditions functional relations between measured and medium temperature will be derived.

  10. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    Science.gov (United States)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  11. THE INFLUENCE OF THE DAILY FLUCTUATIONS OF OUTSIDE AIR TEMPERATURE ON THE INDOOR CLIMATE

    Directory of Open Access Journals (Sweden)

    A. E. Zakharevich

    2016-01-01

    Full Text Available The investigation of indoor air temperature fluctuations within the occupied zone (habitable zone induced by the periodic changes of outdoor air temperature was carried out with the use of numerical simulation of heat transfer processes in the heated room. The developed and programme-implemented two-dimensional physical and mathematical model takes into account unsteady nature of the complex conjugate heat transfer in building envelopes and indoor air spaces when using different types of heating devices. The design features of building structures and windows are considered. The model includes the equations of radiative heat transfer between indoor surfaces, window panes and outdoor environment. In the study, the harmonic changes of outside temperature are specified by the cosine law with the twenty-four-hour period. Two types of heaters are examined: radiator and underfloor heating. Heating output of the devices is specified time-invariable according to the thermal balance defined by the traditional method. Simulations are performed for the three combinations of heat-transfer properties of building structures. The quantitative characteristics of the induced indoor air temperature fluctuations within the occupied zone depending on the building envelope thermal inertia and the type of used heater were found out. The analysis of results yielded the following conclusions. Reducing inertia of glazing leads to more rapid penetration of outdoor temperature wave into the room. While the amplitude of the indoor air temperature fluctuations within the occupied zone remains constant by reason of the unchanged thermal inertia of the main building structures. The significant increase in the amplitude of harmonic changes of indoor air temperature within the occupied zone is observed when reducing inertia of walls and floors whereas the delay with respect to outside air temperature fluctuations remains almost invariable.

  12. Rate constants for chemical reactions in high-temperature nonequilibrium air

    Science.gov (United States)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  13. Numerical Simulation of Combustion Characteristics in High Temperature Air Combustion Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-hua; CAI Jiu-ju; XIE Guo-wei

    2009-01-01

    The influences of air preheating temperature, oxygen concentration, and fuel inlet temperature on flame properties, and NOx formation and emission in the furnace were studied with numerical simulation. The turbulence behavior was modeled using the standard k-e model with wall function, and radiation was handled using discrete ordi-nate radiation model. The PDF (probability density funetion)/mixture fraction combustion model was used to simu-late the propane combustion. Additionally, computations of NOx formation rates and NOx concentration were carried out using a post-processor on the basis of previously calculated velocities, turbulence, temperature, and chemical composition fields. The results showed that high temperature air combustion (HiTAC) is spread over a much larger volume than traditional combustion, flame volume increases with a reduction of oxygen eoncentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. The temperature profile becomes more uniform when oxygen concentration in preheated air decreases, especially at low oxygen levels. Increase in fuel inlet tempera-ture lessens the mixing of the fuel and air in primary combustion zone, ereates more uniform distribution of reactants inside the flame, decreases the maximum temperature in furnace, and reduces NOx emission greatly.

  14. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong

    2015-01-01

    Full Text Available In a port fuel injection engine, Optimized kinetic process (OKP technology is implemented to realize HCCI combustion with dual-fuel injection. The effects of intake air temperature on HCCI combustion and emissions are investigated. The results show that dual-fuel control prolongs HCCI combustion duration and improves combustion stability. Dual-fuel HCCI combustion needs lower intake air temperature than gasoline HCCI combustion, which reduces the requirements on heat management system. As intake air temperature decreases, air charge increases and maximum pressure rising rate decreases. When intake air temperature is about 55ºC, HCCI combustion becomes worse and misfire happens. In fixed dual fuel content condition, HC and CO emission decreases as intake air temperature increases. The combination of dual-fuel injection and intake air temperature control can expand operation range of HCCI combustion.

  15. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    Science.gov (United States)

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  16. High Temperature Convective Drying of a Packed Bed with Humid Air at Different Humidities

    Directory of Open Access Journals (Sweden)

    J. Sghaier

    2009-01-01

    Full Text Available Problem statement: Drying a packed bed of porous particle at high temperature with varying humidity of hot air is an attractive process. Despite, many researches on experimental and simulation on a fixed bed drying at low and average temperature are proposed. Few studies showed drying at high temperature with humid air or using superheated steam. The latest is compared to dry air. Approach: In this study, we show an experimental and numerical study of humid air drying of a fixed bed of moist porous alumina particles. The air velocity, the air temperature and the vapor pressure were varied from 1.7-2.3 m.sec-1, 120-160°C and 0.1-0.65 bar, respectively and the experiments were performed at atmospheric pressure. Then a mathematical describing heat and mass transfer during drying is developed. This model is based on the averaging volume approach using two scale changes. Results: From the experimental works, the solid temperature and the bed moisture content have been presented at different drying conditions. The previous results show that an increase in humidity leads to an increase of the wet bulb temperature and a decrease in the drying time. At the same drying temperature, the variation in the gas velocity affects also the drying time. In addition, we note that the drying time increases if the bed depth increases. The predicted results deduced from the developed model were compared with the experiment. Conclusion: The experimental and predicted results obtained from this study describing drying of a packed bed illustrate clearly the effect of the air humidity on the drying kinetics.

  17. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2012-07-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  18. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    OpenAIRE

    Jovanović Rastko D.; Cvetinović Dejan B.; Stefanović Predrag Lj.; Škobalj Predrag D.; Marković Zoran J.

    2016-01-01

    New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important...

  19. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2011-01-01

    Full Text Available A solar updraft tower power plant (solar tower is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009. The results show that the best chimney efficiency attained was 49.7% for pebbles base. The highest collected air temperature reached was 49ºC when using the black pebbles basement also.also, the maximum basement temperature measured was 59ºC for black pebbles. High increaments in collected air temperatures were achieved in comparison with the ambient air temperatures for the three basement kinds. The highest temperature difference reached was 22ºC with the pebble ground.

  20. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    Directory of Open Access Journals (Sweden)

    Kwang Rae Cho

    2014-12-01

    Full Text Available Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients.The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter and temperature selection (high, medium, low and ambient. All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant.Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG respectively (high, medium, low and ambient temperature set. ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances.ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  1. Natural and forced air temperature variability in the Labrador region of Canada during the past century

    Science.gov (United States)

    Way, Robert G.; Viau, Andre E.

    2015-08-01

    Evaluation of Labrador air temperatures over the past century (1881-2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881-2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

  2. Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    ZENG Yan; QIU XinFa; HE YongJian; SHI GuoPing; LIU ChangMing

    2009-01-01

    Our analyses of the monthly mean air temperature of meteorological stations show that altitude, global solar radiation and surface effective radiation have a significant impact on air temperature. We set up a physically-based empirical model for monthly air temperature simulation. Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological ob-servation data, we also developed a method for the distributed simulation of monthly sir temperatures over rugged terrain. Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean, the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin. Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature. Cross-validation shows that the pro-posed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃. Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity. The proposed model solely uses routine meteorological data and can be applied easily to other regions.

  3. Cavity Ring Down Absorption of Oxygen in Air as a Temperature Sensor

    Science.gov (United States)

    Manzanares, Carlos; Nyaupane, Parashu R.

    2016-06-01

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube.

  4. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  5. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    Science.gov (United States)

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  6. The effect of air temperature on yield of Holstein dairy cattle

    Directory of Open Access Journals (Sweden)

    Anna Šimková

    2015-05-01

    Full Text Available The study was carried out in the agricultural company Petrovice during the summer and winter seasons. The experiment included Holstein dairy cattle. Air temperature was measured using a data logger with sensors (Datalogger COMET 3120 in the stable. Data on average yield were taken from farm records and then processed using Microsoft Excel. The aim of the study was to determine how the values of ambient temperature affect the welfare of the animals with regard to the average performance. The air temperature is very variable and its changes animals react immediately. Measured values of air temperature in the stable are important for optimal welfare. It affects the productivity of dairy cows, milk quality, reproduction and animal health.

  7. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    Institute of Scientific and Technical Information of China (English)

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  8. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  9. Air surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  10. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  11. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysis surface air temperature data during 1960-1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal warming about 0.12℃ /decade, 0.10℃/decade, 0.12 ℃ /decade, respectively. Woodland areas do not show a significant warming trend (0.06 ℃ /decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  12. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    YANG XuChao; ZHANG YiLi; LIU LinShan; ZHANG Wei; DING MingJun; WANG ZhaoFeng

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysie surface air temperature data during 1960--1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal a significant warming trend (0.06"C/decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  13. Exploration of health risks related to air pollution and temperature in three Latin American cities.

    Science.gov (United States)

    Romero-Lankao, Patricia; Qin, Hua; Borbor-Cordova, Mercy

    2013-04-01

    This paper explores whether the health risks related to air pollution and temperature extremes are spatially and socioeconomically differentiated within three Latin American cities: Bogota, Colombia, Mexico City, Mexico, and Santiago, Chile. Based on a theoretical review of three relevant approaches to risk analysis (risk society, environmental justice, and urban vulnerability as impact), we hypothesize that health risks from exposure to air pollution and temperature in these cities do not necessarily depend on socio-economic inequalities. To test this hypothesis, we gathered, validated, and analyzed temperature, air pollution, mortality and socioeconomic vulnerability data from the three study cities. Our results show the association between air pollution levels and socioeconomic vulnerabilities did not always correlate within the study cities. Furthermore, the spatial differences in socioeconomic vulnerabilities within cities do not necessarily correspond with the spatial distribution of health impacts. The present study improves our understanding of the multifaceted nature of health risks and vulnerabilities associated with global environmental change. The findings suggest that health risks from atmospheric conditions and pollutants exist without boundaries or social distinctions, even exhibiting characteristics of a boomerang effect (i.e., affecting rich and poor alike) on a smaller scale such as areas within urban regions. We used human mortality, a severe impact, to measure health risks from air pollution and extreme temperatures. Public health data of better quality (e.g., morbidity, hospital visits) are needed for future research to advance our understanding of the nature of health risks related to climate hazards.

  14. Prediction of Air Flow and Temperature Distribution Inside a Yogurt Cooling Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    A Surendhar

    2015-01-01

    Full Text Available Air flow and heat transfer inside a yogurt cooling room were analysed using Computational Fluid Dynamics. Air flow and heat transfer models were based on 3D, unsteady state, incompressible, Reynolds-averaged Navier-Stokes equations and energy equations. Yogurt cooling room was modelled with the measured geometry using 3D design tool AutoCAD. Yogurt cooling room model was exported into the flow simulation software by specifying properties of inlet air, yogurt, pallet and walls of the room. Packing material was not considered in this study because of less thickness (cup-0.5mm, carton box-1.5mm and negligible resistance created in the conduction of heat. 3D Computational domain was meshed with hexahedral cells and governing equations were solved using explicit finite volume method. Air flow pattern inside the room and the temperature distribution in the bulk of palletized yogurt were predicted. Through validation, the variation in the temperature distribution and velocity vector from the measured value was found to be 2.0oC (maximum and 30% respectively. From the simulation and the measured value of the temperature distribution, it was observed that the temperature was non-uniform over the bulk of yogurt. This might be due to refrigeration capacity, air flow pattern, stacking of yogurt or geometry of the room. Required results were achieved by changing the location of the cooling fan.

  15. An Experimental Study on High Temperature and Low Oxygen Air Combustion

    Institute of Scientific and Technical Information of China (English)

    W.B.Kim; D.H.Chung; 等

    2000-01-01

    High temperature preheated and diluted air combustion has been confirmed as the technolgy,mainly applied to industrial furnaces and kilns,to realize higher thermal efficiency and lower emissions.The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air.The test items were exhaust gas components of CO,NOx,flame shape and raidcal components of CH,OH and C2,which were measured with gas analyser,camera and ICCD(Intersified Charged-Coupled Device) camera.Many phenomena as results appeared in combustion with the oxidizer,low oxygen concentation and extremely high temperature air,such as expansion of the flammable limits,increased flame propagation speed,it looked so strange as compared with those in existing combustion technology,we confirmed that such extraordinary phenomena were believable through the hot-test experiment.

  16. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    Science.gov (United States)

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively.

  17. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    Science.gov (United States)

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  18. The effect of air temperature on the sappan wood extract drying

    Science.gov (United States)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  19. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    Science.gov (United States)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  20. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    Science.gov (United States)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  1. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    Science.gov (United States)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs.

  2. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  3. Prediction of Monthly Mean Surface Air Temperature in a Region of China

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Keon-Tae SOHN

    2007-01-01

    In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a region of China using a decomposition method in time series analysis. Applications to the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) Collaborative Reanalysis data in this region of China are discussed. The main finding was that the surface air temperature trend estimated for January 1948 to February 2006 was not statistically significant at 0.5904℃ (100 yr)-1.Forecasting aspects are also considered.

  4. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  5. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... windows. Classrooms with automatically operable windows and exhaust fan and with mechanical ventilation systems achieved the best thermal environment and air quality during heating season among all classrooms examined....... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...

  6. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  7. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater

    Energy Technology Data Exchange (ETDEWEB)

    J. Menasha; D. Dunn-Rankin; L. Muzio; J. Stallings [University of California Irvine, Irvine, CA (United States). Department of Mechanical and Aerospace Engineering

    2011-07-15

    Ammonium bisulfate (ABS) forms in coal-fired power plant exhaust systems when ammonia slip from the NOx control system reacts with the sulfur oxides and water in the flue gas. The critical temperature range for ABS formation occurs in the air preheater, where ABS is known to cause corrosion and pluggage that can require unplanned outages and expensive cleaning. To develop mitigation strategies for the deleterious effects of ABS in air preheaters, it is important to know its formation temperature and deposition process. This paper describes a bench-scale experimental simulation of a single-channel air preheater, with the appropriate temperature gradient, used in conjunction with simulated coal combustion flue gas, including sulfur oxides, ammonia, and water vapor, to investigate the formation of ABS. Formation was observed optically, and the formation temperature, as well as deposition characteristics for a realistic range of reactant concentrations are presented and compared with previous studies on ABS formation. This study presents data at realistic concentrations not earlier tested, and the reported data has smaller experimental uncertainty than previously obtained. We found that the measured ABS formation temperatures under air preheater channel conditions lies between the temperatures reported by others, and is in the range of 500-520 K for typical flue gas concentrations of ammonia and sulfur oxide species. The results also show that, at least for this experimental configuration, ABS forms predominantly as an aerosol in the gas phase rather than as a condensate on the channel walls. 13 refs., 13 figs., 2 tabs.

  8. Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain

    Indian Academy of Sciences (India)

    D B Shah; M R Pandya; H J Trivedi; A R Jani

    2013-12-01

    Spatially distributed air temperature data are required for climatological, hydrological and environmental studies. However, high spatial distribution patterns of air temperature are not available from meteorological stations due to its sparse network. The objective of this study was to estimate high spatial resolution minimum air temperature (min) and maximum air temperature (max) over the Indo-Gangetic Plain using Moderate Resolution Imaging Spectroradiometer (MODIS) data and India Meteorological Department (IMD) ground station data. min was estimated by establishing an empirical relationship between IMD min and night-time MODIS Land Surface Temperature (s). While, max was estimated using the Temperature-Vegetation Index (TVX) approach. The TVX approach is based on the linear relationship between s and Normalized Difference Vegetation Index (NDVI) data where max is estimated by extrapolating the NDVI-s regression line to maximum value of NDVImax for effective full vegetation cover. The present study also proposed a methodology to estimate NDVImax using IMD measured max for the Indo-Gangetic Plain. Comparison of MODIS estimated min with IMD measured min showed mean absolute error (MAE) of 1.73°C and a root mean square error (RMSE) of 2.2°C. Analysis in the study for max estimation showed that calibrated NDVImax performed well, with the MAE of 1.79°C and RMSE of 2.16°C.

  9. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  10. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  11. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  12. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    DEFF Research Database (Denmark)

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    . The present climatic chamber study examined energy performance and achievable thermal comfort of traditional and bladeless desk fans. Different effects of mechanical and simulated-natural airflow patterns were also investigated. 32 Scandinavians, performing office activities and wearing light clothes , were......Previous studies have demonstrated that in summertime increased air velocities can compensate for higher room temperatures to achieve comfortable conditions. In order to increase air movement, windows opening, ceiling or desk fans can be used at the expense of relatively low energy consumption...... exposed to a increased air movement generated by a personal desk fan. The subjects could continuously regulate the fans under three fixed environmental conditions (operative temperatures equal to 26 °C, 28 °C, or 30 °C, and same absolute humidity 12.2 g/m3). The experimental study showed that increased...

  13. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  14. 磨煤机出口风压及风温的热控安装%Thermal control installation of air pressure and air temperature of pulverizer outlet

    Institute of Scientific and Technical Information of China (English)

    任强

    2011-01-01

    According to the operation ot ZGM-95 type pulverizer produced by Beijing electric power equipment factory great used in northern region, formation and factors of air pressure and air temperature of pulverizer outlet, this paper made induction and analysis, and made technical reformation to the problems influence of the accuracy of air pressure and air temperature of pulverizer outlet, made its accurate measurement, normal operation.%针对北方地区大量使用的北京电力设备总厂生产的ZGM-95型磨煤机在运行过程中,磨出口风压及风温的形成关系和因素,归纳和分析,对影响磨出口风压及风温准确性的问题进行技术改造,使其测量准确,运行正常。

  15. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    Science.gov (United States)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  16. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devices The Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  17. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    Science.gov (United States)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  18. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    Science.gov (United States)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  19. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  20. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  1. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  2. Air-to-Air Missile Vector Scoring

    Science.gov (United States)

    2012-03-22

    64 4.6. Unscented Kalman Filter Performance in Air-to-Air Missile Scor - ing Application with Continuous Velocity Dynamics Model (Tar- get...Filter Performance in Air-to-Air Missile Scor - ing Application with Continuous Velocity Dynamics Model (Tar- get Aircraft Executing a Vertical Climb...Kalman Filter Performance in Air-to-Air Missile Scor - ing Application with Continuous Velocity Dynamics Model (Tar- get Aircraft Non-maneuvering

  3. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  4. Summer temperature trend over the past two millennia using air content in Himalayan ice

    Directory of Open Access Journals (Sweden)

    S. Hou

    2007-01-01

    Full Text Available Two Himalayan ice cores display a factor-two decreasing trend of air content over the past two millennia, in contrast to the relatively stable values in Greenland and Antarctica ice cores over the same period. Because the air content can be related with the relative frequency and intensity of melt phenomena, its variations along the Himalayan ice cores provide an indication of summer temperature trend. Our reconstruction point toward an unprecedented warming trend in the 20th century but does not depict the usual trends associated with "Medieval Warm Period" (MWP, or "Little Ice Age" (LIA.

  5. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational...... and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  6. A new approach for highly resolved air temperature measurements in urban areas

    Directory of Open Access Journals (Sweden)

    M. Buttstädt

    2011-02-01

    Full Text Available In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  7. Possible influence of stratospheric circulation on January surface air temperature over China

    Science.gov (United States)

    Tan, Guirong; Zhu, Weijun; Zeng, Gang; Sun, Zhaobo; Peng, Lixia

    2009-08-01

    In terms of monthly NCEP/NCAR and 160 site temperature data from NCC (National Climate Center), the main modes of January surface air temperature in 1979-2008 over China and possible mechanism of typical cold/warm episodes are investigated. Results show that the first mode for January temperature is characterized by consist variation in China, which is closely related to circulation anomalies in stratosphere. From the wave source over East Asian in stratosphere wave fluxes propagate downward and westward, and in upper troposphere over North Atlantic there is a remarkable convergent area of wave flux leading to the ridge enhanced with stronger heat transforming to the North and front zone moving to more northerly. Thereby jet stream becomes strong and expands to East Atlantic with positive (negative) NAO anomaly pattern and higher pressure occurs south to Baikal indicating stronger (weaker) than normal cold air, which is helpful for lower (higher) temperature appearing over China

  8. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... accuracies below 2K. The air temperatures measured by ground-based weather stations were properly matched with brightness temperatures observed by the Moderate-resolution Imaging Spectroradiometer (MODIS) on board of both Terra and Aqua satellites. In total, 931 daytime and nighttime scenes taken between...... across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally...

