WorldWideScience

Sample records for air heaters

  1. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  2. Solar Air Heaters with Thermal Heat Storages

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2013-01-01

    Full Text Available Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has been carried out to rate the various thermal energy storage commonly used in solar air heaters. During the investigations rock bed storages have been found to be low type thermal heat storage, while phase change materials have been found to be high heat thermal storages. Besides this, a few other heat storing materials have been studied and discussed for lower to higher ratings in terms of thermal performance purposely for solar heaters.

  3. Performance of artificially roughened solar air heaters. A review

    Energy Technology Data Exchange (ETDEWEB)

    Hans, Vishavjeet Singh [Department of Mechanical Engineering, PAU, Ludhiana, 141004, Punjab (India); Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee, 247667, UK (India); Saini, J.S. [Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee, 247667, UK (India)

    2009-10-15

    The conversion, utilization and recovery of energy invariably involve a heat exchange process, which makes it imperative to design more efficient heat exchanger. The use of artificial roughness in different forms, shapes and sizes is the most common and effective way to improve the performance of a solar air heater. Several studies have been carried out to determine the effect of different roughness element geometries on heat transfer and friction in solar air heaters. This study reviews various roughness element geometries employed in solar air heaters for performance enhancement. Based on the correlations of heat transfer and friction factor developed by various investigators, an attempt has been made to compare the thermohydraulic performance of roughened solar air heaters. (author)

  4. Determination of thermal performance of solar air heater

    OpenAIRE

    Kozak, Christina; Zhelykh, Vasil

    2013-01-01

    Considered the basic aspects of passive solar building. Given the main types of solar air heating systems. Proposed heating and ventilation system at the basis of solar air heater. Constructed fourfactors nomohram for determining thermal power of the thermosiphon heliocollector. Obtained analytical dependence of the amount heat of thermo heliocollector from the differential temprature air inlet and outlet, of the area input and output apertures of solar collector, heat fl...

  5. Materials performance in fluidized-bed air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  6. Materials performance in fluidized-bed air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  7. Dynamic modeling of an air source heat pump water heater

    OpenAIRE

    Fardoun, Farouk; Ibrahim, Oussama; Zoughaib, Assaad

    2011-01-01

    International audience This paper presents a dynamic simulation model to predict the performance of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic system components i.e. evaporator, condenser, compressor, and expansion valve. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model simulation was carried out u...

  8. Thermal performance optimization of a flat plate solar air heater using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Varun; Siddhartha [Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177 005 (H.P.) (India)

    2010-05-15

    Thermal performance of solar air heater is low and different techniques are adopted to increase the performance of solar air heaters, such as: fins, artificial roughness etc. In this paper an attempt has been done to optimize the thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different Reynolds number, emissivity of the plate, tilt angle and number of glass plates by using genetic algorithm. (author)

  9. A review on methodology of artificial roughness used in duct of solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bhushan, Brij; Singh, Ranjit [Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur 143521, Punjab (India)

    2010-01-15

    In order to enhance rate of heat transfer to flowing air in the duct of a solar air heater, artificially roughened surface of absorber plate is considered to be an effective technique. Investigators reported various roughness geometries in literature for studying heat transfer and friction characteristics of an artificially roughened duct of solar air heaters. In the present paper an attempt has been made to categorize and review the reported roughness geometries used for creating artificial roughness. Heat transfer coefficient and friction factor correlations developed by various investigators for roughened ducts of solar air heaters have also been reported in the present paper. (author)

  10. Analysis of exergy and parametric study of a v-corrugated solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Hedayatizadeh, Mahdi [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); University of Birjand, Faculty of Agriculture, P.O. Box 97175/331, Birjand (Iran, Islamic Republic of); Ajabshirchi, Yahya [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); Sarhaddi, Faramarz; Farahat, Said [University of Sistan and Baluchestan, Department of Mechanical Engineering, Faculty of Engineering, P.O. Box 98164/161, Zahedan (Iran, Islamic Republic of); Safavinejad, Ali [University of Birjand, Department of Mechanical Engineering, Faculty of Engineering, Birjand (Iran, Islamic Republic of); Chaji, Hossein [University of Tabriz, Department of Agricultural Machinery Engineering, Faculty of Agriculture, Tabriz (Iran, Islamic Republic of); Center of Agriculture and Natural Resources of Khorasan Razavi Province, Ministry of Agriculture, Mashhad (Iran, Islamic Republic of)

    2012-07-15

    Solar air heater requires investigation for enhancement of solar energy conversion into heat. Different configurations with various artificial roughness geometries are proposed to date. In present study attention is paid on ways leading to more delivery of exergy by a v-corrugated solar air heater through parametric study. Effects of aspect ratio of the collector, inlet air temperature, mass flow rate per collector area etc. are studied. (orig.)

  11. Development and testing of a solar air heater for a teaching laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, K.M.; Smith, B.E. [Brunel Univ., Uxbridge (United Kingdom)

    1996-09-01

    This paper describes the development and testing of an educational solar air heater. The flat-plate solar air heater has been used as a teaching rig for undergraduate students in measurements laboratory sessions, during which the collector efficiency is determined. The results of indoor testing of the solar collector are presented, together with some details of the test facility. It is hoped that use of the solar air heater will contribute to the students` understanding of subjects such as energy conversion and utilization and heat transfer, together with instrumentation. (Author)

  12. Automotive thermoelectric generators and air conditioner/heaters

    International Nuclear Information System (INIS)

    Full text: The US Department of Energy initiated the application of thermoelectric generators (TEGs) to vehicles in 1994. This TEG was built by Hi-Z Technologies evaluated on a dynamometer test stand then tested successfully installed on a fully loaded Heavy Duty Diesel truck on the PACCAR test track for the equivalence of 550,000 miles. Today every major automobile manufacturer is investigating thermoelectric applications. The US Department of Energy is supporting the development of production prototype TEGs with teams headed by BSST and GM to integrate TEGs to directly convert engine waste heat to electricity in the BMW X6, the Ford Fusion and the Chevy Suburban. These first generation TEGs will provide a nominal 5 percent improvement in on-highway fuel economy by allowing the alternator to be downsized by at least 1/3. The 2nd generation TEG is planned to replace the alternator and provide a nominal 10 percent improvement in fuel economy. DOE/NETL conducted a competitive procurement for automotive thermoelectric air conditioners/heaters (TE HVAC) development and selected teams headed by Ford and GM to develop this technology. Current air conditioners use the R134a refrigerant gas, which produces 1300 times the 'Greenhouse Gas Effect' of carbon dioxide (CO2), the primary 'Greenhouse Gas'. Approximately 41 Million Metric tons of CO2 equivalent (CO2e) are released to the atmosphere in the US annually from air conditioner compressor seal leakage and frontal collisions wherein the R134a refrigerant gas containment was ruptured. The TE HVACs are candidates to eliminate refrigerant gases from vehicles. A problem with maintaining occupant comfort in an electrically assisted vehicle was illustrated by Bob Lutz, Vice Chairman, General Motors, who drove a Chevy Volt in January in Detroit and to obtain occupant comfort had to turn on the 5 kW resistive heater which reduced the battery only propulsion mileage from 40 to 28. Preliminary analysis indicates that with TE HVAC a

  13. Parametric study of a solar air heater with and without thermal storage for solar drying applications

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Enein, S.; El-Sebaii, A.A.; Ramadan, M.R.I.; El-Gohary, H.G. [Tanta Univ., Physics Dept., Tanta (Egypt)

    2000-12-01

    A transient analytical model is presented for a flat-plate solar air heater with and without thermal storage. The flowing air temperature is assumed to vary with time and space coordinates. Analytical expressions are obtained for various temperatures of the air heater elements as well as for the temperature of the storage material. The performance of the air heater is investigated by computer simulation using the climatic conditions of Tanta (Lat. 30deg 47' N, Egypt). Effects of design parameters of the air heater such as length (L), width (b), gap spacing between the absorber plate and glass cover (d{sub f}), mass flow rate (m) and thickness and type of the storage material (sand, granite and water) on the outlet and average temperatures of the flowing air are studied. It is found that as L and b increase the average temperatures of flowing air (T{sub fav}) increases up to typical values for these parameters. Typical values for L and b are obtained as 3 and 2 m, respectively. The outlet temperature (T{sub fo}) of flowing air is found to decrease with increasing gap spacing and mass flow rate of air. Improvements in the heater performance with storage have been achieved at the optimum thickness (0.12 m) of the storage material. Therefore, the air heater can be used as a heat source for drying agricultural products and the drying process will continue during night, instead of re-absorption of moisture from the surrounding air. Comparisons between experimental and theoretical results indicated that the proposed mathematical model can be used for estimating the thermal performance of flat-plate solar air heaters with reasonable accuracy. (Author)

  14. A review of the mathematical models for predicting solar air heaters systems

    Energy Technology Data Exchange (ETDEWEB)

    Tchinda, Rene [IUT FOTSO VICTOR, University of Dschang, PO Box 134 Bandjoun (Cameroon); ICTP Strada Costiera 11, 34014 Trieste (Italy)

    2009-10-15

    A mathematical model of the closed solar air heaters is used in particular, to assist in interpreting the observed phenomena in the solar air heaters, to design the system, to predict the trends, and to assist in optimization. In this paper, various mathematical models, mainly analyzing the heat transfer process of solar air heaters, are reviewed and classified based on the model, the number of the cover, the shape of the absorber and the presence or not of the packing bed. Although the models have evolved to a point where several features of the process can be predicted, more effort is required before the models can be applied to define actual operating conditions as well as to further investigate new closed solar air heaters. It is shown that the major governing equations in the models are based on the first law of thermodynamics. (author)

  15. Effective Efficiency of Solar Air Heaters of Different Types of Roughness Geometries over Absorber Plate

    Directory of Open Access Journals (Sweden)

    Maneesh KAUSHAL

    2014-09-01

    Full Text Available Artificial roughness has been found to enhance the rate of heat transfer in solar air heater ducts. However, improvement in heat transfer enhancement is invariably accompanied by increased pumping power. Several investigators have investigated the effect of different types of roughness on solar air heaters on the basis of heat transfer and friction factor. This paper presents a comparison of effective efficiency of solar air heaters of various types of roughness geometries over the absorber plate. These geometries have been used by various investigators in order to increase the heat transfer and friction factor in solar air heaters. Based upon correlations developed by various investigators, effective efficiency is also compared for a set of roughness geometries within the investigated range of operating parameters.doi:10.14456/WJST.2014.92

  16. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  17. Experimental investigation of three different solar air heaters: Energy and exergy analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alta, Deniz; Ertekin, C.; Yaldiz, Osman [Department of Farm Machinery, Faculty of Agricultural Engineering, Akdeniz University, 07059 Antalya (Turkey); Bilgili, Emin [Cukurova Agricultural Research Institute, Adana (Turkey)

    2010-10-15

    The present study aims to compare three different types of designed flat-plate solar air heaters, two having fins (Type II and Type III) and the other without fins (Type I), one of the heater with a fin had single glass cover (Type III) and the others had double glass covers (Type I and Type II). The energy and exergy output rates of the solar air heaters were evaluated for various air flow rates (25, 50 and 100 m{sup 3}/m{sup 2} h), tilt angle (0 , 15 and 30 ) and temperature conditions versus time. Based on the energy and exergy output rates, heater with double glass covers and fins (Type II) is more effective and the difference between the input and output air temperature is higher than of the others. Besides, it is found that the circulation time of air inside the heater played a role more important than of the number of transparent sheet. Lower air flow rates should be preferred in the applications of which temperature differences is more important. (author)

  18. Novel solar air Heater for high temperatures; Novedoso Calentador solar de aire para altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, E. A.; Duran, M. D.; Lentz, A. E.

    2008-07-01

    A novel solar air heater that allows to reach temperatures of the order of 100 degree centigrade with thermal efficiencies superior to 50% due to a solar concentrator and the reduction of thermal losses from the air when circulating between the absorber and mirrors of section of circular arc, well isolated of the outside surrounding. The receiver consists of a concentrator with wedges of plastic transparency that make the function of lenses. The light refracted by the wedges enters to a series of concentrators PC type truncated optimally so that the space among them allows the positioning of the absorber, who are covered metallic segments with selective film. Its excellent performance makes ideals applications as Sauna bath, the drying at high temperature, and systems for conditioning of air. (Author)

  19. Assessment of Performance Characteristic of Solar Air Heater with Assorted Geometries - A Review

    Directory of Open Access Journals (Sweden)

    Alok Kumar Rohit

    2016-01-01

    Full Text Available Artificial roughness is an efficient way for increasing the heat transfer rate in solar air heater with the corresponding improvement in its thermal performance. A viscous sub-layer is responsible for the low heat transfer coefficient between absorber plate and flowing air. Repeated ribs in form of artificial roughness are an effective way to increase the heat transfer rate and improving the performance of solar air heater. Artificial roughness of the absorber plate is much economical and effective way to improve the thermal performance of solar air heater. Several investigators have done various investigations to improve heat transfer coefficient with little penalty of friction factor. They have also developed different correlation for heat transfer coefficient and friction factor. The correlations developed for heat transfer and friction factor by various investigators have been reviewed and presented.

  20. Effective efficiency prediction for discrete type of ribs used in solar air heaters

    Directory of Open Access Journals (Sweden)

    Muneesh Sethi, Mridul Sharma, Varun

    2010-03-01

    Full Text Available The use of an artificial roughness on a surface is an effective technique to enhance the heat transfer from the collector plate to the air in a solar air heater duct. However, artificial roughness leads to even more fluid pressure thereby increasing the pumping power. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. This paper presents a comparison of effective efficiency of solar air heaters having different types of geometry of roughness elements (discrete ribs on the absorber plate. The effective efficiency has been computed by using the correlations for heat transfer and friction factor developed by various investigators within the investigated range of operating and system parameters.

  1. Effective efficiency prediction for discrete type of ribs used in solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Muneesh [Mechanical Engineering Department, IEET Baddi - 173205 (India); Sharma, Mridul; Varun [Department of Mechanical Engineering, National Institute of Technology Hamirpur - 177005 (India)

    2010-07-01

    The use of an artificial roughness on a surface is an effective technique to enhance the heat transfer from the collector plate to the air in a solar air heater duct. However, artificial roughness leads to even more fluid pressure thereby increasing the pumping power. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. This paper presents a comparison of effective efficiency of solar air heaters having different types of geometry of roughness elements (discrete ribs) on the absorber plate. The effective efficiency has been computed by using the correlations for heat transfer and friction factor developed by various investigators within the investigated range of operating and system parameters.

  2. Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chun Sheng Lin

    2013-03-01

    Full Text Available The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e., a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.

  3. Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins

    Energy Technology Data Exchange (ETDEWEB)

    Chii Dong Ho; Hsuan Chang; Chun Sheng Lin; Rei Chi Wang [Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei City, Taiwan (China)

    2013-04-15

    The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e., a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.

  4. Effect of selective coating on thermal performance of flat plate solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Al-Snani, H. [Physics Department, Faculty of Science, King Abdul Aziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2010-04-15

    A transient mathematical model was presented for a single pass flat plate solar air heater. This model was based on an analytical solution of the energy balance equations for various elements of the heater. The flowing air temperature was assumed to vary only in the flow direction. The thermal performance of the heater was investigated by computer simulation using the climatic conditions of Jeddah (lat. 21 42' N, long. 39 11' E), Saudi Arabia. Effects of solar radiation intensity, mass flow rate of the flowing air (m{sub f}) and the length (L) and width (b) of the absorber plat on the flowing air outlet temperature (T{sub fo}) and the heater instantaneous ({eta}{sub inst}) and daily ({eta}{sub d}) efficiencies were studied. To improve the heater performance, effect of using absorber plates coated with various selective coating materials on the heater performance was also investigated. The best performance was achieved using nickel-tin as a selective coating material with a daily average of the instantaneous efficiency of 0.46. To validate the proposed mathematical model, the simulated results were compared with the measurements that had been performed for the heater with a black painted absorber plate under Tanta, lat. 30 47' N (Egypt), weather conditions. It was found that the proposed model is able to predict the T{sub fo} accurately with a daily average relative percentage error of 7.7%. It was also inferred that the annual average of {eta}{sub d} with a nickel-tin selectively coated absorber is higher than that with a black painted absorber by 29.23%. (author)

  5. The benefit of solid oxide fuel cells with integrated air pre-heater

    Energy Technology Data Exchange (ETDEWEB)

    Costamagna, P. [Univ. degli Studi di Genova, Fac. di Ingegneria, ISTIC, Inst. di Ingegneria Chimica e di Processo `G.B. Bonino`, Genova (Italy)

    1997-11-01

    A new design has recently been proposed in the field of solid oxide fuel cells, consisting of a traditional electrochemical cell integrated with a pre-heater. In this paper a simulation model for the rectangular planar solid oxide fuel cell with integrated air pre-heater is presented. A two-dimensional stack simulation is presented as well, one axis coincides with the fuel flow direction, the other with the stack height. Local quantities such as current density, gas and solid temperatures are reported and cell characteristics predicted. In a parameter study, effects of oxygen utilisation and heat-transfer conditions in the pre-heater on the local temperature distribution of the solid structure are considered. As a result, the benefit of the new cell design becomes evident when low air flow rates are applied. A further advantage associated with the reduced flow rate is the low air temperature at the inlet. (orig.)

  6. Performance estimation of artificially roughened solar air heater duct provided with continuous ribs

    Directory of Open Access Journals (Sweden)

    Mridul Sharma, Varun

    2010-09-01

    Full Text Available The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. This paper presents a comparison of exergetic performance of solar air heaters having different types of geometry of roughness elements (continuous ribs on the absorber plate. The exergy efficiency has been computed by using the correlations for heat transfer and friction factor developed by various investigators within the investigated range of operating and system parameters. The exergy efficiency based criterion shows the better results at lower value of Re. There is not a single roughness geometry which gives best exergetic performance for whole range of Reynolds number. Solar air heater having rib-grooved and arc shaped wire as artificial roughness is found to have better exergy efficiency in the lower range of Reynolds number. However, smooth duct is found suitable in the higher range of Reynolds number.

  7. Performance estimation of artificially roughened solar air heater duct provided with continuous ribs

    Energy Technology Data Exchange (ETDEWEB)

    Mridul Sharma, Varun [Department of Mechanical Engineering, National Institute of Technology, Hamirpur, 177005 (India)

    2010-07-01

    The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. This paper presents a comparison of exergetic performance of solar air heaters having different types of geometry of roughness elements (continuous ribs) on the absorber plate. The exergy efficiency has been computed by using the correlations for heat transfer and friction factor developed by various investigators within the investigated range of operating and system parameters. The exergy efficiency based criterion shows the better results at lower value of Re. There is not a single roughness geometry which gives best exergetic performance for whole range of Reynolds number. Solar air heater having rib-grooved and arc shaped wire as artificial roughness is found to have better exergy efficiency in the lower range of Reynolds number. However, smooth duct is found suitable in the higher range of Reynolds number.

  8. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  9. Device for cleaning regenerative air heaters of a boiler unit

    Energy Technology Data Exchange (ETDEWEB)

    Guzenko, S.I.; Buyevich, V.V.

    1982-01-01

    The device contains injection supersonic nozzles to which live steam of high pressure from the boiler SH is supplied through the reducer. An additional steam heater is connected to the plan arranged in the convective gas line of the boiler. In this case the heat exchanger of steam is heated to temperature excluding its condensation and precipitation of dew of sulfuric acid during injection of the RAH. The use of the proposed device improves the quality of cleaning and makes it possible to abandon stopping of the RAH for stopover water flushing.

  10. Exergetic Optimization of Solar Air Heaters and Comparison with Energy Analysis

    Directory of Open Access Journals (Sweden)

    Saeid Farahat

    2005-12-01

    Full Text Available In this paper, an exergetic optimization of the solar air heater is developed. For this means, an integrated mathematical model of thermal and optical performance of the solar heater is derived. The most geometric parameters and operation conditions are considered as variables in this analysis. Some correlations for exergy efficiency of heater components are obtained. Then, exergy efficiency of the heater is derived by using these correlations. In the process of deriving an equation for the exergy efficiency, while the overall thermal loss coefficient and other heat transfer coefficients of the heater are assumed to be variable, the common error of using the Petela efficiency is corrected to reach the improved equation of solar radiation exergy. Finally, through the MATLAB toolbox the exergy efficiency equation is maximized. Then exergy efficiency is compared with the thermal efficiency of the heater, resulting in an extraordinary increase of the exergy efficiency according to the optimized parameters and benefit of this approach for such systems.

  11. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  12. Energy and exergy analysis in double-pass solar air heater

    Indian Academy of Sciences (India)

    P VELMURUGAN; R KALAIVANAN

    2016-03-01

    In this study, an attempt is made to improve the energy and exergy performance of solar air heater by employing double pass with different absorber surface geometries (roughened, finned, and v-corrugated wire mesh) in the second pass, and also by mounting longitudinal fins in the back side of the absorber plate (first pass). The effect of varied mass flow rate and solar intensity on temperature rise of air, energy efficiency, exergy gain and pressure drop at steady state condition was determined for different types of solar air heaters utilizing an indoor solar simulator. The temperature rise of air, thermal efficiency and exergy gain depends on mass flow rate, surface geometries of absorber and solar intensity, whereas the pressure drop depends on mass flow rate andsurface geometries of absorber.

  13. Performance study of solar air heater duct having absorber plate with V down perforated baffles

    Directory of Open Access Journals (Sweden)

    Sunil Chamoli

    2014-04-01

    Full Text Available This paper presents results of a study of the performance of solar air heaters with V down perforated baffles as roughness on the air flow side of the absorber plate. Investigations have been carried out using a mathematical model to study the effects of ambient conditions, operating and design parameters on effective efficiency of such air heaters. The thermal and effective efficiencies differ only marginally at lower flow rates. With an increase in the flow rate, the difference between the thermal and effective efficiencies increases because of the increase in the pumping power. The results of the study are presented in the form of plots to show the effect of ambient, design and operating conditions on thermal and effective efficiency.

  14. Design and fabrication of a cost effective solar air heater for Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Wazed, M.A.; Nukman, Y. [Department of Engineering Design and Manufacture, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Islam, M.T. [Department of Mechanical Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh)

    2010-10-15

    In this research, a solar air heater is designed, fabricated and its performance is assessed in the perspective of an emerging/developing country with a huge energy demand like Bangladesh. The winter season (mid-November-mid-February) of the country characterizes by low temperatures, cool air blowing from the west or northwest, clear sky and meager rainfall. Minimum temperature in the extreme northwest in late December and early January sometimes reaches 3 C and day length is about 10 h. The shortness of winter days can be compensated by reducing the heat loss during long nights. The solar air heater is constructed to prevent as much heat loss as possible. In other words, the heating of air is accomplished by maximizing light gain and minimizing heat loss. It is observed that the fabricated solar air heater is working efficiently. The maximum room temperature and the temperature difference from ambient are 45.5 C and 12.25 C for forced circulation and 41.75 C and 8.5 C for natural circulation respectively. The experimental outlet temperatures have been compared with that of theoretical values. Due to its low-cost and simple technology, it is affordable in all aspects, viz. of cost, operation and maintenance by the typical people of Bangladesh. (author)

  15. Employing exergy-optimized pin fins in the design of an absorber in a solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Nwosu, Nwachukwu P. [National Centre for Energy Research and Development (NCERD) and Department of Mechanical Engineering, University of Nigeria, Nsukka (UNN) (Nigeria)

    2010-02-15

    Fins serve as heat transfer augmentation features in solar air heaters; however, they increase pressure drop in flow channels. Pin fins are relatively good heat transfer augmentation features with superior aerodynamic performance, and as a result find application in some solar air heaters. The exergy optimization method is employed in sizing the pin fin. Results indicate that high efficiency of the optimized fin improves the heat absorption and dissipation potential of a solar air heater. With optimum fin efficiency and superior absorptive coating quality, useful energy losses can be minimized. Some important observations pertinent in design are made. (author)

  16. Performance of perforated and unprotected solar air heaters to reduce the ventilation heat load of livestock shelters

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, S.; Barrington, S. [McGill Univ., Ste. Anne de Bellevue, PQ (Canada). Macdonald College, Dept. of Bioresource Engineering

    2009-07-01

    This paper discussed the use of solar radiation as a sustainable heat source for applications that need only a limited amount of energy. It reported on a study that evaluated the efficiency of a new design in solar air heaters for heating cold fresh air in livestock shelters. The heater consisted of an unprotected perforated black corrugated siding where the incoming fresh ventilation air picks up heat from the face and the back of the solar collector. The performance of 6 solar air heaters installed in 2 barns in rural Quebec was monitored over two years. A weather station was used to monitor the radiation energy absorbed on a vertical plane parallel to the solar air heaters; the outside air temperature; relative humidity; wind speed; and wind direction. Sensors inside the building were used to monitor the average building air temperature; relative humidity; temperature of the incoming fresh air heated by the solar collectors; and the outgoing air temperature. The study showed that performance of this unprotected type of solar air heater is very sensitive to wind velocity. The efficiency of the solar air heaters was more than 70 per cent only under low wind conditions of 1 m/s. For winds of more than 3 m/s, the efficiency quickly dropped below 20 per cent. During the month of March, the solar air heaters increased the temperature of the incoming cold fresh air by an average of 8 degrees C under an efficiency of 20 per cent, as compared to 4 degrees C for the months of November to February under an efficiency of 25 to 40 per cent.

  17. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    OpenAIRE

    Chii-Dong Ho; Ho-Ming Yeh

    2013-01-01

    The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force...

  18. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  19. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. [Argonne National Lab., IL (United States); Gerritsen, W.; Stewart, A.; Robinson, K. [Rockwell International Corp., Canoga Park, CA (United States)

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  20. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    Directory of Open Access Journals (Sweden)

    Araceli Peña

    2012-10-01

    Full Text Available The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería’s greenhouses produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W∙m−2 the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C was maintained above the minimum recommended value of 10 °C.