  9. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  10. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    Indian Academy of Sciences (India)

    Rajeev Ranjan Kumar; D V Ramana; R N Singh

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature–depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  11. R9 Air Districts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Region 9 Air Districts layer is a compilation of polygons representing the California Air Pollution Control and Air Quality Management Districts, Arizona Air...

  12. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  13. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  14. Air movement - good or bad?

    DEFF Research Database (Denmark)

    Toftum, Jørn

    2004-01-01

    Air movement - good or bad? The question can only be answered by those who are exposed when they are exposed. Human perception of air movement depends on environmental factors including air velocity, air velocity fluctuations, air temperature, and personal factors such as overall thermal sensation...... and activity level. Even for the same individual, sensitivity to air movement may change from day to day as a result of e.g. different levels of fatigue. Based on existing literature, the current paper summarizes factors influencing the human perception of air movement and attempts to specify in general terms...... influences the subjective perception of air movement. With occupants feeling warmer than neutral, at temperatures above 23oC or at raised activity levels, humans generally do not feel draught at air velocities typical for indoor environments (up to around 0.4 m/s). In the higher temperature range, very high...

  15. Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures

    Directory of Open Access Journals (Sweden)

    Y.-R. Lee

    2012-10-01

    Full Text Available Surface skin temperatures of the Version 5 Level 3 products of MODIS and AIRS/AMSU have been compared in terms of monthly anomaly trends and climatology over the globe during the period from September 2002 to August 2011. The MODIS temperatures in the 50° N–50° S region tend to systematically be ~1.7 K colder over land and ~0.5 K warmer over ocean than the AIRS/AMSU temperatures. Over high latitude ocean the MODIS values are ~5.5 K warmer than the AIRS/AMSU. The discrepancies between the annual averages of the two sensors are as much as ~12 K in the sea ice regions. Both MODIS and AIRS/AMSU show cooling trends from −0.05 ± 0.06 to −0.14 ± 0.07 K (9 yr−1 over the globe, but warming trends (0.02 ± 0.12–0.15 ± 0.19 K (9 yr−1 in the high latitude regions. The disagreement between the two sensors results mainly from the differences in ice/snow emissivity between MODIS infrared and AMSU microwave, and also in their observational local times.

  16. Average historical annual temperature, projected air temperature, and change in air temperature (degree F) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  17. Average historical annual temperature, projected air temperature, and change in air temperature (degree C) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  18. Average historical annual temperature, projected air temperature, and change in air temperature (degree F) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  19. Average historical annual temperature, projected air temperature, and change in air temperature (degree C) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1 datasets.

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — Baseline (1961-1990) average annual temperature, projected air temperature, and projected change in air temperature for for the northern portion of Alaska. The...

  20. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  1. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  2. Long-Range Forecasting of Surface Air Temperature and Precipitation for the Korean Peninsula

    Science.gov (United States)

    2013-03-01

    eastern Russia and China ; and (2) less strongly from the east and north, from along the north flank of the Aleutian Low. In the composite chart (b): (1...82    Correlation of the Nov North Atlantic Oscillation ( NAO ) index with Figure 39. Jan global surface temperatures ( NAO ...126    Nov NAO , used as a predictor for Jan surface air temperatures. ..... 126 Figure 70.   Persistence from Oct, used as a predictor for Jan surface

  3. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    Science.gov (United States)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  4. Impact of aerosol on air temperature in Kuwait

    Science.gov (United States)

    Sabbah, I.

    2010-08-01

    This work uses MODIS aerosol optical thickness (AOT) data observed over Kuwait during the 7-year interval 2000-2007. The values of AOT and the Ångström wavelength exponent ( α) show a clear annual cycle. These data are categorized into two catalogues in terms of the values of the AOT of the 870 nm channel ( τ870). One catalogue (71 days) includes days with high values of AOT ( τ870 ≥ 0.75). The most probable "modal" value of α for these days is 0.52. The other catalogue (1162 days) consists of the background days with a modal value ~ 1.1 for the exponent α. This analysis is extended to include water vapor content (WVC), surface wind speed (V), visibility (Vis) and the diurnal temperature range (DTR). Chree's method of superposed-epoch analysis is applied to these parameters in order to compare the variation in the daily averages during days with high AOT values with respect to background days. The high values of AOT during the 71 days are positively correlated with aerosol size, near-surface winds and poor visibility. This concludes that the aerosol particles during these days were mostly dust. The mean daily value of the DTR (Δ T) and visibility reduced significantly during these days. This reduction on DTR is a direct result of increasing the atmospheric opacity due to the presence of dust.

  5. Photosynthesis of young apple trees in response to low sink demand under different air temperatures.

    Science.gov (United States)

    Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H

    2010-03-01

    Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.

  6. Regional change in snow water equivalent-surface air temperature relationship over Eurasia during boreal spring

    Science.gov (United States)

    Wu, Renguang; Chen, Shangfeng

    2016-10-01

    Present study investigates local relationship between surface air temperature and snow water equivalent (SWE) change over mid- and high-latitudes of Eurasia during boreal spring. Positive correlation is generally observed around the periphery of snow covered region, indicative of an effect of snow on surface temperature change. In contrast, negative correlation is usually found over large snow amount area, implying a response of snow change to wind-induced surface temperature anomalies. With the seasonal retreat of snow covered region, region of positive correlation between SWE and surface air temperature shifts northeastward from March to May. A diagnosis of surface heat flux anomalies in April suggests that the snow impact on surface air temperature is dominant in east Europe and west Siberia through modulating surface shortwave radiation. In contrast, atmospheric effect on SWE is important in Siberia and Russia Far East through wind-induced surface sensible heat flux change. Further analysis reveals that atmospheric circulation anomalies in association with snowmelt over east Siberia may be partly attributed to sea surface temperature anomalies in the North Atlantic and the atmospheric circulation anomaly pattern associated with snowmelt over Russia Far East has a close association with the Arctic Oscillation.

  7. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

    Science.gov (United States)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui

    2017-01-01

    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  8. Short-term Effects of Air Temperature on Blood Markers of Coagulation and Inflammation in Potentially Susceptible Individuals

    Science.gov (United States)

    Objectives: Changes in air temperature are associated with an increase in cardiovascular events, but the role of pro-coagulant and pro-inflammatory blood markers is still poorly understood. We investigated the association between air temperature and fibrinogen, plasminogen act...

  9. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Science.gov (United States)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  10. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    Science.gov (United States)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  11. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  12. Air Warfare

    Science.gov (United States)

    2002-03-01

    undoubtedly begat the shield; poisonous gases were countered by the mask. Surely men on the surface of the earth will not have to submit to violent air attack...properties, production methods and cost of helium are given in “Balloon and Airship Gases ,” a volume of the Ronald Aeronautic Library. 5 More complete...becomes and more inse - cure. We shall see later that even some of the men who were advancing in the path prescribed by the principle of mass

  13. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    Science.gov (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  14. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    Directory of Open Access Journals (Sweden)

    Li Hai-Jun

    2014-01-01

    Full Text Available When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.

  15. Spatiotemporal relationships between sea level pressure and air temperature in the tropics

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian Larry

    2014-01-01

    While surface temperature gradients have been highlighted as drivers of low-level atmospheric circulation, the underlying physical mechanisms remain unclear. Lindzen and Nigam (1987) noted that sea level pressure (SLP) gradients are proportional to surface temperature gradients if isobaric height (the height where pressure does not vary in the horizontal plane) is constant; their own model of low-level circulation assumed that isobaric height in the tropics is around 3 km. Recently Bayr and Dommenget (2013) proposed a simple model of temperature-driven air redistribution from which they derived that the isobaric height in the tropics again varies little but occurs higher (at the height of the troposphere). Here investigations show that neither the empirical assumption of Lindzen and Nigam (1987) nor the theoretical derivations of Bayr and Dommenget (2013) are plausible. Observations show that isobaric height is too variable to determine a universal spatial or temporal relationship between local values of air ...

  16. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  17. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  18. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  19. Regression-based air temperature spatial prediction models: an example from Poland

    Directory of Open Access Journals (Sweden)

    Mariusz Szymanowski

    2013-10-01

    Full Text Available A Geographically Weighted Regression ? Kriging (GWRK algorithm, based on the local Geographically Weighted Regression (GWR, is applied for spatial prediction of air temperature in Poland. Hengl's decision tree for selecting a suitable prediction model is extended for varying spatial relationships between the air temperature and environmental predictors with an assumption of existing environmental dependence of analyzed temperature variables. The procedure includes the potential choice of a local GWR instead of the global Multiple Linear Regression (MLR method for modeling the deterministic part of spatial variation, which is usual in the standard regression (residual kriging model (MLRK. The analysis encompassed: testing for environmental correlation, selecting an appropriate regression model, testing for spatial autocorrelation of the residual component, and validating the prediction accuracy. The proposed approach was performed for 69 air temperature cases, with time aggregation ranging from daily to annual average air temperatures. The results show that, irrespective of the level of data aggregation, the spatial distribution of temperature is better fitted by local models, and hence is the reason for choosing a GWR instead of the MLR for all variables analyzed. Additionally, in most cases (78% there is spatial autocorrelation in the residuals of the deterministic part, which suggests that the GWR model should be extended by ordinary kriging of residuals to the GWRK form. The decision tree used in this paper can be considered as universal as it encompasses either spatially varying relationships of modeled and explanatory variables or random process that can be modeled by a stochastic extension of the regression model (residual kriging. Moreover, for all cases analyzed, the selection of a method based on the local regression model (GWRK or GWR does not depend on the data aggregation level, showing the potential versatility of the technique.

  20. Advanced air distribution

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2011-01-01

    The aim of total volume air distribution (TVAD) involves achieving uniform temperature and velocity in the occupied zone and environment designed for an average occupant. The supply of large amounts of clean and cool air are needed to maintain temperature and pollution concentration at acceptable...... levels in the entire space, leading to increased energy consumption and the use of large and costly HVAC and duct systems. The performance of desk installed PV combined with background TVAD used for room temperature control has been studied in an office building located in a hot and humid climate....... Ventilation in hospitals is essential to decrease the risk of airborne cross-infection. At present, mixing air distribution at a minimum of 12 ach is used in infection wards. Advanced air distribution has the potential to aid in achieving healthy, comfortable and productive indoor environments at levels...

  1. Experimental Investigation on Indoor Air Distribution in Low Temperature Air Supply Room%低温送风室内气流组织的实验研究

    Institute of Scientific and Technical Information of China (English)

    张瑞; 柳建华; 张良

    2015-01-01

    低温送风在空气调节系统的节能和提高体感舒适度上有着独特的优势。但同时,送风温度偏低也带来了冷风下坠、温度场不均匀、热舒适性下降的隐患。本文针对低温送风中存在的这些问题,首先确立了低温送风的气流组织评价标准,并设计了包含制冷系统、冰蓄冷系统和测量系统在内的一整套低温送风实验系统,最后对不同的送风温度下实验结果进行定性和定量的分析,从而得到了相应的解决方法和结论。%Low temperature air supply possesses unique advantages on energy conservation and thermal comfort improvement for the air conditioning system. However, the supply air with low temperature also brings possible defects of cold air draught, asymmetrical temperature field or thermal comfort reduction. Thus, in order to explore and solve the above problems, the evaluation standards on airflow distribution of the low temperature air are first defined, then the corresponding experimental system is designed and introduced, including its refrigeration system, ice storage system and measurement system. Finally, the qualitative and quantitative analysis on experiment results is carried out for different air supply temperatures, and the targeted solving methods and conclusions are acquired and presented.

  2. Urban air temperature anomalies and their relation to soil moisture observed in the city of Hamburg

    Directory of Open Access Journals (Sweden)

    Sarah Wiesner

    2014-09-01

    Full Text Available The spatial variability of the urban air temperature for the city of Hamburg is analyzed based upon a one-year dataset of meteorological and pedological measurements. As local air temperature anomalies are subject to land-use and surface cover, they are monitored by a network of measurement stations within three different urban structures. Mean annual temperature deviations are found to be +1.0K$+1.0\\,\\text{K}$ for inner city sites and +0.25K$+0.25\\,\\text{K}$ to -0.2K$-0.2\\,\\text{K}$ for suburban sites compared to a rural reference. The nocturnal urban heat island (UHI is identified and averages +1.7K$+1.7\\,\\text{K}$ at the inner city stations, +0.7K$+0.7\\,\\text{K}$ at a suburban district housing area and +0.3K$+0.3\\,\\text{K}$ at a nearby green space. The observed UHI effect is most prominent when the wind speed is low (≤2ms-1$\\leq2\\,\\text{ms}^{-1}$ and the sky is only partly cloudy (≤6∕8th$\\leq6/8^{\\text{th}}$. In spring 2011 an average inner city UHI of up to +5.2K$+5.2\\,\\text{K}$ is observed during situations matching these conditions, while the extraordinary dry fall of 2011 lead to remarkably high air temperature differences at all observed stations. As expected, no evidence for a significant impact of topsoil moisture on nighttime UHI effect is found. The analysis of air temperature anomalies during daytime results in an annual mean deviation of -0.5K$-0.5\\,\\text{K}$ above unsealed, vegetated surfaces from a sealed site during days with a turbulent mixing induced by wind speed >2ms-1$>2\\,\\text{ms}^{-1}$. Here, there is an indication for a relation between the water content of upper soil layers and the warming of air: 11 to 17 % of the variance of the diurnal air temperature span is found to be explained by the soil water content for selected relevant days.

  3. Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model

    Science.gov (United States)

    YAN, Y.; Onishi, T.

    2013-12-01

    The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the

  4. Seasonal trends in precipitation and surface air temperature extremes in mainland Portugal, 1941-2007

    Science.gov (United States)

    de Lima, M. I. P.; Santo, F. E.; Ramos, A. M.

    2012-04-01

    Several climate models predict, on a global scale, modifications in climate variables that are expected to have impact on society and the environment. The concern is on changes in the variability of processes, the mean and extreme events (maximum and minimum). To explore recent changes in precipitation and near surface air temperature extremes in mainland Portugal, we have inspected trends in time series of specific indices defined for daily data. These indices were recommended by the Commission for Climatology/Climate Variability and Predictability (CCl/CLIVAR) Working Group on Climate Change Detection, and include threshold indices, probability indices, duration indices and other indices. The precipitation and air temperature data used in this study are from, respectively, 57 and 23 measuring stations scattered across mainland Portugal, and cover the periods 1941-2007, for precipitation, and 1941-2006, for temperature. The study focuses on changes at the seasonal scale. Strong seasonality is one of the main features of climate in mainland Portugal. Intensification of the seasonality signal across the territory, particularly in the more sensitive regions, might contribute to endanger already fragile soil and water resources and ecosystems, and the local environmental and economic sustainability. Thus, the understanding of variations in the intensity, frequency and duration of extreme precipitation and air temperature events at the intra-annual scale is particularly important in this geographical area. Trend analyses were conducted over the full period of the records and for sub-periods, exploring patterns of change. Results show, on the one hand, regional differences in the tendency observed in the time series analysed; and, on the other hand, that although trends in annual indices are in general not statistically significant, there are sometimes significant changes over time in the data at the seasonal scale that point out to an increase in the already existing

  5. Effects of Water Temperature on Male Fertility Alternation of the Sensitive TGMS Lines in Rice under the Simulated Low Air Temperature in High Summer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of water temperature on male fertility alternation of TGMS lines in rice were studied under the simulated low air temperature conditions in summer. The results indicate that warm water with temperature higher than the critical temperature of TGMS lines is able to keep the lines' male sterility stable under the air temperature below the critical temperature. These results provide theoretic basis for applying warm water as an effective measure to prevent the lines from the negative effects of the low air temperature occuring in summer in the course of seed production.

  6. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  7. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  8. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    Science.gov (United States)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  9. Detecting and Adjusting Temporal Inhomogeneity in Chinese Mean Surface Air Temperature Data

    Institute of Scientific and Technical Information of China (English)

    LI Qingxiang(李庆祥); LIU Xiaoning(刘小宁); ZHANG Hongzheng(张洪政); Thomas C. PETERSON; David R. EASTERLING

    2004-01-01

    Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.

  10. An improved method for correction of air temperature measured using different radiation shields

    Science.gov (United States)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  11. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Science.gov (United States)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  12. Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Directory of Open Access Journals (Sweden)

    C. L. Pérez Díaz

    2015-08-01

    Full Text Available Land Surface Temperature (LST is a key variable (commonly studied to understand the hydrological cycle that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air and snow skin temperature (T-skin helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  13. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    Science.gov (United States)

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  14. EFFECT OF ELEVATED AIR TEMPERATURE ON PHYSIOLOGICAL INDICATORS OF BROILER CHICKENS OF DIFFERENT ORIGIN

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-08-01

    Full Text Available The objective of this study was to determine the effect of elevated air temperature in the first grow period on some physiological indicators of broiler chickens of different origin. Day-old Ross 308 and Hubbard Flex broiler chickens were assigned to 4 groups. Groups I (Ross 308 and II (Hubbard Flex were kept under standard thermal conditions throughout rearing, and groups III (Ross 308 and IV (Hubbard Flex were exposed to 10°C higher than recommended air temperature from 1 to 21 days of rearing. At 1, 21 and 42 days of the experiment, blood was collected from 10 birds in each group to determine T3 and T4, total protein, immunoglobulin complex, glucose, hemoglobin and hematocrit levels. The exposure to the thermal challenge decreased T3 and T4 levels at 21 days of rearing in both Ross 308 and Hubbard flex broilers compared to birds raised under standard thermal conditions. At 21 days of the experiment was observed a statistically significantly lower concentration of total protein in group I compared with group III and between group II and IV. There was no effect of elevated air temperature on the immunoglobulin complex concentration in the blood of birds of both genetic groups. In both genetic groups, the exposure to the thermal challenge caused a tendency to decrease the concentration of glucose. Statistically significant differences at 21 days of rearing of the hemoglobin content were observed between Ross 308 birds from groups I and III. The thermal challenge caused a statistically significant decrease in hematocrit levels in birds from both genetic groups at 21 days of the experiment. The thermal challenge upset the body’s homeostasis in both genetic groups of chickens, which possibly suggests that elevated air temperature during the first period of rearing has a negative effect on the welfare of broilers, regardless of their origin.

  15. Test results self-informativity properties annual dynamics of mean monthly air temperature anomalies

    Directory of Open Access Journals (Sweden)

    Nadezhda Aleksandrovna Vazhnova

    2016-11-01

    Full Text Available In this paper it is discussed the issues of methodology and the results of testing the possibilities of using the self- informatively properties in the series of the mean monthly air temperature anomalies (MMATA for the purposes of long-term forecasting of the thermal regime conditions on the example of Kazan Station, university. It is found that the prognostic informatively of the MMATA (for thermal conditions of July of the separately considered months is not statistically significant (missing since the previous June and in the earlier history, excluding the last 2 weeks of June, where the prognostic informatively is confirmed with the probability of ≥ 95%. The prognostic informatively of the mean monthly air temperature anomalies in relation to the thermal conditions of July rapidly increases with an increase in the accounted length of history of changes (preceding to the predicant in the mean monthly air temperature anomalies. It is shown that the filling of useful prognostic information takes place from April to June in relation to the conditions of Kazan. The accounting of self-informativity properties of the series of mean monthly air temperature anomalies has showed that the overall accuracy of the forecasts amounts to = 90%, at the general accuracy of random forecasts 0 = 74%, and at the methodical win = 16%. All these data suggest that the forecasts are at random level. Whereof we can conclude that the nonparametric discriminant analysis method is not always gives the positive results. Therefore, it is advisable to use more precise methods for the long-term weather forecasts, which give more acceptable forecast results with more accuracy.

  16. Study on Air Temperature Estimation and Snowmelt Modeling over the Tibetan Plateau

    Science.gov (United States)

    Zhang, Fan; Zhang, Hongbo

    2016-04-01

    Accumulation and melting of snow are important hydrological processes over the Tibetan Plateau (TP). Accurate and reasonable simulation of snowmelt is useful for water resources management and planning. This study firstly developed a product of daily mean air temperatures over the TP by comprehensively integrating satellite data and field observations. Accumulation and melting of snow over TP was then simulated and analyzed using a distributed degree-day model based on the air temperature data. The proposed air temperature estimation method can reduce the cloud blockage dramatically by integrating all the available MODIS land surface data (LST) at four pass times dynamically and in the meantime keep relatively high estimating accuracies. Through zonal calibration and validation for snow cover modeling, the daily processes of snow accumulation and melting over TP can be successfully simulated. The results indicate that (1) during 2005-2010, annual precipitation over TP was ~442 mm/yr among which ~88 mm/yr was snow fall with approximately 56 mm/yr melted; (2) snow melt mostly happened in spring over TP, with spring snow melt dominating and accounting for about 53% of the full-year snow melts; and (3) the locations with higher snow melt were mainly in south and east TP and the spatial pattern of snow melts is basically in accordance with that of precipitation.

  17. Modeling and imaging land-cover influences on air temperature in and near Baltimore, MD

    Science.gov (United States)

    Heisler, Gordon M.; Ellis, Alexis; Nowak, David J.; Yesilonis, Ian

    2016-04-01

    Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Δ widehat{T} R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the prediction equation included difference between the downtown reference and each of the other sites in upwind tree cover and impervious cover as obtained from 10-m resolution geographic information system (GIS) data. Other predictor variables included an index of atmospheric stability, topographic indices, wind speed, vapor pressure deficit, and antecedent precipitation. The model was used to map predicted hourly Δ widehat{T} R-p across the Baltimore region based on hourly weather data from the airport. Despite the numerous sources of variability in the regression modeling, the method produced reasonable map patterns of Δ widehat{T} R-p that, except for some areas evidently affected by sea breeze from the Chesapeake, closely matched results of mesoscale modeling. Potential applications include predictions of the effect of changing tree cover on air temperature in the area.

  18. The effect of air temperature on forest fire risk in the municipality of Negotin

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2015-01-01

    Full Text Available Fires in nature are caused by moisture content in the burning material, which is dependent on the values of the climatic elements. The occurrence of these fires in Serbia is becoming more common, depending on the intensity and duration have a major impact on the state of vegetation. The aim of this study was to determine the association between changes in air temperature and the dynamics of the appearance of forest fires. To study the association of these properties were used Pearson correlation coefficients. The analysis is based on meteorological data obtained from meteorological station in Negotin for the period 1991-2010. Research has found that the annual number of fires, correlating with an average annual air temperature (p = 0.317, ñ = 0.21. Also, it was found that the annual number of fires positive, medium intensity, correlate with the absolute maximum air temperature (p = 0.578, ñ = 0.26, but not statistically significant (p> 0.05.

  19. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    Science.gov (United States)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  20. Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2012-01-01

    Full Text Available This study examined the characteristics and photocatalytic activity of multiwall carbon nanotube-assisted TiO2 (MWNT-TiO2 nanocomposites calcined at different temperatures to assess their potential indoor air applications. It was confirmed that the composites calcined at low temperatures (300 and 400°C contained TiO2 nanoparticles bound intimately to the MWNT networks. Meanwhile, almost no MWNTs were observed when the calcination temperature was increased to 500 and 600°C. The MWNT-TiO2 composites calcined at low temperatures showed higher photocatalytic decomposition efficiencies for aromatic hydrocarbons at indoor concentrations than those calcined at high temperatures. The mean efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX by the composite calcined at 300°C were 32, 70, 79, and 79%, respectively, whereas they were 33, 71, 78, and 78% for the composite calcined at 400°C, respectively. In contrast, the efficiencies decreased to close to zero when the calcination temperature was increased to 600°C. Moreover, the MWNT-TiO2 exhibited superior photocatalytic performance for the decomposition efficiencies compared to TiO2 under conventional UV-lamp irradiations. Consequently, these carbonaceous nanomaterial-assisted photocatalysts can be applied effectively to indoor air applications depending upon the calcination temperature.

  1. Semi-analytical analysis of the response of the air temperature over the land surface to the global vegetation distribution

    Institute of Scientific and Technical Information of China (English)

    LIU Fei; CHAO JiPing

    2009-01-01

    Response of the air temperature over the land surface to the global vegetation distribution is investigated, using a three-dimensional governing equation to simulate the steady, large-scale, limited amplitude perturbation of the free, inviscid and adiabatic atmosphere. The adoption of the static equation leads to a temperature governing equation in the terrain following coordinate. With the prescribed temperature as the upper boundary condition and the radiation balance as the lower boundary condition, the semi-analytical solution of the global circulation temperature can be calculated. In this article, only the air temperature (at 2 m height) over the land surface is analyzed, and the result suggests that this model can simulate the air temperature pattern over the land surface reasonably. A better simulation occurs when a simple feedback of the albedo on the temperature is included. Two sensitivity experiments are analyzed through this model. One suggests that the air temperature over the land surface descends obviously when the land surface is covered with ice all over, while another suggests that the air temperature rises a little when the land surface is covered with forest except the ice-covered area. This model appears to be a good tool to study the response of the air temperature to the vegetation distribution. Limitations of the model are also discussed.

  2. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  3. Air-turbulence and temperature gradients reduced in plant growth chambers by small-hole diffuser-walls

    Energy Technology Data Exchange (ETDEWEB)

    Browne, L. E.; Noey, J. L.; Kerr, Pat C.; Haber, A. H.

    1967-01-01

    A new, simple, and relatively inexpensive method is described for smoothly introducing into plant growth chambers the large volumes of preconditioned air necessary to maintain great uniformity of temperature and humidity. Preconditioned air from a plenum is introduced into the chamber through diffuser-walls containing numerous evenly spaced holes.

  4. Effect of Stagnation Temperature on the Supersonic Two Dimensional Plug Nozzle Conception. Application for Air

    Institute of Scientific and Technical Information of China (English)

    Toufik Zebbiche; ZineEddine Youbi

    2007-01-01

    When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.

  5. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  6. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air....... These contradictions should motivate manufacturers and researchers to develop new efficient filtration techniques and/or improve the existing ones. Development of low polluting filtration techniques, which are at the same time easy and inexpensive to maintain is the way forward in the future....

  7. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  8. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  9. High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, K. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)]. E-mail: nagaya@me.gunma-u.ac.jp; Senbongi, T. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Li, Y. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Zheng, J. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Murakami, I. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)

    2006-10-15

    The energy efficiency is of importance in air conditioning systems for automobiles. The present article provides a new type air conditioning system for automobiles in which energy loss is small in comparison with the previous system. In the system, a desiccant is installed in the air conditioning system for controlling both temperature and humidity. The control is performed by an electromagnetic control valve, which controls an inclination of the rotating plate of a compressor. It is difficult to control both temperature and humidity precisely, because there are some delays in the control due to the time of heat exchange and that of coolant flow from the actuator (electromagnetic valve) to the evaporator. In order to have precise control, this article also presents a method of control with consideration of control delays. The energy of our system is compared with that in the previous conventional system in the same condition. It is shown that our controlled results and energy efficiency are better than those in the previous system.

  10. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  11. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.

    Science.gov (United States)

    Vidal, M; Wong, W; Rogers, W J; Mannan, M S

    2006-03-17

    The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals.

  12. Time-resolved LII signals from aggregates of soot particles levitated in room temperature air

    CERN Document Server

    Mitrani, James M

    2015-01-01

    We observed and modeled time-resolved laser-induced incandescence (LII) signals from soot aggregates. Time-resolved LII signals were observed from research-grade soot particles, levitated in room temperature air. We were able to measure sizes and structural properties of our soot particles ex situ, and use those measurements as input parameters when modeling the observed LII signals. We showed that at low laser fluences, aggregation significantly influences LII signals by reducing conductive cooling to the ambient air. At moderate laser fluences, laser-induced disintegration of aggregates occurs, so the effects of aggregation on LII signals are negligible. These results can be applied to extend LII for monitoring formation of soot and nanoparticle aggregates.

  13. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    Science.gov (United States)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  14. Close correlation between global air temperature change and polar motion during 1962-2013

    Science.gov (United States)

    Huang, Mei; Zhu, Lin; Gong, He; Shao, Yaping

    2016-10-01

    Polar motion is an important Earth orientation parameter, but our understanding of its relation to global climate change is highly uncertain. In this study, we examine the links between polar motion excitation and annual mean air temperature during the period of 1962-2013 and discuss the possible responsible mechanisms. The regions of positive correlation correspond well with the warming centers. Spectral analysis shows that they have strong signals at similar frequencies. Strong correlations are also found between the polar motion and surface air pressure and vertical integrated zonal wind. This implies that polar motion serves as an important indicator of global climate change, and thus, the feedbacks between the solid Earth and the climate system deserve careful considerations.

  15. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Directory of Open Access Journals (Sweden)

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  16. Empirical analysis of the solar contribution to global mean air surface temperature change

    CERN Document Server

    Scafetta, Nicola

    2009-01-01

    The solar contribution to global mean air surface temperature change is analyzed by using an empirical bi-scale climate model characterized by both fast and slow characteristic time responses to solar forcing: $\\tau_1 =0.4 \\pm 0.1$ yr, and $\\tau_2= 8 \\pm 2$ yr or $\\tau_2=12 \\pm 3$ yr. Since 1980 the solar contribution to climate change is uncertain because of the severe uncertainty of the total solar irradiance satellite composites. The sun may have caused from a slight cooling, if PMOD TSI composite is used, to a significant warming (up to 65% of the total observed warming) if ACRIM, or other TSI composites are used. The model is calibrated only on the empirical 11-year solar cycle signature on the instrumental global surface temperature since 1980. The model reconstructs the major temperature patterns covering 400 years of solar induced temperature changes, as shown in recent paleoclimate global temperature records.

  17. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-01

    Air pollution conditions in Iwakuni city were monitored at 9 monitoring stations, and 21 locations where sulfur oxides were measured by the lead peroxide candle method, and 13 locations where particulates concentrations were determined by the deposit cage method. The average SO/sub x/ concentrations in 1973 measured by the lead peroxide candle method ranged from 0.17 mg sulfur trioxide/day/100 sq cm at the Miso Office to 0.58 mg SO/sub 3//day/100 sq cm at Mitsui Sekiyu Shataku. The average SO/sub x/ concentrations measured by the conductivity method ranged from 0.021 ppM at Kazuki Kominkan to 0.037 ppM at the Higashi Fire Department. Only 58% of a total of 264 measurement days gave hourly average concentrations below the environmental standard of 0.04 ppM at the Higashi Fire Deparment. The average airborne particulate concentrations ranged from 0.050 mg/cu m at Totsu Kominkan to 0.056 mg/cu at the Higashi Fire Department. The average nitrogen oxides concentrations measured by the Saltzman method ranged from 0.007 ppM to 0.061 ppM. The average oxidant concentrations at the Iwakuni Municipal Office and Kazuki Kominkan were 0.028 ppM and 0.037 ppM, respectively.

  18. Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Sharovsky R.

    2004-01-01

    Full Text Available An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure, air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate, and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001, with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05 for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

  19. [Hazard assessment of the impact of high temperature and air pollution on public health in Moscow].

    Science.gov (United States)

    Revich, B A; Shaposhnikov, D A; Avaliani, S L; Rubinshtein, K G; Emelina, S V; Shiriaev, M V; Semutnikova, E G; Zakharova, P V; Kislova, O Iu

    2015-01-01

    In the article there are considered the main problems of assessing public health risks of the combined effects of high temperatures and air pollution with the account taken of the consequences of abnormally hot weather observed in summer 2010 in Moscow and without equals in the history of meteorological measurements in the city. The daily average concentrations of fine suspended particles matter (PM10) in the city during peatland fires from 4 to 9 August are emphasized to be within the range of 431-906 μ/m3, being 7.2-15.1 times the Russian maximum permissible concentration (MPCs) (60 μ/m3). The anomalous heat and high levels of air pollution in this period were shown to cause a significant increase in excess mortality among the population of Moscow. There was established the relative gain in mortality from all natural causes per 10 μg/m3 increase in daily average concentrations of PM10 and ozone, which was respectively: 0.47% (95%; CI: 0.31-0.63) and 0.41% (95%; CI: 0.31-1.13). On the base of the statistical analysis of daily mortality rates, meteorological indices, the concentrations of PM10 and ozone there was developed marking scale for the risk assessment of these indices accordingly to 4 gradings--low (permissible), warning, alert, and a hazard level. There has been substantiated the importance of the introduction of the system for the early alert for hazard weather events and the unified rating scale for the hazard of high air temperatures and high levels of air pollution with PM10 and ozone, which allows to take timely measures for the protection of the public health.

  20. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    Science.gov (United States)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  1. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  2. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  3. Bonding to dentin as a function of air-stream temperatures for solvent evaporation

    Directory of Open Access Journals (Sweden)

    Andréia Aquino Marsiglio

    2012-06-01

    Full Text Available This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1 Scotchbond Multi-Purpose (SBMP ; water-based; 2 Adper Single Bond 2 (SB ; ethanol/water-based, and 3 Prime & Bond 2.1 (PB ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%. SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05. Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive.

  4. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  5. The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures.

    Science.gov (United States)

    Zhang, Q Q; Han, Y Q; Cao, J X; Xu, X L; Zhou, G H; Zhang, W Y

    2012-01-01

    Bacterial diversity and the major flora present on air-packaged broiler meat during storage at normal (4°C) and fluctuating storage temperatures (0-4°C and 4-10°C) were investigated using culture-dependent and culture-independent approaches. Culture-dependent analysis revealed that the growth of microflora was retarded when broiler meat was stored at lower temperatures (0-4°C). Denaturing gradient gel electrophoresis profiles showed that Staphylococcus spp., Pseudomonas spp., Acinetobacter spp., Carnobacterium spp., Aeromonas spp., and Weissella spp. were the dominant bacteria throughout all storage conditions. Enterobacteriaceae only appeared in samples subjected to storage with high temperature abuse, whereas Shewanella spp. and Psychrobacter spp. were only detected in samples stored below 4°C. Our results provide evidence that, compared with storage at a standard fixed temperature (4°C), fluctuations in temperatures induce a more complex bacterial diversity in the air-packaged broiler.

  6. Rapid fluctuations of the air and surface temperature in the city of Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Dumitrescu, Alexandru; Hustiu, Mihaita-Cristinel

    2016-04-01

    Urban areas derive significant changes of the ambient temperature generating specific challenges for society and infrastructure. Extreme temperature events, heat and cold waves affect the human comfort, increase the health risk, and require specific building regulations and emergency preparedness, strongly related to the magnitude and frequency of the thermal hazards. Rapid changes of the temperature put a particular stress for the urban settlements, and the topic has been approached constantly in the scientific literature. Due to its geographical position in a plain area with a temperate climate and noticeable continental influence, the city of Bucharest (Romania) deals with high seasonal and daily temperature variations. However, rapid fluctuations also occur at sub-daily scale caused by cold or warm air advections or by very local effects (e.g. radiative heat exchange, local precipitation). For example, in the area of Bucharest, the cold fronts of the warm season may trigger temperature decreasing up to 10-15 centigrades / hour, while warm advections lead to increasing of 1-2 centigrades / hour. This study focuses on the hourly and sub-hourly temperature variations over the period November 2014 - February 2016, using air temperature data collected from urban sensors and meteorological stations of the national network, and land surface temperature data obtained from satellite remote sensing. The analysis returns different statistics, such as magnitude, intensity, frequency, simultaneous occurrence and areal coverage of the rapid temperature fluctuations. Furthermore, the generating factors for each case study are assessed, and the results are used to define some preliminary patterns and enhance the urban temperature forecast at fine scale. The study was funded by the Romanian Programme Partnership in Priority Domains, PN - II - PCCA - 2013 - 4 - 0509 - Reducing UHI effects to improve urban comfort and balance energy consumption in Bucharest (REDBHI).

  7. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  8. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  9. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  10. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... States Environmental Protection Agency Search Search Lead (Pb) Air Pollution Share Facebook Twitter Google+ Pinterest Contact Us As ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Lead Air Pollution Basics How does lead get ...

  11. AirPEx: Air Pollution Exposure Model

    OpenAIRE

    Freijer JI; Bloemen HJTh; de Loos S; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. T...

  12. Seasonally and diurnally different response of surface air temperature to historical urbanization in Sapporo, North Japan

    Science.gov (United States)

    Sato, T.; Sugimoto, S.; Sasaki, T.

    2014-12-01

    Anthropogenic landscape changes have dramatically altered near surface climate in many regions of the world. In particular, regional/local-scale land use change is attributed to the long-term change in observed surface air temperature through changes in surface radiation budget and energy partitioning. This study analyses the response of surface air temperature characteristics to the historical urbanization in Sapporo, a snowy city in North Japan. Around Sapporo, natural forest has been cleared and replaced with urban since the late 19th century. Annual mean temperature in Sapporo has increased dramatically, whose rate being approximately twice of that in the station without urbanization. The rate of temperature increase shows asymmetric feature among seasons and dependent on time of the day; a prominent warming in winter daily minimum temperature and no significant trend in summer daily maximum temperature. In order to clarify the seasonal and diurnal dependence of the response to land use change, two 27-year simulations were conducted using WRF-ARW model nudged to reanalysis data during 19872/1983 winter to 2008/2009 winter; a control run uses past land cover and a sensitivity run uses present land cover. The numerical experiments successfully replicate the observed influence of urbanization with higher temperature change in winter nights and smaller temperature change in summer days. An analysis on surface energy balance indicates the changes in Bowen ratio is a primal cause of increasing sensible heat in both summer and winter. However, atmospheric response to the elevated sensible heat flux is very different depending on boundary layer structure between winter and summer or between night and day. This mechanism could clearly explain the asymmetric temperature trend observed worldwide, especially in cold regions where nocturnal inversion develops.

  13. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  14. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  15. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    Science.gov (United States)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  16. nowCOAST's Map Service for NOAA NWS NDFD Forecasts of Daily Max Surface Air Temperature (deg. F) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS daily maximum surface air temperature forecasts from the National Digital...

  17. nowCOAST's Map Service for NOAA NWS NDFD Forecasts of Daily Min Surface Air Temperature (deg. F) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS daily minimum surface air temperature forecasts from the National Digital...