  1. Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber

    Energy Technology Data Exchange (ETDEWEB)

    Omojaro, A.P.; Aldabbagh, L.B.Y. [Mechanical Engineering Dept., Eastern Mediterranean University, Gazimagusa, Mersin 10 (Turkey)

    2010-12-15

    Thermal performance of a single and double pass solar air heater with fins attached and using a steel wire mesh as absorber plate was investigated experimentally. The effects of air mass flow rate range between 0.012 kg/s and 0.038 kg/s on the outlet temperature and thermal efficiency was studied. The bed heights were 7 cm and 3 cm for the lower and upper channels respectively. Result shows that, the efficiency increase with increasing air mass flow rate. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 7-19.4%. Maximum efficiency obtained for the single and double pass air heater was 59.62% and 63.74% respectively for air mass flow rate of 0.038 kg/s. Moreover, the thermal efficiency further decreases by increasing the height of the first pass of the double pass solar air heater. The temperature difference between the outlet flow and the ambient, {delta}T, reduces as the air mass flow rate increase The result of a single or double solar air heater using steel wire mesh arrange in layers as an absorber plate and packing material when compared with a conventional solar air heater shows a much more substantial enhancement in the thermal efficiency. (author)

  2. MHD air heater technology development. Annual technical progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    Progress on the technology development of the directly-fired high temperature air heater (HTAH) for MHD power plants is described in detail. The objective of task 1 is to continue development of ceramic materials technology for the directly-fired HTAH. The objectives of task 2 are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. The objectives of task 3 are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. (WHK)

  3. Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers

    International Nuclear Information System (INIS)

    This paper presents a dynamic simulation model to predict the performance of an ASHPWH (air source heat pump water heater). The developed model is used to assess its performance in the Lebanese context. It is shown that for the four Lebanese climatic zones, the expected monthly values of the average COP (coefficient of performance) varies from 2.9 to 5, leading to high efficiencies compared with conventional electric water heaters. The energy savings and GHG (greenhouse gas) emissions reduction are investigated for each zone. Furthermore, it is recommended to use the ASHPWH during the period of highest daily ambient temperatures (noon or afternoon), assuming that the electricity tariff and hot water loads are constant. In addition, an optimal management model for the ASHPWH is developed and applied for a typical winter day of Beirut. Moreover, the developed dynamic model of ASHPWH is used to compare the performance of three similar systems that differ only with the condenser geometry, where results show that using mini-condenser geometries increase the COP (coefficient of performance) and consequently, more energy is saved as well as more GHG emissions are reduced. In addition, the condenser “surface compactness” is increased giving rise to an efficient compact heat exchanger. - Highlights: • Numerical modeling and experimental validation for ASHPWH (air source heat pump water heater). • Optimization of the ASHPWH-condenser length. • Comparison of the ASHPWH with conventional electric water heater according to energy efficiency and green gas house emissions. • Development of an energetic-economic optimal management model for ASHPWH. • Energetic and environmental assessment of ASHPWH with mini-tubes condensers

  4. Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Karwa, Rajendra; Chauhan, Kalpana [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Jai Narain Vyas University, Jodhpur 342 011 (India)

    2010-01-15

    This paper presents results of a study of the performance of solar air heaters with 60 v-down discrete rectangular cross-section repeated rib roughness on the air flow side of the absorber plate. A detailed investigation has been carried out using a mathematical model to study the effects of various ambient, operating and design parameters on the thermal efficiency and effective efficiency (based on the net gain after taking account of the pumping power) of such air heaters. The study shows that, at air mass flow rates less than about 0.04 kg s{sup -1} per m{sup 2} of the absorber plate, roughened duct solar air heaters provide significant performance advantage over the smooth duct air heater. The thermal and effective efficiencies differ only marginally at low flow rates. With the increase in the flow rate, the difference between the thermal and effective efficiencies increases because of the increase in the pumping power. At the mass flow rate of about 0.045 kg s{sup -1} m{sup -2}, the effective efficiencies of the roughened and smooth duct solar air heaters are practically the same. The results of the study are presented in the form of design plots. (author)

  5. Appraising the performance of a baffled solar air heater with external recycle

    International Nuclear Information System (INIS)

    Highlights: • Thermal performance for a baffled solar air heater with external recycle is studied. • Applying external recycle boosts the energy efficiency of the air heater remarkably. • Applying fins and baffles under external recycle enhances energy efficiency. • Utilizing baffles at high recycle ratios and mass flow rates declines ηeff. • Utilizing only fins at high mass flow rates and recycle ratios is well-organized. - Abstract: This study aims at appraising the possibility of enhancing thermal performance of an upward-type single pass solar air heater by utilizing fins and baffles over the absorber plate as well as applying external recycle device simultaneously under various parametric conditions. The energy and effective efficiencies analysis is used as criteria to evaluate the performance. The investigation is carried out for three cases: simple absorber plate, absorber plate with fins and absorber plate with fins and baffles. The achieved results disclose that attaching both fins and baffles to the absorber plate under external recycling operation is an effective method to boost the energy efficiency notably. In contrast, the effective efficiency analysis reveals that attaching both fins and baffles at high mass flow rates and recycle ratios leads to considerable decline in effective efficiency. Parametric studies on variation of baffle parameters illustrate that increasing the baffles width as well as declining the distance between baffles under turbulent flow regime are not economically feasible owing to extremely increase of the pressure drop and required pump work. In a nutshell, it is found that utilizing only fins under external recycle application at high mass flow rates and recycle ratios is an attractive option

  6. Year round performance of double pass solar air heater with packed bed

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A. [Department of Physics, Faculty of Science, Tanta University, El-Geish Street, Tanta, El-Gharbia 31527 (Egypt)]. E-mail: aasebaii@yahoo.com; Aboul-Enein, S. [Department of Physics, Faculty of Science, Tanta University, El-Geish Street, Tanta, El-Gharbia 31527 (Egypt); Ramadan, M.R.I. [Department of Physics, Faculty of Science, Tanta University, El-Geish Street, Tanta, El-Gharbia 31527 (Egypt); El-Bialy, E. [Department of Physics, Faculty of Science, Tanta University, El-Geish Street, Tanta, El-Gharbia 31527 (Egypt)

    2007-03-15

    The thermal performance of a double glass, double pass solar air heater with a packed bed (DGDPSAHPB) was investigated experimentally and theoretically. A suitable computer program was developed for the analytical solution of the energy balance equations for the various elements of the system. Numerical calculations were performed for typical summer days of 2003 using limestone and gravel as packed bed materials. To validate the proposed mathematical model, comparisons between experimental and theoretical results were performed. Good agreement was achieved. Furthermore, the effects of mass flow rate of air m radical{sub f} as well as that of the mass and porosity of the packed bed material on the outlet temperature of air T{sub flo}, thermal output power Q radical{sub u}, pressure drop {delta}P and thermohydraulic efficiency {eta}{sub TH} were also studied. Comparisons between the thermal performances of the system without and with the packed bed, either above or under the absorber plate were performed. Some experiments were also performed using iron scraps as a packed bed material. It was indicated that it is advisable to operate the system with a packed bed of low porosity above the absorber plate. The best performance was achieved with gravel as a packing material above the absorber plate when m radical{sub f} equals 0.05kg/s or lower to provide a lower pressure drop across the system and, therefore, a higher thermohydraulic efficiency {eta}{sub TH}. Values of {eta}{sub TH} with gravel were found to be 22-27% higher than that without the packed bed. The annual averages of T{sub flo} and {eta}{sub TH} were found to be 16.5% and 28.5% higher than those for the system without the packed bed; indicating an improvement of the heater performance on using a packed bed material, above or under the heater absorber, all year round.

  7. Single and double pass solar air heaters with wire mesh as packing bed

    Energy Technology Data Exchange (ETDEWEB)

    Aldabbagh, L.B.Y.; Egelioglu, F. [Mechanical Engineering Department, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey); Ilkan, M. [School of Computing and Tecnology, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey)

    2010-09-15

    The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34-45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency. (author)

  8. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  9. Energy use test facility: CAC-DOE solar air heater test report

    Science.gov (United States)

    1981-11-01

    The solar air heater testing demonstrated an attractive application for residential space heating, especially appealing to the do-it-yourself market. Simple improvements in construction, such as caulking of the glazing, could increase collector performance at little cost. The operating cost of the fan was insignificant, being less than $0.05/week. Tested in its as-shipped configuration at 96.1 cfm (3 cfm/ft (2)), the useful energy delivered averaged 20,000 Btu/day for six days in December. The electrical consumption of the fan was approximately 1 kWh. Doubling the flowrate did not increase collector performance appreciably. A TRNSYS computer simulation model for this solar air heater design was validated by comparing the measured test data on Jaunary 4, 1981 with calculated values. TRNSYS predicted that measured collector outlet temperatures within +- 1.20F and the energy delivered within +- 3%. The excellent agreement was obtained by adjusting the collector loss coefficient to an unrealistically low value; therefore, a parametric study is recommended to determine the model sensitivity to varying different parameters. A first-order collector efficiency curve was derived from the TRNSYS simulations which compared well with the curve defined by the clear-day measured data.

  10. Device Performance Improvement of Double-Pass Wire Mesh Packed Solar Air Heaters under Recycling Operation Conditions

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2016-01-01

    Full Text Available The improvement of device performance of a recycling solar air heater featuring a wire mesh packing was investigated experimentally and theoretically. The application of the wire mesh packing and recycle-effect concept to the present study were proposed aiming to strengthen the convective heat-transfer coefficient due to increased turbulence. Comparisons were made among different designs, including the single-pass, flat-plate double-pass and recycling double-pass wire mesh packed operations. The collector efficiency of the recycling double-pass wire mesh packed solar air heater was much higher than that of the other configurations for various recycle ratios and mass flow rates scenarios. The power consumption increment due to implementing wire mesh in solar air heaters was also discussed considering the economic feasibility. A fairly good agreement between theoretical predictions and experimental measurements was achieved with an analyzed error of 1.07%–9.32%.

  11. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    Science.gov (United States)

    Dhote, Yogesh; Thombre, Shashikant

    2016-05-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  12. Performances of packed bed double pass solar air heater with different inclinations and transverse wire mesh with different intervals

    Directory of Open Access Journals (Sweden)

    Sugantharaj Gnanadurai Sam Stanley

    2016-01-01

    Full Text Available Solar air heating is a technology in which the solar energy from the sun is captured by an absorbing medium and used to heat the air flowing through the heater. In this study, thermal performance of a double pass solar air heater has been investigated experimentally at different conditions. The experiments were conducted with different inclinations of the collector, with and without wire mesh vertically fixed at the second pass in transverse direction and with different mass flow rates. The effect of air mass flow rate, wire mesh pitch and collector inclination on temperature rise and thermal efficiency have been studied. Results show that efficiency increases with mass flow rate. For the same mass flow rate, the thermal efficiency increases with the decrease in the wire mesh pitch. The maximum daily average efficiency of air heater was 79.8% at 0.025 kg/s mass flow rate, 10 cm wire mesh gap and 9º collector inclination facing south. The highest collector efficiency was observed in solar air heaters with 10 cm wire mesh gap.

  13. MHD air heater development technology. Technical progress report, April 1, 1980-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Technology development for the directly-fired high temperature air heater (HTAH) for MHD power plants is described. Work is being done under three tasks as described in the following. (1) materials selection, evaluation, and development: The objective of this task is to continue development of ceramic materials technology for the directly-fired HTAH. The scope of the work will include compilation of materials data, materials selection for testing and design studies, materials property determination, liaison with refractory manufacturers and other organizations to encourage development of materials and fabrication technology, establishment of preliminary HTAH material specifications, analyses of test materials, and development of criteria for thermal stress limits for crack-tolerant refractory materials. (2) operability, performance, and materials testing: The objectives of this task are to demonstrate the technical feasibility of operating a directly-fired HTAH (including both the heater matrix and valves), to continue obtaining information on life and corrosion resistance of HTAH materials, and to obtain design information for full-scale studies and future design work. (3) full-scale design concepts: The objectives of this task are to begin the identification of HTAH control requirements and control system needs, and to continue full-scale study efforts incorporating updated materials and design information in order to identify development needs for the HTAH development program. Progress is described. (WHK)

  14. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  15. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2013-10-01

    Full Text Available The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force (temperature difference due to remixing. The attached fins provide an enlarged heat transfer area. The order of performance in a device of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  16. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, Filiz; Esen, Mehmet; Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-11-15

    This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found. (author)

  17. Effect of external recycle on the performances of flat-plate solar air heaters with internal fins attached

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Ho-Ming; Ho, Chii-Dong [Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-Chuan Road, Tamsui, Taipei County 25137 (China)

    2009-05-15

    The influence of external recycle on the collector efficiency in solar air heaters with internal fins attached, has been investigated theoretically. The application of external recycle operation to solar air heaters actually has two conflict effects. One is the increase in fluid velocity to decrease the heat-transfer resistance, which is good for performance, while the other is lowering the driving force (temperature difference) of heat-transfer, due to the remixing at the inlet, which is bad for performance. It is found that considerable improvement in collector efficiency is obtainable if the operation is carried out with an external recycle, where the desirable effect overcomes the undesirable effect. The enhancement increases with increasing reflux ratio, especially for operating at lower air flow rate with higher inlet air temperature. (author)

  18. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  19. Influence of channel depth on the performance of solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Ji, Jie; He, Wei [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-10-15

    In the design of solar air heaters (SAHs), channel depth is a principal variable to be fixed. In this paper, the effect of the channel depth on the energy gain of type I and type III SAHs has been investigated by computational fluid dynamics (CFD) simulations. Laminar model and k-{omega} turbulence model of Wilcox are used for the prediction of flow and temperature field in SAHs. Our study shows that the heat transfer corresponding to the temperature distribution across the channel in SAH varies greatly with the change of channel depth. Based on the first and second laws of thermodynamics, the optimal channel depths for type I and type III SAHs with black-painted absorber are suggested as 10 mm. It is found that with selective coating, the absorber plate should be further from the cover glazing in order to prevent excessive convective heat loss, the distance is better of no less than 20 mm. In type III SAH, air flows in two channels above and below the absorber plate, the depth ratio of up channel to down channel should be no less than 1. (author)

  20. Models for predicting thermal performance of packed bed energy storage system for solar air heaters : a review

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. [Beant College of Engineering and Technology, Gurdaspur, Punjab (India). Dept. of Mechanical Engineering; Saini, R.P. [Alternate Hydro Energy Centre, Roorkee, Uttaranchal (India); Saini, J.S. [Indian Inst. of Technology, Roorkee, Uttarakhand (India). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    Packed beds are typically attached to solar air heaters in order to store the thermal energy of hot air. Mathematical models are needed to predict the performance of the system and to optimize the design of such systems under any given operating parameters. This paper discussed mathematical models reported in the literature for predicting thermal performance of packed bed energy storage system for solar air heaters. The purpose of the paper was to consolidate information for designers. Specifically, the paper discussed the thermal performance of packed beds and described the models that can predict their thermal performance, with particular reference to the two-phase model (Schumann model); intraparticle conduction and dispersion model; single phase model; equivalence of two-phase and single-phase models; Cautier and Farber model; Sagara and Nakahara model; and the Mumma and Marvin model. 24 refs., 3 figs.

  1. Optimal thermo-hydraulic performance of solar air heater having chamfered rib-groove roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Apurba Layek

    2010-07-01

    Full Text Available The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of solar air heater. However, the increase in thermal energy gain is always accompanied by increase in pumping power. This paper is concerned with optimization of roughness parameters of solar air heater based on effective efficiency criterion. Effective efficiency of a solar air heater having repeated transverse chamfered rib–groove roughness on one broad wall has been computed using the correlations for heat transfer and friction factor developed within the investigated range of operating and system parameters. Roughness parameters viz. relative roughness pitch P/e, relative groove position g/P, chamfer angle , relative roughness height e/Dh and flow Reynolds number Re, have a combined effect on the heat transfer as well as fluid friction. The thermo-hydraulic performance of an air heater in terms of effective efficiency is determined on the basis of actual thermal energy gain subtracted by the primary energy required to generate power needed for pumping air through the roughened duct. Based on energy transfer mechanism to the absorber plate, a mathematical model is developed to compute effective efficiency. The selection of the optimal values of the roughness parameters involves the comparison of the enhancement of thermal performance and the increase of pumping losses as a result of using roughness in the collector system with that of the system without roughness. The effective efficiency criterion is maximized and reasonably optimized designs of roughness are found.

  2. Optimal thermo-hydraulic performance of solar air heater having chamfered rib-groove roughness on absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Apurba [Department of Mechanical Engineering, National Institute of Technology, Durgapur 713 209 (India)

    2010-07-01

    The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of solar air heater. However, the increase in thermal energy gain is always accompanied by increase in pumping power. This paper is concerned with optimization of roughness parameters of solar air heater based on effective efficiency criterion. Effective efficiency of a solar air heater having repeated transverse chamfered rib-groove roughness on one broad wall has been computed using the correlations for heat transfer and friction factor developed within the investigated range of operating and system parameters. Roughness parameters viz. relative roughness pitch P/e, relative groove position g/P, chamfer angle, relative roughness height e/Dh and flow Reynolds number Re, have a combined effect on the heat transfer as well as fluid friction. The thermo-hydraulic performance of an air heater in terms of effective efficiency is determined on the basis of actual thermal energy gain subtracted by the primary energy required to generate power needed for pumping air through the roughened duct. Based on energy transfer mechanism to the absorber plate, a mathematical model is developed to compute effective efficiency. The selection of the optimal values of the roughness parameters involves the comparison of the enhancement of thermal performance and the increase of pumping losses as a result of using roughness in the collector system with that of the system without roughness. The effective efficiency criterion is maximized and reasonably optimized designs of roughness are found.

  3. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs

    Energy Technology Data Exchange (ETDEWEB)

    Hans, V.S. [Department of Mechanical Engineering, PAU, Ludhiana (Punjab) 141004 (India); Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (UA) 247667 (India); Saini, J.S. [Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee (UA) 247667 (India)

    2010-06-15

    The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack ({alpha}) range of 30-75 and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed. (author)

  4. Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S.B.; Saini, J.S.; Singh, Krishna M. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-05-15

    An experimental investigation has been carried out on a packed bed solar air heater using wire mesh as packing material. Data pertaining to heat transfer and friction characteristics were collected for air flow rates ranging from 0.0159 to 0.0347 kg/s-m{sup 2} for eight sets of matrices with varying geometrical parameters. The thermal efficiency of a packed bed solar air heater was compared with that of a conventional solar air heater to determine the enhancement which was found to be strong function of system and operating parameters of the bed. It was found that an enhancement of the order of 76.9-89.5% can be obtained. Experimental data were utilised to develop correlations for Colburn J{sub h} factor and friction factor as function of geometrical parameters of the bed and the flow Reynolds number. These correlations were found to predict the experimental results with reasonable accuracy. It has also been found that the present correlations show much better agreement as compared to the values predicted by earlier correlations for such systems. (author)

  5. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    Science.gov (United States)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2016-07-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  6. Thermal Hydraulic Performance in a Solar Air Heater Channel with Multi V-Type Perforated Baffles

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-07-01

    Full Text Available This article presents heat transfer and fluid flow characteristics in a solar air heater (SAH channel with multi V-type perforated baffles. The flow passage has an aspect ratio of 10. The relative baffle height, relative pitch, relative baffle hole position, flow attack angle, and baffle open area ratio are 0.6, 8.0, 0.42, 60°, and 12%, respectively. The Reynolds numbers considered in the study was in the range of 3000–10,000. The re-normalization group (RNG k-ε turbulence model has been used for numerical analysis, and the optimum relative baffle width has been investigated considering relative baffle widths of 1.0–7.0.The numerical results are in good agreement with the experimental data for the range considered in the study. Multi V-type perforated baffles are shown to have better thermal performance as compared to other baffle shapes in a rectangular passage. The overall thermal hydraulic performance shows the maximum value at the relative baffle width of 5.0.

  7. CFD based performance analysis of a solar air heater duct provided with artificial roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sharad; Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, AHEC, Roorkee, Uttarakhand 247667 (India)

    2009-05-15

    In the present work the performance of a solar air heater duct provided with artificial roughness in the form of thin circular wire in arc shaped geometry has been analysed using Computational Fluid Dynamics (CFD). The effect of arc shaped geometry on heat transfer coefficient, friction factor and performance enhancement was investigated covering the range of roughness parameter (relative roughness height (e/D) from 0.0299 to 0.0426 and relative roughness angle ({alpha}/90) from 0.333 to 0.666) and working parameter (Reynolds number, Re from 6000 to 18,000 and solar radiation of 1000 W/m2). Different turbulent models have been used for the analysis and their results are compared. Renormalization-group (RNG) k-{epsilon} model based results have been found in good agreement and accordingly this model is used to predict heat transfer and friction factor in the duct. The overall enhancement ratio has been calculated in order to discuss the overall effect of the roughness and working parameters. A maximum value of overall enhancement ratio has been found to be as 1.7 for the range of parameters investigated. (author)

  8. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Bhagoria, J.L.; Sarviya, R.M. [Department of Mechanical Engineering, M.A.N.I.T, Bhopal 462 051, MP (India)

    2009-08-15

    An experimental investigation has been carried out to study the heat transfer and friction characteristics in solar air heater by using discrete W-shaped roughness on one broad wall of solar air heater with an aspect ratio of 8:1, the roughened wall being heated while the remaining three walls are insulated. The experiment encompassed Reynolds number (Re) range from 3000 to 15,000, relative roughness height (e/D{sub h}) in the range of 0.0168-0.0338, relative roughness pitch (p/e) 10 and the angle of attack ({alpha}) in the range of 30-75 . The effect of parameters on the heat transfer and friction are compared with the result of smooth duct under similar flow conditions. Correlations for heat transfer and friction have been developed as a function of roughness and flow parameters. (author)

  9. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    OpenAIRE

    Chii-Dong Ho; Ho-Ming Yeh

    2012-01-01

    The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperat...

  10. Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Apurba [Department of Mechanical Engineering, NIT Durgapur, West Bengal 713 209 (India); Saini, J.S.; Solanki, S.C. [Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, Uttarakhand 247 667 (India)

    2009-05-15

    Artificial roughness in the form of repeated transverse chamfered rib-groove roughness on one broad wall has been proposed as a convenient method for enhancement of thermal performance of solar air heater. An experimental investigation on heat and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated integral transverse chamfered rib-groove roughness on one broad wall has been carried out. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters. Six roughened plates have been tested placing a 60 V-groove at the centre line in between two consecutive chamfered ribs. The ribs' top have been chamfered having chamfer angles of 5 , 12 , 15 , 18 , 22 and 30 , while relative roughness pitch (P/e) and relative roughness height (e/D{sub h}) of the ribs were kept constant having values of 10 and 0.03 respectively. The flow Reynolds number of the duct varied in the range of approximately 3000-21,000, most suitable for solar air heater. The effects of chamfer angle on Nusselt number and friction factor have been discussed and the results are compared with the square rib-grooved and smooth duct under similar flow conditions to investigate the enhancement in Nusselt number and friction factor. The conditions for the maximum enhancement of Nusselt number and friction factor have been determined. It has been found that the thermo-hydraulic performance of the solar air heater provided with such roughness is considerably enhanced. (author)

  11. Experimental Investigation on Turbulent Convection in Solar Air Heater Channel Fitted with Delta Winglet Vortex Generator

    Institute of Scientific and Technical Information of China (English)

    Sompol Skullong; Pongjet Promvonge

    2014-01-01

    The paper presents an experimental study on the heat transfer and flow friction characteristics in a solar air heater channel fitted with delta-winglet type vortex generators (DWs). The experiments are conducted by vary-ing the airflow rate for Reynolds number in the range of 5000 to 24000 in the test section with a uniform heat-flux applied on the upper channel wall. Firstly, the DW pairs are mounted only at the entrance of the lower wall of the test channel (called DW-E) to create multiple vortex flows at the entry. The effect of two transverse pitches (RP=Pt/H=1 and 2) at three attack angles (α=30°, 45° and 60°) of the DW-E with its relative height, b/H=0.5 (half height of channel) is examined. Secondly, the 30° DWs with three different relative heights (b/H=0.3, 0.4 and 0.5) are placed on the upper wall only (absorber plate, called DW-A) of the test channel. The experimental result reveals that in the first case, the 60° DW-E at RP=1 provides the highest heat transfer and friction factor while the 30° DW-E at RP=1 performs overall better than the others. In the second case, the 30° DW-A at b/H=0.5 yields the highest heat transfer and friction factor but the best thermal performance is found at b/H=0.4.

  12. Performance prediction of solar air heater having roughened duct provided with transverse and inclined ribs as artificial roughness

    Energy Technology Data Exchange (ETDEWEB)

    Varun; Patnaik, Amar; Siddhartha [Mechanical Engg Dept., NIT, Hamirpur 177005 (India); Saini, R.P.; Singal, S.K. [AHEC, IIT, Roorkee 247667 (India)

    2009-12-15

    An experimental study has been carried out to investigate the effective efficiency of a solar air heater duct provided with transverse and inclined ribs as artificial roughness elements on the absorber plate. The range of parameters considered for the present investigation; Reynolds number (Re) 2000-14,000, relative roughness pitch (p/e) 3-8 and a fixed value of relative roughness height (e/D) of 0.030. The effective efficiency has been computed based on the experimentally determined values for the range of parameters considered. Further an attempt has also been made to optimize the thermal efficiency for the same system under similar conditions by Taguchi method. (author)

  13. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  14. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  15. Heat transfer and friction factor characteristics of rectangular channel solar air heater duct having protrusions as roughness element

    Directory of Open Access Journals (Sweden)

    Maneesh Kaushal, Varun

    2012-01-01

    Full Text Available An experimental investigation has been carried out to see the effect of roughness element on heat transfer and friction factor on the absorber plate of the solar air heater. The roughness provided is in the form of protrusions which are arranged in an arc pattern. This paper presents an investigation to study the effect of protruded geometry on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The pair of protrusion geometry arc angle (α of 45o is mounted on the test section of duct to create a longitudinal flow through test section. Measurements are carried out for rectangular duct which has aspect ratio (W/H of 11, relative roughness pitch (P/e in the range of 12-24, relative roughness height (e/D of 0.03, ratio of height of protrusion to print diameter (d of 0.3° and Reynolds number (Re ranges from 3600-18100.The results obtained for various relative roughness pitch (P/e has also been compared with smooth one. And on comparison to smooth duct, the roughened duct enhances the heat transfer and friction factor by 2.96 and 2.73 times.

  16. Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Fakoor Pakdaman, M.; Lashkari, A.; Basirat Tabrizi, H.; Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    This paper deals with an experimental investigation to evaluate different thermal characteristics of a natural-convection flat-plate solar air-heater with longitudinal rectangular fins array. Having determined the thermal performance of the system a Nusselt number correlation is presented for such finned duct devices. In the presented empirical model which may have industrial applications, solar radiation and ambient temperature have been considered as independent parameters. Other characteristics of the system such as different dimensionless variables, plates and outflow temperatures, efficiency, and mass flow rate have been empirically modeled based on these variables. The particular difference in this study in comparison with the other similar studies is the presentation of an empirical model for rectangular-finned solar air-heaters. This model proposes design concepts and rules of thumb, and demonstrates the calculations of the design parameters. Based on the order of magnitude analysis, solar radiation has been found to be the main parameter which characterizes the thermal behavior of the system. Besides, exergy analysis has been carried out, and optimum conditions in which the system has the highest performance have been determined. (author)

  17. Heat transfer and friction factor characteristics of rectangular channel solar air heater duct having protrusions as roughness element

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Maneesh; Varun [Department of Mechanical Engineering, National Institute of Technology Hamirpur (HP)-177005 (India)

    2012-07-01

    An experimental investigation has been carried out to see the effect of roughness element on heat transfer and friction factor on the absorber plate of the solar air heater. The roughness provided is in the form of protrusions which are arranged in an arc pattern. This paper presents an investigation to study the effect of protruded geometry on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The pair of protrusion geometry arc angle (a) of 45° is mounted on the test section of duct to create a longitudinal flow through test section. Measurements are carried out for rectangular duct which has aspect ratio (W/H) of 11, relative roughness pitch (P/e) in the range of 12-24, relative roughness height (e/D) of 0.03, ratio of height of protrusion to print diameter (d) of 0.3° and Reynolds number (Re) ranges from 3600-18100.The results obtained for various relative roughness pitch (P/e) has also been compared with smooth one. And on comparison to smooth duct, the roughened duct enhances the heat transfer and friction factor by 2.96 and 2.73 times.

  18. Experimental study of Nusselt number and Friction factor in solar air heater duct with Diamond shaped rib roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    S. S. Pawar

    2013-01-01

    Full Text Available - Solar air heater is used to heat air but it has low thermal efficiency because of low thermal conductivity between air and absorber plate. Thermal efficiency of solar air heater can be improved by creating artificial roughness on absorber plate which causes higher temperature to absorber plate and hence maximum thermal losses occurs to atmosphere. There are number of parameters which enhances the thermal conductivity such as relative roughness height (e/Dh, relative roughness pitch (P/e, Reynolds number (Re, and angle of attack (α.Experimental investigations were carried out to study heat transfer enhancement using diamond shape rib on absorber plate of solar air heater. Absorber plate is heated with the solar radiation in outdoor experiment whereas electric heater is used for indoor experiment. Setup is isolated from the three sides with Thermocol. The relative roughness pitch (p/e varies from 10 to 25 mm. The roughened wall has relative roughness height (e/Dh of 0.023mm and 0.028mm, angle of attack (α is 0° degree, rib height (e is 1 mm and 1.25 mm. Duct aspect ratio (W/H=8, rate of air flow corresponds to Reynolds no. (Re ranging from 3000-14000.Finally comparison of heat transfer and friction factor from both smooth and roughened plate under the similar condition of air flow is made.

  19. 锅炉暖风器疏水泵故障分析及对策%Fault Analysis and Countermeasures of Boiler Air Heater Drain Pump

    Institute of Scientific and Technical Information of China (English)

    耿韶武

    2012-01-01

    本文介绍了锅炉暖风器疏水泵的工作原理,对锅炉暖风器疏水泵在运行过程中出现的故障进行了分析处理,并制定了防止该类故障发生的措施。%This paper introduces boiler air heater drain pump works, dredging pump malfunction during operation of the bo- iler air heater analytical processing, and to develop measures to prevent the occurrence of such failures.

  20. Experimental study of the influence of collector height on the steady state performance of a passive solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, D.; Burek, S.A.M. [School of the Built and Natural Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA Scotland (United Kingdom)

    2010-09-15

    Passive solar air heaters, such as solar chimneys and Trombe Walls, rely on solar-induced buoyancy-driven (natural) convection to produce the flow of air. Although buoyancy-driven convection is well understood for a single vertical plate, buoyancy-driven convection in an asymmetrically-heated channel is more problematic, and in particular, the effects of the channel height on the flow rate and heat transfer. This paper reports on experiments on test rigs resembling lightweight passive solar air-heating collectors. The test rigs were of heights 0.5, 1.0 and 2.0 m, with adjustable channel depths (20-150 mm) and heat inputs (up to 1000 W/m{sup 2}). Measurements were made of the air, plate and cover temperatures, and air velocities. Results are presented as dimensionless correlations of mass flow (as Reynolds number) and efficiency against heat input (as Rayleigh number), channel depth and height. Thermal efficiency is shown to be a function of the heat input and the system height, but not of the channel depth; mass flow is shown to be a dependent on all three parameters. (author)

  1. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates

    Energy Technology Data Exchange (ETDEWEB)

    Akpinar, Ebru Kavak; Kocyigit, Fatih [Mechanical Engineering Department, Firat University, 23279 Elazig (Turkey)

    2010-11-15

    This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs. (author)

  2. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates

    International Nuclear Information System (INIS)

    This study experimentally investigates performance analysis of a new flat-plate solar air heater (SAH) with several obstacles (Type I, Type II, Type III) and without obstacles (Type IV). Experiments were performed for two air mass flow rates of 0.0074 and 0.0052 kg/s. The first and second laws of efficiencies were determined for SAHs and comparisons were made among them. The values of first law efficiency varied between 20% and 82%. The values of second law efficiency changed from 8.32% to 44.00%. The highest efficiency were determined for the SAH with Type II absorbent plate in flow channel duct for all operating conditions, whereas the lowest values were obtained for the SAH without obstacles (Type IV). The results showed that the efficiency of the solar air collectors depends significantly on the solar radiation, surface geometry of the collectors and extension of the air flow line. The largest irreversibility was occurring at the SAH without obstacles (Type IV) collector in which collector efficiency is smallest. At the end of this study, the energy and exergy relationships are delivered for different SAHs.

  3. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  4. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  5. Performance evaluation of roughened solar air heater having M-shaped as roughness geometry on the absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Manish Kumar [Mechanical and Industrial Engineering Department, IIT Roorkee, (U.K.) – 247667 (India); Varun; Chaudhary, Sachin [Mechanical Engineering Department, NIT Hamirpur, (H.P.) – 177005 (India)

    2012-07-01

    As thermal efficiency of conventional solar air heater is low, best way is to enhance its thermal efficiency is make the flow turbulent. This can be achieved by using the artificial roughness on underside of absorber plate. An attempt has been made to enhance its thermal as well as thermohydraulic performance by providing roughness elements. An experimental investigation has been carried out on M-shaped ribs having circular cross section on absorber plate. The duct is having an aspect ratio of (W/H) 11.41, relative roughness height (e/D) 0.033-0.077, relative roughness pitch (P/e) 12.5-75 and angle of attack (a) 30-60°. The range for Reynolds number has been considered to be 3000-22000. The best result of thermal and thermohydraulic performance has been observed at (e/D) 0.077, (P/e) 25 and (a) 60°.

  6. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  7. Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system

    International Nuclear Information System (INIS)

    Highlights: • Extremum seeking control to achieve the optimal COP for CO2 heat pump water heater. • Control input: compressor discharge pressure; output: COP. • Simulation platform: a Modelica based dynamic simulation model. • Simulation results demonstrate applicability for fixed and time-varying conditions. • The proposed approach is model free, which is beneficial for practice. - Abstract: Air-source transcritical CO2 heat pump systems have found attractive applications in automobile air conditioning, regional heating and commercial water heating systems. The coefficient of performance (COP) of such systems is affected by several operational variables, such as ambient temperatures, water outlet temperature, and discharge pressure. For practical operation, it is desirable to maintain the maximum achievable efficiency or COP of such systems in real time. However, performance of model based control/optimization strategies can be quite limited by the difficulty in acquiring accurate system models due to system nonlinearity, large variations in ambient conditions and thermal load, as well as equipment variation and degradation. In this study, a self-optimizing control scheme is proposed to maximize the COP in real time by using the extremum seeking control (ESC) strategy. ESC is a class of self-optimizing control strategy that can search for the unknown or slowly varying optimum input with respect to certain performance index, which is effectively a dynamic realization of the gradient search based on a dither-demodulation scheme. For the air-source transcritical CO2 heat-pump water heater, the discharge pressure setpoint is taken as the input to the ESC controller, while the system COP is taken as the performance index, i.e. the feedback signal for the extremum seeking process. To evaluate the proposed ESC strategy, a Modelica based dynamic simulation model is developed for the plant to perform the simulation study. Simulations are conducted for several

  8. Transmission of Mycobacterium chimaera from Heater-Cooler Units during Cardiac Surgery despite an Ultraclean Air Ventilation System.

    Science.gov (United States)

    Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P; Sax, Hugo

    2016-06-01

    Heater-cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices. PMID:27070958

  9. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Karmare, S.V. [Department of Mechanical Engineering, Government College Engineering, Karad 415 124, Maharashtra (India); Shivaji University, Kolhapur, Maharashtra (India); Tikekar, A.N. [Department of Mechanical Engineering, Walchand College of Engineering, Sangli (India); Shivaji University, Kolhapur, Maharashtra (India)

    2010-03-15

    This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)

  10. Solar air heaters. Concepts - system engineering - projecting. 2. ed.; Solare Luftheizsysteme. Konzepte - Systemtechnik - Planung

    Energy Technology Data Exchange (ETDEWEB)

    Filleux, Charles [Basler und Hofmann, Zuerich (Switzerland). Fachbereich Energie; Guetermann, Andreas [AMENA AG, Winterthur (Switzerland)

    2009-07-01

    Solar air collector systems can save energy in the heating of residential or commercial buildings. The authors provide a practical and detailed introduction to the technology and practical applications of solar air collector systems. Successful projects are presented, including cost and yields. Components are discussed in detail, i.e. collectors, heat stores, blowers, air ducts and control systems. Glazed and unglazed collectors are presented, and commercial collectors are compared with DIY collectors. Recommendations are given on the correct selection of the collector field size, flow cross sections, and storage capacity. The combination of components into a system and the dimensioning of systems are gone into, and an ecological assessment is presented. Exemplary projects are presented as well.

  11. Air Source Heat Pump Water Heater Controller Design%空气源热泵热水器控制器设计

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, according to air source heat pump water heater running characteristics and sys-tem control requirements, design the controller based on single chip microcomputer intelligent control of air source heat pump water heater. It mainly introduces the core parts of control part of the controller design plan, realizes the whole control system in operation process of accurate and reliable.%  本文根据空气源热泵热水器的运行特点以及系统控制要求,设计了基于单片机智能控制的空气源热泵热水器控制器。本文主要介绍了控制器核心部件控制部分的设计方案,实现整个控制系统在运行过程中的准确可靠。

  12. RESULTS OF INVESTIGATIONS ON THERMAL CHARACTERISTICS OF AIR HEATER BUNDLE MADE OF BIMETALLIC FINNED TUBES

    Directory of Open Access Journals (Sweden)

    V. B. Kuntysh

    2014-01-01

    Full Text Available The paper presents a scheme and description of a new aerodynamic stand that has a 300x300 mm cross-section operating channel. The stand is used for studying thermal and aerodynamic characteristics of bundles made of finned tubes of actual dimensions in crossflow. The paper provides results of an exploratory test pertaining to heat transfer and resistance of four row staggered bundle made of tubes with aluminium spiral fins having outside diameter of 26 mm which are used in the systems of ventilation, air-conditioning and heating of buildings and also in transport heat exchangers.

  13. Heater assembly

    International Nuclear Information System (INIS)

    An electrical resistance heater, installed in the H1 borehole, is used to thermally perturb the rock mass through a controlled heating and cooling cycle. Heater power levels are controlled by a Variac power transformer and are measured by wattmeters. Temperatures are measured by thermocouples on the borehole wall and on the heater assembly. Power and temperature values are recorded by the DAS described in Chapter 12. The heater assembly consists of a 3.55-m (11.6-ft) long by 20.3-cm (8-in.) O.D., Type 304 stainless steel pipe, containing a tubular hairpin heating element. The element has a heated length of 3 m (9.84 ft). The power rating of the element is 10 kW; however, we plan to operate the unit at a maximum power of only 3 kW. The heater is positioned with its midpoint directly below the axis of the P2 borehole, as shown in the borehole configuration diagram. This heater midpoint position corresponds to a distance of approximately 8.5 m (27.9 ft) from the H1 borehole collar. A schematic of the heater assembly in the borehole is shown. The distance from the borehole collar to the closest point on the assembly (the front end) is 6.5 m (21.3 ft). A high-temperature inflatable packer, used to seal the borehole for moisture collection, is positioned 50 cm (19.7 in.) ahead of the heater front end. The heater is supported and centralized within the borehole by two skids, fabricated from 25-mm (1-in.) O.D. stainless steel pipe. Thermocouples are installed at a number of locations in the H1 borehole. Four thermocouples that are attached to the heater skin monitor temperatures on the outer surface of the can, while three thermocouples that are held in place by rock sections monitor borehole wall temperatures beneath the heater. Temperatures are also monitored at the heater terminal and on the packer hardware

  14. Experimental study of heat transfer enhancement in solar air heater with different angle of attack of V-down continuous ribs

    Science.gov (United States)

    Istanto, Tri; Danardono, Dominicus; Yaningsih, Indri; Wijayanta, Agung Tri

    2016-06-01

    In this paper, an experimental study on the effect of angle attack in V-down continuous ribs on heat transfer and friction factor in an artificially roughened air heater duct is presented. The electric heater with a constant heat flux as a simulation of the indoor testing solar air heater is used to heat the roughened part of rectangular duct while other parts were insulated. The system and operating conditions were used to decide the range of parameters for the study. The ratio of the width to height of the duct (W/H) was 12, the relative roughness pitch (p/e) was 10, the relative roughness height (e/Dh) was 0.033 and the angle of attack of flow (α) was 30-80°. The air flow rate corresponded to Reynolds number between 3500 -10,000. The result of heat transfer and friction factor had been compared to those for smooth duct under similar flow and thermal boundary condition. The thermo-hydraulic performance also had been considered. As a result, the maximum enhancement of Nusselt number (Nu) and friction factor(f) were 2.34 and 2.45 times, respectively. For each variation of angle attack of flow, the thermo-hydraulic performance has been compared and the result shows that a V-down continuous rib with the angle of attack of flow as 60° gave the best thermo-hydraulic performance.

  15. Experimental analysis of an air-source transcritical CO2 heat pump water heater using the hot gas bypass defrosting method

    International Nuclear Information System (INIS)

    When an air-source CO2 heat pump water heater operates at low ambient temperatures in cold regions in winter, frost can form on the coil surface of its outdoor evaporator. The frost substantially affects the operating performance and energy efficiency of CO2 heat pump water heaters and hence periodic defrosting is essential. In this paper, defrosting characteristics of an air-source CO2 heat pump water heater using the hot gas bypass defrosting method is experimentally studied at different ambient conditions. An experimental setup is developed for this purpose and experimental procedures are detailed. Thereafter, the pressure and temperature in the outdoor evaporator, at the compressor and gas cooler outlets are evaluated during the defrosting period. An energy analysis is then performed of different system components during the defrosting process. Results indicate that 35% of the supplied energy is used for melting the frost, and 7.6% is used to heat the evaporator tubes and fins. About 57.4% of the supplied energy is consumed to increase the internal energy of the gas cooler. The typical efficiency of the hot gas bypass defrosting method applied in the CO2 heat pump water heater ranges from 30 to 40%. It increases with increasing dry bulb temperature, and decreasing relative humidity. - Highlights: • Hot gas bypass defrosting method for transcritical CO2 heat pumps was studied. • An experimental setup was established in an environmental laboratory. • The temperature, pressure and energy consumptions in the system were analysed. • The efficiency of hot gas bypass defrosting method ranged from 30 to 40%. • The effect of ambient conditions on defrosting efficiency was investigated

  16. Numerical analysis of flow in a solar heater of air packing with shavings; Analisis numerico del flujo en un calentador solar de aire empacado con viruta

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, Raymundo; Morales G, Juan R; Diaz C, Alen; Lara V, Araceli; Lizardi R, Arturo [Universidad Autonoma Metropolitana-Azcapotzalco, Mexico, D.F. (Mexico); Vaca M, Mabel [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    The temperature distribution of air through a solar heater is determined by means of the equations of heat, mass, momentum, and energy conservation. The solution is obtained by means of the numeric model of finite volume, using the CFC2000 software, V. 3.3. The studied flow is laminar. The temperature distribution resulted quite similar for different Reynolds numbers; the greatest difference was less than 4 Celsius degrees, for similar ranges of solar radiation. The influence of the separation that exists between the clear cover and the free surface of the material used as thermal summit (b) was analyzed. A difference up to 41 Celsius degrees for a Reynolds number of 1000 and values of b between 3 and 7 cm. For a Reynolds of 2000, the difference was of 29 Celsius degrees, in the same range of b. [Spanish] Se determinan la distribucion de temperaturas del aire, a lo largo de un calentador solar, aplicando las ecuaciones de conservacion de masa, cantidad de movimiento y energia. La solucion se obtiene con el modelo numerico de volumen finito y la utilizacion del programa de computadora llamado CFC2000 version 3.3. El flujo estudiado es del tipo laminar. La distribucion de temperaturas resulto ser muy semejante para diferentes valores del numero de Reynolds, la diferencia mayor resulto menor a 4 grados Celsius, para rangos similares de radiacion solar. Se analizo la influencia de la separacion que existe entre la cubierta transparente y la superficie libre del material que sirve como almacen termico (b). Se encontro una diferencia maxima de hasta 41 grados celsius para un numero de Reynolds de 1000 y los valores de b entre 3 y 7 cm. Cuando el Reynolds fue de 2000 la diferencia fue de 29 grados Celsius, en el mismo rango de b.

  17. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  18. A procedure to reduce pollutant gases from Diesel combustion during European MVEG-A cycle by using electrical intake air-heaters

    Energy Technology Data Exchange (ETDEWEB)

    Alberto Broatch; Jose M. Lujan; Jose R. Serrano; Benjamin Pla [Universidad Politecnica de Valencia, Valencia (Spain). CMT - Motores Termicos

    2008-09-15

    While intake air heating is a widespread technology used in heavy duty diesel engines, it rarely appears in the field of HSDI diesel engines. Nevertheless, intake air heating is currently under study as a possible alternative to glow plugs for cold start assistance in HSDI diesel engines. Since the use of intake air heaters involves a cylinder-head simplification, this solution presents both economical and combustion advantages. Despite of the negative impact of the high intake temperatures on NOx emissions, intake air heating reduces significantly HC and CO emissions during warm up due to combustion improvement. While the potential of intake air heating technology to assist cold start is proved, the present paper is devoted to the evaluation of the intake air heating technology potential to reduce pollutant emissions from Diesel combustion. To deal with this objective a deep analysis of both glow plug and intake air heating technology behaviour during the MVEG-A cycle is done. Experimental tests are carried out on a small turbocharged direct injection Diesel engine in an engine-in-the-loop (EIL) approach. Results prove that an optimal intake air heating strategy together with an adapted air loop control calibration can improve HC, CO and NOx emissions with only a slight PM increase. 36 refs., 13 figs., 1 tab.

  19. 空气源热泵热水器性能测试系统实验台的研制%Development of Air Source Heat Pump Water Heater Performance Test Rig

    Institute of Scientific and Technical Information of China (English)

    刘笑笑; 丁强

    2015-01-01

    In order to meet the needs of the air source heat pump water heater performance test,according to the work-ing principle of the air source heat pump water heater,working characteristics,thermal testing technology,industrial control technology,computer technology and other related technology,strictly according to the air source heat pump water heater national standards to design a set of water heater performance of air source heat pump test system,it can calculate the performance parameters of the tested air source heat pump water heater automatical y.%为了满足空气源热泵热水器性能测试的需要,基于对空气源热泵热水器原理、工作特点、热工测试技术、工业控制技术、上位机编写技术等基础,严格参照空气源热泵热水器的相关国家标准设计了一套空气源热泵热水器性能测试系统。该系统不仅能自动计算出被测空气源热泵热水器的性能参数,且具有良好的人机交互界面、可操作性强、性能可靠等优点。

  20. Studi Numerik Karakteristik Pengeringan Batubara pada Fluidized Bed Coal Dyer Terhadap Pengaruh Variasi Temperatur Air Heater dengan Tube Heater Tersusun Staggered dan Perbandingan Volume Chamber dan Volume Batubara Sebesar 50%

    Directory of Open Access Journals (Sweden)

    Ayu Sarah Novrizqa

    2013-03-01

    Full Text Available Indonesia mempunyai sumber daya batubara yang cukup besar dan sebagian besar sumber daya tersebut termasuk ke dalam batubara peringkat rendah berupa lignit dan sub-bituminus yang memiliki kadar air yang tinggi. Tingginya kadar air menyebabkan rendahnya nilai kalor, sehingga pemanfaatan batubara jenis ini menjadi terbatas dan sulit untuk dipasarkan. Oleh karena itu perlu adanya teknologi pengeringan yang dapat meningkatkan nilai kalor dari batubara tersebut. Dalam proses pengeringan akan melibatkan perpindahan panas dan massa. Proses ini akan didefinisikan dalam suatu studi numerik, dimana penelitian ini dilakukan dengan metode numerik dengan software Fluent 6.3.26. Pemilihan kondisi simulasi digunakan model turbulensi k-ε realizable dan skema interpolasi first-order upwind. Serta mempelajari pengaruh temperatur inlet udara pengering yang divariasikan. Variasi temperatur adalah 316 K, 327 K, 339 K. Dari penelitian ini  dapat diketahui nilai drying rate serta pengaruh temperatur dan posisi batubara dalam proses pengeringan pada drying chamber fluidized bed coal dryer dengan tube heater tersusun staggered serta pengaruh dari perbandingan volume batubara dengan volume chamber sebesar 50%. Moisture content batubara yang paling banyak berkurang dialami oleh temperature outlet terbesar yaitu 339 K dari 0,22 hingga 0,0167. Laju pengeringan yang memiliki waktu paling cepat yaitu pada temperatur 339 K, sekitar 1100 detik, sedangkan yang memiliki waktu paling lama yaitu pada temperatur 316 K, sekitar 4600 detik.

  1. Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate

    Science.gov (United States)

    Singh, Anil Prakash; Goel, Varun; Vashishtha, Siddhartha; Kumar, Amit

    2016-07-01

    An experimental study has been carried out for the heat transfer and friction characteristics for arc shaped roughness element used in solar air heaters. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 4-16, relative roughness height (e/D) range of 0.027-0.045, Reynolds number ( Re) range of 2200-22,000 and arc angle (α) was kept constant at 60°. The effects of Re, relative roughness pitch (p/e) and relative roughness height (e/D) on heat transfer and friction factor have been discussed. The results obtained for Nusselt number and friction factor has been compared with smooth solar air heater to see the enhancement in heat transfer and friction factor and it is found out that considerable enhancement takes place in case of heat transfer as well as in friction factor. Correlations were also developed for Nusselt number and friction factor. Thermo-hydraulic performance parameter is also calculated for the same.

  2. Effect of gap position in broken V-rib roughness combined with staggered rib on thermohydraulic performance of solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Anil K.; Saini, J.S.; Kumar, K. [D.I.T., Dehradun (India). Dept. of Mechanical Engineering

    2011-07-01

    Application of artificial roughness on underside of absorber surface has been found to be effective technique to improve thermo hydraulic performance of solar air heaters. In progression to the previous researches, the present study discloses the effect of broken V-rib roughness combined with staggered ribs on heat transfer and friction in a flow through artificially roughened solar air heater duct. The experimentations were performed to collect the data on heat transfer and friction by varying the Reynolds number (Re) between 3000 and 17,000, relative gap position (s'/s) from 0.2 to 0.8, for the fixed values of relative staggered rib pitch p'/p = 0.6, relative staggered rib size r/e = 1, relative roughness pitch p/e = 10, relative roughness height e/D{sub h} = 0.043, relative gap size g/e = 1, and angle of attack {alpha} = 60 . The present roughness geometry with relative gap position (s'/s) of 0.6 corresponding to flow Reynolds number (Re) of 13,150 yields the best thermohydraulic performance. (orig.)

  3. Heat transfer and friction factor characteristics using continous M shape ribs turbulators at different orientation on absorber plate solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sachin; Varun [Department of Mechanical Engineering, NIT Hamipur-177005 (India); Chauhan, Manish Kumar [Department of Mechanical Engineering, College of Engineering Roorkee, Roorkee-247667 (India)

    2012-07-01

    This paper having more concern with enhancement of heat transfer coefficient using artificial roughened absorber plate on solar air heater. The increment in heat transfer also leads to increase in friction factor which leads to increase in pumping power. In this study M shape geometry has been studied which is having different orientation. The effect of roughness parameters relative roughness height (e/D), relative roughness (P/e) and angle of attack (?) on Nusselt number and friction factor have been seen. The range of Reynolds number 3000-22000, e/D, P/e and ? are 0.037-0.0776, 12.5-75 and 30-60{sup o} respectively.. It has been found out that providing the artificial roughness of M shape increases heat transfer up to 1.7-1.8 times over the smooth duct.

  4. The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.D.; Yeh, H.M.; Cheng, T.W.; Chen, T.C.; Wang, R.C. [Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University Tamsui, Taipei 251 (China)

    2009-09-15

    A new device for inserting an absorber plate to divide a flat-plate channel into two parts with fins attached by baffles and external recycling at the ends is presented. The proposed device substantially improves the heat-transfer efficiency. Experimental and theoretical investigations into the device efficiency are presented. The theoretical prediction agreement with the measured values from the experimental results is good. The experimental and theoretical results are represented graphically and compared with data from the downward-type single-pass solar air heaters of the same size without recycling. Considerable heat-transfer improvement is obtained by employing baffled double-pass operations with external recycling and fin attached over and under the absorber plate. The recycle ratio and absorber plate location influences on the heat-transfer efficiency and on the power consumption increment are also discussed. (author)

  5. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Vipin B. Gawande

    2014-01-01

    Full Text Available CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  6. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    Science.gov (United States)

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  7. 全玻璃真空管太阳能空气集热器热性能试验方法研究%STUDY ON MEASUREMENT OF THERMAL PERFORMANCE OF ALL-GLASS EVACUATED TUBULAR SOLAR AIR HEATER

    Institute of Scientific and Technical Information of China (English)

    王志峰

    2001-01-01

    全玻璃真空管空气集热器是一种热损较小的太阳能空气加热装置。该文对该类集热器热性能评价方法进行了研究,并对集热器的时间常数、热延迟常数、角系数修正因子及瞬时热效率的实验方法进行了初步的实验研究。研究表明,用热延迟常数比时间常数能更好地反映真空管集热器的热性能,真空管集热器的角系数修正因子在垂直入射时最小。%Evacuated tubular solar collector is good for solar air heater as its low heat loss.A study on the thermal performance of the solar air heater is presented.The methods to test the time constant,resident time,incident angular modifier and instantaneous thermal efficiency are suggested.The resident time would be better than time constant to represent the thermal properties of the solar air heater.The incident angular modifier will be minimal at solar noon for the evacuated tubular solar air heater.

  8. Study on heat and mass transfer between a greenhouse considered as a solar air heater and a rock packed bed as ambient control system

    International Nuclear Information System (INIS)

    A general study on heat transfer in dry packed beds is made, with special emphasis in comparing different transient models and in identifying the required conditions by which the attained results are equivalent. The differences in thermal behaviour on packed beds, when simultaneous heat mass transfer occurs as wet air is used as heat transfer fluid and exchanges heat and water with the solid in the bed, is analyzed. We modelize wet packed beds considering them as one dimension adsorbents beds, with dispersive and non-dispersive models, where adsorption, condensation-evaporation and liquid water downward flow from condensate phenomena are present. Models were solved numerically and experiments with a rock bed with dry and wet air through it, were made to test assumptions and to further understand the behavior of the system, obtaining a pretty good agreement between expected and measured profiles of the temperature evolution within the packed bed. As a possible application of the wet rock bed for storage purposes, a forced ventilation greenhouse was characterized as a wet air solar heater and analyzed the energetic potential of storing the heat that has to be rejected during daytime to control the crop ambient conditions, in a rock bed for later use at night for heating. (author)

  9. Thermal performance of new flat plate solar air heater based on micro-heat pipe arrays (MHPA)%微热管阵列式太阳能平板空气集热器集热性能

    Institute of Scientific and Technical Information of China (English)

    朱婷婷; 刁彦华; 赵耀华; 马骋; 李凤飞

    2016-01-01

    In common types of flat-plate solar air heaters, the uneven flow and heat exchange between air and an absorber plate poses a problem. To resolve this problem, this paper proposed a novel type of flat-plate solar air heater based on micro-heat pipe arrays (MHPA). An investigation was carried out on the design, thermal performance and flow resistance characteristic of the novel heater based on micro-heat pipe arrays. The new air collector consists of 15 MHPAs with V-shaped fins attached to the heat release (condenser) section, absorber film, insulation board, bottom plate, and air ventilation and heat exchange section. The components of the heater include the toughened glass cover, air layer (35 mm), MHPA-absorber plate, thermal insulation layer, and the back board. Solar energy is absorbed by the MHPA evaporator section with the organic combination of high efficiency absorber film, which formed a heat pipe effect within each micro heat pipe arrays. The heat has been released to the air in the ventilation and heat exchange section of the heater, whereas the air was eventually warmed. Simultaneously, the working medium in MHPA proceeds continuous phase transition cycle and continuously passes solar radiation heat to air in the air duct with high efficiency. The MHPA heat-absorbing plate core can realize the whole area of heat absorption, high efficient heat transmission, and large surface of heat release. The total solar energy is received by the heater, and some energy is transferred to the air flow in the air duct as useful energy; the remaining energy is lost mainly through the glass cover, frames, bottom plate, and air duct. The heat loss through the frames and the air duct can be ignored because of good heat preservation condition. So the glass cover becomes the main source of heat loss. Thermal analysis shows that heat loss through the glass cover occupies the largest proportion of the total heat loss of the heater.To test the new heater thermal efficiency and

  10. Analysis and Experimental Tests of Air Conditioner Water Heater Integrated Machine%冷暖空调-热水器一体机的理论分析与实验测试

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      对冷暖热泵空调原理和现有空调-热水器原理进行了理论分析,结合人们实际生活的需求,通过将以上两种技术整合,发明创造出一种新型的冷暖空调-热水器。这种热水器有三种功能:1、制热水的同时室内空调制冷;2、制热水的同时室内空调制暖;3、单独制热水。比现有空调-热水器增加了制热水的同时室内空调制暖的功能,真正做到一机三用,为人们的生产生活提供便利。%According to theoretical analysis of heat pump air conditioner principles and air conditioner water heater principle,combined with the actual daily needs of the people,a new type of air conditioner water heater is invented by the integration of these two technologies. The new type of air conditioner water heater has three functions, first, indoor air conditioning refrigerate while generate hot water, second,indoor air conditioning heat while generate hot water,third,a separate system of hot water. Compare with the air conditioner water heater,the new product has one more function,facilitate the people's production and living.

  11. Acknowledgement Of Evacuated Tube Solar Water Heater Over Flat Plate Solar Water Heater

    OpenAIRE

    Dharamvir Mangal; Devander Kumar Lamba; Tarun Gupta; Kiran Jhamb

    2010-01-01

    This paper presents acknowledgement to one of the latest solar water heater which is evacuated solar water heater based on a Thermo siphon principle used for heating water for domestic purposes in household by utilizing solar radiations. As the air is evacuated from the solar tube to form a vacuum, this greatly reduces conductive and convective heat loss from the interior of tube. As a result wind and cold temperature have less effect on the efficiency of evacuated solar water heater. Result ...

  12. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  13. An investigation of heat transfer augmentation and friction characteristics in solar air heater duct with V-shaped wire as artificial roughness on absorber plate

    Energy Technology Data Exchange (ETDEWEB)

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2013-07-01

    An experimental investigation of heat transfer augmentation and friction characteristics of fully developed turbulent flow in a rectangular duct of solar air heater with absorber plate having V-shaped wire ribs as artificial roughness on its underside is carried out. The investigation covers wide range of different parameters of wire ribbed roughness: relative roughness pitch (p/e) from 10 to 40, relative roughness height (e/Dh) from 0.01 to 0.04 and angle of attack of flow from 20° to 90°. Duct aspect ratio (W/B) is kept 5 and Reynolds number (Re) is varied from 2,500 to 8,500. The heat transfer and friction factor values obtained are compared with those of smooth duct under similar flow conditions. Expressions are developed for Nusselt number and friction factor for the roughness geometry. Enhancement of Nusselt number and friction factor for roughened duct are 1.5 and 2.7 times of smooth duct respectively.

  14. 空气能热泵热水机不锈钢内胆焊接工艺优化研究%Optimization of Stainless Steel Tank Welding Procedure in Air-source Heat Pump Water Heater

    Institute of Scientific and Technical Information of China (English)

    刘树清; 余文鹏

    2015-01-01

    空气能热泵热水器保温水箱的不锈钢内胆是一个承压承热的容器,是热水机产品的关键构件,其工作环境较为恶劣。在现有的焊接工艺条件下,不锈钢内胆的各个焊缝处的腐蚀失效是整个水箱寿命的短板,严重影响了空气能热泵热水机这种新型的节能减排产品的使用和发展。因此对空气能热泵热水机的焊接工艺作了几个方面的优化调整,使得不锈钢内胆的使用寿命得到了较大幅度的提高,取得了良好的效果。%The stainless steel tank in air-source heat pump water heater was an container which bear pressure and heat. It is the key component of the air-source heat pump water heater and suffered sever environment at working condition. Welding joint corrosion is the Achilles' heel of stainless tank service life at existing welding procedure. This condition restricted air-source heat pump water heater putting into use and popularize widely. Optimization of stainless steel tank welding procedure in air-source heat pump water heater has been applied several aspect and enhance the service life obviously.