  18. Characteristics of the air temperature in The Central Moldavian Tableland between Siret and Şacovăţ

    Directory of Open Access Journals (Sweden)

    Vasile BUDUI

    2008-07-01

    Full Text Available The air temperature is one of the most important climatic parameters, that define the geographic regions. The temperature regim is influenced by the infrared radiation and the transformation in heat at the contact with active surface, also by the atmosphericcirculation, that air mases with different thermic characteristics succeed. Low temperatures aredetermined by the crossing to east of the country of the subarctic continental air masses or themaritim subpolar masses. High temperatures are determined by the tropical air masses thatcome from south-east, in the summer, or from west, in winter. For the spatialisation of the airtemperature we used GIS programs: TNT Mips, ArcGIS 9.2 and SAGA.

  19. Positive Feedback between Shrub Encroachment and Nocturnal Air Temperature over the Northern Chihuahuan Desert

    Science.gov (United States)

    He, Y.; D'Odorico, P.; de Wekker, S.; Fuentes, J. D.; Litvak, M. E.

    2009-12-01

    Many arid grasslands around the world are affected by the encroachment of woody plants. A number of drivers have been invoked to explain these changes in plant community composition, including climate change, increase in atmospheric CO2 concentrations, nitrogen deposition, or internal feedbacks involving soil erosion or fire dynamics. An overlooked aspect of this shift in vegetation cover is its possible feedback on microclimate conditions. In this study we investigate how in the northern Chihuahuan Desert these changes in vegetation composition and structure influence near surface climate conditions and what feedbacks these conditions have on vegetation dynamics. To this end, the impact of shrub encroachment on the thermal structure of the near surface boundary layer and on the surface energy budget was analyzed using concurrent micrometeorological observations at two adjacent sites dominated respectively by Larrea tridentata shrubs and native grass species at the Sevilleta Wildlife Refuge (northern Chihuahuan Desert, NM). The nighttime air temperature was found to be substantially higher (> 2 degrees Celsius) in the shrubland than in the grassland, especially during calm winter nights. Low temperatures are considered to be the limiting factor of the northward migration of Larrea tridentata. Thus, a positive feedback mechanism seems to exist, where shrub encroachment leads to warmer near-ground nighttime conditions, particularly during winter, which in turn favor woody species encroachment. Our analysis shows that these differences in surface air temperature are accompanied by differences in longwave radiation, and surface sensible and ground heat fluxes. These differences in surface fluxes are interpreted as an effect of the larger fraction of bare soil that typically exists in the shrubland sites. Therefore, the ground surface remains less insulated and more energy flows into the ground at the shrubland site than in the grassland during daytime. This energy is

  20. Segregated residential air conditioner load model behavior with temperature and humidity

    Energy Technology Data Exchange (ETDEWEB)

    Belhadj, C.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Electrical Engineering; El Ferik, S. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Systems Engineering

    2005-07-01

    This paper considered the impact of outdoor weather conditions on air conditioning residential loads in Saudi Arabia. Humidity and temperature loads were analyzed separately. Weather data were collected for a period of 6 months at a typical household in the eastern region of Saudi Arabia. Inside and outside temperatures, and electrical variables of the household power system were recorded every 5 minutes. Humidity levels were then divided into 3 different comfort levels. A 3-dimensional analysis of the data was then conducted. Mathematical equations were obtained to represent power usage related to humidity and temperature. A regression model was then used to evaluate the influence of humidity on power loads. Field data were then used to validate the regression model. Results of the study showed that the model was able to accurately predict power consumption profiles related to air conditioning in the region. It was concluded that the division of humidity levels into 3 discrete intervals allowed for an improved understanding of the nonlinear relationship between humidity, temperature, and power demand. 13 refs., 2 tabs., 8 figs.

  1. The effect of air temperature on labour productivity in call centres - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Niemela, R.; Rautio, S.; Reijula, K. [Finnish Institute of Occupational Health, Helsinki (Finland); Hannula, M. [Tampere University of Technology, Tampere (Finland); Railio, J. [Association of Finnish Manufacturers of Air Handling Equipment, Helsinki (Finland)

    2002-07-01

    The aim of this paper was to investigate the effect of air temperature on labour productivity in telecommunication offices. The study was conducted as a case study in two call centres because the work in the call centres can be considered to represent typical activities in the telecommunication industry. The study design consisted of an observational approach and an intervention approach. In Call Centre I, the productivity between two zones with temperature difference was compared. In Call Centre II, the intervention was conducted by installing cooling units to lower high temperature in the summer. Productivity was monitored both before and after the intervention, and it was measured as labour productivity by monitoring the number of telephone calls divided by the active work time. The indoor climate of both call centres was determined by measuring thermal climate and concentrations of relevant air pollutants as well as the acoustical environment and lighting levels. The study shows that productivity may fall by 5-7% at the elevated indoor temperatures. (author)

  2. Mesoscale climatic simulation of surface air temperature cooling by highly reflective greenhouses in SE Spain.

    Science.gov (United States)

    Campra, Pablo; Millstein, Dev

    2013-01-01

    A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m(-2) of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R(2) > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance.

  3. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  4. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  5. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  6. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    Science.gov (United States)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  7. Analysis of Alternative Refrigerants to R22 for Air-Conditioning Applications at Various Evaporating Temperatures

    Directory of Open Access Journals (Sweden)

    S. Venkataiah

    2014-03-01

    Full Text Available This paper presents the simulation results of a 1.5 ton capacity room air conditioning system with some selected refrigerants that have been assessed for their suitability as alternative refrigerants to R22 for air conditioning applications. The refrigerants with zero Ozone depletion potential only are selected in this study. The performance of selected refrigerants viz, R22, R134a, R404A, R407C, R410A, R507A, R290 and R600a is considered in the present analysis. The thermodynamic analysis of these refrigerants has been carried out on these selected refrigerants using COOLPACK software. The analysis mainly focuses on obtaining results of parameters with fixed condenser temperature but with variable evaporator temperatures. The parameters like heat rejection rate, mass flow rate of refrigerant, displacement volume, power input, discharge temperature, cop, saturation pressure and pressures ratio are analyzed. The thermodynamic analysis of eight selected refrigerants is carried out using the simulation software COOL PACK version 1.49 and a comparative study of the different refrigerants is made.

  8. Room air temperature affects occupants' physiology, perceptions and mental alertness

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Kwok Wai; Willem, Henry Cahyadi [Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-01-15

    Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of {alpha}-Amylase level (P < 0.0001) and the Tsai-partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed. (author)

  9. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  10. Prediction of Air Flow and Temperature Profiles Inside Convective Solar Dryer

    Directory of Open Access Journals (Sweden)

    Marian Vintilă

    2014-11-01

    Full Text Available Solar tray drying is an effective alternative for post-harvest processing of fruits and vegetables. Product quality and uniformity of the desired final moisture content are affected by the uneven air flow and temperature distribution inside the drying chamber. The purpose of this study is to numerically evaluate the operation parameters of a new indirect solar dryer having an appropriate design based on thermal uniformity inside the drying chamber, low construction costs and easy accessibility to resources needed for manufacture. The research was focused on both the investigation of different operation conditions and analysis of the influence of the damper position, which is incorporated into the chimney, on the internal cabinet temperature and air flow distribution. Numerical simulation was carried out with Comsol Multiphysics CFD commercial code using a reduced 2D domain model by neglecting any end effects from the side walls. The analysis of the coupled thermal-fluid model provided the velocity field, pressure distribution and temperature distribution in the solar collector and in the drying chamber when the damper was totally closed, half open and fully open and for different operation conditions. The predicted results were compared with measurements taken in-situ. With progressing computing power, it is conceivable that CFD will continue to provide explanations for more fluid flow, heat and mass transfer phenomena, leading to better equipment design and process control for the food industry.

  11. Variations of karst underground air temperature induced by various factors (Cave of Županova jama, Central Slovenia)

    Science.gov (United States)

    Ravbar, Natasa; Kosutnik, Jure

    2014-04-01

    On the basis of air temperature ( T) monitoring, basic statistical and time series analysis was employed to evaluate thermal states of cave atmosphere variations. Long-term, seasonal and event comparative analysis as well as spectral and cross-correlation analysis was conducted. The results show the relative stability of air T in the isolated part of the cave, whereas variable air T was observed in the parts close to entrances and the surface. The distinctive seasonality in this part of the cave demonstrates that air convection is a driving force for the heat exchange between the cave and the surrounding environment. External air T and heat conducted through the rock walls are also an important factor influencing the cave climate, while heat released by the ice deposit and by water infiltrating through the cave ceiling has a negligible effect. Occasional irregular variations in daily patterns are caused by human impact.

  12. Usefulness of AIRS-Derived OLR, Temperature, Water vapor and Cloudiness Anomaly Trends for GCM Validation

    Science.gov (United States)

    Molnar, G. I.; Susskind, J.; Iredell, L. F.; NASA/Gsfc Sounder Research Team

    2010-12-01

    variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly “trends” based on the first 7+ years of AIRS Version 5 Level3 data. We suggest that modelers should compare these with their (coupled) GCM’s performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Niño-related variability scales, and show the effects of El-Niño-La Niña activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  13. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  14. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)

    2008-10-15

    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  15. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  16. Quantifying the impact of land cover composition on intra-urban air temperature variations at a mid-latitude city.

    Science.gov (United States)

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼ 37% of the variations in temperature were explained by the percentage tree cover, while ∼ 87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment.

  17. REACH. Air Conditioning Units.

    Science.gov (United States)

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  18. Statistical air quality mapping

    NARCIS (Netherlands)

    Kassteele, van de J.

    2006-01-01

    This thesis handles statistical mapping of air quality data. Policy makers require more and more detailed air quality information to take measures to improve air quality. Besides, researchers need detailed air quality information to assess health effects. Accurate and spatially highly resolved maps

  19. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    Science.gov (United States)

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  20. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  1. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  2. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    Science.gov (United States)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  3. Air Temperature and Death Rates in the Continental U.S., 1968–2013

    Directory of Open Access Journals (Sweden)

    John Hart

    2015-06-01

    Full Text Available A previous test of global warming theory, on a local level, for Texas revealed inverse correlations between air temperature and death rates. The present study expands the test field to the continental U.S. Using an ecological design, mean daily maximum air temperature (“temperature” in the 48 contiguous states plus the District of Columbia by year from 1968–2013 was compared to age-adjusted all-cause mortality (“deaths” in these same jurisdictions for the same years using Pearson correlation (n = 46 years. The comparison was made for three race categories, white, black, and all races, where each category included all ages and both genders. There was 5.0 degree F range for the years studied (62.7–67.7 degrees F. Correlations were moderate strength, inverse, and statistically significant, as follows. Whites: r = −0.576, p < 0.0001; Blacks: r = −0.556, p = 0.0001; and all races: r = −0.577, p < 0.0001. These correlations are consistent with the Texas study, both of which indicated that warmer years tended to correlate with decreased death rates. A limitation to this research is its (ecological design, but is an initial step towards further investigation.

  4. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  5. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.;

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...

  6. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  7. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    Science.gov (United States)

    Paz, Shlomit

    2010-05-01

    The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following

  8. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune K.; Hansen, Anders Rhiger;

    2016-01-01

    In order to make better and more realistic predictions of energy consumption in dwellings, more knowledge is needed about how individuals and households control the indoor environment. A questionnaire survey was conducted with the objective of studying the interest and actions taken in relation...... for each other in the family. Actions are taken in relation to the temperature in the way that house owners are trying to keep different temperatures in differently heated rooms, e.g. to sleep in a cool bedroom or to save heat. Besides they wear warmer clothing, slippers or thick socks indoors during...... the winter compared with the rest of the year. Actions are taken to improve the air quality by the majority of the house owners by opening windows. The most frequent reasons for opening windows once or several times a day was “to get fresh air” and “in relation to showering”. House owners are interested...

  9. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Use

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune Korsholm; Hansen, Anders Rhiger;

    2016-01-01

    In order to make better and more realistic predictions of energy consumption in dwellings, more knowledge is needed about how individuals and households control the indoor environment. A questionnaire survey was conducted with the objective of studying the interest and actions taken in relation...... for each other in the family. Actions are taken in relation to the temperature in the way that house owners are trying to keep different temperatures in differently heated rooms, e.g. to sleep in a cool bedroom or to save heat. Besides they wear warmer clothing, slippers or thick socks indoors during...... the winter compared with the rest of the year. Actions are taken to improve the air quality by the majority of the house owners by opening windows. The most frequent reasons for opening windows once or several times a day was “to get fresh air” and “in relation to showering”. House owners are interested...

  10. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  11. The variability of radiative balance elements and air temperature on the Asian region of Russia

    Directory of Open Access Journals (Sweden)

    E. V. Kharyutkina

    2011-05-01

    Full Text Available The variability of spatial-temporal distribution of temperature and radiative and heat balances components is investigated for the Asian territory of Russia (45–80° N, 60–180° E using JRA-25, NCEP/DOE AMIP reanalysis data and observational data for the period of current global warming 1979–2008. It is shown that since the beginning of 90s of XX century the increase of back earth-atmosphere short-wave radiation is observed. Such tendency is in conformity with the cloud cover dynamics and downward short-wave radiation at the surface. Annual averaged radiative balance values at the top are negative; it is consistent with negative annual averaged air temperature, averaged over territory. The downward trend of radiative balance is the most obvious after the beginning of 90s of XX century.

  12. Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    CERN Document Server

    Ave, M; Bohacova, M; Buonomo, B; Busca, N; Cazon, L; Chemerisov, S D; Conde, M E; Crowell, R A; Di Carlo, P; Di Giulio, C; Doubrava, M; Esposito, A; Facal, P; Franchini, F J; Horandel, J; Hrabovsky, M; Iarlori, M; Kasprzyk, T E; Keilhauer, B; Klages, H; Kleifges, M; Kuhlmann, S; Mazzitelli, G; Nozka, L; Obermeier, A; Palatka, M; Petrera, S; Privitera, P; Rídky, J; Rizi, V; Rodríguez, G; Salamida, F; Schovanek, P; Spinka, H; Strazzeri, E; Ulrich, A; Yusof, Z M; Vacek, V; Valente, P; Verzi, V; Waldenmaier, T

    2007-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  13. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  14. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  15. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback

    Science.gov (United States)

    Austin, Jay A.; Colman, Steven M.

    2007-03-01

    Lake Superior summer (July-September) surface water temperatures have increased approximately 2.5°C over the interval 1979-2006, equivalent to a rate of (11 +/- 6) × 10-2°C yr-1, significantly in excess of regional atmospheric warming. This discrepancy is caused by declining winter ice cover, which is causing the onset of the positively stratified season to occur earlier at a rate of roughly a half day per year. An earlier start of the stratified season significantly increases the period over which the lake warms during the summer months, leading to a stronger trend in mean summer temperatures than would be expected from changes in summer air temperature alone.

  16. Simulation of the Effect of an Increase in Methane on Air Temperature

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    The infrared radiative effect of methane was analyzed using the 2D. interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experiment, with the methane volume mixing ratio increased by 10%. was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%. the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor.The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of solar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.

  17. [Air quality and climate change].

    Science.gov (United States)

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  18. SOLAR DRYING KINETICS OF DATE PALM FRUITS ASSUMING A STEP-WISE AIR TEMPERATURE CHANGE

    Directory of Open Access Journals (Sweden)

    ABDELGHANI BOUBEKRI

    2009-09-01

    Full Text Available The effect of drying using a step-wise temperature change was studied considering the case of indirect solar drying of the date palm fruit (Phoenix dactylifera L.. The followed procedure consists of building drying kinetics by stages of temperatures resulting from drying, in constant conditions, of the same variety of dates from Algerian and Tunisian origin. A law of daily temperature variation prevailed by 60°C, was deduced from a statement of temperature collected on a laboratory solar dryer prototype. Two drying curve equation models were used and some comparisons were discussed. The results obtained for dates from the two origins highlighted different response times by changing the air temperature and showed the possibility of reaching a fruit with standard moisture content in only one day of drying on the basis of initial water contents ranging from 0.40 to 0.65. This moisture range is in practice allotted to rehydrated dates by water immersion in order to enhance their quality. Experiments conducted in a laboratory solar drier under temperatures oscillating around 50°C and 60°C led to the same end up regarding the drying time ensuring a visually appreciable fruit quality. Results obtained by a simple sensorial test revealed a better quality of date fruits treated by solar drying comparing to those issued from industrial heat treatment units.

  19. The effects of temperature and use of air conditioning on hospitalizations.

    Science.gov (United States)

    Ostro, Bart; Rauch, Stephen; Green, Rochelle; Malig, Brian; Basu, Rupa

    2010-11-01

    Several investigators have documented the effect of temperature on mortality, although fewer have studied its impact on morbidity. In addition, little is known about the effectiveness of mitigation strategies such as use of air conditioners (ACs). The authors investigated the association between temperature and hospital admissions in California from 1999 to 2005. They also determined whether AC ownership and usage, assessed at the zip-code level, mitigated this association. Because of the unique spatial pattern of income and climate in California, confounding of AC effects by other local factors is less likely. The authors included only persons who had a temperature monitor within 25 km of their residential zip code. Using a time-stratified case-crossover approach, the authors observed a significantly increased risk of hospitalization for multiple diseases, including cardiovascular disease, ischemic heart disease, ischemic stroke, respiratory disease, pneumonia, dehydration, heat stroke, diabetes, and acute renal failure, with a 10°F increase in same-day apparent temperature. They also found that ownership and usage of ACs significantly reduced the effects of temperature on these health outcomes, after controlling for potential confounding by family income and other socioeconomic factors. These results demonstrate important effects of temperature on public health and the potential for mitigation.

  20. Air temperature fluctuations in Guadalajara, Mexico, from 1926 to 1994 in relation to urban growth

    Science.gov (United States)

    Tereshchenko, I. E.; Filonov, A. E.

    2001-03-01

    Daily, monthly and annual mean air temperatures in Guadalajara, Mexico, were gathered from the time periods: 1926-1994, 1957-1994, 1978-1994. The heat island effect was detected in a trend analysis of the series of minimum temperatures over the period 1926-1994. Also, it was found that the annual mean temperature increased 0.05°C per year. A sharp increase has occurred over the last 20 years because of the abrupt expansion and industrialization of the city of Guadalajara. This study revealed the presence of a cool island in the centre of the metropolitan zone of Guadalajara (MZG) during the wet season. A cross-spectral analysis was used to study the thermal variations with different frequencies. Temperature oscillations in the MZG occurred in time intervals ranging from 3-5 days up to 22 years. The study suggests a relationship between urban growth and temperature variations. The temperature rise relates to urban growth with a correlation co-efficient equal to 0.857.

  1. An assessment of precipitation and surface air temperature over China by regional climate models

    Science.gov (United States)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  2. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    Science.gov (United States)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  3. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  4. MARSpline model for lead seven-day maximum and minimum air temperature prediction in Chennai, India

    Indian Academy of Sciences (India)

    K Ramesh; R Anitha

    2014-06-01

    In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short-term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1°C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1°C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87°C for day-one to 1.27°C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2°C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.

  5. Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air

    Institute of Scientific and Technical Information of China (English)

    Toufik Zebbiche; ZineEddine Youbi

    2007-01-01

    When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model.The application is for the air.

  6. Technical and economic consequences of mine air temperature limits in black coal mines of the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, G.