  15. Application of Air-source Heat Pump Water Heater with Exhaust Air Heat Recovery in Mining%排风热回收空气源热泵热水器在矿山上的应用研究

    Institute of Scientific and Technical Information of China (English)

    安强

    2012-01-01

    The principle and performance parameters of air-source heat pump water heater with exhaust air heat recovery were introduced, and the design selection method for its application in mine site shower rooms was given. At the same time, according to the peak and valley electricity price and the different performance parameters in daytime and nighttime, the annual energy consumptions of air-source heat pump using exhaust air and outdoor air as low-temperature heat sources were compared. The economic performance of the system in the mine was evaluated. The results showed that the performance parameters of air-source heat pump could be greatly improved by using exhaust air, which has high energy-saving performance and economic performance.%介绍了排风热回收空气源热泵热水器的基本原理及性能参数,并通过在矿山淋浴室应用的工程实例,介绍了其设计选型的方法.根据电力峰谷差价与热泵热水机组在白天和晚上工作性能参数不同的特点,比较了空气源热泵在以系统排风和室外空气为低温热源时的全年能耗,对其在矿山上应用的经济性进行了评价.结果表明,在以空调系统排风为低温热源时能较大地改善空气源热泵的性能参数,具有很大的节能性和经济性.

  16. Packaged die heater

    Science.gov (United States)

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  17. Infrared microradiometry of thermal ink jet heaters

    Science.gov (United States)

    Muller, Olaf; Drews, Reinhold E.

    1989-07-01

    Thermal inkjet heaters were studied by infrared microradiometry using an apparatus similar to that reported in the literature. An InSb infrared sensor is mounted on a modified Leitz microscope equipped with a 36X reflecting objective. The system looks at a spot on the heater about 14 μm in diameter. The locally emitted infrared output is used as a qualitative measure of the local temperature. The temperature distribution on the heater surface is studied by constructing two-dimensional temperature contour maps. Current pulsing is carried out in air or in the presence of a high boiling point liquid. Other variables include pulse width, frequency, voltage, and heater geometry. Temperature profiles obtained in this way are in good agreement with those obtained from modeling calculations. Cycling has been carried out with several different passivation coatings with an emphasis on Ta passivation. Microradiometry of Ta-passivated heaters is complicated by the formation of Ta2O5 under most pulsing conditions and Ta2O5 has a much higher emissivity than tantalum. Burn-in curves (infrared output versus time) are used to monitor this oxidation process. Since the Ta2O5 thickness is not uniform over the heater surface, an accurate interpretation of the temperature contour maps of Ta-covered heaters is not easy. Microradiometry data of oxidized Ta heaters are supplemented with data obtained using optical microscopy, SEM, and profilometry. By overstressing heaters, hot spots were generated and studied using temperature contour maps. Subsequently, failed heaters were studied using SEM, and from these data failure mechanisms are postulated.

  18. Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct

    International Nuclear Information System (INIS)

    Highlights: • Effect of perforation shapes of blocks on heat transfer has been investigated. • A new parameter, circularity which represents perforation shape is proposed. • Effect of angle of attack of V-blocks on heat transfer has been investigated. • Nusselt number and friction factor correlations have been developed. - Abstract: The effect of non-circular perforation holes in term of circularity of V-shaped blockages attached to one heated wall of a rectangular duct of solar air heater. Five different hole shapes ranging from circular to square to rectangular in the circularity range of 1–0.6 have been used with varying relative pitch of 4–12, relative blockage height of 0.4–1.0, open area ratio of 5–25% and angle of attack of 30–75° and Reynolds number of flow was varied between 2000 and 20,000. It has been found that there exists an optimum non-circular shape of perforation holes that yields maximum value of Nusselt number; a perfectly circular hole performs substantially inferior as compared to a non-circular hole of considerable non-circularity (ψ = 0.69). An improvement of Nusselt number value in the ratio of 1.13 has been found when circular perforation holes are replaced by rectangular holes of circularity of 0.69. Correlations of Nusselt number as well of friction factor are established in term of Reynolds number and geometrical parameters of blockages which can be used to predict the values of Nusselt number and friction factor with considerably good accuracy

  19. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification

    International Nuclear Information System (INIS)

    Highlights: • Experiments are carried out to investigate a novel frost-free ASHPWH system. • Dynamic characteristics of the system are studied at different ambient conditions. • Test results confirm the expected potential to control the frost-free process. • The COP increased 17.9% and 3.4% respectively in comparison with RCD at −3 °C and 3 °C. - Abstract: Air-source heat pump (ASHP) often operates with substantial frost formation on the outdoor heat exchanger at low ambient temperature in winter, it insulates the finned surface and also reduces heat transfer rate, leading to performance degradation or even shutdown of ASHP systems. Although several defrosting methods have been reported, the frosting and defrosting processes reduced energy efficiency and resulted in, in some cases, heat pump breakdown. To solve this problem, a novel frost-free air-source heat pump water heater (ASHPWH) system has been developed, which coupled with an extra heat exchanger coated by a solid desiccant (EHECSD) with an energy storage device (ESD). Based on the previous studies, a further analysis and comprehensive research on the novel frost-free ASHPWH system is presented in this paper. The dynamic characteristics of the novel system are investigated experimentally in different ambient conditions. An experimental setup and experimental procedures are described in detail. Thereafter, the dehumidification efficiency and regeneration efficiency of EHECSD, suction and discharge pressures of the compressor, the temperature of PCM are evaluated during the heating and regeneration modes respectively. Results indicate that the system can keep the evaporator frost-free for 32, 34, 36 min during heating mode at the ambient temperatures of −3 °C, 0 °C and 3 °C and 85% RH. Compared with the reverse-cycle defrosting (RCD), COP of the frost-free ASHPWH are 17.9% and 3.4% higher at the ambient temperature of −3 °C and 3 °C respectively. With this innovative technology, it has

  20. A New Type of Complex System of Solar Energy Air Source Heat Pump Water Heater%一种新型的太阳能——空气源复合热泵热水器系统

    Institute of Scientific and Technical Information of China (English)

    王军军

    2011-01-01

    基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。%Based on the technology of solar thermal and the theory of air-source heat pump water heater, a combined water heater system about solar and air source heat pump was introduced. The system Could make full use of solar energy to heat domestic hot water, combined with air-source heat pump to meet the shortage of solar irradiance when the hot water demand, and the auxiliary heating with solar energy to solve the problems of air source heat pump operating conditions in low temperature. The system took full use of the low-grade solar energy, and stability could be assured. And it could improve the temperature of the water in solar water heaters in rainy summers, transition seasons and winters. The system had significance for energy conservation and environmental protection.

  1. Grouped exposed metal heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  2. Grouped exposed metal heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  3. Analysis of liquid and gaseous oxygen influence on the combustion flow field of air heater%液氧与气氧对空气加热器燃烧流场的影响分析

    Institute of Scientific and Technical Information of China (English)

    冯军红; 沈赤兵; 赵芳

    2012-01-01

    The evaluation index, such as spray combustion, gas mixing and nozzle non-uniformity of air heater based on the combustor of liquid rocket engine, was studied with numerical simulation. The difference between the injectors with ethanol/liquid oxygen/air and the injectors with ethanol/gaseous oxygen/air in the combustion flow field was discussed and analyzed. Two cases were designed by changing the characteristic length of combustor, and the performance of air heaters were investigated by numerical simulation. The results show that, the flame structure is affected obviously by the phase of oxygen. The length of flame with liquid oxygen is larger than that of gaseous oxygen. More hot gas fills in the recirculation zone in the forepart of combustor with gaseous oxygen case, which increases the gas temperature near the faceplate, and worsens the thermal environment on the faceplate. The high quality flow field on the nozzle exit is obtained with the designed air heater. The characteristic length of air heater with gaseous oxygen is at least a quarter less than that of air heater with liquid oxygen to keep the good uniformity of nozzle exit.%针对一种基于液体火箭发动机燃烧室结构的空气加热器,采用数值仿真技术研究了加热器内部喷雾燃烧、燃气掺混以及出口流场分布等参数.分析对比了采用酒精/液氧/空气与酒精/气氧/空气两种不同氧化剂物态三组元同轴直流式喷嘴所得到的燃烧流场的区别,并通过改变燃烧室特征长度,分析了两种计算工况的加热器的性能差异.结果表明,喷入氧化剂的物态对燃烧流场影响较大,采用液氧喷嘴的火焰较长,气氧喷嘴的火焰分布较宽,且相对于液氧喷嘴,气氧喷嘴的燃烧室前端回流区由于掺混较多的燃气,导致喷注面板附近燃气温度较高,面板承热压力较大.设计的加热器均可保证两种喷嘴的出口流场品质较高,在保证流场出口品质的原则上,气氧喷

  4. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  5. Feedwater heater workshop proceedings

    International Nuclear Information System (INIS)

    The March 13-14, 1979 EPRI sponsored workshop on design, operation and maintenance problems with nuclear feedwater heaters identified a large number of significant technical areas of concern. The reported problems relate to nearly all facets of feedwater heater technology. In particular, hydrometallurgical problems such as stress corrosion of stainless tubing, erosion/corrosion wear of tube-tubesheet joints, and flashing related tube erosion at the entrance to the drain cooler region were reviewed in depth. Shortcomings in current design standards and design specifications were also discussed. Solutions to specific technical problems such as mechanics of flow induced vibration failures, improved synthesis of feedwater heater orientation with plant layout, and drain outlet piping design were presented. A list of important technical problems requiring additional research and development for improved design guidelines was developed. The proceedings contain all edited material of archival quality developed in this workshop

  6. 欧盟空气源热泵(静态)热水器生态设计测试研究%Study of the Test about Ecodesign of Air Source Heat Pump (Static) Water Heater in European Market

    Institute of Scientific and Technical Information of China (English)

    马洁丹; 臧松彦

    2015-01-01

    本文结合法规EU No.812/2013、 EU No.814/2013和标准EN 16147:2011对空气源热泵热水器的ERP测试方法和要求进行分析和总结,并提出测试过程中的各个注意事项,以便读者更好了解新法规对热泵能效的测试要求。%This paper analyzed and summarized the ERP test of Air source heat pump water heater, with the code of EU No.812/2013, EU No.814/2013 and the standard of EN 16147: 2011, and brought forward notice of the test, for the reader knowing more about the energy efficiency test of heat pump.

  7. Coaxial Electric Heaters

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  8. Experimental study on small -scale air source heat pump water heaters energy efficiency%小型空气源热泵热水机组实验研究

    Institute of Scientific and Technical Information of China (English)

    刘荣; 陶乐仁; 高立博; 薛维超; 张玲玲; 成简

    2011-01-01

    针对目前空气源热泵热水器存在的问题,建立了以制冷剂R134A为工质的实验台进行实验研究,在不同的环境温度、供水温度的不同、制冷剂的种类、制冷剂流量的大小、制冷剂的充注量的多少、换热器和压缩机及节流装置等因素影响下得出数据.通过分析空气源热泵的工作原理和实验装置,提出了提高空气源热泵热水器性能的优化措施,为设计高效热泵热水器提供了可供参考的实验数据.%Based on th current problems for air source heat pump water heater, a test table used R134A as refrigerant was established. The experimental data were obtained under the influences of such factors as ambient temperature, water temperature, kind of refrigerant, refrigerant flow rate, the charge of refrigerant, heat exchanger, compressor and the throttle device. Through the study of the working principle for air source heat pump and the achievement of experimental setup, the measurements to improve the performances of air source heat pump were proposed.

  9. Throttling Characteristic Analysis of Air Source Pump Water Heater%空气源热泵热水器节流特性分析

    Institute of Scientific and Technical Information of China (English)

    杨礼桢; 王雷; 王劲柏

    2013-01-01

      在MATLAB平台上,通过编程建立了空气源热泵热水器稳态参数模型,在模拟研究的基础上对热力膨胀阀的节流特性进行了探讨,研究结果表明在环境温度过高或冷凝温度过低时,膨胀阀对热泵系统性能的提高存在了制约。通过对比分析,提出采用膨胀阀并联装置,能较好的拓宽热泵热水器的运行工况,提高系统的制热性能。%In this paper, a steady-state distributed parameter model of small heat pump water heater is built with MATLAB software. Aim at analyzing the constraining characteristics of the thermostatic expansion valve based on simulation. The results show that: when the ambient temperature is too higher or the condensing temperature is too lower, the expansion valve would restrict the increase of the heat pump water heater’s performance. Through comparing and analyzing, a parallel expansion valve is proposed, it can broaden the heat pump’s operating conditions and improve the system’s performance.

  10. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  11. Integrated Solar Water Heater

    OpenAIRE

    Yassien, Husam Naufal Saleh

    2012-01-01

    ABSTARCT: Nowadays, water heating by using the solar energy has been spread all over the world. The studies on solar water heating system were stimulated the researchers due to the scarcity of natural energy resources, like fossil fuel and natural gas as well as the rising and rapidly fluctuating prices for these resources. The purpose of this study is to design and manufacture a new storage domestic electric water heater with solar collector in North Cyprus. In this project, the normal cyli...

  12. 600MW空预器跳闸引起的灭火分析与对策%Analysis of the Causes and Prevention of 600MW Air Heater Trip

    Institute of Scientific and Technical Information of China (English)

    李东

    2015-01-01

    某厂单台空预器在长时间运行中,联轴器对轮与减速机Ⅰ级齿轴焊接处开裂,空预器减速机与主电机脱开。辅助电机启动后,运行状态反馈失误。由于状态有误引起RB动作,从而导致一次风机出力偏大引起灭火。针对该事故,提出防止空预器改造方案,并制定了防范措施,保证了机组安全运行。%In a single plant air preheater in the long run the air heater trip in the high and low unit load, bring challenges to the safe operation of unit. Analyzes through the working principle and structures of induced draft fan, the performance curve of parallel operation fans, stall and surge generated process, write leading technical measures of induced draft fan. Practice proves avoid events of reduce the unit output and boiler fire extinction. To provide ref⁃erence for the stable operation of the same unit.

  13. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  14. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  15. Experimental investigation of the effect of variously-shaped ribs on local heat transfer on the outer wall of the turning portion of a U-channel inside solar air heater

    Science.gov (United States)

    Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt

    2016-03-01

    In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.

  16. Performance Research of Air-source Heat Pump Water Heater Using R427a%R427a应用于空气源热泵热水器的性能研究

    Institute of Scientific and Technical Information of China (English)

    王健; 周全; 翁文兵; 王丰霞

    2011-01-01

    A variety of typical experiments are carried out on the air resource heat pump water heater using R134a, R427a, and R22 under different operating conditions. Suction and discharge pressure, suction and discharge temperature, compressor input power, thermal coefficient of performance has been analyzed. The validation of various parameters and the trendare obtained. In addition, under the condition of 5 centigrade temperature difference in heat water inlet and outlet, the temperature of heat water inlet increases per 5 centigrade, heat capacity will drop by 2 to 3 percent;COP will drop by 10 to 11 percent; consumption power will rise by 11 to 13 percent; suction and discharge temperature will increase by 3 to 4 percent and 10 to 15 percent; suction and discharge pressure will increase by 5 percent and 10 percent. It provides the references for the design,use and the refrigerant selection of the heat pump water heater.%对制冷剂R427a在空气源热泵热水器上的应用做了研究,并与常用制冷剂R22和R134a在典型工况下做了对比分析,分析了3种制冷剂的吸排气压力、吸排气温度、压缩机功率、制热量、性能系数随环境工况变化的关系,得出了各特性参数的变化规律;另外在5℃进出水温差条件下,热水进水温度每上升5℃(如50℃进水,55℃进水,60℃进水)时,制热量下降2% ~3%;COP下降10% ~ 11%;功率上升11%~13%;吸排气压力分别上升3%~4%、10%~ 15%;吸排气温度分别上升5%、10%左右;这些为热泵热水器的设计使用及工质选用提供了参考.

  17. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  18. Visibly Transparent Heaters.

    Science.gov (United States)

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  19. Biobriefcase aerosol collector heater

    Science.gov (United States)

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles potentially including bioagents entrained in the air for detection. The system comprises collecting a sample of the air with the particles entrained in the air, directing the sample to a receiving surface, directing a liquid to the receiving surface thereby producing a liquid surface, wherein the particles potentially including bioagents become captured in the liquid, and heating the liquid wherein the particles potentially including bioagents become heated to lysis the bioagents.

  20. 78 FR 7394 - Notification of Proposed Production Activity; GE Appliances; Subzone 29C (Electric Water Heaters...

    Science.gov (United States)

    2013-02-01

    ... ranges, and air-conditioners, under FTZ procedures using certain foreign components. The current request involves the production of electric water heaters. Pursuant to 15 CFR 400.14(b) of the regulations, FTZ... (Electric Water Heaters), Louisville, KY GE Appliances, operator of Subzone 29C, submitted a notification...

  1. Tuning The Laser Heater Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  2. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  3. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Water Heaters that are effective April 16,...

  4. Thermomechanics of the granular bed T-joint water heater

    Science.gov (United States)

    Teplitskii, Yu. S.; Belonovich, D. G.

    2012-11-01

    On the basis of the heat transfer model taking into account the radiative transport the temperature distribution and the resistance of the water heater with a granular packing having two independent air inlets have been investigated. The generalized dependence for calculating the resistance of the granular bed has been obtained.

  5. Quality control of radiant heaters

    OpenAIRE

    González Fernández, Daniel Aquilino; Madruga Saavedra, Francisco Javier; Quintela Incera, María Ángeles; López Higuera, José Miguel

    2005-01-01

    Based on infrared thermography, a non-destructive testing and evaluation (NDT&E) procedure is proposed for defects assessment on radiant heaters. Under a short electrical excitation, an infrared camera captures the cooling process of the heaters. Breaking the thermographic images down not only makes easiest the location of defects but it also allows their classification. Several kinds of defects have been taken into account: lack of supporting brackets; defects originated by a deficiency in t...

  6. Comparative Study and Design of Solar Water Heater

    Directory of Open Access Journals (Sweden)

    K.Sainath,Y.krishna, Mohd Salahuddin, Mohammed Siddique Ahmed, Md Ismail, Syed Rahman,Mohammed Noman, Mohd Khaleel Ullah, Faraz Ur Rehman Azhar, Mohd Moizuddin,Mohd Riyaz Uddin.

    2014-10-01

    Full Text Available A solar water heater design is made from the plastic bottles of thumps up & plastic pipe(p.v.c run up by the centre of each solar heater in a row of bottles, these bottles act as glazing & hold reflectors made from the black paint. Solar water heaters are made of two basic parts: a solar collector that gathers radiant energy and a storage tank for the hot water inside. These systems are used to heat water for swimming pools, as well as for domestic cooking and cleaning needs. A system in which the sun’s heat is gathered by a solar collector and used to increase the temperature of a heat-transfer fluid , which flows through the pipes in the collector; the heat contained in this fluid then is conveyed and transferred to the water to be heated. Solar water heaters use the solar energy from the sun to generate heat (not electricity which can then be used to heat water for showering, space heating, industrial processes or even solar cooling. However, the research shows that the electric water spends about the 25% of its home energy costs on heating water. If we make a water heater without the collector then we can save a lot of money solar water heater do not polluted if one investing on SWH avoids carbon dioxide nitrogen oxide and sulphur dioxide and the other air pollution wastes and the utility generates power on your bum fuel to heat your household water when SWH replaces the an electric water heater. This electric displaced over 20 years replaced more than 50 tones avoided c02 emissions alone co2 traps heat in the upper most atmosphere thus, contributing to the ‘Green House Effect

  7. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  8. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Abhishek Saxena; Varun Goel

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  9. 替代制冷剂空气源热泵热水器性能的理论与实验研究%Theoretical and Experimental Study on Performance of Air Source Heat Pump Water Heater with Alternative Refrigerants

    Institute of Scientific and Technical Information of China (English)

    周全; 樊海彬; 贾磊; 夏玲; 陈熙; 李世锁

    2013-01-01

    Theoretical analysis and experiments were carried out on the air resource heat pump water heater using R22, R427a and R134a under different operating conditions. The change law of suction and discharge pressure, suction and discharge temperature, compressor power, heat capacity and COP with the environment temperature were obtained. The research results show that, by using R427 to replace R22 in the heat pump, the heat capacity decreases by 9%~10%, COP decreases by 3%~4%, power decreases by 5%~6% ,suction pressure decreases by 15%~20%, discharge pressure decreases 3%~5%, suction temperature rises 1oC~3oC and discharge temperature decreases by 5oC~8oC. By using R134a to replace R22 in the heat pump, the heat capacity decreases 30%, and COP keeps the same.%在热泵热水器使用的典型工况下对R22、R427a、R134a的循环特性进行了理论分析,并在某机组上开展R22、R427a、R134a的直接充注对比实验,研究三种制冷剂的吸/排气压力及温度、压缩机功率、制热量、性能系数随环境温度变化的关系,得出了各特性参数的变化规律;实验表明,R427a与R22相比,制热量下降9%~10%,功率下降5%~6%,COP下降3%~4%,吸气和排气压力分别下降15%~20%、3%~5%,吸气温度上升1℃~3℃,排气温度下降5℃~8℃。R134a与R22相比,制热量下降30%,COP持平。

  10. Quench Heater Studies for the LHC Magnets

    CERN Document Server

    Rodríguez-Mateos, F

    2001-01-01

    About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made of stainless steel partially plated with copper to reduce their resistance and to allow for the connection of quench heaters in series. The strips are embedded in between two polyimide foils. The initial power density and the current decay time determine the quench heater effectiveness. Since only one type of heater power supply will be available, the copper plating cycle is adapted for the various magnet types to keep the resistance of the heater circuit constant. Different quench heater designs have been tested on various prototype magnets to optimise the copper-plating cycle and the electric insulation of the heater strip. This paper summarises the experimental results and computations that allowed to finalise the h...

  11. A Novel Radiative Substrate Heater

    OpenAIRE

    CEYLAN, Abdullah; Kaynak, Erdal; ÖZCAN, Şadan; Firat, Tezer

    2004-01-01

    In this work, we have developed a new low cost radiative substrate heater for deposition of high-Tc superconducting thin films. It has all the features required for the preparation of high quality superconducting thin films. It is possible to reach ~ 800 °C substrate temperature with it by using only one 250 W halogen projector bulb.

  12. 太阳能复合能源空调热水系统中热泵系统换热性能的试验研究%Experimental Research on the Thermodynamic Performance of Heat Pump in Solar-assisted Air-conditioner with Water Heater

    Institute of Scientific and Technical Information of China (English)

    李晨; 郑祖义; 陈焕新; 金听祥

    2011-01-01

    通过将太阳能热水系统和空调热泵系统结合,设计出太阳能复合能源空调系统.针对该新型系统中的热泵空调热水子系统进行研究,在标准工况下,分别对该系统的3种模式下的换热性能进行试验,数据分析结果表明该系统比传统系统更为高效的,其单独制冷模式下系统最高COP可达5.34,单独热水模式下的静态加热系统COP可达5.78,制冷兼热水模式下系统COP可达4.5.%The research presents a solar-assisted air-conditioner with water heater in which solar water heater and heat pump air-conditioner are combined. The performance of heat pump in the new system is experimentally investigated. The performance of heat pump working at 3 modes under standard condition is measured. The results show that, the COP is 5.34, 5.78 and 4.5 at cooling mode, heating mode,and cooling-heating mode, respectively, which indicates that the new system is more effective than traditional systems.

  13. 欧盟空气源多功能热泵能效及生态设计法规研究%Study of Requirements About the Energy Efficiency and Eco-design of Air Source Heat Pump Combination Heater in European Market

    Institute of Scientific and Technical Information of China (English)

    肖彪; 臧松彦; 马洁丹

    2015-01-01

    This paper studies the requirements about the eco-design and energy label of air source heat pump combination heater, with the regulation of EU No.811/2013, EU No.813/2013. And it summarizes the test conditions of the standard of EN 16147:2011 and EN 14825:2013. It helps readers know better about the European energy efficiency requirements of air source heat pump combination heater.%针对欧盟空气源多功能热泵生态设计法规和能源标签法规,本文结合法规EU No.811/2013、EU No.813/2013进行了研究分析,并结合EN 14825-2013和EN16147-2011对相关的测试条件进行总结。以便读者更好了解空气源多功能热泵能效的法规要求。

  14. A NUMERICAL SIMULATION ON HEAT TRANSFER AND FLUID FLOW IN A GLASS TUBE OF ALL-GLASS EVACUATED TUBULAR SOLAR AIR HEATER%全玻璃真空管空气集热器管内流动与换热的数值模拟

    Institute of Scientific and Technical Information of China (English)

    王志峰

    2001-01-01

    目前,对于太阳能集热器的数值模拟大多是基于一维、非稳态的简化模型之上。该文采用三维数学及物理模型对插管提热系统的流动与换热情况进行了数值模拟。并对模拟结果进行了实验验证。%A study on heat transfer and air flow in a tube of a ll-glassevacuated solar air heater was presented.The three-dimension physical a nd mathematical models have been used.The computational results are in good agre ement with the experimental ones.

  15. Improved Air-Treatment Canister

    Science.gov (United States)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  17. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  18. Biogas Digester with Simple Solar Heater

    Directory of Open Access Journals (Sweden)

    Kh S Karimov

    2012-10-01

    persamaan tenaga seimbang untuk jisim statik cecair yang dipanaskan; parameter penebat haba tangki metana telah dikira. Pencerna biogas terdiri dari tangki metana yang dilengkapkan dengan penyerap pemanas beralik untuk menggunakan tenaga solar bagi memanaskan sluri yang disediakan dari bahan buangan organik yang berbeza (najis, sampah, sisa makanan,etc. Tangki metana telah diisi sehingga 70% isipadu buangan oraganik dari institut GIK, pertamanya adalah sampah dan keduanya adalah najis lembu. Pencerna telah dikaji bagi tempoh tiga bulan (Oktober-Disember, 2009 dan dua bulan (Februari-Mac, 2010. Kejadian radiasi solar terhadap penyerap, suhu sluri dan suhu ambien telah diukur. Didapati suhu penahanan adalah empat minggu dan dua minggu masing-masing dengan menggunakan sampah sahaja dan sampah dengan najis lembu, dan kuantiti biogas dihasilkan adalah masing-masing 0.4 m3 and 8.0 m3. Sebagai tambahan, skema peningkatan biogas untuk peranjakan karbon dioksida, hidrogen sulfida dan wap air dari biogas dan penukaran tenaga biogas kepada tenaga elektrik juga dibincangkan.KEYWORDS:  solar biogas; digester; methane tank; reverse absorber; built-in heater; solar energy

  19. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  20. Nuclear boy and magic heater

    International Nuclear Information System (INIS)

    This book consists of 14 chapters. These are the title of each one nuclear boy and witch, who is the nuclear boy?, unfolded secret of atom, relationship between a nucleus and neutron, chain reaction of uranium atom, movement of misuse nuclear as weapons, birth of magic heater nuclear reactor, building of a manufacturing plant of an atom bomb, the first nuclear test, hydrogen bomb and a cobalt bomb, accident and stability of nuclear power plant and a great dream of Nuclear boy.

  1. Near-surface heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, L.D.; Cuderman, J.F.; Krumhansl, J.L.; Lappin, A.

    1978-12-31

    Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments.

  2. Near-surface heater experiments

    International Nuclear Information System (INIS)

    Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments

  3. In situ borehole heater test at the KAERI Underground Research Tunnel in granite

    International Nuclear Information System (INIS)

    Highlights: • An in situ heater test was carried for investigating TM behavior in granite. • When the heater temperature was 118 °C, the rock temperature at 0.3 m was 50 °C. • The heater was installed at disturbed rock zone, which is 0.5∼1.5m from the wall. • The influences of seasonal temperature variation and heat convection were observed. • The thermal stress increased almost linearly up to 5 MPa. - Abstract: An in situ borehole heater test was carried out in an underground research tunnel at a shallow depth in granite. During the test, the heater temperature was increased to 90 °C to simulate the thermo-mechanical behavior of crystalline rock under normal underground high-level radioactive waste repository conditions. The air, wall and rock temperatures were measured over a period of about four years. At the end of the test, the heater temperature was increased to 118 °C to simulate abnormal overheating conditions. The peak temperatures at the observation holes located at 0.3 m and 0.6 m from the heater hole were approximately 50 °C and 37 °C, respectively. The temperature measurements allowed observations of the effects of rock joints and heat convection through the tunnel wall on the rock temperature distribution. When the power was shut down, the rock temperatures and stress returned rapidly to the original rock temperature

  4. Laser Heater and seeded Free Electron Laser

    OpenAIRE

    Dattoli, G.; Petrillo, V.; E. Sabia

    2014-01-01

    In this paper we consider the effect of laser heater on a seeded Free Electron Laser. We develop a model embedding the effect of the energy modulation induced by the heater with those due to the seeding. The present analysis is compatible with the experimental results obtained at FERMI displaying secondary maxima with increasing heater intensity. The treatment developed in the paper confirms and extends previous analyses and put in evidence further effects which can be tested in future experi...

  5. Parallel heater system for subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  6. SINGLE HEATER TEST FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied

  7. ENERGY EVALUATION OF HEATER-TREATER AT CANASÍ OIL BATTERY

    Directory of Open Access Journals (Sweden)

    Osvaldo Gozá

    2014-03-01

    Full Text Available In this paper the results obtained in the energy evaluation of the heater-treater at Canasí oil battery in the first semester of 2010 are presented. The evaluation considered the calculation of separation efficiency, heat loss to ambient percent, air excess percent and thermal efficiency by direct and indirect methods. For the solution of mass and energy balances a Microsoft Excel workbook was developed, which facilitated to take into account in the evaluation other equipment in the plant such as the oil heat exchanger and the water cooler. The results showed that the heater-treater has a high hydrodynamic efficiency, but a low thermal efficiency, being gas sensible heat loss the biggest one

  8. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  9. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  10. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  11. Subsurface connection methods for subsurface heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  12. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  13. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  14. Varying properties along lengths of temperature limited heaters

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX); Ginestra, Jean Charles (Richmond, TX)

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  15. Feedwater heaters functional analysis at Embalse NGS

    International Nuclear Information System (INIS)

    This study is concerned with the analysis or feedwater heaters, to detect actual failure or a bad trend beyond acceptable operating limits. When these situations are identified, preventive or corrective maintenance must be done. 2 tabs., 14 figs

  16. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm2, 9 cm2 ,and 3 cm2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  17. STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER

    Directory of Open Access Journals (Sweden)

    J. W. JEONG

    2015-12-01

    Full Text Available It is essential to optimize HVAC (Heating, Ventilation and Air-Conditioning system for a thermal plant or an electric vehicle since it has a significant effect on the thermal efficiency. PTC (positive temperature coefficient heaters are often used for a heating system and the power module of the PTC heaters, IGBT (insulated gate bipolar mode transistor, requires thermal management. In this study, in order to maximize the cooling performance for IGBT, a novel method that uses forced convection inside the HVAC duct with heat sinks was developed. In addition, heat sinks were optimized in terms of IGBT junction temperature and heat sink weight by 3-dimensional CFD (Computational Fluid Dynamics simulation. The results show that the junction temperature of IGBT for 5.6kW PTC heater can be maintained at about 335K.

  18. The effects of operating conditions on emissions from masonry heaters and sauna stoves

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, Jarkko; Hytoenen, Kati; Sippula, Olli [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Jokiniemi, Jorma [Fine Particle and Aerosol Technology Laboratory, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)]|[VTT, Technical Research Centre of Finland, Fine Particles, PO Box 1000, 02044 VTT, Espoo (Finland)

    2009-03-15

    Emissions from masonry heaters and sauna stoves were studied. In the sauna stove the production of organic gaseous carbon (OGC) at 10 gC kg{sup -1} (per kilogram of fuel), carbon monoxide (CO) at 55 g kg{sup -1}, fine particle mass (PM{sub 1}) at 5 g kg{sup -1} and number emissions (N) at 1.8 x 10{sup 15} kg{sup -1} was higher than in other measured appliances. In a modern technology masonry heater with a unique grate, the emissions were very low: 0.4 gC kg{sup -1} OGC, 14 g kg{sup -1} CO and 0.7 g kg{sup -1} PM{sub 1}. Conventional masonry heaters, using small logs, clearly produced higher emissions when compared to using large logs. Doubling the fuel load caused emission factors to increase by up to 4- times (OGC), except for the number emission, which decreased from 4.0 x 10{sup 14} to 2.0 x 10{sup 14} kg{sup -1}. From the conventional masonry heater 90% of the PM was emitted during the firing phase. Its combustion process is different to that in stoves or conventional open fireplaces. The insufficient supply of air, due to too fast pyrolysis, and increased ash release, due to the high combustion temperature, are the main parameters which cause high particle and gas emissions in masonry heaters and sauna stoves. (author)

  19. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  20. Analysis of using air-source heat pump water chiller-heater units in the cold regions%空气源热泵冷热水机组在寒冷地区应用的分析

    Institute of Scientific and Technical Information of China (English)

    马最良; 杨自强; 姚杨; 喻银平

    2001-01-01

    针对空气源热泵冷热水机组在寒冷地区冬季使用时结霜、热效率低等问题,提出一种双级热泵系统,即由空气源热泵冷热水机组提供10~20 ℃温水,作为水源热泵的低位热源,组成水源热泵供热系统。分析了这种系统的技术经济性,认为该系统是可行的,具有节能和环保意义。%imed at solving frosting and low heating efficiency of heat pumps in cold regions, puts forward a twin heat pumps heating system that consists of an air source heat pump and a water source heat pump. The air source heat pump supplies 10-20 ℃ water as low grade heat source of the water source heat pump. Analyses the technical and economical features of the system. Considers that the system is practicable and has energy conservation and environment protection effects.

  1. 空气源热泵在学生公寓的热水改造工程中的应用%Application of Air Source Heat Pump Water Heater to Reconstruction Project of Domestic Hot Water in Student Apartment

    Institute of Scientific and Technical Information of China (English)

    何绪春

    2012-01-01

    The domestic water-heating system with gas-fired boiler of a college apartment in Chongqing was discussed.The reconstruction plans concerning air-source heat pump heating system and solar assisted air-source heat system were processed and discussed respectively after the analysis on daily hot water load.Compared with the original water-heating system,the annual operating costs of solar heating systems would be the lowest.%以重庆某学校采用燃气锅炉房作为热源的洗浴热水加热系统作为研究对象。对热水系统日用热量进行了分析。对原加热系统提出两种改造方案:空气源热泵加热系统、太阳能辅助空气源加热系统,探讨了这两种加热系统的系统流程,与原加热系统的年运行费用进行了比较,太阳能加热系统的年运行费用最低。

  2. Economic analysis of residential solar water heaters

    Science.gov (United States)

    Carlock, J.; Overton, R.

    1980-09-01

    A residential solar water heater, cost and performance information, and monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the payback period for any nontypical solar water heater are described. This calculated payback period is shown to be related to the effective interest rate that the purchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system can provide.

  3. Solar Air Collectors: How Much Can You Save?

    Science.gov (United States)

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  4. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  5. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  6. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... Conservation Program for Consumer Products Other Than Automobiles,'' including residential water heaters... to consider amended energy conservation standards for residential water heaters, direct heating... conservation standards for residential water heaters, direct heating equipment, and pool heaters on March...

  7. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  8. Process and device for replacing heater in PWR pressurizer

    International Nuclear Information System (INIS)

    To assure the tight fixation of replacing heater on a pressurizer penetration sleeve, a gas metal-arc welding single pass is executed. A tubular shaft is fixed over end of heater projecting from penetration sleeve. Over shaft is fixed tubular support for the torch which can rotate about axis of support axis heater. Welding torch and welding wire feeder roll are rotated in synchronisation by appropriate motors. Weld is made in single pass round periphery of heater and penetration sleeve

  9. 46 CFR 119.320 - Water heaters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION...

  10. 49 CFR 393.77 - Heaters.

    Science.gov (United States)

    2010-10-01

    ... failure of the fuel lines. (5) Operating controls to be protected. On every bus designed to transport more.... (7) Electrical apparatus. Every heater employing any electrical apparatus shall be equipped with electrical conductors, switches, connectors, and other electrical parts of ample current-carrying capacity...

  11. Infrared heater arrays for warming grazingland field plots

    Science.gov (United States)

    In order to study the likely effects of global warming on rangeland and other ecosystems in the future, we developed arrays of infrared heaters that can produce uniform warming across 3-m-diameter field plots. The efficiency of the heaters was higher than that of the heaters used in most previous in...

  12. MATHEMATICAL AND INFORMATION SUPPORT FOR CALCULATION AND DESIGN OF TUBE GAS HEATERS LOCATED IN STRUCTURES

    Directory of Open Access Journals (Sweden)

    CHORNOMORETS H. Y.

    2016-02-01

    Full Text Available Raising of problem. For the design and construction of tube gas heaters in building structures to need solve the problems of analysis and synthesis of such heating system. The mathematical model of this system is consists of: mathematical model of the tube gas heater, mathematical model of heat distribution in the building structure and corresponding boundary conditions. To solve the tasks of analysis and synthesis must be appropriate mathematical and information support. Purpose. The purpose of this paper is to describe the developed mathematical and information support that solve the problems of analysis and synthesis of heating systems with gas tube heaters, located in building constructions.Conclusion. Mathematical support includes the development of algorithms and software for the numerical solution of problems analysis and synthesis heating system. Information support includes all the necessary parameters characterizing the thermal properties of materials which used in the heating system, and the parameters characterizing the heat exchange between the coolant and components of the heating system. It was developed algorithms for solving problems of analysis and synthesis heating system with tube gas heater located in structures to use evolutionary search algorithm and software. It was made experimental study and was obtained results allow to calculate the heat transfer from the gas-air mixture to the boundary surface of the building structure. This results and computation will provide full information support for solving problems of analysis and synthesis of the heating system. Was developed mathematical and software support, which allows to solve the problems of analysis and synthesis heating systems with gas tube heaters, located in building structures. Tube gas heaters located in the building structures allows with small capital expenditures to provide space heating. Is necessary to solve the problems of analysis (calculation and

  13. Water loss from the skin of term and preterm infants nursed under a radiant heater.

    Science.gov (United States)

    Kjartansson, S; Arsan, S; Hammarlund, K; Sjörs, G; Sedin, G

    1995-02-01

    The rate of evaporation from the skin (g/m2/h) was measured in 12 full-term and 16 preterm infants (gestational age 25-34 wk) both during incubator care and when nursed under a radiant heater. The method for evaporation rate measurement is noninvasive and based on determination of the water vapor pressure gradient close to the skin surface. Measurements were first made with the infant nursed in an incubator with a controlled environment with respect to humidity, temperature, and air velocity. The measurements in the term infants were performed at an ambient relative humidity (RH) of 50%, and in the preterm infants first at 50% and subsequently at 30-40%. Evaporation rate was then measured with the infant nursed under a radiant heater. In term infants, mean evaporation rate was 3.3 g/m2/h during incubator care (RH 50%) and 4.4 g/m2/h during care under the radiant heater. In preterm infants, the corresponding values were 15.5 g/m2/h in the incubator at RH 50%, 16.7 g/m2/h at RH 30-40%, and 17.9 g/m2/h under the radiant heater. It is concluded that the evaporative water loss from the skin depends on the ambient water vapor pressure, irrespective of whether the infant is nursed in an incubator or under a radiant heater. The higher rate of evaporation during care under a radiant heater is due to the lower ambient water vapor pressure and not to any direct effect of the nonionizing radiation on the skin.

  14. Analysis Approach to Improve Star Rating Of Water Heater

    Directory of Open Access Journals (Sweden)

    Sujata Dabhade

    2014-07-01

    Full Text Available Electric Water Heaters are widely used all over the world that can be categorized in two types i.e. Instant Water Heaters & Storage type Water Heaters. The energy consumption for 6 liter water heaters is much higher in the storage type of water heater. As energy is an important factor for economic development of country, therefore there is need to save the energy which implies the focus to use Storage type Water Heaters. In 6 Liter water heater, Existing model converting from 4 star rating to 5 star rating by thermal analysis & insulation. After the theoretical calculation of thickness of glass wool is the practical testing of product with BEE norms & got results for 5 Star Calculation. Finally we are doing the thermal analysis for theoretical & practical verification of the product

  15. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  16. An electron beam-heater with a broad-area plasma cathode

    International Nuclear Information System (INIS)

    An electron-beam heater with a broad-area plasma cathode was designed for thermal treatment of large surfaces in vacuum. Using the plasma electron source of broad cross-section beams instead of a hot-cathode gun generating thin scanning beams allows simultaneous heating all the surface as well as lengthening the service life and raising the reliability of the heater. A broad-area emitting plasma surface is produced in a special electrode cavity by injection into it, through a small hole, of charged particles from a reflex discharge with cold electrodes. Such a principle of design of the plasma cathode allows to obtain an electron beam of the required current density in the pressure range of 10-2 to 1 Pa. The heater can be operated with He, Ar, air and other gases. Using a multiaperture accelerating system comprising emitting and accelerating electrodes, an electron beam up to 150 mm in diameter with an energy up to 15 keV, a current up to 0.5 A, and a nonuniformity of the cross-sectional distribution of the current density not more than +- 6% on the area of 100 cm2 could be generated. The efficiency of the heater at the accelerating voltage of 11 to 13 kV equals to about 90%. (author)

  17. AWSWAH - the heat pipe solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1986-01-01

    An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

  18. Improving the Gas Instantaneous Water Heaters Performances

    Directory of Open Access Journals (Sweden)

    Nasir Kloub

    2005-01-01

    Full Text Available This study presents a study of a theoretical and practical investigation of the gas Instantaneous (Tankless water Heaters performance. The results allow us to obtain realistic values of the control system in the various capacities gaseous flowing water heaters. The objective of this work is to study the operation of the plans in the field of controlling and checking low capacity gaseous flowing water in order to choose the proper plan of the logical values and measures for these equipments that may be used in industrial conditions. Also results of the work proved to be accurate. A design of the control system was made. The results of the practical experiment of the control system were similar to the arithmetic results.

  19. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  20. Water heaters subject to new regulations.

    Science.gov (United States)

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more. PMID:25004554

  1. Tubular electric heater with a thermocouple assembly

    International Nuclear Information System (INIS)

    This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube

  2. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  3. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Design and thermodynamics analysis of novel double-pipe solar moderately high-temperature air heater based on CPC collector%基于CPC新型套管式太阳能中高温空气加热装置设计及其热力学分析

    Institute of Scientific and Technical Information of China (English)

    肖红升; 王登锋

    2011-01-01

    A double-pipe solar moderately high-temperature air heater with high efficiency based on CPC collector was put forward.The principle and the designing of the solar apparatus were introduced prin-cipally.After analyzing the radiation loss of the vacuum tube within the apparatus, the approximate relation between emissivity and temperature from 0 to 300℃ was achievedAfter evaluating the thermal resistance between the vacuum tube and the outer pipe of the double-pipe, the thermal coefficient using the outer pipe surface as the benchmark was achievedAfter studying the thermal resistance between the inner pipe and the outer pipe and the flow resistance in the inner pipe of the double-pipe, the thermal coefficient and the pressured in the inner pipe were calculated.All of the above thermodynamics analyses provide the reliable basis of the design process.%设计了一种高效、中高温的基于CPC的新型套管式太阳能空气加热装置,重点介绍了该系统的基本原理及装置设计.通过对真空管辐射损失分析获得了真空管在(0~300)℃范围内的发射率与温度近似关系;通过对真空管到套管外管之间的热阻估算,获得了以套管外表面为基准的传热系数表达式;通过对套管内管与外管间的传热热阻和套管内部流动阻力研究,计算得出套管内部的传热系数和工质在套管内工作时的压力损失.以上的热力学分析研究为该系统的设计提供了可靠的依据.

  5. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    Energy Technology Data Exchange (ETDEWEB)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  6. Environmental aspects of the use of materials for solar water heaters

    International Nuclear Information System (INIS)

    The study on the title subject has been carried out in order to apply the results in new designs and to improve the production of solar water heating systems. Attention is paid to solar water heaters that are under development and solar water heaters that are commercially available in the Netherlands. Use has been made of a IVAM-developed product analysis method. For seven solar water heater concepts, that were on the market or under development in the Netherlands in 1992, the applied amounts of materials have been inventorized. Data on the environmental effects of the production of these materials are outlined and aggregated on the level of the components and the systems. Based on those data, environmental profiles are drafted, comprising 'effect scores' on 9 environmental criteria. However, the environmental 'effect scores' are not reliable enough to determine the most important factors in order to identify options to reduce the negative environmental effects. Data on the energy consumption of the production of relevant materials are available and reliable. The solar water heaters, considered in this report, do not show large differences for that matter. It appears that the amounts of air pollution, water pollution and waste flow from the production of materials for solar water heaters are no reasons to further reduce environmental effects of the production. It is recommended to focus on the reduction of material quantities and to increase the quantity of recycled material. Also it is recommended that manufacturers of solar boilers set up a take-back system. 43 tabs., 1 appendix, 56 refs

  7. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  8. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Atlanta, GA (United States); Francisco, A. [Southface Energy Inst., Atlanta, GA (United States); Roberts, S. G. [Southface Energy Inst., Atlanta, GA (United States)

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  9. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  10. Crypto heater:a design fiction

    OpenAIRE

    Lindley, Joseph

    2015-01-01

    This proposal is to exhibit the work named Crypto Heater which is part of a design fiction [c.f 1,5,8:30] series intended to explore a near future world in which cryptographic currencies such as Bitcoin [6] have become commonplace. This work opens up space for discussion about the activities of the distributed peer-to-peer network of so-called "miners" that ensure the security of the Bitcoin network and regulate the supply of new currency in the Bitcoin economy. The physical part of the work ...

  11. The Industrial Design of Water Heater

    Institute of Scientific and Technical Information of China (English)

    张萌萌

    2014-01-01

    The design was inspired by the understanding to the fine life understanding of life, relaxed requirement and under-standing of fashion. Each link of easy life present in the water heater design. The principle of"artappliances, life"brand phi-losophy, refined and understated elegance is the core essence, is also the brand logo. In the"draw the fine life inspiration, the core brand design language create eternal artistic quality", every product tothe interpretation of home life art trend, to embody the elegant life style annotation and experience, committed to the urban elites to create exquisitelife style.

  12. Evaluation of radiofrequency dielectric heaters workers exposure.

    Science.gov (United States)

    Benes, M; Del Frate, S; Villalta, R

    2008-01-01

    Radiofrequency dielectric heaters (RFDH) are widely used in the woodworking industry for gluing laminates by applying pressure and RF heating. The workers operating such equipment remain in the vicinity of the machinery all day and can therefore be exposed to considerable levels of electric and magnetic field at RFs. This work describes the method used to measure the strength of fields generated by this particular machinery. This procedure is based on current methods cited in the literature and introduces the necessary modifications to meet this specific case. In particular, as there is often a scarcity of technical data available relating to such heaters, it is suggested that a spectrum analyser be used for measurements in the frequencies domain. On the basis of the data obtained the norms of reference are established, the instrumentation to be used in successive stages determined as well as the identification of possible sources of interference from spurious signals. Furthermore, a mapping of the field strengths is presented and the means of determining the decay curve as a function of distance. This last type of measurement is done to estimate the effectiveness of grounding the machinery. The report ends with an estimate of the exposure of workers to electromagnetic fields and also some recommendations for reducing risk.

  13. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Science.gov (United States)

    2011-05-18

    ... and Process Heaters and Commercial and Industrial Solid Waste Incineration Units AGENCY: Environmental... Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters'' and ``Standards...: Industrial, Commercial, and Institutional Boilers and Process Heaters'': Mr. Brian Shrager, Energy...

  14. Parametric excitation of whistler waves by HF heater

    Science.gov (United States)

    Kuo, S. P.; Lee, M. C.

    1989-01-01

    Possible generation of whistler waves by Tromso HF heater is investigated. It is shown that the HF heater wave can parametrically decay into a whistler wave and a Langmuir wave. Since whistler waves may have a broad range of frequency, the simultaneously excited Langmuir waves can have a much broader frequency bandwidth than those excited by the parametric decay instability.

  15. INFRARED HEATER ARRAYS FOR WARMING ECOSYSTEM FIELD PLOTS

    Science.gov (United States)

    TThere is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 de...

  16. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  17. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  18. Fluid bed solids heater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  19. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  20. Thin, Light, Flexible Heaters Save Time and Energy

    Science.gov (United States)

    2007-01-01

    The Icing Branch at NASA's Glenn Research Center uses the Center's Icing Research Tunnel (IRT) and Icing Research Aircraft to research methods for evaluating and simulating the growth of ice on aircraft, the effects that ice may have on aircraft in flight, and the development and effectiveness of various ice protection and detection systems. EGC Enterprises Inc. (EGC), of Chardon, Ohio, used the IRT to develop thermoelectric thin-film heater technology to address in-flight icing on aircraft wings. Working with researchers at Glenn and the original equipment manufacturers of aircraft parts, the company tested various thin, flexible, durable, lightweight, and efficient heaters. Development yielded a thin-film heater technology that can be used in many applications in addition to being an effective deicer for aircraft. This new thermoelectric heater was dubbed the QoFoil Rapid Response Thin-Film Heater, or QoFoil, for short. The product meets all criteria for in-flight use and promises great advances in thin-film, rapid response heater technology for a broad range of industrial applications. Primary advantages include time savings, increased efficiency, and improved temperature uniformity. In addition to wing deicing, EGC has begun looking at the material's usefulness for applications including cooking griddles, small cabinet heaters, and several laboratory uses.

  1. Reduce air, reduce compliance cost new patented spray booth technology

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, F. [JBI, Inc., Osseo, WI (United States)

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  2. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  3. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    Science.gov (United States)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  4. Comparative Study and Design of Solar Water Heater

    OpenAIRE

    K.Sainath,Y.krishna, Mohd Salahuddin, Mohammed Siddique Ahmed, Md Ismail, Syed Rahman,Mohammed Noman, Mohd Khaleel Ullah, Faraz Ur Rehman Azhar, Mohd Moizuddin,Mohd Riyaz Uddin.

    2014-01-01

    A solar water heater design is made from the plastic bottles of thumps up & plastic pipe(p.v.c) run up by the centre of each solar heater in a row of bottles, these bottles act as glazing & hold reflectors made from the black paint. Solar water heaters are made of two basic parts: a solar collector that gathers radiant energy and a storage tank for the hot water inside. These systems are used to heat water for swimming pools, as well as for domestic cooking and cle...

  5. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    Science.gov (United States)

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  6. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    OpenAIRE

    Salmi, T.; Arbelaez, D.; Caspi, S.; Felice, H.; Prestemon, S.; Chlachidze, G.; Kate, H. H. J. ten

    2014-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  7. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    CERN Document Server

    Salmi, T; Caspi, S; Felice, H; Prestemon, S; Chlachidze, G; Kate, H H J ten

    2013-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  8. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Part 430 RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters (Standby Mode and Off Mode) AGENCY... residential water heaters, direct heating equipment, and pool heaters to include provisions for...

  9. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  10. Research and development of a heat-pump water heater. Volume 2. R and D task reports

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, R.L.; Amthor, F.R.; Doyle, E.J.

    1978-08-01

    The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains the final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.

  11. Numerical study of mixed convection heat transfer in an inclined rectangular channel with extruding discrete multiple heaters

    Science.gov (United States)

    Rafi, Araf Al; Tonmoy, Md. Tanvir Akhtar; Hasan, Mohammad Nasim

    2016-07-01

    A numerical investigation ofsteady two dimensional laminar mixed convection heat transfer phenomena in an inclined rectangular channel has been performed in the present study. The upper wall of the channel under consideration is maintained at constant low temperature while the lower wall is being provided with three extruding discrete heaters. The heaters are connected with adiabatic segments and the heater surfaces are assumed to operate at constant heat flux. At inlet, a uniform fluid flow with constant low temperature has been induced. In this study, air has been considered as working fluid. Results have been presented to show how various system parameters such as: Reynolds number, Grashof number, and channel inclination angle affect the resulting flow and thermal field inside the channel as well as the heat transfer performance of individual heater. It has been found that for the pure mixed convection case (Richardson number being equal to 1.0), the better cooling performance can be acheived with increasing the Reynold number forchannel inclination angle in range of 45°-90°.

  12. Measured data from the Avery Island Site C heater test

    International Nuclear Information System (INIS)

    Over the past six years, a comprehensive field testing program was conducted in the Avery Island salt mine. Three single canister heater tests were included in the testing program. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt to heating. These tests were in operation by June 1978. One of the three heater tests, Site C, operated for a period of 1858 days and was decommissioned during July and August 1983. This data report presents the temperature and displacement data gathered during the operation and decommissioning of the Site C heater test. The purpose of this data report is to transmit the data to the scientific community. Rigorous analysis and interpretation of the data are considered beyond the scope of a data report. 6 references, 21 figures, 1 table

  13. Efficiency evaluation and consumer economic analysis of domestic water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, G.G.; Spann, D.E.

    1978-09-01

    The performances of one gas-fired and two electric storage-type water heaters were characterized experimentally as a function of water tank temperature. For both types of heaters the application of additional insulation was highly cost effective. For the gas-fired water heater the pilot burner flue losses (92% at a water temperature of 150/sup 0/F (65.6/sup 0/C)) were reduced in a cost-effective manner by either pilot-orifice restriction or flue blocking with electric ignition. In addition, an electrically powered burner, with flue modifications, increased the heat-exchange efficiency of the main burner from 72 to 85% at 160/sup 0/F (71.1/sup 0/C). The heat-loss rate per unit of bare-tank area is a useful number in assessing the energy-conservation potential of a water heater.

  14. New Home Buyer Solar Water Heater Trade-Off Study

    International Nuclear Information System (INIS)

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  15. New Home Buyer Solar Water Heater Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Symmetrics Marketing Corporation

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  16. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The current state-of-the-art co-axial swaged tantalum (Ta) heaters use magnesium oxide (MgO) insulators, which limits their operation to temperatures well below...

  17. Temperature limited heater utilizing non-ferromagnetic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar; Harold J. (Bellaire, TX), Harris; Christopher Kelvin (Houston, TX)

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  18. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  19. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  20. Performance analysis of air——water dual source heat pump water heater with heat recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  1. Water inflow into boreholes during the Stripa heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.H.; Rachiele, R.; Remer, J.S.; Carlsson, H.

    1981-04-01

    During the operation of three in-situ heater experiments at Stripa, Sweden, groundwater flowed into many of the instrumentation and heater boreholes. These flows were recovered and measured routinely. The records of water inflow indicate two origins: inflow attributed to local hydrological pressure gradients, and water migration from cracks closing under the rapidly increasing, thermal-induced stress changes. The latter component appeared as a main pulse that occurred when the heaters were turned on, and lasted about 30 to 40 days, steadily declining over the next several months, and decreasing sharply when heater power was decreased or stopped. The magnitude of the total inflow per hole ranged over more than five decades, from 0.1 to over 10,000 liters over the 500 to 600 day time periods. When plotted against the logarithm of total volume, the frequency distribution displays a normal curve dependence with a mean of approximately 10 liters. Of this amount, 1 to 2 liters of flow into 38-mm-diam boreholes accompanied an increase in applied heat load. These amounts are compatible with rock porosities of a fraction of one percent. Inflow into the 3.6 and 5.0 kW heater holes peaked within 3 to 6 days after heater turn on, then declined to zero inflow, with no further inflow measured for the remainder of the experiments. In the heater holes of the time-scaled experiment, which operated at 1.125 kW or less, the initial pulse of inflow took much longer to decay, and 7 of 8 heater holes continued to flow throughout the experiment. The packing off and isolation of a borehole some 40 m distant in the ventilation drift dramatically increased the inflow into the heater holes in one of the three heater experiments. This demonstrated the existence of permeable flow paths among a number of boreholes. The records of water inflow demonstrate the need for a thorough understanding of the nature of fluid flow and storage in fractured crystalline rock.

  2. Development of design program for small-sized gas absorption chiller/heaters

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J.I.; Kwon, O.K.; Moon, C.K. [Pukyong National University, Pusan (Korea); Yang, Y.M.; Kim, H.Y. [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-10-01

    Analysis of basic data is performed for development of small size water-cooled household absorption chiller/heater using non CFC refrigerant, analytic simulation program of air cooling performance is developed that system has 1.5-10RT of air cooling performance, we perform cycle analysis and numerical simulation. We develope a performance analysis of simulation program to perform a basic design for 1.5-10RT apparatus of small size system of development model in gas driven double effect absorption chiller/heater. The system working condition and operation limit condition is decided from the existing data which is analyzed and the conference with KOGAS. After the basic input variable and regular condition is established for heat cycle analysis, the simulation algorithm is set up and performance simulation program is coded according to the organized algorithm. The basic design of optimum system is completed from parametric study using developed simulation program and establishing the design variable range of developing object model. 20 refs., 30 figs., 9 tabs.

  3. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  4. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    OpenAIRE

    Grzegorz Czerski; Andrzej Strugała

    2014-01-01

    This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics) software was used for calcu...