    1986-08-01

    The state of mine air conditioning in the FRG is reviewed. Mine air temperature limits and occupational health requirements according to the 1984 regulation for black coal mines are explained. Cooling technologies applied in various mines are described, including operation of underground or surface central refrigeration stations, cold-water spray machines, air blowers etc. Mine air cooling is shown with the example of a 750 m long longwall face at 1150 m depth and 50 C rock temperature. A further example is given of cooling a 2000 m long roadway with road heading work advancing 6 m/d at the same mining depth and temperature conditions. Parameters of cooling equipment and an hx-diagram for cooling effects are provided. Air conditioning costs are assessed: investment costs of refrigeration equipment with 1 MW cooling capacity are 3.0 million DM and operating costs of nominal one kW capacity are one million DM/y. These costs amount to specific operating costs of 3 DM/t of coal in one mine and 4.50 DM/t in a second mine. Cooling capacity of 470 kW for air conditioning during road heading work increased heading costs by 330 DM/m. 18 references.

  7. Influence of climate on emergency department visits for syncope: role of air temperature variability.

    Directory of Open Access Journals (Sweden)

    Andrea Galli

    Full Text Available BACKGROUND: Syncope is a clinical event characterized by a transient loss of consciousness, estimated to affect 6.2/1000 person-years, resulting in remarkable health care and social costs. Human pathophysiology suggests that heat may promote syncope during standing. We tested the hypothesis that the increase of air temperatures from January to July would be accompanied by an increased rate of syncope resulting in a higher frequency of Emergency Department (ED visits. We also evaluated the role of maximal temperature variability in affecting ED visits for syncope. METHODOLOGY/PRINCIPAL FINDINGS: We included 770 of 2775 consecutive subjects who were seen for syncope at four EDs between January and July 2004. This period was subdivided into three epochs of similar length: 23 January-31 March, 1 April-31 May and 1 June-31 July. Spectral techniques were used to analyze oscillatory components of day by day maximal temperature and syncope variability and assess their linear relationship. There was no correlation between daily maximum temperatures and number of syncope. ED visits for syncope were lower in June and July when maximal temperature variability declined although the maximal temperatures themselves were higher. Frequency analysis of day by day maximal temperature variability showed a major non-random fluctuation characterized by a ∼23-day period and two minor oscillations with ∼3- and ∼7-day periods. This latter oscillation was correlated with a similar ∼7-day fluctuation in ED visits for syncope. CONCLUSIONS/SIGNIFICANCE: We conclude that ED visits for syncope were not predicted by daily maximal temperature but were associated with increased temperature variability. A ∼7-day rhythm characterized both maximal temperatures and ED visits for syncope variability suggesting that climate changes may have a significant effect on the mode of syncope occurrence.

  8. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    Science.gov (United States)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  9. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Sandholt, Inge; Aguado, Inmaculada;

    2011-01-01

    Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature...... the accuracy of estimates using the new NDVImax and the previous NDVImax that have been proposed in literature with MSG-SEVIRI images in Spain during the year 2005. In addition, a spatio-temporal assessment of residuals has been performed to evaluate the accuracy of retrievals in terms of daily and seasonal...

  10. Spatial variability of air temperature in a free-stall in the Northeastern semi-arid region of Brazil

    Directory of Open Access Journals (Sweden)

    Indira C. M. Gonçalves

    2016-01-01

    Full Text Available ABSTRACT The knowledge on the spatial variability of climatic attributes and the building of Kriging maps can assist in the design and management of confined animal facilities, by allowing a spatial visualization that is helpful for the planning and control of information from the production environment. The study aimed to characterize the spatial variability of air temperature in a free-stall barn used for dairy cattle confinement located in Petrolina-PE, Brazil, in different seasons and at different times. The variable air temperature was recorded at 136 points distributed in the areas under the shed and the shade cloth for the study of spatial variability and the construction of maps by Kriging. Air temperature data was collected in the winter and in the summer, in the months of July and August (2013 and January and February (2014, at different times (9 and 15 h. According to the results, the use of geostatistics enabled to define areas with different spatial variabilities in air temperature and specific areas in the free-stall with values higher than the recommended levels for thermal comfort. In addition, the central part of the facility is the region with the lowest values of air temperatures, due to the presence of a ridge vent.

  11. Volatilization of radionuclides in an air stream and their precipitation in a temperature gradient tube

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Domanov, V.P.

    1975-01-01

    The Hg, Cd and UO/sub 2/ targets bombarded by protons have been treated using the sublimation and evaporation techniques. The Hg and Cd nuclei have been separated from nonisotopic products by distillation in the hydrogen stream. The separation of the groups of Re, Os, Ir, Mo, Tc and Ru oxides has been carried out in the air stream. No monotonic temperature dependence of the Tl, Ru, Mo, Tc, Te, Pb and Po release has been observed in the oxidation of the UO/sub 2/-ceramics in the air stream. The values of (-..delta..H/sup 0//sub a/) of volatile products adsorbed on quartz have been determined from the chromatographic data. The relation between the adsorption heat (-..delta..H/sup 0//sub a/) and the standard sublimation heat (..delta..H/sub 298//sup 0/ subl.) has been found to be linear, i.e. and -..delta..H/sup 0//sub a/ = (4.04 +- 1.97) + (0.69 +- 0.04) ..delta..H/sub 298//sup 0/ (subl.). As an example of the thermochromatographic generator of isotopes, the separation of /sup 99/Mo and /sup 99m/Tc has been investigated. (auth)

  12. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures

    CERN Document Server

    Gu, Ziyu; van de Water, Willem; Ubachs, Wim

    2013-01-01

    Rayleigh Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of 366.8 nm detect spontaneous RB scattering at a 90 degree scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1 percent rms noise level or better. The elusive transport coefficient, the bulk viscosity, is effectively derived by a comparing the measurements to the model, yielding an increased trend. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2 percent, meeting the requirements for the future RB scattering LIDAR missions in the Earth's atmosphere. However, the systematic 2 percent deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it...

  13. Microbial growth on broiler carcasses stored at different temperatures after air- or water-chilling.

    Science.gov (United States)

    Tuncer, B; Sireli, U T

    2008-04-01

    Poultry meat has a high risk of contamination during its processing. Storage temperature, type of packaging, and types and numbers of psychrotrophic bacteria are the major factors determining the spoilage of poultry meat. Before packaging, poultry carcasses are chilled by air or water currents in commercial slaughterhouses. The packaging material and methods are other factors influencing the spoilage of poultry meat. Although unpackaged carcasses had lower production costs, they were found to contain high numbers of microorganisms. The unpackaged carcasses are often not recommended for food safety and public health risks. The present study examines the growth of some spoilage microorganisms on unpackaged carcasses and on broiler carcasses packaged in polyethylene bags or synthetic plates. The carcasses examined in this study were collected from the slaughterhouses of the Bolu region of Turkey. All carcasses were subjected to an air or water chilling process in the slaughterhouse and then stored at 0, 4, or 7 degrees C for 14 d. Samples were taken on d 0, 4, 8, 10, and 14 of storage and analyzed for total bacterial count, and for Pseudomonas spp., Enterobacteriaceae, yeasts, and molds. The carcasses packaged in synthetic plates or polyethylene bags and kept at 0 degrees C were microbiologically safer and had longer shelf life, so they are found to be the most reliable for consuming. The shelf life of broiler carcasses could be further increased by improving hygiene and sanitation procedures at the slaughterhouse.

  14. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  15. Can you help create the next generation of Land Surface Air Temperature products?

    Science.gov (United States)

    Thorne, Peter; Venema, Victor

    2013-04-01

    The International Surface Temperature Initiative comprises a group of multi-disciplinary researchers constituted in 2010 with the remit of creating a suite of open, transparent Land Surface Air Temperature products suitable for meeting 21st Century science and societal needs and expectations. Since instigation significant progress has been made in the creation of an improved set of 'raw' Land Surface Air Temperature data holdings (to be released in first version in February 2013), constituting in excess of 30,000 stations many going back over a Century, and towards the creation of a rigorous benchmarking framework. What is now requested is that multiple independent groups take up the challenge of creating global and regional products from the databank and submit their algorithms to the benchmarking framework. Key here is to rigorously assess structural uncertainty - it is not sufficient to assume because one group has tackled the problem it is in any meaningful sense mission accomplished. There undoubtedly exist a myriad of issues in the raw data and it is of vital importance to see how sensitive data homogenization is to the set of processing choices independent groups will undertake. This uncertainty will almost certainly be larger at the station or regional level - yet as we move into the 21st Century it is these scales that are of increasing import to end users. It is essential that we serve the right data in the right way with the correct caveats. This can only be achieved if a sufficient number of groups take up the challenge of creating new products from the raw databank. This poster will outline progress to date in the creation of the databank and global benchmarks and outline how investigators and groups can now get involved in creating products from the databank and participate in the benchmarking exercise. Further details upon the Initiative and its aims can be found at www.surfacetemperatures.org and http://surfacetemperatures.blogspot.com/

  16. Complexity analysis of the air temperature and the precipitation time series in Serbia

    Science.gov (United States)

    Mimić, G.; Mihailović, D. T.; Kapor, D.

    2017-02-01

    In this paper, we have analyzed the time series of daily values for three meteorological elements, two continuous and a discontinuous one, i.e., the maximum and minimum air temperature and the precipitation. The analysis was done based on the observations from seven stations in Serbia from the period 1951-2010. The main aim of this paper was to quantify the complexity of the annual values for the mentioned time series and to calculate the rate of its change. For that purpose, we have used the sample entropy and the Kolmogorov complexity as the measures which can indicate the variability and irregularity of a given time series. Results obtained show that the maximum temperature has increasing trends in the given period which points out a warming, ranged in the interval 1-2 °C. The increasing temperature indicates the higher internal energy of the atmosphere, changing the weather patterns, manifested in the time series. The Kolmogorov complexity of the maximum temperature time series has statistically significant increasing trends, while the sample entropy has increasing but statistically insignificant trend. The trends of complexity measures for the minimum temperature depend on the location. Both complexity measures for the precipitation time series have decreasing trends.

  17. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    Science.gov (United States)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  18. The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina

    Science.gov (United States)

    Alchapar, Noelia Liliana; Cotrim Pezzuto, Claudia; Correa, Erica Norma; Chebel Labaki, Lucila

    2016-07-01

    This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.

  19. Effects of urban green areas on air temperature in a medium-sized Argentinian city

    Directory of Open Access Journals (Sweden)

    Alejandra S. Coronel

    2015-07-01

    Full Text Available Urban climate is the result of both atmospheric and geographic factors affecting a region, as well as the morphology, structures and human activities in a city. Urban vegetation in particular affects this climate at a local scale and provides many other social, economic and ecological benefits. Thus, it is important to explore the effects of different green areas used for urban and periurban agriculture and forestry activities (UPAF on daily atmospheric temperature and the required degrees of cooling or refrigerating temperature. Comfort temperatures were defined using a range 18-24°C and analyzed using actual measured as well as forecasted temperatures using a future scenario. Actual temperatures were recorded from September 2013 to August 2014 using digital sensors across eight sites in Rosario, Argentina: three in the central core with no vegetation, one in the central core with street trees, one in an urban agriculture site, one in a public park and two in periurban agricultural areas. Results show that air temperature in the central core with no vegetation were higher than those in other sites with vegetation during day and night, with the exception of the temperatures measured at the central core site with street trees. Findings also show that temperature effects in urban agricultural gardens of approximately 0.2 ha were similar to those of gardens and public parks 2-3 ha in size. Three UPAF types were classified according to cooling degree days, which decreased in order from (1 central core with no trees; (2 central core with street trees and public parks; and (3 urban and periurban agriculture areas. Conversely, the opposite trends for heating degree days were found. Results from this study can be used for integrating UPAF measures into climate change mitigation and urban planning policies in medium-sized cities in the developing world.

  20. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    Science.gov (United States)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2017-01-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature (T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  1. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  2. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2013-01-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model that only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I (Special Sensor Microwave Imager and AMSR-E (Advanced Microwave Scanning Radiometer for EOS data. Under nearly cloud-free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 70% for Barrow, using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Trajectories based on 10-m wind fields from both reanalyses show large spatial differences in the Central Arctic, leading to differences in the correlations between modeled and observed 2-m air temperatures. They are most pronounced at Tara, where explained variances amount to 70% using JRA and 80% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 200 km radius around the site.

  3. Long-term air temperature changes in Ljubljana (Slovenia in comparison to Trieste (Italy and Zagreb (Croatia

    Directory of Open Access Journals (Sweden)

    Ogrin Darko

    2015-09-01

    Full Text Available The cities of Ljubljana, Trieste and Zagreb are proximate in terms of distance but differ in terms of geographical and climatic conditions. Continuous meteorological measurements in these cities began in the mid-19th century. The 100-year trends of changes in mean annual and seasonal air temperatures for these cities are presented here, evaluating the differences between them which result from their different geographical and climatic positions. Differences in trends between Ljubljana and Zagreb that result from different measurement histories and the impact of urban climate are also presented: the impact of city growth on air temperatures in Ljubljana after 1950 was not completely eliminated in the process of data homogenization. The lowest air warming trends occur in the maritime climate of Trieste (mean annual air temperature: + 0.8 °C × 100 yr−1, where measurements were continuously performed in the densely built-up section of the city. The strongest trends occur in Ljubljana, mainly due to city growth (mean annual air temperature: + 1.1 °C × 100 yr−1. Comparing the linear trends in Zagreb-Grič and in Ljubljana, the impact of Ljubljana's urban heat island on the 100-year warming trend was assessed at about 0.2 °C, at 0.3–0.4 °C for the trend after 1950, and if non-homogenized data are used, at about 0.5 °C.

  4. AIRS/Aqua Level 1B HSB geolocated and calibrated brightness temperatures V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  5. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  6. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  7. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  8. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    Science.gov (United States)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  9. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  10. Do sudden air temperature and pressure changes affect cardiovascular morbidity and mortality?

    Science.gov (United States)

    Plavcová, E.; Davídkovová, H.; Kyselý, J.

    2012-04-01

    Previous studies have shown that sudden changes in weather (usually represented by air temperature and/or pressure) are associated with increases in daily mortality. Little is understood about physiological mechanisms responsible for the impacts of weather changes on mortality, and whether similar patterns appear for morbidity as well. Relatively little is known also about differences in the magnitude of the mortality response in provincial regions and in cities, where the impacts may be exacerbated by air pollution effects and/or heat island. The present study examines the effects of sudden air temperature and pressure changes on morbidity (represented by hospital admissions) and mortality due to cardiovascular diseases in the population of the Czech Republic (approx. 10 million inhabitants) and separately in the city of Prague (1.2 million inhabitants). The events are selected from data covering 1994-2009 using the methodology introduced by Plavcová and Kyselý (2010), and they are compared with the datasets on hospital admissions and daily mortality (both standardized to account for long-term changes and the seasonal and weekly cycles). Relative deviations of morbidity/mortality from the baseline were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. The study aims at (i) identifying those weather changes associated with increased cardiovascular morbidity/mortality, separately in summer and winter, (ii) comparing the effects of weather changes on morbidity and mortality, (iii) identifying whether urban population of Prague is more/less vulnerable in comparison to the population of the whole Czech Republic, (iv) comparing the effects for different cardiovascular diseases (ischaemic heart diseases, ICD-10 codes I20-I25; cerebrovascular diseases, I60-I69; hypertension, I10; atherosclerosis, I70) and individual population groups (by age

  11. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  12. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  13. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  14. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    Science.gov (United States)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  15. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  16. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    Institute of Scientific and Technical Information of China (English)

    Weichun MA; Liguo ZHOU; Hao ZHANG; Yan ZHANG; Xiaoyan DAI

    2016-01-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island,carbon emissions,climate change,etc.This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai,China.The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales.Secondly,the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature.The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250 m resolution in spring and autumn on an annual scale than observed at a 1 km resolution.Although the distribution pattern of the air temperature thermal field varies in different seasons,the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers,with the central urban area as the primary center and the built-up regions in each district as the subcenters.This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai,but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  17. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Science.gov (United States)

    Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  18. AirCompare

    Data.gov (United States)

    U.S. Environmental Protection Agency — AirCompare contains air quality information that allows a user to compare conditions in different localities over time and compare conditions in the same location...

  19. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  20. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  1. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  2. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  3. Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter

    Science.gov (United States)

    Yang, Shuangyan; Li, Tim

    2016-10-01

    The intraseasonal oscillation (ISO) of air temperature over the mid- and high-latitude Eurasia in boreal winter was investigated by NCEP-NCAR reanalysis data. It is found that the intraseasonal temperature disturbances exhibit maximum variability near the surface in the region of 50°-75°N, 80°‒120°E and they propagate southeastwards at average zonal and meridional phase speeds of 3.2 and 2.5 m s-1, respectively. The low-level temperature signal is tightly coupled with upper-tropospheric height anomalies, and both propagate southeastward in a similar phase speed. A diagnosis of the temperature budget reveals that the southeastward propagation is primarily attributed to the advection of the temperature anomaly by the mean wind. A wave activity flux analysis indicates that the southeastward propagating wave train is likely a result of Rossby wave energy propagation. The source of the Rossby wave train appears at the high latitude Europe/Atlantic sector, where maximum wave activity flux convergence resides. During its southeastward journey, the ISO perturbation gains energy from the mean flow through both kinetic and potential energy conversions. A physics-based empirical model was constructed to predict the intraseasonal temperature anomaly over southeast China. The major predictability source is the southeastward-propagating ISO signal. The data for 1979‒2003 were used as a training period to construct the empirical model. A 10-yr (2004‒2013) independent forecast shows that the model attains a useful skill of up to 25 days.

  4. Effects of Photosynthetically Active Radiation and Air Temperature on CO2 Uptake of Pterocarpus macrocarpus in the Open Field

    Institute of Scientific and Technical Information of China (English)

    Sureeporn Kerdkankaew; Jesada Luangjame; Pojanie Khummongkol

    2005-01-01

    Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2℃ intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as:A= [(-0.0575 Ta2+ 2.6691 Ta-23.264)I/(-4.8794Ta2+227.13Ta-2456.9)+I](-0.00766Ta2+0.40666Ta-3.99924)

  5. The influence of coal particles on self-ignition of methane-air mixture at temperatures 950-1200 K

    Science.gov (United States)

    Leschevich, V. V.; Penyazkov, O. G.; Shimchenko, S. Yu; Yaumenchykau, M. L.

    2016-11-01

    This paper represents experimental investigation of ignition of combustible gaseous mixture with reactive particles in the rapid compression machine at temperatures 950-1200 K and pressures 1.5-2.0 MPa. The experiments were carried out with stoichiometric methane-air mixture in the presence of coal particles with size 20-32 μm. It was found that the presence of these particles not only reduces ignition time but influences on the ignition temperature of mixture. It is ascertained that ignition time of methane in pure air is longer than with same mixture with addition coal dust. This difference is explained to preignition of methane near burning particles. It is shown that ignition of coal dust originates at the temperature of oxidant higher 850 K. Temperature of particles burning in methane-air and air environment heated by compression was measured. The mean temperature is 2500 K. It indicates possibility of premature ignition of gas mixture heated by compression to temperature 1000-1100 K by addition of coal particles.

  6. Air Power and Warfare

    Science.gov (United States)

    1978-09-01

    Memorial, 1963. (T) 767.8 A3 ser .3, V.4) Air war against Germany and Italy, 1939-1943. Canberra: Australian War Memorial, 1954. (D 767.8 A3 Ser .3, V.3...et al. Air poder indivisible Air University Ouarterly Review 2:5-18, Fall 1950. Spaatz, Crrl. Air-power odds against us. Readers Digest 58:11-14, June

  7. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  8. On the Controlling Factor of Catalyst Temperature in C3H8-Air Mixture

    Institute of Scientific and Technical Information of China (English)

    Goro ONUMA; Mitsuaki TANABE; Kiyoshi AOKI

    2001-01-01

    Catalytic combustion of propane-air mixture was investigated. Platinum catalysts over a flat stainless steel with y alumina washcoat were employed. The employed burner has three catalysts set parallel to the mixture flow, spaced at an interval of 5, 10 and 15 mm. Both experiment and numerical simulation were made at inlet temperature of 553 K, inlet velocity of 3 to 7 rn/s and equivalence ratio of 0.3 to 0.5. In the numerical simulation, two-dimensional,steady state model was developed to calculate the temperature and species concentration in gas-phase. In this model,chemical reaction on the catalyst surface and that in the gas phase were assumed to occur in three-steps. The numerical results show good agreement with experimental results. It was found that the properties of the catalyst strongly affect the catalyst surface temperature. Especially, the thermal conductivity of catalyst has a great effect,while the emissivity of catalyst has less effect.

  9. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures.

    Science.gov (United States)

    Van den Schoor, F; Verplaetsen, F; Berghmans, J

    2008-05-30

    Four different numerical methods to calculate the upper flammability limit of methane/air mixtures at initial pressures up to 10 bar and initial temperatures up to 200 degrees C are evaluated by comparison with experimental data. Planar freely propagating flames are calculated with the inclusion of a radiation heat loss term in the energy conservation equation to numerically obtain flammability limits. Three different reaction mechanisms are used in these calculations. At atmospheric pressure, the results of these calculations are satisfactory. At elevated pressures, however, large discrepancies are found. The spherically expanding flame calculations only show a marginal improvement compared with the planar flame calculations. On the other hand, the application of a limiting burning velocity with a pressure dependence Su,lim approximately p(-1/2) is found to predict the pressure dependence of the upper flammability limit very well, whereas the application of a constant limiting flame temperature is found to slightly underestimate the temperature dependence of the upper flammability limit.

  10. Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model

    Science.gov (United States)

    Wu, Y.; Latif, M.; Park, W.

    2016-08-01

    The multiyear predictability of Northern Hemisphere surface air temperature (SAT) is examined in a multi-millennial control integration of the Kiel Climate Model, a coupled ocean-atmosphere-sea ice general circulation model. A statistical method maximizing average predictability time (APT) is used to identify the most predictable SAT patterns in the model. The two leading APT modes are much localized and the physics are discussed that give rise to the enhanced predictability of SAT in these limited regions. Multiyear SAT predictability exists near the sea ice margin in the North Atlantic and mid-latitude North Pacific sector. Enhanced predictability in the North Atlantic is linked to the Atlantic Multidecadal Oscillation and to the sea ice changes. In the North Pacific, the most predictable SAT pattern is characterized by a zonal band in the western and central mid-latitude Pacific. This pattern is linked to the Pacific Decadal Oscillation, which drives sea surface temperature anomalies. The temperature anomalies subduct into deeper ocean layers and re-emerge at the sea surface during the following winters, providing multiyear memory. Results obtained from the Coupled Model Intercomparison Project Phase 5 ensemble yield similar APT modes. Overall, the results stress the importance of ocean dynamics in enhancing predictability in the atmosphere.

  11. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  12. Fiber optic distributed temperature sensing for the determination of air temperature

    NARCIS (Netherlands)

    De Jong, S.A.P.; Slingerland, J.D.; Van de Giesen, N.C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected

  13. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  14. We Pollute the Air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    1.Clean air is important to good health.If the aircontains impurities,they may be absorbed by ourbodies and make us ill.We need clean air,butunfortunately,air pollution is generally present,especially in cities. 2.Our cities have many factories,which we need tomake food products,clothing and many other things.

  15. Air Pollution Training Programs.

    Science.gov (United States)

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  16. Ocean and atmosphere coupling, connection between sub-polar Atlantic air temperature, Icelandic minimum and temperature in Serbia

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2009-01-01

    Full Text Available In the presented paper correlation between the northern part of the Atlantic ocean (belt between 50-65°N and the atmospheric pressure is examined. Connection between the ocean temperature and atmospheric pressure is the most obvious in the El Nino southern oscillation mechanism. Thus, so far it is not known that such a mechanism exist in the Atlantic ocean. The main accent in the presented paper is focused on the connection between Iceland low and the sea surface temperature (SST in the subpolar part of the Atlantic ocean (used data are in grid 5x5°. By hierarchical cluster analysis five relatively unified clusters of sea surface temperatures grid cells are defined. By multiple linear regression, we examined the correlation between each of the depicted clusters with position and intensity of Iceland low, and identified the most important grid cells inside every cluster. The analysis of the relation between Iceland low and air temperature in Serbia and Belgrade has shown the strongest correlation for the longitude of this centre of action. .

  17. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Science.gov (United States)

    Kotowicz, Janusz; Balicki, Adrian; Michalski, Sebastian

    2014-09-01

    Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of `zero-emission' technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  18. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  19. A decadal microwave record of tropical air temperature from AMSU-A/aqua observations

    Science.gov (United States)

    Shi, Yuan; Li, King-Fai; Yung, Yuk L.; Aumann, Hartmut H.; Shi, Zuoqiang; Hou, Thomas Y.

    2013-09-01

    Atmospheric temperature is one of the most important climate variables. This observational study presents detailed descriptions of the temperature variability imprinted in the 9-year brightness temperature data acquired by the Advanced Microwave Sounding Unit-Instrument A (AMSU-A) aboard Aqua since September 2002 over tropical oceans. A non-linear, adaptive method called the Ensemble Joint Multiple Extraction has been employed to extract the principal modes of variability in the AMSU-A/Aqua data. The semi-annual, annual, quasi-biennial oscillation (QBO) modes and QBO-annual beat in the troposphere and the stratosphere have been successfully recovered. The modulation by the El Niño/Southern oscillation (ENSO) in the troposphere was found and correlates well with the Multivariate ENSO Index. The long-term variations during 2002-2011 reveal a cooling trend (-0.5 K/decade at 10 hPa) in the tropical stratosphere; the trend below the tropical tropopause is not statistically significant due to the length of our data. A new tropospheric near-annual mode (period ~1.6 years) was also revealed in the troposphere, whose existence was confirmed using National Centers for Environmental Prediction Reanalysis air temperature data. The near-annual mode in the troposphere is found to prevail in the eastern Pacific region and is coherent with a near-annual mode in the observed sea surface temperature over the Warm Pool region that has previously been reported. It remains a challenge for climate models to simulate the trends and principal modes of natural variability reported in this work.

  20. Nitrogen fluorescence in air for observing extensive air showers

    Directory of Open Access Journals (Sweden)

    Tsunesada Y.

    2013-06-01

    Full Text Available Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  1. Nitrogen fluorescence in air for observing extensive air showers

    Science.gov (United States)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  2. Screening in humid air plasmas

    Science.gov (United States)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  3. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    Science.gov (United States)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

  4. Air Temperature Changes over the Tibetan Plateau and Other Regions in the Same Latitudes and the Role of Ozone Depletion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Renhe; ZHOU Shunwu

    2009-01-01

    Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.

  5. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  6. Considering Air Density in Wind Power Production

    CERN Document Server

    Farkas, Zénó

    2011-01-01

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  7. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  8. Multiyear Predictability of Surface Air Temperature in the Kiel Climate Model

    Science.gov (United States)

    Wu, Yanling; Latif, Mojib; Park, Wonsun

    2015-04-01

    The multiyear predictability of unforced surface air temperature (SAT) variability is examined in the Kiel Climate Model (KCM), a coupled ocean-atmosphere-sea ice general circulation model. A statistical method that maximizes Average Predictability Time (APT) is used to find the most predictable patterns in the model. Multiyear SAT predictability is detected in the North Atlantic and North Pacific sectors. In both regions, ocean dynamics enhances predictability, while the net heat flux is a damping factor. Enhanced predictability in the North Atlantic sector is concentrated near the sea ice margin. The multiyear predictability there is linked to the Atlantic Multidecadal Oscillation/Variability (AMO/V) and also associated with variability of the subpolar gyre. In the North Pacific, the most predictable pattern is characterized by a zonal band in the western and central mid-latitude Pacific. It is linked to the Pacific Decadal Oscillation (PDO) which produces temperature anomalies in the surface layer during winter. These are subducted into deeper layers and re-emerge during the following winters, giving rise to multiyear predictability. The results are consistent with those obtained from the CMIP5 ensemble.

  9. Effects of warm air-drying on intra-pulpal temperature.

    Science.gov (United States)

    Galan, D; Kasloff, Z; Williams, P T

    1991-08-01

    This study was designed to determine what effects different warm air-drying conditions have on the intra-pulpal temperature (IPT), with or without chamber preparation and with or without an acid-etching treatment of the enamel. Four human maxillary centrals and four cuspids had lingual access openings prepared to accommodate a thermal sensor probe. Half of the specimens received a labial chamber preparation and half were acid-etched. All specimens were stored in water at 37 degrees C prior to testing. Labial aspects were positioned at 2 cm and 6 cm from the nozzle of a 500W hair dryer and IPTs were recorded after 15, 30, 45, and 60-second exposures. Exposure times for the acid-etched samples were modified to 10 seconds at 2 cm and 15 seconds at 6 cm. Results showed that for unetched teeth, increases in the IPT were greater at the 2 cm/15-second exposure (a 10.4-12.0 degrees C increase) than at the 6 cm/15-second exposure (a 3.9-6.6 degrees C increase). Even greater temperature changes were seen as the exposure times were increased to 30, 45, and 60 seconds. When the teeth were acid-etched, IPT rises of 5.6-10.1 degrees C and 5.8-8.7 degrees C were measured at 2 cm/10 seconds and at 6 cm/15 seconds, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  11. The Influence of Urbanization on Air Temperature in Nagqu County, Tibetan Plateau

    Science.gov (United States)

    Lin, Yun; Hu, Zeyong

    2016-04-01

    According to meteorological data obtained at Nagqu meteorological station, which is in the Nagqu County (NQ) and at site BJ of Nagqu Station of Plateau Climate and Environment (BJ), which is outside Nagqu County, the differences in air temperature (Ta) variations at NQ and BJ from 2001 to 2014 were compared and analyzed with respect of urbanization. Both the natural processes and human activities that could lead to the differences in Ta between NQ and BJ were studied in this study. Natural processes are characterized by meteorological variables such as wind, precipitation, sunshine hours, vapor pressure and the human activities are characterized by urbanization index. The results show that the annual mean temperature (Ta_mean) and annual mean minimum temperature (Ta_min) at NQ are higher than those at BJ from 2001 to 2014. But the annual mean maximum temperature (Ta_max) at NQ is smaller than that at BJ. The urbanization of Nagqu County has increased in the past fifteen years and reached to 27.24% in 2014. There are good agreements between Ta_max and natural factors including sunshine hours and water vapor pressure at NQ and BJ. And Ta_min has a positive relationship with human activities such as the GDP and population of Nagqu County. But the relationship between Ta_min with human activities at NQ is stronger than that at BJ. This is because BJ is a field site and the strength of human activity is weak. The Natural processes has a stronger influence on the variation of Ta_min at BJ than human activities do.

  12. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    Science.gov (United States)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  13. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    Science.gov (United States)

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  14. Changes in winter air temperatures near Lake Michigan, 1851-1993, as determined from regional lake-ice records

    Science.gov (United States)

    Assel, R.A.; Robertson, Dale M.

    1995-01-01

    Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain. 

  15. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    Science.gov (United States)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  16. Air temperature regulation in mine workings on the basis of local and block ventilation systems with boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, A.I.; Batmanov, Y.K.; Lunev, S.G.; Martynov, A.A. [Makeyevka Safety in Mines Research Institute, Makeyevka (Ukraine)

    1997-12-31

    The thermal factor is one of the main factors complicating coal mining in the Donetsk Basin (Ukraine). Local ventilation systems (small diameter boreholes to improve ventilation in individual headings at deep levels) and block ventilation systems (large diameter boreholes for ventilation and air temperature control in independently mined blocks and panels) are discussed. 4 refs., 3 figs.

  17. A model on the effect of temperature and moisture on pollen longevity in air-dry storage environments

    NARCIS (Netherlands)

    Hong, T.D.; Ellis, R.H.; Buitink, J.; Walters, J.; Hoekstra, F.A.; Crane, J.

    1999-01-01

    Data on the survival of pollen ofTypha latifoliaL. stored for up to 261 d over seven different saturated salt solutions (providing 0.5 to 66% relative humidity) and six different constant temperatures (from −5 to +45 °C) were analysed to quantify the effect of air-dry storage environment on pollen l

  18. Aeromicrobiology/air quality

    Science.gov (United States)

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  19. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    Science.gov (United States)

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  20. 常规空调器用于低温制冷研究%Study on Low Temperature Refrigeration with Conventional Air Conditioner

    Institute of Scientific and Technical Information of China (English)

    孙静; 时红臣

    2015-01-01

    对常规空调器用于低温制冷进行了研究,通过控制系统改造实现了系统在低温下稳定运行,控制系统改造方案可以实现常规空调机组低温制冷功能。%n this paper, how to achieve low temperatur air conditioning with conventional air conditioner were studied, through the control system renovation, air conditioning system run stably at low temperatur , the control system renovation scheme can realize the low temperature refrigeration function of conventional air conditioner.

  1. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  2. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  3. Causality between energy consumption, emissions of CO{sub 2} and surface air temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mariam, Y.K.G.; Barre, M. [Environment Canada, Hull, Quebec (Canada)

    1998-12-31

    Climate research has been one of the focal points of the scientific community for the past few decades. However, most of the studies tended to examine the scientific basis to understand the mechanisms that resulted in changes in global climate. There was less emphasis on issues of mitigating the causes of climate change. Due to the fact that climate change is primarily the result of emission of green houses gases, especially carbon dioxide, and due to the fact that most these emissions are anthropogenic, social scientists have to address strategies in which emissions are reduced. Of particular significance is that global climate is a common good. Private companies and individuals, in an effort to maximize income or welfare, dump increased emission to the atmosphere. As a typical example of the classic work of the tragedy of the commons, there is a desperate need for all disciplines of the social and natural sciences to develop ways of mitigating the dangers of changes in the global common climate. Energy consumption, particularly fossil fuels, has been attributed as the driving force for the increased emission of CO{sub 2} and rise in global surface air temperature. While many studies have been carried out regarding the relationship between global energy consumption, emissions of CO{sub 2} and indicators of climate change such as temperature, there are only a few studies that have examined linkages between these factors at the level of individual countries. Increased consumption of carbon-intensive sources of energy will continue to exacerbate existing climate change problems. On the other hand, not only will energy consumption influence climate change but also changes in climate change may influence the patterns of energy consumption. The objectives of this research are to examine trends in energy consumption and emissions of CO{sub 2}, and causal linkages between energy consumption, emission of CO{sub 2} and mean annual surface temperature for 21 OECD countries.

  4. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    Science.gov (United States)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  5. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    Science.gov (United States)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The data sets presented in this article are published at doi:10.5676/DWD_CDC/DECREG0110v2.

  6. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air

    Science.gov (United States)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  7. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  8. Pollen production in sunflower (Helianthus annuus L.) is affected by air temperature and relative humidity during early reproductive growth

    OpenAIRE

    Astiz, V.; Hernández, Luis Francisco

    2013-01-01

    During microsporogenesis, sunflower florets might be exposed to episodes of day- and night-time temperatures exceeding 30 and 20 °C, respectively, that can affect pollen availability and consequently plant’s yield. The relationship between air temperature and relative humidity during the meiotic phase of microsporogenesis, and the quantity and quality of pollen produced by the flowers, were studied in two sunflower hybrids during two years. The hybrids were grown on irrigated plots in Bahía B...

  9. Flexible inverted polymer solar cells fabricated in air at low temperatures

    Science.gov (United States)

    Kuwabara, Takayuki; Wang, Xiaofan; Kusumi, Takuji; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2016-08-01

    A series of modified indium tin oxide (ITO) materials, including sol-gel zinc-oxide-coated ITO (ITO/ZnO), ZnO nanoparticle-coated ITO (ITO/ZnO-NP), 1,4-bis(3-aminopropyl)piperazine (BAP)-modified ITO, and polyethylenimine ethoxylated (PEIE)-modified ITO, were used for electron-collection electrodes in inverted polymer solar cells (PSCs). The modified ITO electrodes were prepared in air at temperatures below 100 °C, using various ITO films on flexible poly(ethylene terephthalate) substrates (PET-ITO) with sheet resistances ranging from 12 to 60 Ω sq-1. The PET-ITO (12 Ω sq-1)/ZnO-NP PSC exhibited an improved power conversion efficiency (PCE) (2.93%), and this PCE was ˜90% of that observed for a cell using glass-ITO/ZnO-NP (sheet resistance = 10 Ω sq-1 PCE = 3.28%). Additionally, we fabricated a flexible inverted ZnO-NP PSC using an indene-C60 bisadduct (ICBA) as the acceptor material in place of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and obtained a PCE of 4.18%.

  10. Exergoeconomic optimization of an irreversible regenerated air refrigerator with constant-temperature heat reservoirs

    Directory of Open Access Journals (Sweden)

    Yi Zhang, Lingeng Chen, Guozhong Chai

    2015-01-01

    Full Text Available Based on the finite time exergoeconomic method, the performance analysis and optimization of an irreversible regenerated air refrigerator cycle are carried out by taking the profit rate as the optimization objective. The profit rate is defined as the difference between the revenue rate of output exergy and the cost rate of input exergy. The analytical expression for profit rate is derived, taking into account several irreversibilities, such as heat resistance, losses due to the pressure drop and the effects of non-isentropic expansion as well as compression. The influences of several parameters such as the temperature ratio of reservoirs, the efficiencies of both compressor and expander, the pressure recovery coefficient and so on are discussed by numerical examples. According to the simulation results, the double-maximum profit rate can be achieved when the pressure ratio and the distributions of heat conductance reach their optimal values respectively. By varying the price ratio, the relationship between the profit rate objective and other objectives can be established and the implementation of profit rate as objective can achieve higher COP compared to the cases using ecological function and cooling load as objectives.

  11. Variability of the Coupling Between Surface Air Temperature and Northern Annular Mode at Various Levels

    Institute of Scientific and Technical Information of China (English)

    TAN Benkui; SUO Lingling; HUANG Jiayou

    2008-01-01

    This article focuses on the variability of the coupling between surface air temperature(SAT)and northern annular mode(NAM)at various levels.To measure the coupling intensity between the SAT and the NAM anomaly fields.the coupling index has been defined as the leading principal component of the partial least squares regression model of the SAT and NAM anomalies.Both a composite analysis and the coupling index have been used to reveal level-by-level and month-to-month variability of the coupling between the upper anomalous NAM and the SAT in the Northern Hemisphere.The major results are as follows:the January SAT anomaly is more strongly coupled with the January NAM anomaly at the middle-upper tropospheric levels than that at the other levels,while the same is true for the February SAT anomaly with the January NAM anomaly at the lower stratospheric levels.The January NAM anomaly at the middleupper tropospheric levels is most strongly coupled with the January SAT anomaly,and the coupling intensity is successively reduced month by month and becomes trivial after April.The January NAM anomaly at the lower stratospheric levels is more strongly coupled with January,Febrnary and March SAT anomalies,but the coupling becomes trivial after April.

  12. The statistical inhomogeneity of surface air temperature in global atmospheric reanalyses

    Science.gov (United States)

    Ferguson, C. R.; Lee, M. H.