  5. Engineering solutions for polymer composites solar water heaters production

    Science.gov (United States)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  6. 78 FR 14917 - Outer Continental Shelf Air Regulations Consistency Update for California

    Science.gov (United States)

    2013-03-08

    ... Surface Coating of Metal Parts and Products (Adopted 04/ 08/08) Rule 74.15 Boilers, Steam Generators and Process Heaters (Adopted 11/08/94) Rule 74.15.1 Boilers, Steam Generators and Process Heaters (Adopted 06... October 9, 2012 (77 FR 61308), EPA proposed to incorporate various Ventura County APCD air...

  7. 78 FR 59263 - Outer Continental Shelf Air Regulations Consistency Update for California

    Science.gov (United States)

    2013-09-26

    ... Control of Oxides of Nitrogen (NO X ) from Boilers, Steam Generators and Process Heaters) (Adopted 04/17... Large Water Heaters and Small Boilers (Adopted 10/17/02) Rule 361 Small Boilers, Steam Generators, and... 22, 2011 (76 FR 15898), EPA proposed to incorporate various Santa Barbara County APCD air...

  8. Structural Benchmark Testing for Stirling Convertor Heater Heads

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  9. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  10. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  11. Window-mounted auxiliary solar heater

    Science.gov (United States)

    Anthony, K. G.; Herndon, E. P.

    1977-01-01

    System uses hot-air collectors, no thermal storage, and fan with thermostat switches. At cost of heating efficiency, unit could be manufactured and sold at price allowing immediate entry to market as auxiliary heating system. Its simplicity allows homeowner installation, and maintenance is minimal.

  12. Generation of ionospheric ducts by the HAARP HF heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J A; Pradipta, R; Burton, L M; Labno, A; Lee, M C [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watkins, B J; Fallen, C [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Kuo, S P [New York University, Brooklyn, NY 11201 (United States); Burke, W J [Air Force Research Laboratory, Hanscom AFB, MA 01731 (United States); Mabius, D; See, B Z, E-mail: mclee@mit.edu [Boston University, Boston, MA 02215 (United States)

    2010-12-15

    We report an investigation of ionospheric ducts having the shape of large plasma sheets, generated by vertically transmitted HAARP HF heater waves in several experiments conducted in Gakona, Alaska. Theory predicts that O-mode heater wave-created ionospheric ducts form parallel-plate waveguides within the meridional plane, and those generated by the X-mode heater waves are orthogonal to the meridional plane. Our theoretical prediction is supported by measurements of ionosonde data (namely ionograms), range-time-intensity (RTI) plots of UHF and HF backscatter radars, as well as magnetometer data analyses. When these plasma sheets experienced ExB drifts, they were intercepted by the HAARP UHF radar and seen as slanted stripes in the RTI plots. This striking feature was also observed in our earlier experiments using the Arecibo UHF radar.

  13. Generation of ionospheric ducts by the HAARP HF heater

    International Nuclear Information System (INIS)

    We report an investigation of ionospheric ducts having the shape of large plasma sheets, generated by vertically transmitted HAARP HF heater waves in several experiments conducted in Gakona, Alaska. Theory predicts that O-mode heater wave-created ionospheric ducts form parallel-plate waveguides within the meridional plane, and those generated by the X-mode heater waves are orthogonal to the meridional plane. Our theoretical prediction is supported by measurements of ionosonde data (namely ionograms), range-time-intensity (RTI) plots of UHF and HF backscatter radars, as well as magnetometer data analyses. When these plasma sheets experienced ExB drifts, they were intercepted by the HAARP UHF radar and seen as slanted stripes in the RTI plots. This striking feature was also observed in our earlier experiments using the Arecibo UHF radar.

  14. Development of heat pipes for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1984-01-01

    Numerous heat pipes were designed, manufactured, and filled on a specially developed filling rig. Each heat pipe was incorporated into a prototype solar water heater developed for this purpose, and was tested under actual insolation conditions. An extensive testing program lasting for more than a year revealed that the heat pipes perform satisfactorily as heat transfer elements in solar water heaters. A special heat pipe featuring a compact and effective condenser configuration was also tested. It was observed to likewise exhibit isothermal behavior and hence promised potential for large scale solar applications.

  15. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  16. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  17. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Energy 10 CFR Part 430 Energy Conservation Program: Energy Conservation Standards for Residential Water... Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating... conservation standards for residential water heaters (other than tabletop and electric instantaneous...

  18. Savings on natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, Luis E. [Conicet, and Centro Atomico Bariloche e Instituto Balseiro, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina); Gonzalez, Alejandro D. [Grupo de Estudios Ambientales, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (Inibioma-Conicet), 8400 Bariloche, Rio Negro (Argentina)

    2008-07-01

    Natural gas is a relatively clean fossil fuel for space heating. However, when it is not used efficiently high consumption can become an environmental problem. In Argentina, individual balanced-flue space heaters are the most extensively used in temperate and cold regions. This furnace is a simple device with a burner set into a metal chamber, separated from the indoor ambient by an enclosing cabinet, and both inlet and outgas chimneys are connected to the outdoor ambient. In previous studies, we measured the performance of these commercial devices, and found very low thermal efficiency (in the range of 39-63% depending on the chimney configuration). The extensive use of these devices is possible due to the availability of unlimited amount of subsidised natural gas to households and businesses. In the present work, we developed a prototype with simple and low cost modifications made on commercial models, and measured the improvements on the thermal efficiency. Findings showed better infrared radiation, enhanced indoor air convection, and passive chimney flow regulation leading to thermal efficiency in the range of 75-85%. These values represent an improvement of 100% when compared to marketed models, and hence, the specific cost of the heater per unit of useful heating power delivered was actually reduced. Considering the large market presence of these furnaces in both residential and business sectors in Argentina, the potential benefits related to gas consumption and environmental emissions are very significant. (author)

  19. Experimental Analysis on Solar Desiccant Air Conditioner

    Directory of Open Access Journals (Sweden)

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-05-01

    Full Text Available The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term would be reduced the consumption of electricity used for air conditioning, reduce harmful emission and hence saving money.

  20. NORTH PORTAL - WATER HEATER CALCULATION - CHANGE HOUSE FACILITY #5008

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to determine the demand for hot water in the Change House Facility and the selection of a water heater of appropriate size in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2).

  1. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  2. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  3. Fast thermal nanoimprint lithography by a stamp with integrated heater

    DEFF Research Database (Denmark)

    Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup;

    2008-01-01

    We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...

  4. Design procedure of capsule with multistage heater control (named MUSTAC)

    International Nuclear Information System (INIS)

    A capsule with electric heaters at multistage (named MUSTAC) is a type of capsule used in JMTR. The heaters are assembled in the capsule. Supply electric current to the heaters can be independently adjusted with a control systems that keeps irradiation specimens to constant temperature. The capsule being used, the irradiation specimen are inserted into specimen holders. Gas-gap size, between outer surface of specimen holders and inner surface of capsule casing, is calculated and determined to be flatten temperature of loaded specimens over the region. The rise or drop of specimen temperature in accordance with reactor power fluctuations is corrected within the target temperature of specimen by using the heaters filled into groove at specimen holder surface. The present report attempts to propose a reasonable design procedure of the capsules by means of compiling experience for designs, works and irradiation data of the capsules and to prepare for useful informations against onward capsule design. The key point of the capsule lies on thermal design. Now design thermal calculations are complicated in case of specimen holder with multihole. Resolving these issues, it is considered from new on that an emphasis have to placed on settling a thermal calculation device, for an example, a computer program on calculation specimen temperature. (author)

  5. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William P. [Emerson Electric Co., St. Louis, MO (United States); Buescher, Tom [Emerson Electric Co., St. Louis, MO (United States)

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  6. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ...-prescribed energy conservation standards for residential water heaters. 66 FR 4474. Compliance with the... conservation standards for residential water heaters for a second time. 75 FR 20112. Compliance with the... definition of a ``water heater'' and are, therefore, not covered equipment under EPCA. 75 FR 20112, 20126...

  7. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have limited requirements? 63.7506 Section 63.7506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters...

  8. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  9. Feed water heaters - operational experience and repair possibilities

    International Nuclear Information System (INIS)

    Characteristic damaged sites are indicated for the most frequent construction types of regenerative heaters - welded U-tubes in piping galleries with water pool and tube coil type heater in header construction. In order to start from a secure foundation, 20 power plant blocks with 122 high-pressure heaters of different manufactures were evaluated on the failure causes. The plants concerned were put into operation in the year 1954 to 1966. Amongst other, the following are dealt with: material faults, leading to water-side leakages; water-side erosions due to to high water rates; steam-side erosions and corrosions; leaky welded seams between tubes and piping galleries; sealing problems of water chambers in screwed or welded design; damages on water-side components with U-tubes heaters. Possible subsequent failures in the region of the feedwater entrance head of various designs are shown and repair possibilities are discussed. There is a danger that incipient cracks occur in the region of the welded joints which are then propagated right into the basic material of the thick-walled water pools. If the incipient cracks are noticed to late, grinding out is no longer permissible and the feedwater inlet section must be discarede. Therefore it is necessary to specifically check critical sites in good time. Indications are given on this. Furthermore, possibilities to increase the operational safety are shown by using non-destructive testing (ultrasonics, endscopy). Considerations on the performance of specified pressure samples after repair are explained. Temperature gradients when closing and switching off heaters lead to considerable heat stresses which then have to be reduced if the start-up and shut down times are extended. (orig./LH)

  10. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  11. 欧盟家用空气源热泵热水器能效标准测试方法的研究%The Experimental Research on the European Coefficient of Performance Testing Methods of Household Air-source Heat-pump Water Heater

    Institute of Scientific and Technical Information of China (English)

    舒宏; 何林; 杨加政

    2015-01-01

    目前欧盟热泵热水器测试标准 EN 16147:2011,Heat pumps with electrically driven compressors- Testing and requirements for marking of domestic hot water units已于2011年7月开始实施,但国内的标准GB/T 23137-2008并未有相应的更改。本文将通过测试静态加热式热泵热水器来对比分析其能效测试结果相对于国标测试方法的不同,并分析出目前国内开发的主流的热泵热水器在售后使用时的真正能效是否节能,并考虑到售后使用的能效情况,提出设计热泵热水器时的优化节能方向和售后客户使用的节能注意事项。%The European standard, EN 16147:2011,Heat pumps with electrically driven compressors - Testing and requirements for marking of domestic hot water units, has been put into effect from July, 2011. However, Chinese na-tional standard is still the GB/T 23137-2008 which hasn’t made the corresponding changes. In this paper, it tests the static heating water heat pump and use its data to compare and analyze the differences of Chinese national standard and European standard, including the coefficient of performance which used by users. Furthermore, this paper points out the development direction of energy conservation of heat-pump water heater and the matters needing attention for us-ers in consideration of the coefficient of performance.

  12. Three-phase heaters with common overburden sections for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX)

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  13. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    Science.gov (United States)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  14. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater

    International Nuclear Information System (INIS)

    Highlights: • Thermoelectric power generation from thermal oil heater exhaust is estimated. • Different thermoelectric materials are investigated for maximizing output power. • Bismuth telluride has been found the best TE material to apply in this application. • The estimated annual output power is 181,209 kW h from the proposed system. - Abstract: This study reports estimation of the amount of electrical power produced by thermoelectric generator (TEG) placed between flue gas duct and fresh air duct of an industrial thermal oil heater. Plate fin heat sink on hot and cold side of the TEG module was inserted into the flue gas and fresh air duct respectively. The effect of various design parameters, flow parameters were investigated in order to maximize the electrical power generation. Then the best suited conditions were applied to new thermoelectric generator module based on recently developed thermoelectric materials. A Bi2Te3 based commercial module (HZ-2) produce 3.7 W, where new module, based on p-type (Bi,Sb)2Te3 and n-type hot forged Bi2Te3 generate 4.4 W, at the same operating condition, which is about 19% improvement in output electrical power compared to commercial module. Estimated annual electrical power generation from this proposed system could be around 181,209 kW h. Thermal efficiency of the TEG modules based on recently developed thermoelectric materials could be enhanced up to 8.18%. The specifications of plate fin heat sinks as well as thermoelectric properties of the p-n materials of the system have substantial impact on the performance of TEG module

  15. Should Fermi Have Secured his Water Heater Against Earthquakes?

    Science.gov (United States)

    Brooks, E. M.; Diggory, M.; Gomez, E.; Salaree, A.; Schmid, M.; Saloor, N.; Stein, S. A.

    2015-12-01

    A common student response to quantitative questions in science with no obvious answer is "I have no idea." Often these questions can be addressed by Fermi estimation, in which an apparently difficult-to-estimate quantity for which one has little intuitive sense can be sensibly estimated by combining order of magnitude estimates of easier-to-estimate quantities. Although this approach is most commonly used for numerical estimates, it can also be applied to issues combining both science and policy. Either application involves dividing an issue into tractable components and addressing them separately. To learn this method, our natural hazard policy seminar considered a statement by the Illinois Emergency Management Agency that homeowners should secure water heaters to prevent them from being damaged by earthquakes. We divided this question into subtopics, researched each, and discussed them weekly to reach a synthesis. We used a simple model to estimate the net benefit, the difference between the expected value of damage and the cost of securing a water heater. This benefit is positive, indicating that securing is worthwhile, only if the probability of damage during the heater's life is relatively large, approximately 1 - 10%. To assess whether the actual probability is likely to be this high, we assume that major water heater damage is likely only for shaking with MMI intensity VIII ("heavy furniture overturned") or greater. Intensity data for the past 200 years of Illinois earthquakes show that this level was reached only in the very southernmost part of the state for the 1811-1812 New Madrid earthquakes. As expected, the highest known shaking generally decreases northward toward Chicago. This history is consistent with the fact that we find no known cases of earthquake-toppled water heaters in Illinois. We compared the rate of return on securing a water heater in Chicago to buying a lottery ticket when the jackpot is large, and found that the latter would be a

  16. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    Science.gov (United States)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the

  17. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system

    International Nuclear Information System (INIS)

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  18. REVIEW ON POROUS AND NON-POROUS FLAT PLATE AIR COLLECTOR WITH MIRROR ENCLOSURE

    Directory of Open Access Journals (Sweden)

    M. PRADHAPRAJ,

    2010-09-01

    Full Text Available In solar air heater, flat plat collectors are the best heat transferring devices. But the effectiveness of these collectorsis very low because of lack of technology. Solar assisted heated air is successfully used for drying applications and space heating under controlled conditions. From the solar flat plate air heater the hot air is transferred to a conventional dryer or to the combined heater and drying chamber directly. Hence, solar assisted air heaters arecheaper and reliable. The important factors affecting these systems are the solar radiation, mechanical loading, temperature and leakage. The air heater efficiency depends on the design of the system as well as the construction materials and the assembly. The solar air heating systems has acceptable life span of 15 to 20 years. The addition ofside mirror enclosures is to increase the amount of solar radiation absorption at the collector plate so that the collector increases the yield and operate in a higher temperature range. Therefore with the addition of side mirrors one can able to maximize the output of fixed flat plate collectors. A flat plate air collector will be more efficient if it is made up of porous medium when comparing it with the non porous collectors according to the study. In this paper, the performances of porous and non-porous absorber plates are discussed. Also the possible methods of finding out air leakages and the methodology adopted for the performance and efficiency calculations are also discussed.

  19. Fabrication of light weight radioisotope heater unit hardware components

    Science.gov (United States)

    McNeil, Dennis C.

    1996-03-01

    The Light Weight Radioisotope Heater Unit (LWRHU) is planned to be used on the National Aeronautics and Space Administration (NASA) Cassini Mission, to provide localized thermal energy as strategic locations on the spacecraft. These one watt heater units will support the operation of many on-board instruments that require a specific temperature range to function properly. The system incorporates a fuel pellet encapsulated in a vented metallic clad fabricated from platinum-30% rhodium (Pt-30%Rh) tubing, sheet and foil materials. To complete the package, the clad assemblies are placed inside a combination of graphite components. This report describes the techniques employed by Mound related to the fabrication and sub assembly processes of the LWRHU clad hardware components. Included are details concerning configuration control systems, material procurement and certification, hardware fabrication specifics, and special processes that are utilized.

  20. Actual performance and economic feasibility of residential solar water heaters

    Science.gov (United States)

    Anhalt, Jorgdieter; Ennes, Sergio Augusto Weigert

    1987-09-01

    Four residential water heaters currently available on the Brazilian market have been evaluated for their possible use in substituting for the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents an average Brazilian family. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65 percent of the energy demand for residential water heating in the state of Sao Paulo. A study concludes that the installation and maintenance of such a solar system are economically feasible if long term financing is available.

  1. ELF radiation from the Tromsoe super heater facility

    International Nuclear Information System (INIS)

    Direct comparisons have been made of the ionospheric ELF radiation produced by the new (1 GW ERP) and old (250 MW ERP) antennas of the Tromsoe heater system, but no significant differences in the ELF signal strength have been detected. This initially surprising result is shown to require a value of unity for the index relating the received ELF signal strength to HF power input to the antenna. A series of experiments performed solely to derive more accurate values for this power index provided values ranging from 0.74 to 0.97, dependent on the ELF frequencies generated. It has been suggested that ELF radiation from the normal Tromsoe heater facility should be limited by saturation effects, even when operating well below the maximum HF power density (3mW/m2 in the D-region). No evidence for such saturation effects has been found even at power densities greater than 10mW/m2

  2. Convective polymerase chain reaction around micro immersion heater

    Science.gov (United States)

    Hennig, Martin; Braun, Dieter

    2005-10-01

    Polymerase chain reaction (PCR) is performed in the thermal convection created by a micro immersion heater. Instead of repetitive heating and cooling, the temperature gradient induces thermal convection which drives the reaction liquid between hot and cold parts of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates with the use of proteins into twice the amount in the cold region. The constant heater is simply dipped into the reaction solution. Compared to previous experiments, we demonstrate that convective PCR is possible in a robotically accessible open vessel. Our approach compares well with fast PCR cyclers and replicates DNA 500 000 fold within 20minutes. We reduce the necessary components for PCR to cheap, single-use components and therefore increasing the prospects of bringing PCR to point of care applications—even in third world countries.

  3. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  4. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  5. Optimization of heat exchanger for indirectly heated water heater

    OpenAIRE

    Kaduchová Katarína; Lenhard Richard; Jandačka Jozef

    2012-01-01

    Due to the optimization of geometrical parameters of the heat exchanger in indirect heated water heaters created a mathematical model of heating hot water, by which I have subsequently made the simulation of the device to change its geometrical parameters. Based on these results, the impacts of the geometrical parameters affect the performance of the heat exchanger. The results of the optimization to create a CFD model which watched at the behavior of optimized heat exchanger for indirect hea...

  6. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  7. Conasauga near-surface heater experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385/sup 0/C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste.

  8. Sectional replacement of high pressure feedwater heater tubing

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.A.; Bowes, P.D. [TransAlta Utilities Corp., Duffield, Alberta (Canada). Plant Engineering Services

    1994-12-31

    TransAlta Utilities is a Canadian Corporation which owns and operates the coal fired Sundance Generating Station located in central Alberta. Sundance is fitted with vertical channel down, carbon steel tubed, high pressure feedwater heaters. The primary mode of failure of these HP feedwater heaters on the six generating units is steam inlet area tube erosion and vibration damage. This damage is initiated with the deterioration of the desuperheating inlet shroud and backing plate, primarily due to thermal fatigue, thus allowing direct impingement of high velocity steam and entrained condensate upon the tubing. Topics discussed are: review of the design and conditions of the heater which allowed re-conditioning; cutting, lifting and supporting of the shell at an elevation sufficient to allow free access of the entire desuperheating zone; damage observed within the desuperheating and drains cooler zones; bundle reconditioning through damage tube section replacement and support plate repair techniques; design/installation of the desuperheating, drains-cooling zone shrouds and backing plates; benefits that this type of approach may offer; conclusions.

  9. Preliminary results report: Conasauga near-surface heater experiment

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385/sup 0/C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples.

  10. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 3850C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  11. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  12. Design and characterization of microscale heater structures for test die and sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.A.; Bowman, D.; Filter, W.; Mitchell, R. [Sandia National Labs., Albuquerque, NM (United States); Perry, J. [Philips Semiconductors, Albuquerque, NM (United States)

    1998-05-01

    The authors describe a class of microscale heaters fabricated with CMOS processes on silicon wafers. These heaters were designed to produce localized high temperatures above 400 C for test and sensor applications. The temperature levels produced for various input powers and the thermal profiles surrounding the heater for packaged and wafer-level heater structures were studied to guide the placement of microelectronics integrated with the heater structures on the same die. To show the performance of the design, they present resistance sensor measurements, IR temperature profiles, and results from a 3D thermal model of the die. This effort demonstrates that it is possible to successfully operate both a microscale heater and microcircuits on the same die.

  13. Analysis on the Standard Conformance of Thermal Circuit Breaker of Heat-pump Water Heater and Air-conditioner%关于热泵热水器和空调热断路器结构标准符合性浅析

    Institute of Scientific and Technical Information of China (English)

    马洁丹; 肖凯佳

    2015-01-01

    This paper analyzes the standard conformance of the construction of thermal circuit breaker in air-condi-tioner and heat pump and some designs according to the standards of IEC 60335 series. Besides, it provides responding suggestions to the designers.%本文根据标准IEC 60335系列,对带电辅热的空调及热泵的热断路器及部分设计方案进行标准符合性分析,给出相应的意见,以供设计人员参考.

  14. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    Energy Technology Data Exchange (ETDEWEB)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  15. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    Energy Technology Data Exchange (ETDEWEB)

    Ries, R. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team; Walters, R. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team; Dwiantoro, D. [Univ. of Florida, Gainesville, FL (United States). Building Energy Efficient Housing for America (BEEHA)Team

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  16. Operation of tube electric heaters in a medium of oil coolants of chemical purification machinery

    Energy Technology Data Exchange (ETDEWEB)

    Bolgov, I.V.; Barinov, V.V.; Isakov, B.V.; Skatkov, V.D.

    1979-01-01

    The basic factors which cause failure of tube electric heaters of chemical purification machinery which operate on electrical heating are pointed out. It is shown that the material of the envelope of the tube electric heater noticeably influences aging of the oil coolant. It is established that at a thickness of solid deposits on the surface of the tube electric heater greater than 3-4 mm the spiral overheats and the envelope burns through.

  17. Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Rama Reddy

    2010-10-01

    Full Text Available This research deals w ith simulation and experimentation of closed loop controlled class-D inverter fed induction heater system. This converter has reduced switching losses, stress and increased power density. The inverter system is designed and the simulation is done using Matlab. The results of simulation and experimentation are presented. The induction heater system uses embedded controller to generate driving pulses. The objective is to develop an induction heater system with minimum hardware.

  18. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...... with operation temperatures exceeding 700 °C....

  19. Development and application of engineering-scale solar water heater system assisted by heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiufeng; Feng Shiyu; Hu Wei; Zheng Feifei [Xi' an Jiaotong Univ., Xi' an (China); Wang Huiyu; Luo Cong [Yangzhou Sunleada Co, Ltd, Yangzhou (China); Wang Jianguo; Fan Guiyou [TongLing Real Estate Co. Ltd, TongLing (China)

    2008-07-01

    An engineering-scale solar water heater system assisted by heat pump was developed based on a modularized structure. The subunits of modularized system include vacuum solar energy collectors, air source heat pump, heat storage and supplying system and control panel. All devices could be controlled and monitored centrally. Energy source of this system was composed of solar energy (70%), air thermal energy (20%) and electric power (10%). The system has advantages of high average annual comprehensive energy efficiency and elementary energy utilization efficiency. The product can be employed in central heat water supplying project with a capacity of more than 6 ton, in such facilities as residential districts, hotels, restaurants, dormitories, bathing centers and so on. The economical efficiency is better as the scale is bigger. The project has been supported by innovation funds of Science and Technology of Chinese Ministry of Science and Technology (MOST), being applied in a residential district successfully as a demonstration project of renewable and new energy by Chinese Ministry of Construction. (orig.)

  20. Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)

    2014-08-15

    Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical

  1. Performance characteristics of a pulse combustion water heater

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, S. T.; Yen, M. S.; Schoenhals, R. J.; Soedel, W.; Herrick, R. W.

    1978-08-01

    Work performed on an experimental pulse combustion water heater, as well as results obtained with the experimental system, are reported. Thermal, pressure, acoustical, and flow measurements were made during each test run. Data obtained from the thermal measurements were used to calculate the efficiency of the experimental system. The highest calculated efficiency value was 88 percent. The acoustical measurements indicated that the average A-weighted sound pressure level in the vicinity of the unit was approximately 77 dBA. A number of improvements to be made in the measurement techniques are discussed, as well as plans for future work associated with this research.

  2. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  3. REMOTE CONTROLLED CAR HEATER USING A RASPBERRY PI

    OpenAIRE

    Loukola, Petrik

    2015-01-01

    In this thesis, the goal was to design and implement a technology with which the user can control the car heaters and monitor the car temperature via Wi-Fi network and web browser. The idea for this project came from the Finnish cold climate. Winters in Finland can be very cold and if the car owners want to drive their cars, it is recommended to preheat the car engine and interior before driving the car. This will make driving safer, the car will make less pollution, better for the engines li...

  4. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  5. Evaluation of Tube Wall Thickness of Feed Water Heater

    Science.gov (United States)

    Uchikura, Takahisa; Morisaki, Koichi; Hamada, Seiichi

    With regard to the high pressure (HP) feed water heater of thermal power plant at Tokyo Electric Power Company (TEPCO) sites, inspection of feed water (FW) tubes wall thickness are conducted whenever required such that frequent tube leak occurs. As a standard inspection methodology, FW heater is disassembled during planned outage, tube wall thickness is measured by the ultrasonic pulse techique (UT), then plugs are installed at the both ends of FW tube if its measured wall thickness is found below calculated threshold. However, the root causes of wall thinning of FW tube are various such as erosion and corrosion, based on wall thinning condition, the above threshold is not applied but utilizing the other technically well-grounded evaluation method is sometimes more rational. Therefore, TEPCO classified wall-thinning condition based on inspection data and established technically well-grounded and rational evaluation methodologies of FW tube wall thickness to suite each wall thinning condition. Moreover, with recent improvement of inspection technique, technology enabled faster, larger amount, and more accurate data acquisition, TEPCO has developed the systematized evaluation methodology that can transact data acquisition and evaluation simultaneously. This article introduces the logic of evaluation methods and examined algorithms to make them systematized.

  6. Energy Factor Analysis for Gas Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R [ORNL

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  7. High-performance, bare silver nanowire network transparent heaters.

    Science.gov (United States)

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Unalan, Husnu Emrah

    2016-11-01

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq(-1) and 83.3%, respectively, and a NW density of 1.6 NW μm(-2) reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters. PMID:27678197

  8. A programmable controller for parking lot block heaters

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Automobile engine block heaters and interior car warmers are used by a substantially larger percentage of Alberta motorists than in the rest of Canada. This represents a substantial wintertime electricity demand. Therefore, any method of reducing the need for block heaters and vehicle warmers can save energy and help lower the peak evening power demand. Power-saver electrical cords and timers have been used, but neither of these measures represents the optimum system that might be used in large parking lots. One system showing considerable promise is reviewed in this report. In 1985, Magna Engineering designed a control strategy for the parking lot at the University of Lethbridge using 2 proposed control schemes, each of which was designed to supply power to the plug-in circuits for different time periods according to the ambient temperature. Power consumption and energy costs for each of these schemes were compared to normal, uncontrolled operation. Substantially less energy was used with the first scheme, reducing the average load per vehicle from 800 W to 500 W. Parking lot users did not report any inconvenience or discomfort after the on-off sequencing was altered. It was concluded that this fact, combined with the potential energy and cost savings, made the system widely applicable throughout Alberta. The calculated payback period of 2-3 years makes this concept particularly attractive. 2 figs., 3 tabs.

  9. Tankless water heaters fill the bill at fast-food restaurants

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    This article explains why Kentucky Fried Chicken has installed a PH-24 water heater. The tankless water heater meets the restaurant's criteria for space spacing, flow rates, certification and availability, and money saving efficiency. This article describes the system and its advantages.

  10. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  11. Grounds for reconstruction necessity of the turbine K-1000-6/25 high pressure heaters

    International Nuclear Information System (INIS)

    Actions for increasing the safety of high pressure feeding water heaters are developed. It was found that most of the failures in these heaters were connected with demolish ion of coil pipes entries in distributing collector due to erosion-corrosion processes

  12. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  13. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... given water heater. 75 FR 52892, 52895 (August 30, 2010). Specifically, the standby loss testing in the... to consider amendments to DOE's test procedures for residential water heaters. 76 FR 63211 (Oct. 12... Part 430 RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures...