    2015-12-01

    Recently, a new generation of so-called climate reanalyses has emerged, including the 161-year NOAA—Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES) Twentieth Century Reanalysis Version 2c (20CR V2c), the 111-year ECMWF pilot reanalysis of the twentieth century (ERA-20C), and the 55-year JMA conventional reanalysis (JRA-55C). These reanalyses were explicitly designed to achieve improved homogeneity through assimilation of a fixed subset of (mostly surface) observations. We apply structural breakpoint analysis to evaluate inhomogeneity of the surface air temperature in these reanalyses (1851-2011). For the modern satellite era (1979-2013), we intercompare their inhomogeneity to that of all eleven available satellite reanalyses. Where possible, we distinguish between breakpoints that are likely linked to climate variability and those that are likely due to an artificial observational network shift. ERA-20C is found to be the most homogenous reanalysis, with 40% fewer artificial breaks than 20CR V2c. Despite its gains in homogeneity, continued improvements to ERA-20C are needed. In this presentation, we highlight the most spatially extensive artificial break events in ERA-20C.

  13. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    Science.gov (United States)

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1.

  14. Assessment of climatic factors influence on interannual changes in the global surface air temperature

    Science.gov (United States)

    Gusakova, Maria; Karlin, Lev

    2014-05-01

    A model to assess a number of factors such as TSI, albedo, cloudiness and greenhouse gases including water vapour affecting global surface air temperature (SAT) changes has been developed. To develop the model solar energy transformation in the atmosphere and the other radiation fluxes transformation were investigated. It's a common knowledge that some part of the incoming solar energy is reflected into space by the Earth's surface, aerosol and cloud particles. A contribution of these components to changes in the reflected solar energy was assessed on the basis of developed linear parameterization. During the period of 2001 - 2010, clouds were found to be the basic contributor to the changes in reflected shortwave radiation. Some part of outgoing terrestrial radiation is retained in the atmosphere by greenhouse gases, water vapour and cloudiness. A contribution of these components to changes in the absorbed longwave radiation was assessed on the basis of developed linear parameterization. It was estimated that the contribution of water vapour was dominant during the analyzed period. The developed parameterization of global albedo made it possible to assess the contribution of TSI to global SAT changes. Making use of the parameterizations listed above the model has been improved. The model calculations showed that the our projections of global SAT to 2030 were lower than IPCC estimates.

  15. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  16. Picosecond laser filamentation in air

    Science.gov (United States)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  17. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  18. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  19. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  20. 走近Air

    Institute of Scientific and Technical Information of China (English)

    马华

    2007-01-01

    @@ 大家对air这个单词并不陌生,它通常用作名词,表示"空气".例如: 1.Better let in fresh air. 最好让新鲜空气进来. 2.The air smells of paint. 空气里散发着油漆味. 3.The air was heavy with perfume of the flowers. 空气里弥漫着花朵的芳香.

  1. Contact air abrasion.

    Science.gov (United States)

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  2. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  3. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices....... Contaminant removal effectiveness and air change efficiency were used to evaluate ventilation effectiveness. No significant risk of thermal discomfort due to vertical air temperature differences or draught was found. When the room was heated by warm air, buoyancy forces were important for ventilation...

  4. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. [and others

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  5. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    Science.gov (United States)

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  6. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    Science.gov (United States)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at

  7. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  8. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  9. High Performance Polymer Film Dielectrics for Air Force Wide-Temperature Power Electronics Applications (Preprint)

    Science.gov (United States)

    2009-02-01

    perform, display, or disclose the work. 14. ABSTRACT Air Force currently has a strong need for the development of compact capacitors which are... capacitors typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 ºC to 125 ºC, future power electronic systems would...such as fluorinated polybenzoxazoles (6F-PBO) and fluorenyl polyesters incorporating diamond-like hydrocarbon units (FDAPE). The discussion will be

  10. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  11. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    Science.gov (United States)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  12. High-temperature oxidation behavior of Ti3AlC2 in air

    Institute of Scientific and Technical Information of China (English)

    XU Xue-wen; LI Yang-xian; ZHU Jiao-qun; MEI Bing-chu

    2006-01-01

    Not only the isothermal oxidation behaviors at 900-1 300 ℃ for 20 h in air of bulk Ti3AlC2 with 2.8% TiC which was sintered by hot pressing with the additive of silicon,but also the cyclic oxidation behavior at 1 100-1 300 °C for 30 cycles,were investigated by using TG,XRD,SEM. The isothermal and cyclic oxidation behaviors generally follow a parabolic rate law. The parabolic rate constants of the former increased from 1.39×10-10 kg2/(m4·s) at 900 ℃ to 5.56×10-9 kg2/(m4·s) at 1 300 ℃. The calculated activation energy is 136.45 kJ/mol. The oxidation products are á-Al2O3 and little TiO2 at 900-1 000 ℃,however when the temperature is raised up to 1 200 ℃,TiO2 partially reacts to Al2TiO5,and the reaction is completed at 1 300 ℃. This demonstrates that Ti3AlC2 has excellent oxidation resistance and good thermal shock because the dense continuous oxide scale consists of mass á-Al2O3 and little TiO2 and/or Al2TiO5. Generally,the oxide scale is grown by the inward diffusion of O2- and the outward diffusion of Ti4+ and Al3+.

  13. Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC)in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century andmeteorological reanalyses for its second half, it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates. Nevertheless, some exceptions exist. The positive correlationbetween these two variables is found over the two desert regions: in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans. Southward of the characteristic annual mean snow-ice boundary (SIB) position, the shape ofthe SAT AC becomes more sinusoidal under climate warming. In contrast, northward of it, this shapebecomes less sinusoidal. The latter is also found for the above-mentioned two desert regions. In theFar East (southward of about 50°N), the SAT AC shifts as a whole: here its spring and autumn phasesoccur earlier if the annual mean SAT increases. From energy-balance climate considerations, those trendsfor SAT AC APC in the middle and high latitudes are associated with the influence of the albedo-SATfeedback due to the SIB movement. In the Far East the trends are attributed to the interannual cloudinessvariability, and in the desert regions, to the influence of a further desertification and/or scattering aerosolloading into the atmosphere. In the north Pacific, the exhibited trends could only be explained as aresult of the influence of the greenhouse-gases loading on atmospheric opacity. The trends for SAT ACAPC related to the SIB movement are simulated reasonably well by the climate model of intermediatecomplexity (IAP RAS CM) in the experiment with greenhouse gases atmospheric loading. In contrast,the tendencies resulting from the cloudiness variability are not reproduced by this model. The model alsopartly simulates the tendencies related to the desertification

  14. Effects of air temperature and relative humidity on coronavirus survival on surfaces.

    Science.gov (United States)

    Casanova, Lisa M; Jeon, Soyoung; Rutala, William A; Weber, David J; Sobsey, Mark D

    2010-05-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.

  15. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces▿

    Science.gov (United States)

    Casanova, Lisa M.; Jeon, Soyoung; Rutala, William A.; Weber, David J.; Sobsey, Mark D.

    2010-01-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces. PMID:20228108

  16. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product

    Science.gov (United States)

    Hulley, Glynn C.; Hook, Simon J.

    2012-10-01

    Land Surface Temperature (LST) has been identified by NASA and other international organizations as an important Earth System Data Record (ESDR). An ESDR is defined as a long-term, well calibrated and validated data set. Identifying uncertainties in LST products with coarse spatial resolutions (>10 km) such as those from hyperspectral infrared sounders is notoriously difficult due to the challenges of making reliable in situ measurements representative of the spatial scales of the output products. In this study we utilize a Radiance-based (R-based) LST method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) v5 LST product. The R-based method provides estimates of the true LST using a radiative closure simulation without the need for in situ measurements, and requires input air temperature, relative humidity profiles and emissivity data. The R-based method was employed at three validation sites over the Namib Desert, Gran Desierto, and Redwood National Park for all AIRS observations from 2002 to 2010. Results showed daytime LST root-mean square errors (RMSE) of 2-3 K at the Namib and Desierto sites, and 1.5 K at the Redwood site. Nighttime LST RMSEs at the two desert sites were a factor of two less when compared to daytime results. Positive daytime LST biases were found at each site due to an underestimation of the daytime AIRS v5 longwave spectral emissivity, while the reverse occurred at nighttime. In the AIRS v6 product (release 2012), LST biases and RMSEs will be reduced significantly due to improved methodologies for the surface retrieval and emissivity first guess.

  17. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  18. Air-Conditioning Mechanic.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  19. The Air We Breathe

    Science.gov (United States)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  20. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  1. Bad Air For Children

    Science.gov (United States)

    Kane, Dorothy Noyes

    1976-01-01

    Children are especially sensitive to air pollution and consequences to them maybe of longer duration than to adults. The effects of low-level pollution on children are the concern of this article. The need for research on the threat of air pollution to childrens' health is emphasized. (BT)

  2. Air pollution and society

    OpenAIRE

    Brimblecombe P.

    2010-01-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  3. Over the air test

    DEFF Research Database (Denmark)

    2015-01-01

    [1] This invention relates to over-the-air testing of a device in an anechoic chamber. In particular, the invention is suitable for simulating both uplink and downlink over-the-air communication with a device under test even when the anechoic chamber has different numbers of uplink and downlink...

  4. Air Pollution, Teachers' Edition.

    Science.gov (United States)

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  5. Air Pollution and Industry.

    Science.gov (United States)

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  6. Köppen-Geiger Climate Classification for Europe Recaptured via the Hölder Regularity of Air Temperature Data

    Science.gov (United States)

    Deliège, Adrien; Nicolay, Samuel

    2016-08-01

    In this paper, we make use of the monoHölder nature of surface air temperature data to recapture the Köppen-Geiger climate classification in Europe. Using data from the European Climate Assessment and Dataset (ECA&D), we first show that the Hölder exponents of surface air temperature data are statistically related to pressure anomalies. Then, we establish a climate classification based on these Hölder exponents in such a way that it allows to recover the Köppen-Geiger climate classification. We show that the two classifications match for a vast majority of stations, and we corroborate these observations with a confirmation test. We compare these results with those obtained with another dataset (NCEP-NCAR Reanalysis Project) to show that the new classification is still well-adapted, before eventually discussing these findings.

  7. Study of the ventilation at ATLAS cavern UX15 air velocity and temperature around the muon chambers

    CERN Document Server

    Vigo-Castellví, E

    2000-01-01

    The Muon Chambers of ATLAS detector cannot work under temperature differences between two opposed faces above 3 K. In addition, a low velocity of the air around the Muon Chambers is essential to avoid vibration problems. The CV group at the ST division is involved in an airflow simulation inside UX15 cavern to check air temperature and velocity profiles around the ATLAS Muon Chambers. In this paper, the status and the content of the performed theoretical studies will be explained. Three simulation models, which helped to understand the Muon Spectrometer thermal environment and the efficiency of the ventilation system at ATLAS cavern, will be presented. Besides, it will be shown how these studies support the proposal of a deeper individual Muon Chamber study.

  8. Bearings Only Air-to-Air Ranging

    Science.gov (United States)

    1988-07-25

    sensor, observer and target parameters still remain. In order to reduce the number of cases to a manageable one, while preserving the geometric...perforance of variotu. ulro-air passive ranging tecnique has been examined as a fimn- tiam of uarget location andi motiom, observer motion. and length

  9. Restoran Buenos Aires = Restaurant Buenos Aires

    Index Scriptorium Estoniae

    2008-01-01

    Restorani Buenos Aires (Narva mnt. 5, Tallinn) sisekujundusest. Sisearhitektid: Janno Roos ja Andres Labi (Ruumilabor OÜ). Laudu eraldavad 400 vardasse aetud puukuuli. Sisearhitektidest, nende tähtsamad tööd. I-III korruse plaan, 12 värv. vaadet, fotod sisearhitektidest

  10. AIRE-Linux

    Science.gov (United States)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  11. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities

    KAUST Repository

    Luong, Minhbau

    2013-10-01

    The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI

  12. Airing 'clean air' in Clean India Mission.

    Science.gov (United States)

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2016-12-30

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  13. Location Problem of Air Materials Supply Center for Air Force

    Institute of Scientific and Technical Information of China (English)

    王涛; 何亚群; 陶学禹

    2002-01-01

    Based on the analysis of three influencing factors on the air material supply center location, the location model of air material supply center was established. By solving the model, the rational supply center of air materials was also determined.

  14. Air Baltic: Estonian Air on nurka surutud / Teele Tammeorg

    Index Scriptorium Estoniae

    Tammeorg, Teele

    2010-01-01

    Air Balticu asepresidendi Janis Vanagsi hinnangul on Estonian Air aastaid jätnud tähelepanuta oma peamised turismiturud ning on praegu halvas seisus. Air Baltic on endiselt huvitatud Estonian Airi ostust. Majandus- ja kommunikatsiooniminister Juhan Partsi seisukoht

  15. Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany

    Science.gov (United States)

    Maak, K.; von Storch, Hans

    We have examined the relationship between phenological data and concurrent large-scale meterological data. As phenological data we have chosen the beginning of the flowering of Galanthus nivalis L. (flowering date) in Northern Germany, and as large-scale meteorological data we use monthly mean near-surface air temperatures for January, February and March. By means of canonical correlation analysis (CCA), a strong linear correlation between both sets of variables is identified. Twenty years of observed data are used to build the statistical model. To validate the derived relationship, the flowering date is downscaled from air temperature observations of an independent period. The statistical model is found to reproduce the observed flowering dates well, both in terms of variability as well as amplitude. Air temperature data from a general circulation model of climate change are used to estimate the flowering date in the case of increasing atmospheric carbon dioxide concentration. We found that at a time of doubled CO2 concentration (expected by about 2035) G. nivalis L. in Northern Germany will flower 2 weeks and at the time of tripled CO2 concentration (expected by about 2085) 4 weeks earlier than presently.

  16. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2015-11-01

    Full Text Available By the late eighties the problem of climate change and its possible impacts had become an issue of global concern. Climate variables play an important role in controlling the water circulation and the water quality of lakes either as freshwater reservoirs, or as brackish lagoons. In Egypt, Lake Manzala is the largest and the most productive lake of the northern coastal lakes. In this study, continuous measurement data from the Real Time Water Quality Monitoring stations in Lake Manzala was statistically analyzed to determine the regional and seasonal variations of the selected water quality parameters in relation to changes in two climate variables: air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including Power of Hydrogen (pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature and relative humidity. It was revealed that there is a measured relation between air temperature and relative humidity and the pH, DO, EC and TDS parameters and there is no significant effect on the other two parameters: turbidity and chlorophyll.

  17. Correlation of Forced-convection Heat-transfer Data for Air Flowing in Smooth Platinum Tube with Long-approach Entrance at High Surface and Inlet-air Temperatures

    Science.gov (United States)

    Desmon, Leland G; Sams, Eldon W

    1950-01-01

    A heat-transfer investigation was conducted with air in an electrically heated platinum tube with long-approach entrance, inside diameter of 0.525 inch, and effective heat-transfer length of 24 inches over ranges of Reynolds number up to 320,000, average inside-tube-wall temperature up to 3053 degrees R, and inlet-air temperature up to 1165 degrees R. Correlation of data by the conventional Nusselt relation resulted in separation of data with tube-wall temperature. Good correlation was obtained, however, by use of a modified Reynolds number.

  18. What matters most: Are summer stream temperatures more sensitive to changing air temperature, changing discharge, or changing riparian vegetation under future climates?

    Science.gov (United States)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2012-12-01

    We investigated stream temperature responses to changes in both air temperature and stream discharge projected for 2040-2060 from downscaled GCMs and changes in the height and canopy density of streamside vegetation. We used Heat Source© calibrated for a 37 km section of the Middle Fork John Day River located in Oregon, USA. The analysis used the multiple-variable-at-a-time (MVAT) approach to simulate various combinations of changes: 3 levels of air warming, 5 levels of stream flow (higher and lower discharges), and 6 types of streamside vegetation. Preliminary results show that, under current discharge and riparian vegetation conditions, projected 2 to 4 °C increase in air temperature will increase the 7-day Average Daily Maximum Temperature (7dADM) by 1 to 2 °C. Changing stream discharge by ±30% changes stream temperature by ±0.5 °C, and the influence of changing discharge is greatest when the stream is poorly shaded. In contrast, the 7dADM could change by as much as 11°C with changes in riparian vegetation from unshaded conditions to heavily shaded conditions along the study section. The most heavily shaded simulations used uniformly dense riparian vegetation over the full 37-km reach, and this vegetation was composed of the tallest trees and densest canopies that can currently occur within the study reach. While this simulation represents an extreme case, it does suggest that managing riparian vegetation to substantially increase stream shade could decrease 7dADM temperatures relative to current temperatures, even under future climates when mean air temperatures have increased from 2 to 4 °C.

  19. On Air Shutter for Cold Storage Room

    Science.gov (United States)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Air curtains are frequently placed at doorway of cold storage room or freezing chamber. As an opening of jet flow in these air curtains is relatively narrow and speed of jet flow is fast, air entrained from surroundings increases in quantity. Therefore, we consider that jet flow with narrow opening can not effectively isolate inside air from the external atmosphere, but the one with relatively wide opening can decrease air entrained from surroundings. Then, when air curtain which has a wide opening (we call it air shutter) is installed at cold storage room, and isolating performances of air shutter are compared with the air curtain. First, as various conditions can be easily changed in numerical calculation, we compare a velocity and temperature field in cold storage room under these conditions when velocity of jet flow is changed by using numerical method. Second, we measure a temperature and velocity distribution in an actual cold storage room under three conditions (air shutter operates, air curtain operates and no operation). From these results, it was found that air shutter is more efficient than air curtain.

  20. Simultaneous measurement of temperature and velocity of air flow over 1000°C using two color phosphor thermometry

    Science.gov (United States)

    Fukuta, Masatoshi; Someya, Satoshi; Munakata, Tetsuo; LCS Team

    2016-11-01

    Thermal barrier coatings were applied to the gas turbines and the internal combustion engines for the high thermal efficiency. The evaluation and the improvement of coatings require to measure transient gaseous flow near the wall with coatings. An aim of this study is to combine a two color phosphor thermometry with the PIV to measure simultaneously temperature and velocity of the gas over 1000°C. The temperature and velocity distribution of an impinging jet of high temperature air was simultaneously visualized in experiments. The temperature was estimated from an intensity ratio of luminescent in different ranges of wavelength, 500 600 nm and 400 480 nm. Uncertainty of measured temperature was less than 10°C. Temperatures measured by the developed method and by thermocouples were agreed well. The measured velocity by the PIV with phosphor particles were also agreed well with the velocity measured by a Laser Doppler Velocimeter.

  1. Seasonal variations of air-sea heat fluxes and sea surface temperature in the northwestern Pacific marginal seas

    Institute of Scientific and Technical Information of China (English)

    LIU Na; WU Dexing; LIN Xiaopei; MENG Qingjia

    2014-01-01

    Using a net surface heat flux (Qnet) product obtained from the objectively analyzed air-sea fluxes (OAFlux) project and the international satellite cloud climatology project (ISCCP), and temperature from the simple ocean data assimilation (SODA), the seasonal variations of the air-sea heat fluxes in the northwestern Pa-cific marginal seas (NPMS) and their roles in sea surface temperature (SST) seasonality are studied. The seasonal variations of Qnet, which is generally determined by the seasonal cycle of latent heat flux (LH), are in response to the advection-induced changes of SST over the Kuroshio and its extension. Two dynamic regimes are identified in the NPMS:one is the area along the Kuroshio and its extension, and the other is the area outside the Kuroshio. The oceanic thermal advection dominates the variations of SST and hence the sea-air humidity plays a primary role and explains the maximum heat losing along the Kuroshio. The heat transported by the Kuroshio leads to a longer period of heat losing over the Kuroshio and its Extension. Positive anomaly of heat content corresponds with the maximum heat loss along the Kuroshio. The oceanic advection controls the variations of heat content and hence the surface heat flux. This study will help us understand the mechanism controlling variations of the coupled ocean-atmosphere system in the NPMS. In the Kuroshio region, the ocean current controls the ocean temperature along the main stream of the Ku-roshio, and at the same time, forces the air-sea fluxes.