  14. QUALITY ASSURANCE PROCEDURES: METHOD 28 CERTIFICATION AND AUDITING OF WOOD HEATERS

    Science.gov (United States)

    Quality assurance procedures are contained in this comprehensive document intended to be used as an aid for wood heater manufacturers and testing laboratories in performing particulate matter sampling of wood heaters according to EPA protocol, Method 28. These procedures may be u...

  15. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  16. Analysis of Uncertainties in Protection Heater Delay Time Measurements and Simulations in Nb$_{3}$Sn High-Field Accelerator Magnets

    CERN Document Server

    Salmi, Tiina; Marchevsky, Maxim; Bajas, Hugo; Felice, Helene; Stenvall, Antti

    2015-01-01

    The quench protection of superconducting high-field accelerator magnets is presently based on protection heaters, which are activated upon quench detection to accelerate the quench propagation within the winding. Estimations of the heater delay to initiate a normal zone in the coil are essential for the protection design. During the development of Nb3Sn magnets for the LHC luminosity upgrade, protection heater delays have been measured in several experiments, and a new computational tool CoHDA (Code for Heater Delay Analysis) has been developed for heater design. Several computational quench analyses suggest that the efficiency of the present heater technology is on the borderline of protecting the magnets. Quantifying the inevitable uncertainties related to the measured and simulated delays is therefore of pivotal importance. In this paper, we analyze the uncertainties in the heater delay measurements and simulations using data from five impregnated high-field Nb3Sn magnets with different heater geometries. ...

  17. Low Power Phase Change Memory using Silicon Carbide as a Heater Layer

    Science.gov (United States)

    Aziz, M. S.; Yin, Y.; Hosaka, S.; Mohammed, Z.; Alip, R. I.

    2015-11-01

    The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using two types heating element was investigated. With separate heater structure, simulation was done using COMSOL Multiphysic 5.0. Silicon carbide (SiC) and Titanium Sitride (TiSi3) has been selected as a heater and differences of them have been studied. The voltage boundary is 0.905V and temperature of the memory layer is 463K when using SIC as a heater. While the voltage boundary and temperature of memory layer when using TiSi3 are 1.103 V and 459K respectively. Based on the result of a simulation, the suitable material of heater layer for separate heater structure is Silicon carbide (SiC) compared with Titanium Sitride (TiSi3).

  18. Numerical simulation and analysis of temperature field in vacuum graphite heater

    International Nuclear Information System (INIS)

    Graphite heater is the key component of the thermal conductivity measuring system of the pebble bed reactor core. Temperature field of the heater has a major influence to safety of the system and data accuracy. DTRM model, P1 model, ROSSELAND model and DO model were employed to simulate the temperature field of the graphite heater in the protection of vacuum environment. The method for calculating the temperature field of graphite heater was discussed and the influence of graphite thermal conductivity and surface emissivity on the temperature field was studied. Comparison results show that result obtained by DO model is most reasonable. The highest temperature of the heater drops as the thermal conductivity of graphite increases. When the thermal conductivity of graphite is less than 35 W/ (m·K), the highest temperature is sensitive to graphite thermal conductivity. When the graphite thermal conductivity is greater than 35 W/(m·K), the highest temperature tends to de stable. (authors)

  19. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  20. Prediction of heater power distribution in radiative cylindrical furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, M.; Dilber, I.; Torok, D.

    1999-07-01

    In the design of long radiative cylindrical furnaces, it is important to control the temperature variation along the furnace walls and consequently the temperature distribution in the processed material by selectively adjusting the power input to heater rods located circumferentially around the furnace walls. The heaters are grouped in zones located at different axial locations. By adjusting the power to each zone a specified temperature distribution along the furnace can be attained. The radiative interchange between different axial zones of the furnace affects the temperature distribution; this interchange is also impacted by the shadowing caused by the presence of the load, i.e. the processed material. A desired temperature distribution can only be achieved by selectively changing the power input to the heaters. For an a priori assessment of the commercial viability of using process friendly temperature distributions, it is necessary to determine: (a) the maximum power demand from each zone; (b) if active cooling is inevitable and (c) the bounds on temperature distribution that can be achieved without active cooling. It is therefore extremely useful to be able to predict the input power distribution for achieving desired furnace temperature profiles. For a given power input, the temperature distribution inside the furnace could be obtained by using a general purpose Computational Fluid Dynamics (CFD) software, such as FIDAP. A new methodology is developed within the framework of FIDAP software to eliminate the manual trial and error method. The method is based on obtaining the sensitivity of the temperature at the desired locations of the furnace as a function of the power input to the heating elements. Using these sensitivity coefficients, an iterative scheme is designed to adjust the boundary conditions (power to the heating elements in this case) based on the discrepancy of the solution temperatures from the desired temperature distribution. For each of these

  1. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Science.gov (United States)

    2010-01-01

    ... of Pool Heaters P Appendix P to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Pool Heaters 1. Test method. The test method for testing pool heaters is as specified in American National Standards...

  2. Experimental study on flat plate air solar collector using a thin sand layer

    Science.gov (United States)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  3. Optimized high-temperature cathode-heater unit

    International Nuclear Information System (INIS)

    In electrophysical apparatus and accelerators that form electron beams with a high current density, the most stringent requirements are imposed on the operating life, reliability, and thermal efficiency of the high-temperature cathode-heater units (CHU), the replacement of which involves great expenditures of time and prolonged shutdown of the apparatus. The shortcomings of existing CHUs with LaB6 emitters include, among others, the low optical transparency of the graphite heating element and inconstancy of the temperature field of the emitter owing to unavoidable thickening at the locations of the massive leads. All of this reduces the thermal efficiency of the CHU. The authors describe a CHU that is free of the above-mentioned shortcomings. The CHU has a thermal efficiency of > 80% and a temperature inconstancy ΔT 2, at temperature T = 2,050 K is 700 h

  4. FEM Optimal Design of Wind Energy-based Heater

    Directory of Open Access Journals (Sweden)

    Tiberiu Tudorache

    2009-07-01

    Full Text Available This paper deals with the finite element based optimal design of a wind energybased heater. The proposed device ensures the conversion of the wind kinetic energy intoheat by means of Joule effect of eddy currents induced in the wall of a tubular stator due tothe rotating magnetic field produced by rotor permanent magnets. The transientelectromagnetic field problem associated to the operation of the device is solved using a2D finite element approach based on vector potential formulation. A simplified method forthe 2D heat transfer analysis of the device is also proposed. The influence of stator wallmaterial and thickness, number of poles, the airgap thickness and the geometricalparameters of the permanent magnets is analyzed in the aim of optimizing the studiedheater.

  5. Policy development for solar water heaters: the case of Lebanon

    International Nuclear Information System (INIS)

    Full text.The electric energy demand in Lebanon is estimated to grow at an average of 3-5% per year for the coming 10 years. Such an increase in energy demand is problematic for Lebanon since its economy is almost totally dependent on imported fuel which contributes to 97% of the overall energy requirements. Solar water heaters (SWH) are regarded as the most important element in a long term energy conservation and management strategy for this country, but their promotion is a national issue requiring the participation of many stake holders and decision makers. Additionally, the success of solar energy penetration into the existing energy market is constrained by many factors such as technical and financial limitations, decision criteria and policy instruments. This paper will explore the feasibility of SWH, and will work out, using the Analytic Hierarchy Process technique, a policy to ensure a large scale diffusion of SWH in the energy market

  6. Modelling of Closed Loop Class E Inverter Based Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Arumugam

    2011-01-01

    Full Text Available This study presents simulation of class E inverter based induction heater system using simulink. DC is converted into high frequency AC using class E inverter. This high frequency AC is used for induction heating. Closed loop systems are modeled and they are simulated using Mat lab Simulink.The results of closed loop systems are presented. The proposed amplifier with two series-parallel resonant load networks will allow sinusoidal output voltage to be achieved by associating with the positive and negative quasi-sinusoidal waveforms. The complementarily activated configuration will provide continuous high-ripple-frequency inputcurrent waveforms; this approach significantly reduces electromagnetic interference and requires very little filtering. With the symmetry of the push-pull Class-E Circuit, there is the additional benefit that the even harmonics are suppressed at the load, and thus there are fewer harmonic distortions.

  7. GPU-based parallel method of temperature field analysis in a floor heater with a controller

    Science.gov (United States)

    Forenc, Jaroslaw

    2016-06-01

    A parallel method enabling acceleration of the numerical analysis of the transient temperature field in an air floor heating system is presented in this paper. An initial-boundary value problem of the heater regulated by an on/off controller is formulated. The analogue model is discretized using the implicit finite difference method. The BiCGStab method is used to compute the obtained system of equations. A computer program implementing simultaneous computations on CPUand GPU(GPGPUtechnology) was developed. CUDA environment and linear algebra libraries (CUBLAS and CUSPARSE) are used by this program. The time of computations was reduced eight times in comparison with a program executed on the CPU only. Results of computations are presented in the form of time profiles and temperature field distributions. An influence of a model of the heat transfer coefficient on the simulation of the system operation was examined. The physical interpretation of obtained results is also presented.Results of computations were verified by comparing them with solutions obtained with the use of a commercial program - COMSOL Mutiphysics.

  8. Design and Evaluation of Solar Grain Dryer with a Back-up Heater

    Directory of Open Access Journals (Sweden)

    K.S. Tonui

    2014-04-01

    Full Text Available The aim of the study was to design and construct a solar grain dryer integrated with a simple biomass burner using locally available materials. This was to address the limitations of the natural sun drying for example drying exposure, liability to pests and rodents, over-dependence on sun and escalated cost of mechanical dryers. This became beneficial especially in reducing post-harvest losses as well as helping in the preservation of agricultural product. The dryer is composed of solar collector, drying chamber, back-up heater and airflow system. The design was based on the study area of Mau summit located in Nakuru County, Kenya. The average ambient conditions were 26°C air temperature and 72% relative humidity with daily global solar radiation incident on horizontal surface of about 21.6 MJ/m2/day. A minimum of 3.77 m2 solar collector area was required to dry a batch of 100 kg maize grain in 6 h with natural convection from the initial moisture content of 21% to final moisture content of 13% wet basis. A prototype dryer designed was fabricated with minimum collector area of 0.6 m2 and used in the experiment. Forced convection was employed to reduce drying time. The thermal efficiencies of the solar and solar assisted dryer were 39.9 and 57.7%, respectively. The back-up heating system improved the efficiency of the dryer by 17.8% and reduced drying time substantially.

  9. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost

  10. Heat exchanger inventory cost optimization for power cycles with one feedwater heater

    International Nuclear Information System (INIS)

    Highlights: • Cost optimization of heat exchanger inventory in power cycles is investigated. • Analysis for an endoreversible power cycle with an open feedwater heater is shown. • Different constraints on the power cycle are investigated. • The constant heat addition scenario resulted in the lowest value of the cost function. - Abstract: Cost optimization of heat exchanger inventory in power cycles with one open feedwater heater is undertaken. In this regard, thermoeconomic analysis for an endoreversible power cycle with an open feedwater heater is shown. The scenarios of constant heat rejection and addition rates, power as well as rate of heat transfer in the open feedwater heater are studied. All cost functions displayed minima with respect to the high-side absolute temperature ratio (θ1). In this case, the effect of the Carnot temperature ratio (Φ1), absolute temperature ratio (ξ) and the phase-change absolute temperature ratio for the feedwater heater (Φ2) are qualitatively the same. Furthermore, the constant heat addition scenario resulted in the lowest value of the cost function. For variation of all cost functions, the smaller the value of the phase-change absolute temperature ratio for the feedwater heater (Φ2), lower the cost at the minima. As feedwater heater to hot end unit cost ratio decreases, the minimum total conductance required increases

  11. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Science.gov (United States)

    2010-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected...

  12. Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2014-11-01

    Full Text Available A new device for inserting an absorber plate to divide a flat-plate channel into two subchannels to conduct double-pass wire mesh packed operations was developed. The proposed wire mesh packed device improves the heat transfer efficiency substantially as compared that to flat-plate single-pass and double-pass operations using the same working dimensions, and the improvement of device performance was investigated experimentally and theoretically. Good agreement between the theoretical prediction and the measured values from the experimental results was achieved. Considerable heat transfer improvement was obtained employing wire mesh packed double-pass operations under the absorber plate with external recycle. The influences of recycle ratio on the heat transfer efficiency and the power consumption increase were also discussed.

  13. Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters

    OpenAIRE

    Chii-Dong Ho; Chun-Sheng Lin; Tz-Jin Yang; Chun-Chieh Chao

    2014-01-01

    A new device for inserting an absorber plate to divide a flat-plate channel into two subchannels to conduct double-pass wire mesh packed operations was developed. The proposed wire mesh packed device improves the heat transfer efficiency substantially as compared that to flat-plate single-pass and double-pass operations using the same working dimensions, and the improvement of device performance was investigated experimentally and theoretically. Good agreement between the theoretical predict...

  14. Modeling and simulation on feed-water heater of nuclear power plant

    International Nuclear Information System (INIS)

    The feed-water heater is one of the major equipment in the secondary loop of nuclear power plant (NPP), and its behavior has an important influence on the safe and economical operation of NPP. The research on the behavior of feed-water heater by means of modeling and simulation can provide important theoretical basis for its design and operation. In this paper, the distributed parameter dynamic models of NPP feed water heater were established, in which the nearly separated model was used to deal with two-phase flow. By simulating the behavior of actual NPP feed-water heaters under various operating conditions and comparing the differences between the simulation values and the actual values, the accuracy of the simulation models was proven to be higher than that of existing models. (authors)

  15. Energy-efficient tunable silicon photonic micro-resonator with graphene transparent nano-heaters

    CERN Document Server

    Yu, Longhai; Dai, Daoxin; He, Sailing

    2015-01-01

    Thermally-tuning silicon micro-cavities are versatile and beneficial elements in low-cost large-scale photonic integrated circuits (PICs). Traditional metal heaters used for thermal tuning in silicon micro-cavities usually need a thick SiO2 upper-cladding layer, which will introduce some disadvantages including low response speed, low heating efficiency, low achievable temperature and complicated fabrication processes. In this paper, we propose and experimentally demonstrate thermally-tuning silicon micro-disk resonators by introducing graphene transparent nano-heaters, which contacts the silicon core directly without any isolator layer. This makes the graphene transparent nano-heater potentially to have excellent performances in terms of the heating efficiency, the temporal response and the achievable temperature. It is also shown that the graphene nano-heater is convenient to be used in ultrasmall photonic integrated devices due to the single-atom thickness and excellent flexibility of graphene. Both experi...

  16. Swift BAT Thermal Recovery After Loop Heat Pipe #0 Secondary Heater Controller Failure in October 2015

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    The Swift BAT LHP #0 primary heater controller failed on March 31, 2010. It has been disabled. On October 31, 2015, the secondary heater controller of this LHP failed. On November 1, 2015, the LHP #0 CC temperature increased to as 18.6 C, despite that the secondary heater controller set point was 8.8 C. It caused the average DM XA1 temperature to increase to 25.9 C, which was 5 C warmer than nominal. As a result, the detectors became noisy. To solve this problem, the LHP #1 secondary heater controller set point was decreased in 0.5 C decrements to 2.2 C. The set-point decrease restored the average DM XA1 temperature to a nominal value of 19.7 C on November 21.

  17. Ultrathin Polyimide-Stainless Steel Heater for Vacuum System Bake-out

    CERN Document Server

    Rathjen, Christian; Henrist, Bernard; Kölemeijer, Wilhelmus; Libera, Bruno; Lutkiewicz, Przemyslaw

    2005-01-01

    Space constraints in several normal conducting magnets of the LHC required the development of a dedicated permanent heater for vacuum chamber bake-out. The new heater consists of stainless steel bands inside layers of polyimide. The overall heater thickness is about 0.3 mm. The low magnetic permeability is suitable for applications in magnetic fields. The material combination allows for temperatures high enough to activate a NEG coating. Fabrication is performed in consecutive steps of tape wrapping. Automation makes high volume production at low costs possible. About 800 m of warm vacuum system of the long straight sections of the LHC will be equipped with the new heater. This paper covers experience gained at CERN from studies up to industrialization.

  18. Energetic Performances Study of an Integrated Collector Storage Solar Water Heater

    Directory of Open Access Journals (Sweden)

    O. Helal

    2010-01-01

    Full Text Available Problem statement: Although that the interest attributed to the solar energy remains relatively limited, we attend today to the conception of several installations using the sun as energy source among which we quote the solar water heater. Approach: A study of energetic performances was taken on an integrated collector/storage solar water heater made in the National School of Engineers of Gabes. This water heater is equipped with a concentration system containing a reflector composed of three parabolic branches favorating a better absorption of solar radiance. Results: The comparison between this system and two other systems of solar water heater, composed of a storage ball with asymmetrical CPC and symmetrical CPC, showed important energetic performances despite the simplicity and the little cost of the collector. Conclusion: Several improvements are necessary to increase the direct flow whilst decrease the thermal losses and therefore make the system simpler to be installed on the building roof.

  19. Achieving reliable operation of a PSG-5000 delivery-water heater's tube system

    Science.gov (United States)

    Vasilenko, G. V.; Meshcheryakov, I. M.

    2010-01-01

    We analyze factors due to which damage occurred in the first period of operation in the 12Kh18N1 austenitic-steel tube system of the delivery-water heater used as part of a T-180/210-130 turbine unit operating in a couple with a high-pressure drum boiler. Technical solutions undertaken for achieving reliable operation of the heater are considered.

  20. On the readout of teflon based thermoluminescent dosimeters - effect of heater dimensions

    International Nuclear Information System (INIS)

    Normally the central portion of the heater strip in a TLD reader has a higher temperature than the extremities. This results in a nonuniform temperature distribution along a dosemeter having a larger area. This study indicates that by a proper choice of the heater strip dimensions, this nonuniformity can be reduced. This was found essential in getting a proper TL glow curve with minimum readout duration for CaSO4:Dy Teflon discs.(author)

  1. Heater self-calibration technique for shape prediction of fiber tapers

    OpenAIRE

    Sorensen, Heidi L.; Polzik, Eugene S.; Appel, Jurgen

    2013-01-01

    In the production of tapered optical fibers, it is important to control the fiber shape according to application-dependent requirements and to ensure adiabatic tapers. Especially in the transition regions, the fiber shape depends on the heater properties. The axial viscosity profile of the fiber within the heater can, however, be hard to access and is therefore often approximated by assuming a uniform temperature distribution. We present a method for easy experimental calibration of the visco...

  2. Experiments on microgravity boiling heat transfer by using transparent heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, H. [Kyushu Univ., Fukuoka (Japan). Dept. of Energy and Mech. Eng.

    1997-11-01

    To clarify the relation between the liquid-vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation of liquid-vapor behavior and the measurement of heat transfer data simultaneously possible. The heat transfer coefficient in the annular flow regime at moderate quality has distinct dependence on gravity provided that the mass velocity is not so high, while no noticeable gravity effect is seen at high quality and in the bubbly flow regime. The measured gravity effect was directly related to the behavior of annular liquid film observed through the transparent tube wall. In the pool boiling experiment, a structure of transparent heating surface realizes both the observation of the macrolayer or microlayer behavior from underneath and the measurements of local surface temperatures and the layer thickness. It was clarified in the microgravity experiments that no vapor stem exists but tiny bubbles are observed in the macrolayer underneath a large coalesced bubble at high heat flux. The heat flux evaluated by the heat conduction across the layer assumes less than 30% of the total to be transferred. The evaporation of the microlayers underneath primary bubbles just after the generation dominates the heat transfer in the microgravity, not only in the isolated bubble region but also in the coalesced bubble region. (orig.) 14 refs.

  3. Light-weight radioisotope heater unit (LWRHU) impact tests

    Science.gov (United States)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  4. Solar biogas digester with built-in reverse absorber heater

    International Nuclear Information System (INIS)

    In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater) is presented. The maximum temperature (50 deg. C) inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc). The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009) and two months (February-March, 2010) the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed. (author)

  5. Hybrid IR-Gas Heater for Automated Tow Placement

    Science.gov (United States)

    Grenoble, Ray W.; Johnston, Norman J.; Tiwari, S. N.; Marchello, Joseph M.

    1998-01-01

    A hybrid infrared-hot gas heat source has been developed and tested for the NASA Langley Tow Placement Facility. The IR heat source provides supplemental heat to the nip region. The additional heat is intended to reduce the need for conduction heating by the compaction roller, which causes (he roller to stick to the panel surface. Initial bench scale testing was performed to identify the most effective means of focusing IR energy into the nip region. A compact lamp and reflector that placed the lamp as close to the nip point as possible was found to deliver the highest heat flux in the nip region. A prototype heater was installed on the NASA Langley tow placement robot. Panels placed with a 400 C (sticking) compaction roller gave DCB initiation toughness numbers comparable to those reported for autoclave processed panels but were found to have unexpectedly high void contents. Placement with compaction roller temperatures that prevented roller sticking resulted in mode I fracture toughness approximately 70% that reported for autoclave processed panels. The variability in strength among specimens placed with reduced roller temperature was found to be greatly reduced, which implies that use of supplemental nip point heat may improve the robustness of the tow placement process. Use of the IR heat source permitted placement with a compaction roller temperature that would have resulted in negligible interfacial strength with the hot gas torch alone. The roller temperature reductions eliminated the need for the robot operator to attend placement operations.

  6. Solar Biogas Digester with Built-In Reverse Absorber Heater

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-01-01

    Full Text Available In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater is presented. The maximum temperature (50 o C inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc. The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009 and two months (February-March, 2010 the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed.

  7. Heater induced thermal effects on the LTP dynamics

    CERN Document Server

    Gibert, Ferran; Lobo, Alberto; Díaz-Aguiló, Marc; Mateos, Ignacio; Karnesis, Nikolaos; Sanjuán, Josep; Gesa, Lluís; lloro, Ivan; Martín, Víctor

    2013-01-01

    The STOC (Science and Technology Operations Centre) simulator of the LPF (LISA PathFinder) mission is intended to provide a validation tool for the mission operations tele-commanding chain, as well as for a deeper understanding of the underlying physical processes happening in the LTP (LISA Technology Package). Amongst the different physical effects that will appear onboard, temperature fluctuations in the Electrode Housing (EH) could generate disturbances on the interferometer (IFO) readouts, therefore they must be known and controlled. In this article we report on the latest progress in the analysis at IEEC of the LTP response to thermal signals injected by means of heaters. More specifically, we determine the transfer functions relating heat input signals to forces on the Test Masses (TMs) in the LTP frequency band, from 1 mHz to 30 mHz. A complete thermal model of the entire LPF spacecraft plus payload, elaborated and maintained at European Space Technology Center (ESTEC), was used to obtain temperature d...

  8. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  9. Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water

    International Nuclear Information System (INIS)

    Highlights: • A novel heat pump water heater assisted with SDW for small single family was proposed. • The system performances under different conditions were experimented and discussed. • Approximately 70% of energy could be saved using this novel system compared to electrical water heater. - Abstract: Since the temperature of shower drain water (SDW) is relatively high, lots of heat is wasted with the discharge of SDW. Therefore, the recovery of this unutilized heat from SDW shows great potential in improving the building energy efficiency. In this paper, a novel heat pump water heater assisted with SDW for small single family was proposed, which could effectively recover the energy in domestic SDW. To improve its performance, a shower waste heat extraction device (WHED) with water pre-heated loops was designed. A prototype of the system was firstly set up, and then the system performances under different conditions were experimented and discussed. The experimental results showed that approximately 70% of energy could be saved using this novel heat pump water heater, compared with the traditional electric water heater. Furthermore, the COP of the system could be improved observably when using water pre-heated loops. Thus the implementation of this novel heat pump water heater was verified to be capable of reducing energy usage and CO2 emissions significantly

  10. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  11. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  12. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  13. System and method for air temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  14. Local Convective Heat Transfer from Small Heaters to Impinging Submerged Axisymmetric Jets of Seven Coolants with Prandtl Number Ranging from 0.7 to 348

    Institute of Scientific and Technical Information of China (English)

    H.Sun; C.F.Ma; 等

    1997-01-01

    Using seven working fluids,a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17×102 and 3.69×104 with the emphasis placed on the examination of Prandtl number dependence.Heat transfer coefficients at the stagnation point were collected and correlated with the plate held within and beyond the potential core.Radial distribution of the local heat transfer coefficient was measured with five test liquids.Based on the measured profiles of the local heat transfer,a correlation was developed to cover the entire range of the adial distance.Basides the present data,the correlations developed in this work were also compared with a large quantity of available data of circular air jets.General agreement was observed between the air data and the correlations.

  15. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  16. Stability of two phase natural convection in a rectangular loop with a vertical three rod heater

    International Nuclear Information System (INIS)

    Full text of publication follows: Nuclear Reactors are being designed which incorporate the concept of two-phase natural convection for removing heat generated in the core. Stability of natural convection systems is, in general, an important consideration. Much of the experimental data available for stability of natural convection systems is at high pressures while during startup pressures may be quite small; also, data with single annular heater elements are mostly reported. An experimental study is conducted here for determining the stability limits for two-phase natural convection in a rectangular loop with two types of heaters - an annulus heater and a three-rod cluster heater. The experimental test setup consists of a vertical heated section, a condenser section and a vertical downcomer section. The experiments were performed at atmospheric conditions and the test section is transparent for easy visualization of the flow. The steady state natural convection data matched well with that reported in the literature. The stability boundaries of the system were experimentally determined at different values of the input power and inlet subcooling and represented in terms of the appropriate non-dimensional numbers. The stability characteristics of the rectangular loop were numerically evaluated using the nonlinear stability analysis reported in the literature. The one dimensional mass, momentum and energy equations integrated in the spatial dimension using a linear enthalpy approximation within a control volume were solved numerically in the time domain to obtain the stability characteristics of the loop. A single-phase characterization of the loop was performed to obtain the frictional pressure drop inputs required for the calculations. The average friction from all the heater elements and the overall heat per unit length was used for the numerical calculations in the three rod heater case. The experimental results were closer to the numerically calculated results

  17. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Charles; Wilson, Robert

    2014-04-30

    air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  18. Temperature optimization of an electric heater by emissivity variation of heating elements

    Directory of Open Access Journals (Sweden)

    Cédric Hemmer

    2014-11-01

    Full Text Available This note addresses an industrial application concerning the way to optimize the surface temperature of commercial electrical heater. The aim of this paper is to reduce the temperature on accessible surfaces and electrical heater in order to respect the European standards and quality criteria imposed by the manufacturer. This target must be achieved by changing only the emissivity distribution of the electric heater components. A numerical study of the natural convection flow coupled with radiation is carried out in a heated room with an electric heater. The physical model includes the transport equations of mass, momentum, energy and radiative transfer which are solved numerically. Thermo-physical properties of the fluid are assumed to be dependent of the temperature. The numerical simulations are carried out for a two-dimensional, steady and turbulent flow using the finite volume approach. Results showed the influence of emissivity distribution of the electric heater components. The reducing of the heating foil emissivity allowed to decrease the radiative contribution on the foil and its temperature.

  19. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  20. Preliminary thermal and thermomechanical modeling for the Near Surface Test Facility heater experiments at Hanford

    International Nuclear Information System (INIS)

    Preliminary thermal and thermomechanical analyses have been carried out for the heater experiments in the Near Surface Test Facility at Gable Mountain on the Hanford Reservation, Richland, Washington. Temperatures were calculated by Green's function method for the full-scale and time-scaled experiments. Six different heater power schedules were considered for the full-scale experiments to bracket all possible values of initial spent fuel power from canisters buried after different periods of cooling. Linear elastic finite-element models were used to calculate the thermally induced displacements and stresses for two of the power schedules. Due to the poor thermal conductivity and rather high Young's modulus of Pomona basalt (the rock type in which the heater experiments are to be conducted), very high temperatures, displacements and stresses were predicted in spite of the relatively low thermal expansion coefficient. These predicted values have been used for the design of the experiments. Recommendations are made in this report regarding the conduct of the experiments and the interpretation of the field data, as well as further thermomechanical modeling and input data required for more meaningful modeling of a fractured rock mass. Equations are given in Appendices A and B for temperatures caused by an arbitrary time-dependent cylindrical heater of finite length and radius, a finite-radius disc heater, as well as the generalization to the situation of an anisotropic medium

  1. Preliminary thermal and thermomechanical modeling for the Near Surface Test Facility heater experiments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Remer, J.S.