  2. Study of Air Velocity and Temperature Gradient in Lecture Room Through Mixed and Displacement Ventilation Systems to Improve the Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Bambang Iskandriawan

    2010-05-01

    Full Text Available Air ventilation system is considered crucial in the target of maintaining clean and fresh room air at all times. It will improve the thermal comfort and indoor air quality along with the activities of occupant. This investigation explores the influence of fresh air diffuser location to the thermal comfort factor especially in the lecture room. It will contrast two types of ventilation: the mixed and the displacement ventilation. The thermal comfort factor is represented by means of air velocity and temperature. Using Fluent 6.2 as CFD (Computational Fluid Dynamics simulation program, all the variables will be exploited. The specific boundary type’s room model is verified in GAMBIT software generating such a specific lecture room. The finding shows that the displacement ventilation system has benefit in the propensity of controlling the heat and air velocity compare to the mixed ventilation

  3. Surface functionalization of macroporous polymeric materials by treatment with air low temperature plasma.

    Science.gov (United States)

    Molina, R; Sole, I; Vílchez, A; Bertran, E; Solans, C; Esquena, J

    2013-04-01

    Polystyrene/divinylbenzene (PS-DVB) macroporous monoliths obtained using highly concentrated emulsions as templates show a superhydrophobic behaviour, restricting their potential technological applications, especially those related to adhesion and wetting. Air plasma treatments were carried out in order to modulate wetting properties, modifying the surface chemical composition of macroporous polystyrene/divinylbenzene materials. The superhydrophobic behaviour was rapidly suppressed by air plasma treatment, greatly reducing the water contact angle, from approximately 150 degrees to approximately 90 degrees, in only 10 seconds of treatment. The new surface chemical groups, promoted by plasma active species, were characterized by surface analysis techniques with different depth penetration specificity (contact angle, XPS, FTIR and SEM). Results demonstrated that very short treatment times produced different chemical functionalities, mainly C-O, C=O, O-C=O and C-N, which provide the materials with predominantly acidic surface properties. However, plasma active species did not penetrate deeply through the interconnected pores of the material. FTIR analysis evidenced that the new hydrophilic surface groups promoted by plasma active species are in a negligibly concentration compared to bulk chemical groups, and are located in a very thin surface region on the PS-DVB monolith surface (significantly below 2 microm). XPS analysis of treated monoliths revealed a progressive increase of oxygen and nitrogen content as a function of plasma treatment time. However, oxidation of the PS-DVB monoliths surface prevails over the incorporation of nitrogen atoms. Finally, SEM studies indicated that the morphology of the plasma treated PS-DVB does not significantly change even for the longest air plasma treatment time studied (120 s).

  4. Air Cleaning Technologies

    Science.gov (United States)

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  5. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  6. Air Quality Management Process Cycle

    Science.gov (United States)

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  7. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation??s (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  8. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  9. High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar

    Science.gov (United States)

    de Haan, S.

    2011-05-01

    Wind, temperature, and humidity observations from radiosonde and aircraft are the main sources of upper air information for meteorology. For mesoscale meteorology, the horizontal coverage of radiosondes is too sparse. Aircraft observations through Aircraft Meteorological Data Relay (AMDAR) sample an atmospheric profile in the vicinity of airports. However, not all aircraft are equipped with AMDAR or have the system activated. Observations inferred from an enhanced tracking and ranging (TAR) air traffic control radar can fill this gap. These radars follows all aircraft in the airspace visible to the radar for air traffic management. The TAR radar at Schiphol airport in Netherlands has a range of 270 km. This Mode-S radar contacts each aircraft every 4 s on which the transponder in the aircraft responds with a message that contains information on flight level, direction, and speed. Combined with the ground track of an aircraft, meteorological information on temperature and wind can be inferred from this information. Because all aircraft are required to respond to the TAR radar, the data volume is extremely large, being around 1.5 million observations per day. Note that there are no extra costs for this data link. The quality of these observations is assessed by comparison to numerical weather prediction (NWP) model information, AMDAR observations, and radiosonde observations. A preprocessing step is applied to enhance the quality of wind and temperature observations, albeit with a reduced time frequency of one observation of horizontal wind vector and temperature per aircraft per minute. Nevertheless, the number of observations per day is still very large. In this paper it is shown that temperature observations from Mode-S, even after corrections, are not very good; an RMS which is twice as large as AMDAR is observed when compared to NWP. In contrast to the temperature observations, the quality found for wind after correction and calibration is good; it is comparable

  10. Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus.

    Science.gov (United States)

    Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A

    2007-05-01

    Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.

  11. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling.

    Science.gov (United States)

    Patel, Kevin H; Evenhuis, Christopher J; Cherney, Leonid T; Krylov, Sergey N

    2012-03-01

    Temperature increase due to resistive electrical heating is an inherent limitation of capillary electrophoresis (CE). Active cooling systems are used to decrease the temperature of the capillary, but their capacity is limited; and in addition, they leave "hot spots" at the detection interface and at the capillary ends. Until recently, the matter was complicated by the lack of a fast and generic method for temperature determination in efficiently and inefficiently cooled regions of the capillary. Our group recently introduced such a method, termed "Universal Method for determining Electrolyte Temperatures" (UMET). UMET is a probe-less approach that requires only measuring current versus voltage for different voltages and processing the data using an iterative algorithm. Here, we apply UMET to develop a Simplified Universal Method of Temperature Determination (SUMET) for a CE instrument with a forced-air cooling system using an Agilent 7100 CE instrument (Agilent Technologies, Saint Laurent, Quebec, Canada) as an example. We collected a wide set of empirical voltage-current data for a variety of buffers and capillary diameters. We further constructed empirical equations for temperature calculation in efficiently and inefficiently cooled parts of the capillary that require only the data from a single 1-min voltage-current measurement. The equations are specific for the Agilent 7100 CE instrument (Agilent Technologies) but can be applied to all kinds of capillaries and buffers. Similar SUMET approaches can be developed for other CE instruments with forced-air cooling using our approach.

  12. [Spatiotempaoral distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xi-ao Xing' an Mountains].

    Science.gov (United States)

    Li, Meng; Duan, Wen-biao; Chen, Li-xin

    2009-12-01

    A continuous measurement of photosynthetic photon flux density (PPFD), air temperature, and relative air humidity was made in the forest gap in primary Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing' an Mountains to compare the spatiotemporal distribution patterns of the parameters. The diurnal maximum PPFD in the forest gap appeared between 11:00 and 13:00 on sunny and overcast days. On sunny days, the maximum PPFD during various time periods did not locate in fixed locations, the diurnal maximum PPFD occurred in the canopy edge of northern part of the gap; while on overcast days, it always occurred in the center of the gap. The mean monthly PPFD in the gap was the highest in June and the lowest in September, with the largest range observed in July. The maximum air temperature happened between 9:00 and 15:00 on sunny days, between 15:00 and 19:00 on overcast days, the locations were 8 m in the southern part of gap center both on sunny and overcast days. From 5:00 to 9:00, the air temperature at measured positions in the gap was higher on overcast days than on sunny days; but from 9:00 to 19:00, it was opposite. The mean monthly air temperature was the highest in June, and the lowest in September. The maximum relative humidity appeared between 5:00 and 9:00 on sunny and overcast days, and occurred in the canopy border of western part of the gap, with the relative air humidity on overcast days being always higher than that on sunny days. The mean monthly relative humidity was the highest in July, and the lowest in June. The heterogeneity of PPFD was higher on sunny days than on overcast days, but the heterogeneities of air temperature and relative humidity were not obvious. The maximum PPFD, air temperature, and relative humidity were not located in the same positions among different months during growing season. For mean monthly PPFD and air temperature, their variation gradient was higher in and around the center of gap; while for mean monthly

  13. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  14. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  15. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  16. Olefin metathesis in air

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  17. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  18. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  19. Mid-air Acrobatics

    Institute of Scientific and Technical Information of China (English)

    LlU FENG'AN

    2011-01-01

    On September 1 two new aerobatic demonstration teams,theSky Wing and the Red Falcon,debuted at an air show held in Changchun,capital of northeast China's Jilin Province.The show was staged at a ceremony held by the Aviation University of the People's Liberation Army (PLA) Air Force.Also performing at the show was the 50-year-old Bayi aerobatic demonstration team.The teams demonstrated their superlative flying skills,which showcase the quality of the air force's rigorous pilot training.

  20. Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.

    Science.gov (United States)

    Tatom, J. W.; Cooper, M. A.; Hayden, T. K.

    1972-01-01

    Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.

  1. The temporal and spatial characteristics of the surface air temperature variations over the Antarctic and its surrounding area

    Institute of Scientific and Technical Information of China (English)

    陆龙骅; 卞林根; 贾朋群

    1997-01-01

    The characteristics of the spatial distribution, temporal variations trend and oscillation for the surface air temperature variations during 1957-1993 in the Antarctic and its surrounding area were analyzed. The results show that the short-time climate change in the Antarctic is complex both temporally and spatially. The Antarctic is by no means the strongest responding region to the global greenhouse effect. There is a distinguished difference in the trends of the temperature changes for the Antarctic and global mean, which could not be explained simply by the global greenhouse effect.

  2. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    Science.gov (United States)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  3. Identification of Iron Oxides Qualitatively/Quantitatively Formed during the High Temperature Oxidation of Superalloys in Air and Steam Environments

    Institute of Scientific and Technical Information of China (English)

    M.Siddique; N.Hussain; M.Shafi

    2009-01-01

    Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at 1200℃ exposed in air and steam environments for 400 h. The basic aim was to identify and compare the iron oxides qualitatively and quantitatively, formed during the oxidation of these alloys in two environments. The behaviour of alloy UBHA-25L in high temperature oxidation in both environments indicates that it has good oxidation resistance especially in steam, whereas Sanicro-28 has excellent corrosion resistance in steam environment. In air oxidation of lnconel-690 no iron oxide, with established Mossbauer parameters, was detected.

  4. Mathematical simulation of ignition of a coal-dust suspension in air by a low-temperature plasma jet

    Science.gov (United States)

    Rychkov, A. D.; Zhukov, M. F.

    1998-05-01

    The process of aerosuspension ignition of a suspension in air in a pulverized-coal burner with a preswitched muffle by a central axisymmetric air stream heated in an electric-arc plasmatron to a temperature of about ≈5000 K is numerically simulated. This process is the basis of a new fuel-oil-free method of ignition of the boilers of thermal power stations. The method is rather promising from the viewpoint of both economy and ecology. The goal of numerical simulation is to study the process of ignition of coal particles in the flow and to identify the conditions necessary for the transition to self-sustained burning of a coal-dust mixture. The results obtained revealed the significant role of radiative heat transfer in initializing the burning process of solid fuel particles.

  5. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    Science.gov (United States)

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  6. Changes in optical properties of coals during air oxidation at moderate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Calemma, V.; Del Piero, G.; Rausa, R.; Girardi, E. [Eniricerche SpA, Milan (Italy)

    1995-03-01

    Montana Rosebud coal and North Dakota lignite have been oxidized in a fluidized bed reactor at 200{degree}C, with air at 0.2, 0.6 and 1 MPa for reaction times up to 4 h. Oxidized samples were analyzed by reflected light microscopy to investigate the variation of reflectance, formation of rims and changes in maceral morphology. The most remarkable changes concerned the vitrinite. Exinite exhibited an increase of reflectance, but this was not measurable owing to the small size of the fragments. The results indicate that the increase of reflectance at 200{degree}C is only partially dependent on chemical changes caused by oxidation. Data show the existence of threshold oxidation degree, beyond which the reflectance is not affected by further chemical changes occurring in the coal structure. Furthermore, the changes in elemental composition associated with the degree of threshold oxidation are relatively small. During oxidation both Montana Rosebud coal and North Dakota lignite exhibit the formation of rims, but with large differences as regards the size of the phenomenon. The decreased percentage of vitrinite fragments with rims at higher air pressures, and the relationships between the width of rims and reaction time at the three pressures used, support the view that formation of rims occurs when the reaction rate is controlled by the diffusion of oxygen. During reaction, the telinitic structure of vitrinite tends to disappear to assume a collinitic appearance. 22 refs., 8 figs., 2 tabs.

  7. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro

    Science.gov (United States)

    Pepin, N. C.; Maeda, E. E.; Williams, R.

    2016-09-01

    High elevations are thought to be warming more rapidly than lower elevations, but there is a lack of air temperature observations in high mountains. This study compares instantaneous values of land surface temperature (10:30/22:30 and 01:30/13:30 local solar time) as measured by Moderate Resolution Imaging Spectroradiometer MOD11A2/MYD11A2 at 1 km resolution from the Terra and Aqua platforms, respectively, with equivalent screen-level air temperatures (in the same pixel). We use a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m, one of the biggest elevational ranges in the world. There are substantial differences between LST and Tair, sometimes up to 20°C. During the day/night land surface temperature tends to be higher/lower than Tair. LST-Tair differences (ΔT) show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope which faces the morning Sun. Differences are larger in the dry seasons (JF and JJAS) and reduce in cloudy seasons. Healthier vegetation (as measured by normalized difference vegetation index) and increased humidity lead to reduced daytime surface heating above air temperature and lower ΔT, but these relationships weaken with elevation. At high elevations transient snow cover cools LST more than Tair. The predictability of ΔT therefore reduces. It will therefore be challenging to use satellite data at high elevations as a proxy for in situ air temperatures in climate change assessments, especially for daytime Tmax. ΔT is smaller and more consistent at night, so it will be easier to use LST to monitor changes in Tmin.

  8. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    Science.gov (United States)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  9. Simulated Future Air Temperature and Precipitation Climatology and Variability in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs

    Science.gov (United States)

    Ozturk, Tugba; Pelin Ceber, Zeynep; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    The Mediterranean Basin is one of the regions that shall be affected most by the impacts of the future climate changes on temperature regime including changes in heat waves intensity and frequency, seasonal and interannual precipitation variability including changes in summer dryness and drought events, and hydrology and water resources. In this study, projected future changes in mean air temperature and precipitation climatology and inter-annual variability over the Mediterranean region were simulated. For performing this aim, the future changes in annual and seasonal averages for the future period of 2070-2100 with respect to the period from 1970 to 2000 were investigated. Global climate model outputs of the World Climate Research Program's (WCRP's) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset were used. SRES A2, A1B and B1 emission scenarios' outputs of the Intergovernmental Panel on Climate Change (IPCC) were used in future climate model projections. Future surface mean air temperatures of the larger Mediterranean basin increase mostly in summer and least in winter, and precipitation amounts decreases in all seasons at almost all parts of the basin. Future climate signals for surface air temperatures and precipitation totals will be much larger than the inter-model standard deviation. Inter-annual temperature variability increases evidently in summer season and decreases in the northern part of the domain in the winter season, while precipitation variability increases in almost all parts of domain. Probability distribution functions are found to be shifted and flattened for future period compared to reference period. This indicates that occurrence frequency and intensity of extreme weather conditions will increase in the future period. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  10. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941-2007

    Science.gov (United States)

    de Lima, M. Isabel P.; Santo, Fátima Espírito; Ramos, Alexandre M.; de Lima, João L. M. P.

    2013-06-01

    Changes in the climatology of precipitation and surface air temperature are being investigated worldwide, searching for changes in variability, the mean and extreme events (maximum and minimum). By exploring recent adjustments in the climate of mainland Portugal, particularly in the intensity, frequency and duration of extreme events, this study investigates trends in selected specific indices that are calculated from daily precipitation data from 57 and surface air temperature data from 23 measuring stations scattered across the territory. Special attention is paid to regional differences and variations in seasonality. The data cover the periods 1941-2007 for precipitation, and 1941-2006 for temperature. They are explored at the annual and seasonal scales and for different sub-periods. Results show that trends in annual precipitation indices are generally weak and, overall, not statistically significant at the 5% level. Nevertheless, a decreasing trend is revealed by regional indices of total wet-day precipitation and extreme precipitation (above the 99th percentile). Seasonal precipitation exhibits significant decreasing trends in spring precipitation, while extreme heavy precipitation events, in terms of both magnitude and frequency, have become more pronounced in autumn. Results for winter and summer suggest that the extremes have not suffered any significant aggravation. Trends for air temperature are statistically more significant and marked than for precipitation and indicate general warming across the territory. This warming trend is revealed very consistently by the time series of individual stations and regional mean temperature, and is also consistent with the findings reported in other studies for Portugal and at the European scale.

  11. Artificial neural network approach for estimation of surface specific humidity and air temperature using Multifrequency Scanning Microwave Radiometer

    Indian Academy of Sciences (India)

    Randhir Singh; B G Vasudevan; P K Pal; P C Joshi

    2004-03-01

    Microwave sensor MSMR (Multifrequency Scanning Microwave Radiometer) data onboard Oceansat-1 was used for retrieval of monthly averages of near surface specific humidity (a) and air temperature (a) by means of Artificial Neural Network (ANN). The MSMR measures the microwave radiances in 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz for both vertical and horizontal polarizations. The artificial neural networks (ANN) technique is employed to find the transfer function relating the input MSMR observed brightness temperatures and output (a and a) parameters. Input data consist of nearly 28 months (June 1999 — September 2001) of monthly averages of MSMR observed brightness temperature and surface marine observations of a and a from Comprehensive Ocean- Atmosphere Data Set (COADS). The performance of the algorithm is assessed with independent surface marine observations. The results indicate that the combination of MSMR observed brightness temperatures as input parameters provides reasonable estimates of monthly averaged surface parameters. The global root mean square (rms) differences are 1.0°C and 1.1 g kg−1 for air temperature and surface specific humidity respectively.

  12. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  13. Natural Air Purifier

    Science.gov (United States)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  14. Regional Air Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on regional air quality, including trace level SO2, nitric acid, ozone, carbon monoxide, and NOy; and particulate sulfate, nitrate, and...

  15. Temporal solitons in air

    Science.gov (United States)

    Voronin, A. A.; Zheltikov, A. M.

    2017-02-01

    Analysis of the group-velocity dispersion (GVD) of atmospheric air with a model that includes the entire manifold of infrared transitions in air reveals a remarkably broad and continuous anomalous-GVD region in the high-frequency wing of the carbon dioxide rovibrational band from approximately 3.5 to 4.2 μm where atmospheric air is still highly transparent and where high-peak-power sources of ultrashort midinfrared pulses are available. Within this range, anomalous dispersion acting jointly with optical nonlinearity of atmospheric air is shown to give rise to a unique three-dimensional dynamics with well-resolved soliton features in the time domain, enabling a highly efficient whole-beam soliton self-compression of such pulses to few-cycle pulse widths.

  16. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  17. Investigating Air Pollution

    Science.gov (United States)

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  18. Reactive Air Aluminization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  19. Indoor Air Pollution

    OpenAIRE

    Smith, Kirk R.

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  20. Air Superiority Fighter Characteristics.

    Science.gov (United States)

    1998-06-05

    many a dispute could have been deflated into a single paragraph if the disputants had just dared to define their terms.7 Aristotle ...meaningful. This section will expand on some key ideology concepts. The phrase "air superiority fighter" may bring to mind visions of fighter... biographies are useful in garnering airpower advocate theories as well as identifying key characteristics. Air campaign results, starting with World