    1978-12-01

    Preliminary thermal and thermomechanical analyses have been carried out for the heater experiments in the Near Surface Test Facility at Gable Mountain on the Hanford Reservation, Richland, Washington. Temperatures were calculated by Green's function method for the full-scale and time-scaled experiments. Six different heater power schedules were considered for the full-scale experiments to bracket all possible values of initial spent fuel power from canisters buried after different periods of cooling. Linear elastic finite-element models were used to calculate the thermally induced displacements and stresses for two of the power schedules. Due to the poor thermal conductivity and rather high Young's modulus of Pomona basalt (the rock type in which the heater experiments are to be conducted), very high temperatures, displacements and stresses were predicted in spite of the relatively low thermal expansion coefficient. These predicted values have been used for the design of the experiments. Recommendations are made in this report regarding the conduct of the experiments and the interpretation of the field data, as well as further thermomechanical modeling and input data required for more meaningful modeling of a fractured rock mass. Equations are given in Appendices A and B for temperatures caused by an arbitrary time-dependent cylindrical heater of finite length and radius, a finite-radius disc heater, as well as the generalization to the situation of an anisotropic medium.

  2. Active heater control and regulation for the Varian VGT-8011 gyrotron

    International Nuclear Information System (INIS)

    The Varian VGT-8011 gyrotron is currently being used in the new 110 GHz 2 MW ECH system installed on D3-D. This new ECH system augments the 60 GHz system which uses Varian VA-8060 gyrotrons. The new 110 GHz system will be used for ECH experiments on D3-D with a pulse width capability of 10 sec. In order to maintain a constant RF outpower level during long pulse operation, active filament-heater control and regulation is required to maintain a constant cathode current. On past D3-D experiments involving the use of Varian VA-8060 gyrotrons for ECH power, significant gyrotron heater-emission depletion was experienced for pulse widths > 300 msec. This decline in heater-emission directly results in gyrotron-cathode current droop. Since RF power from gyrotrons decreases as cathode current decreases, it is necessary to maintain a constant cathode current level during gyrotron pulses for efficient gyrotron operation. Therefore, it was determined that a filament-heater control system should be developed for the Varian VGT-8011 gyrotron which will include cathode-current feed-back. This paper discusses the mechanisms used to regulate gyrotron filament-heater voltage by using cathode-current feed-back. 1 fig

  3. Thermodynamic analysis of a biomass-fired Kalina cycle with regenerative heater

    International Nuclear Information System (INIS)

    The biomass fuel is a renewable energy resource, which is viewed as a promising alternative to fossil energy. This paper investigates a biomass-fired Kalina cycle with a regenerative heater which is generally utilized to heat the feedwater and to increase the efficiency in coal-fired steam power plant. The mathematical model of the biomass-fired Kalina cycle with a regenerative heater is established to conduct numerical simulation. A parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. Furthermore, a parametric optimization is carried out by genetic algorithm to obtain the optimum performance of system. The results demonstrate that there exists an optimum extraction pressure and its corresponding maximum fraction of flow extracted from turbine to maximize the net power output and system efficiency. In addition, a higher turbine inlet pressure or turbine inlet temperature leads to higher net power output and system efficiency. And net power output and system efficiency increases as separator temperature rises. The optimization result of the biomass-fired Kalina cycle with/without regenerative heater indicates the system is more efficient when regenerative heater is added. - Highlights: • Kalina cycle with a regenerative heater is driven by biomass boiler. • The effects of several parameters on system performance are examined. • Parametric optimization is conducted by GA to obtain optimum performance

  4. Diagnosis of Feedwater Heater Performance Degradation using Fuzzy Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonmin; Kang, Yeon Kwan; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Song, Seok Yoon [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2014-05-15

    It is inevitable to avoid degradation of component, which operates continuously for long time in harsh environment. Since this degradation causes economical loss and human loss, it is important to monitor and diagnose the degradation of component. The diagnosis requires a well-systematic method for timely decision. Before this article, the methods using regression model and diagnosis table have been proposed to perform the diagnosis study for thermal efficiency in Nuclear Power Plants (NPPs). Since the regression model was numerically less-stable under changes of operating variables, it was difficult to provide good results in operating plants. Contrary to this, the diagnosis table was hard to use due to ambiguous points and to detect how it affects degradation. In order to cover the issues of previous researches, we proposed fuzzy approaches and applied it to diagnose Feedwater Heater (FWH) degradation to check the feasibility. The degradation of FWHs is not easy to be observed, while trouble such as tube leakage may bring simultaneous damage to the tube bundle. This study explains the steps of diagnosing typical failure modes of FWHs. In order to cover the technical issues of previous researches, we adopted fuzzy logic to suggest a diagnosis algorithm for the degradation of FHWs and performed feasibility study. In this paper, total 7 modes of FWH degradation modes are considered, which are High Drain Level, Low Shell Pressure, Tube Pressure Increase, Tube Fouling, Pass Partition Plate Leakage, Tube Leakage, Abnormal venting. From the literature survey and simulation, diagnosis table for FWH is made. We apply fuzzy logic based on diagnosis table. Authors verify fuzzy diagnosis for FWH degradation synthesized the random input sets from made diagnosis table. Comparing previous researches, suggested method more-stable under changes of operating variables, than regression model. On the contrary, the problem which ambiguous points and detect how it affects degradation

  5. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  6. The Heater Cooler as a Source of Infection from Nontuberculous Mycobacteria.

    Science.gov (United States)

    Stammers, Alfred H; Riley, Jeffrey B

    2016-06-01

    Nosocomial infections acquired during the course of cardiac surgery and hospitalization can have devastating patient consequences. The source of these infections is often difficult to determine which complicates eradication efforts. Recently it has become apparent that the heater-cooler devices used in conjunction with cardiopulmonary bypass may become contaminated with bacteria that are normally found in hospital water sources. The culprit organisms are nontuberculous mycobacteria which coat the intrinsic surfaces found within the circuits of the heater-coolers. Aerosolization of the bacteria occurs during normal heater-cooler operation which can disperse the organisms throughout the operating room. The bacteria are slow-growing and may not present for months, or years, following exposure which makes epidemiological determination a challenge. The ensuing report summarizes a recent outbreak in these infections that have been reported both in Europe and the United States, along with efforts to reduce the risk for patient infection. PMID:27578894

  7. Thermal non-equilibrium analysis of porous annulus subjected to segmental isothermal heater - Part A

    Science.gov (United States)

    Al-Rashed, Abdullah A. A. A.; Salman, Ahmed N. J.; Khaleed, H. M. T.; Khan, T. M. Yunus; Kamangar, Sarfaraz

    2016-06-01

    The objective of present study is to evaluate the effect of the length and location of segmental heating of inner radius of annular cylinder containing porous medium between inner and outer radii. The fluid and solid matrix of porous medium are assumed to have temperature discrepancy subjected to isothermal heating of heater. The fluid is assumed to follow Darcy law and two separate equations are considered for energy transport to account for the thermal non-equilibrium condition. The boundary conditions are such that fluid and solid phase have different temperatures at the hot wall. The study is conducted for different lengths of heater corresponding to the 20%, 35% and 50% of the total height of the cylinder. The location of the heater is varied to three positions i.e. bottom section, mid-section and top of the cylinder.

  8. Active compensation of wavefront aberrations by controllable heating of lens with electric film heater matrix.

    Science.gov (United States)

    Chen, Hua; Hou, Lv; Zhou, Xinglin

    2016-08-20

    We present a new apparatus for active compensation of wavefront aberrations by controllable heating of a lens using a film heater matrix. The annular electric film heater matrix, comprising 24 individual heaters, is attached to the periphery of a lens. Utilizing the linear superposition, and wavefront change proportional to the heating energy properties induced by heating, a controllable wavefront can be defined by solving a linear function. The two properties of wavefront change of a lens have been confirmed through a specially designed experiment. The feasibility of the compensation method is validated by compensating the wavefront of a plate lens. The results show that the wavefront of the lens changes from 12.52 to 2.95 nm rms after compensation. With a more precise electric controlling board, better results could be achieved. PMID:27556982

  9. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    Directory of Open Access Journals (Sweden)

    arunachala umesh chandavar

    2011-12-01

    Full Text Available 0 0 1 340 1943 International Islamic University 16 4 2279 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B equation to ascertain the effect of scaling on system efficiency in case of thermosiphon system. In case of clean thermosiphon system, the instantaneous efficiency calculated at 1000 W/m2 radiation is 72 % and it drops to 46 % for 3.7 mm scale thickness. The mass flow rate is reduced by 90 % for 3.7 mm scale thickness. Whereas, the average temperature drop of water in the tank is not critical due to considerable heat content in water under severe scaled condition.  But practically in case of major scale growth, some of the risers are likely to get blocked completely which leads to negligible temperature rise in the tank. ABSTRAK: Prestasi plat rata pemanas air suria merosot selepas lima hingga dua belas tahun  pemasangannya disebabkan faktor-faktor yang berkaitan dengan pembuatannya, cara kendaliannya, kurangnya penyelenggaraan dan sebagainya.  Terutama sekali, masalah disebabkan scaling (tembunan endapan mineral perlu diambil berat kerana ianya bergantung kepada kualiti air yang digunakan. Faktor-faktor selebihya bersandarkan sistem dan ia

  10. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    Science.gov (United States)

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.; Verbael, David J.

    1995-01-01

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.

  11. Feed-water heaters alternative design comparison; Comparacion de disenos alternativos de calentadores

    Energy Technology Data Exchange (ETDEWEB)

    Torres Toledano, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    A procedure is presented for the alternative design comparison of feed water heaters, based in the failure records of damaged tubes during operation. The procedure is used for cases in which non-continuous or random inspections are made to the feed-water heaters. [Espanol] Se presenta un procedimiento para comparar disenos alternativos de calentadores, basandose en los registros de fallas de los tubos rotos acumuladas durante su operacion. El procedimiento se emplea para casos en los que se realizan inspecciones a los calentadores no continuas, ya sea periodicas o al azar.

  12. Rate of heat transfer in polypropylene tubes in solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, J.; Mahmoodi, M. [Sharif University of Technology, Tehran (Iran). Chemical Engineering Dept.; Riazi, M.R. [Kuwait Univ., Safat (Kuwait). Chemical Engineering Dept.

    2003-06-01

    A heat transfer rate was determined for polypropylene tubes in solar water heaters for the Reynolds number range 800-5600. Experiments were conducted in ambient temperatures of 34 to 37 {sup o}C. Data were correlated in the form of Nusselt numbers as: Nu=0.0015 Re{sup 0.75}Pr{sup 1/3} with correlation coefficient of 0.95. Such data can be used to predict heat transfer rates in a polypropylene solar heater in Tehran where the experiments were performed. An application of the results is shown in an example. (author)

  13. Particle impaction efficiency and size distribution in a MSWI super heater tube bundle

    CERN Document Server

    Haugen, Nils Erland L; Bugge, Mette; Warnecke, Ragnar; Weghaus, Martin

    2010-01-01

    Particle impaction in the super heater geometry found in the municipal solid waste incinerator (MSWI) of GKS in Schweinfurt, Germany, has been investigated. By using direct numerical simulations for the fluid flow, inertial particles coupled to the fluid through the classical Stokes' drag law have been tracked. Focus has been on the effect of flow velocity, and it is shown that decreasing the flow velocity will drastically decrease the impaction efficiency for some particle radii. Finally particle size distribution measurements are presented and used to find quantitative mass fluxes both on the front and the back side of the tubes in the super heater tube bundle.

  14. Light Weight Radioisotope Heater Unit (LWRHU) production for the Galileo mission

    Science.gov (United States)

    Rinehart, Gary H.

    The Light Weight Radioisotope Heater Unit (LWRHU) is a (Pu-238)O2-fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a (Pu-238)O2-fuel pellet, a Pt-30 pct Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 134 heater units which will be used on the Galileo mission.

  15. Simulation and design optimization of transparent heaters for spectroscopic micro cells

    Science.gov (United States)

    Völlm, Henning; Herrmann, Jonathan; Maier, Reinhard; Feili, Dara; Häublein, Volker; Ryssel, Heiner; Seidel, Helmut

    2013-05-01

    For several applications, micro cells with a uniform temperature profile and at least one optical port are required. One example for those cells is the physics package of a chip-scale-atomic-clock. It is necessary that the micro chambers are heated homogeneously to 353 K using a low energy consumption heater. In this work transparent heating structures are investigated to achieve this goal. First an analytical approach is used to describe the behavior of thermal energy dissipation of the heating structures. Then different approaches of possible heater structures are simulated to find the optimal basic configuration. Furthermore, this configuration is optimized to obtain a uniform temperature distribution in the whole cell.

  16. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus...... on the convective heat transfer in the tube. The buoyancy induced flow circulation in different parts of the tube was analyzed. It is shown that fluid flow becomes stochastic and turbulent if fluid temperature is high enough. The flow instability leads to mixing of the warm uprising flow and the cold downward flow...

  17. Experimental studies on PCM filled Flat Plate Solar Water Heater without and with Fresnel lens glazing

    Directory of Open Access Journals (Sweden)

    R. Sivakumar

    2016-07-01

    Full Text Available Flat Plate Solar Water Heater (FPSWH is commonly used to harvest solar energy. Solar concentration techniques help to achieve higher temperatures of energy. The aim of this article is to compare the performance of a Fresnel lens glazed Flat Plate Solar Water Heater with Phase Change Material (PCM with that provided with an ordinary glazing. The effect of solar concentration using Fresnel lens on energy storage in PCM and heat gained by water are studied and compared with that having an ordinary glazing. Experiments showed 47% improvements in the heat gained by water.

  18. Experimental comparison of alternative convection suppression arrangements for concentrating integral collector storage solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; McGarrigle, P.; Eames, P.C. [Ulster Univ., School of the Built Environment, Newtownabbey, Northern Ireland (United Kingdom); Norton, B. [Dublin Inst. of Technology, Dublin (Ireland)

    2005-02-01

    An experimental investigation of an inverted absorber integrated collector storage solar water heater mounted in the tertiary cavity of a compound parabolic concentrator with a secondary cylindrical reflector has been performed under simulated solar conditions. The solar water heaters performance was determined with the aperture parallel to the simulator for a range of transparent baffles positioned at different locations within the collector cavity. Results indicate that glass baffles located at the upper portion of the exit aperture of the CPC can reduce thermal losses through convection suppression without significantly increasing optical losses. (Author)

  19. QUALITY ASSURANCE PROCEDURES: METHOD 5G DETERMINATION OF PARTICULATE EMISSIONS FROM WOOD HEATERS FROM A DILUTION TUNNEL SAMPLING LOCATION

    Science.gov (United States)

    Quality assurance procedures are contained in this comprehensive document intended to be used as an aid for wood heater manufacturers and testing laboratories in performing particulate matter sampling of wood heaters according to EPA protocol, Method 5G. These procedures may be u...

  20. 40 CFR Table 4 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Hydrogen Chloride Emission Limits

    Science.gov (United States)

    2010-07-01

    ... Process Heaters With Hydrogen Chloride Emission Limits 4 Table 4 to Subpart DDDDD of Part 63 Protection of... Heaters With Hydrogen Chloride Emission Limits As stated in § 63.7500, you must comply with the following applicable operating limits: If you demonstrate compliance with applicable hydrogen chloride emission...

  1. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks....

  2. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  3. Determination of the thermal transport delay characteristics of a heater-rod-thermocouple system used for measuring the time-to-critical heat flux

    International Nuclear Information System (INIS)

    Fast response thermocouple installations were used to measure time-to-CHF during the rod bundle test phase of the C-E EPRI Blowdown Heat Transfer Program. The CHF measured by these thermocouple installations occurs following the simulation of a complete rupture and offset of the inlet piping of a Pressurized Water Reactor during a Loss of Coolant Accident. The thermocouples were installed in ceramic cylinders within fuel rod simulators which were heated by passing direct current through thier walls. Such blowdown tests subjected the thermocouples to rapid heatup rates of from 300 to 5000F/sec. starting within approximately one second from the time of simulated rupture. The primary elements contributing to the heat transport delay for the system composed of the heater rod and the thermocouple are the clearance between the rod wall and the ceramic and the thermocouple time constant.An analytical model was developed in conjuction with an iterative non-linear least squares fitting technique which allowed the determination of these two transport delays terms from calibration tests data. A heater rod was subjected to a current pulses while hanging in air. Transient temperature profiles during these pulse tests were fit to the closed form analytical equation by varying the gap size and the thermocouple time constant. The transport time lag terms derived from fitting the calibration test data for a known power pulse could be applied to determine the actual time-to-CHF and post-CHF heatup rate from measured blowdown test data

  4. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, Arvind

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  5. 75 FR 55277 - Outer Continental Shelf Air Regulations; Consistency Update for California

    Science.gov (United States)

    2010-09-10

    ... of Oxides of Nitrogen from Industrial, Institutional, and Commercial Boilers, Steam Generators, and..., Institutional, and Commercial Boilers, Steam Generators, and Process Heaters (Adopted 9/5/08) Rule 1146.2... FR 67845), EPA proposed to incorporate various South Coast AQMD air pollution control...

  6. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis

    Science.gov (United States)

    Jahangir, Ifat; Koley, Goutam

    2016-07-01

    We report on novel microcantilever heater sensors with separate AlGaN/GaN heterostructure based heater and sensor channels to perform advanced volatile organic compound (VOC) detection and mixture analysis. Operating without any surface functionalization or treatment, these microcantilevers utilize the strong surface polarization of AlGaN, as well as the unique heater and sensor channel geometries, to perform selective detection of analytes based on their latent heat of evaporation and molecular dipole moment over a wide concentration range with sub-ppm detection limit. The dual-channel microcantilevers have demonstrated much superior sensing behavior compared to the single-channel ones, with the capability to not only identify individual VOCs with much higher specificity, but also uniquely detect them in a generic multi-component mixture of VOCs. In addition, utilizing two different dual channel configurations and sensing modalities, we have been able to quantitatively determine individual analyte concentration in a VOC mixture. An algorithm for complete mixture analysis, with unique identification of components and accurate determination of their concentration, has been presented based on simultaneous operation of an array of these microcantilever heaters in multiple sensing modalities.

  7. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Electric D2 Appendix D2 to... PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. D2 Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range...

  8. Guidebook for the Development of a Nationally Appropriate Mitigation Action for Solar Water Heaters

    DEFF Research Database (Denmark)

    Haselip, James Arthur; Lütken, Søren E.; Sharma, Sudhir

    This guidebook provides an introduction to designing government-led interventions to scale up investment in solar water heater (SWH) markets, showing how these interventions can be packaged as Nationally Appropriate Mitigation Actions (NAMAS). Reflecting the changing balance in global greenhouse...

  9. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  10. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  11. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pool Heaters-Oil J2 Appendix J2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Pool Heaters—Oil Range Information Manufacturer's rated heating capacities Range of...

  12. Application for the On-line Isotope Mass Separator ISOLDE Facility: the Target Heater

    CERN Document Server

    Sánchez-Conejo, Jorge

    2003-01-01

    The purpose of the Heater Application is to heat and cool the target and line used on the On-Line Isotope Mass Separator ISOLDE facility up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  13. Consumers and experts. An econometric analysis of the demand for water heaters

    International Nuclear Information System (INIS)

    Consumers can accumulate product information on the basis of a combination of searching, product advertising and expert advice. Examples of experts who provide product information include doctors advising patients on treatments, motor mechanics diagnosing car problems and recommending repairs, accountants recommending investment strategies, and plumbers making recommendations on alternative water heaters. In each of these examples, the transactions involve the sale of goods and services where the seller is at the same time an expert providing advice on the amount and type of product or service to be purchased. In the case of water heaters, the plumber advising a consumer on their choice of water heater will most likely also install the appliance. Because of the information asymmetry there is potentially a strategic element in the transmission of information from expert to consumer. This paper reports on an econometric investigation of the factors that determine the choices made by consumers and the recommendations made by plumbers and the extent to which plumbers act in the best interests of their customers. The empirical work is made possible by the availability of stated preference data generated by designed experiments involving separate samples of Australian consumers and plumbers. We find some evidence that plumbers have higher preferences than consumers for heater characteristics that increase their profit margin

  14. Predicting canopy temperatures and infrared heater energy requirements for warming field plots

    Science.gov (United States)

    Warming open-field plots using arrays of infrared heaters has proven feasible for conducting experiments to determine the likely effects of global warming on various ecosystems. To date, however, such experiments have been done for only a few degrees (= 3.5°C) of warming, yet climate projections, es...

  15. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  16. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  17. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  18. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  19. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Owens, Douglas [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  20. Specification of rock instrumentation locations and orientations for Full-Scale Heater Test No. 2

    International Nuclear Information System (INIS)

    Instrument installed locations and orientations are given for Full-Scale Heater Test number-sign 2 conducted at the Near-Surface Test Facility. Location specifications are given for the original installation of all thermocouples, Multiple-Position Borehole Extensometers, US Bureau of Mines Borehole Deformation Gages, and Vibrating Wire Stressmeters. 3 figs

  1. Specification of rock intrumentation locations and orientations for Full-Scale Heater Test No. 1

    International Nuclear Information System (INIS)

    Instrument installed locations and orientations are given for Full-Scale Heater Test number-sign 1 conducted at the Near Surface Test Facility. Location specifications are given for the original installation of all thermocouples, Multiple-Position Borehole Extensometers, US Bureau of Mines Borehole Deformation Gages, and Vibrating Wire Stressmeters. 3 figs

  2. Study of Exhaust Emissions Reduction of a Diesel Fuel Operated Heater During Transient Mode of Operation

    Directory of Open Access Journals (Sweden)

    Miklánek Ľubomír

    2014-10-01

    Full Text Available Diesel fuel operated heaters (FOHs are generally used as an independent heat source for any system in which a diesel fuel and battery power is available. Based on the fact that future engines will become even more efficient and thus less waste heat will be available to heat the passenger compartment, independent heat sources will be even more necessary.

  3. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ... steam generating unit (including a unit covered by 40 CFR part 60, subpart Da) or a Mercury (Hg) Budget unit covered by 40 CFR part 60, subpart HHHH. (d) A boiler or process heater required to have a permit...., hazardous waste boilers). (e) A commercial and industrial solid waste incineration unit covered by 40...

  4. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  5. An efficient water flow control approach for water heaters in direct load control

    NARCIS (Netherlands)

    Belov, Alexander; Meratnia, Nirvana; Zwaag, van der Berend Jan; Havinga, Paul

    2014-01-01

    Tank water heaters (WHs) are present in a prevailing number of European households. Serving as energy buffers WHs have come under the spotlight of various direct load control (DLC) programs over the last few decades. Although DLC has proven to be an efficient measure towards daily peak demand shavin

  6. Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte;

    2016-01-01

    , such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...

  7. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    International Nuclear Information System (INIS)

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  8. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a

  9. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC (180ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  10. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

    2012-04-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  11. Studying creation of bulk elementary excitation by heaters in superfluid helium-Ⅱ at low temperatures

    Institute of Scientific and Technical Information of China (English)

    ZAKHARENKO A.A.

    2007-01-01

    In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid 4He at low temperatures ~60 mK are discussed. Positive rotons' (R+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of 4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated 4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast 4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower 4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave,which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.

  12. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NOx formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m2), high heat-transfer rates (up to 310 kW/m2), high density of energy conversion (up to 8 MW/m3), as well as ultra-low emissions (NOx and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  13. Tube Plugging Criteria for the High-pressure Heaters of Ulchin NPP 3 and 4

    International Nuclear Information System (INIS)

    Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging criteria used in the steam generator tubes

  14. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, S.C.; Dubey, Swapnil [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tiwari, Arvind [Department of Design, Production and Management, University of Twente, Enschede (Netherlands)

    2009-11-15

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations, in a steady state condition, a thermal model has been developed. Comparison between experimental and theoretical results were also been carried out. The thermal and electrical efficiency of the solar heater is 42% and 8.4%, respectively. This test procedure can be used by manufacturers for testing of different types of PV modules in order to optimize its products. (author)

  15. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  16. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  17. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  18. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    Science.gov (United States)

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  19. EFFECT OF DISCRETE HEATER AT THE VERTICAL WALL OF THE CAVITY OVER THE HEAT TRANSFER AND ENTROPY GENERATION USING LBM

    Directory of Open Access Journals (Sweden)

    Mousa Farhadi

    2011-01-01

    Full Text Available In this paper Lattice Boltzmann Method (LBM was employed for investigation the effect of the heater location on flow pattern, heat transfer and entropy generation in a cavity. A 2D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations were performed for Rayleigh numbers from 103 to 106 at Pr = 0.71. The study was carried out for heater length of 0.4 side wall length which is located at the right side wall. Results are presented in the form of streamlines, temperature contours, Nusselt number and entropy generation curves. Results show that the location of heater has a great effect on the flow pattern and temperature fields in the enclosure and subsequently on entropy generation. The dimensionless entropy generation decreases at high Rayleigh number for all heater positions. The ratio of averaged Nusselt number and dimensionless entropy generation for heater located on vertical and horizontal walls was calculated. Results show that higher heat transfer was observed from the cold walls when the heater located on vertical wall. On the other hand, heat transfer increases from the heater surface when it located on the horizontal wall.

  20. Optimization of gaseous helium heater for 2 K cryogenic system for VECC’s superconducting electron linac

    Science.gov (United States)

    Ahammed, Manir; Ghosh, Siddhartha; Saha, Subrata; Singh, Sandeep Kumar; Bhattacharya, Tamal Kumar; DuttaGupta, Anjan; Pal, Gautam; Naik, Vaishali; Chakrabarti, Alok

    2014-09-01

    Niobium superconducting radiofrequency cavities are generally operated at around 2 K temperature to achieve a high quality factor by reducing residual surface losses. 2 K temperature is produce by lowering down the pressure of the helium by employing a sub-atmospheric vacuum pumping system. The cavities are immersed in liquid helium bath, maintained in the helium chamber. A special heater is optimized for warming up the helium gas coming out from the helium chamber to 300 K before it enters the pumping system. Keeping in view the uninterrupted and reliable operation of the superconducting electron linac and safe running of the liquid helium plant, a tubular heat exchanger type of heater is designed. Current is passed through the tubes of the heater so as to let the tube banks themselves act as heating element. He gas, passing through the tubes, absorbs the heat and warms up to the desired temperature. Unlike common notion, it has been observed that heater with longer length could reduce the requirement of the heater power but at the cost of extra pumping power, required to counter balance the excess pressure drop caused by the additional length of the heater. Pressure drop is kept within 50 Pa for 2 g/s helium flow rate. The whole lot of tubes, divided into 4 bundles, are electrically connected in series so that current rating of the feed-through could be kept within 750 A. This paper discusses the methodology used for optimizing the design of the heater.

  1. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    OpenAIRE

    Jing-Nang Lee; Tsung-Min Lin; Chien-Chih Chen

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for con...

  2. Modernization of the feedwater heaters control level of the Almaraz I Nuclear Power Plant by OVATION system; Modernizacion del control de nivel de los calentadores de agua de alimentacion de C.N. Almaraz I mediante el sistema OVATION

    Energy Technology Data Exchange (ETDEWEB)

    Madronal Rodriguez, E.; Cabrero Munoz, J. E.

    2010-07-01

    As a result of the process of technological renovation of the heaters system and the power increase project, Almaraz Nuclear Power Plant has made several design changes in the feedwater heaters system. Within these changes, the old heaters control loops are replaced because the new power will increase the heaters drainage caudal. This modernization is carried out using the OVATION control system.

  3. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    International Nuclear Information System (INIS)

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems

  4. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  5. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  6. Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Yull; Park, Young Gun; Lee, Woo Seung; Jo, Hyun Chul; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Yoon, Yong Soo [Shin Ansan University, Ansan (Korea, Republic of)

    2014-03-15

    Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

  7. Skin-effect down hole electric heater for heavy oil and high wax content oil applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenglin; Wang, Hui; Liu, Yanhua [Liaoning Huafu Petroleum High-Tech Co., Ltd. (China); Xiao, Jon H; Klotz, Eric [ANDMIR Environmental Group Canada Inc. (Canada)

    2011-07-01

    With the increased production of oil and the depletion of conventional reserves, operators have started to exploit heavy oil and high wax content oil. Adequate production of such oils is difficult to achieve due to viscosity increase and mobility decrease during lifting as a result of heat loss. The down-hole electric heater has been developed to resolve these issues with the application of skin-effect electric heating technology. The aim of this paper is to present how this technology improves the production of heavy oil and waxy oil. Applications of the technology to wells in Chinese oilfields are studied. Results proved the technology to be efficient while being based on a simple process and operating in an easy and safe manner. This paper showed that the down-hole electric heater is a breakthrough technology, resolving the issues encountered in the heavy oil and waxy oil exploitation field, with broad application prospects.

  8. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.;

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  9. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  10. Light weight radioisotope heater unit (LWRHU): a technical description of the reference design

    International Nuclear Information System (INIS)

    The Light Weight Radioisotope Heater Unit (LWRHU), a new radioisotope heater unit for use in space missions, is a 238PuO2-fueled unit designed to provide a thermal watt in dispersed locations on a spacecraft. The LWRHU is required to maintain the temperature of a component at a level where the component will function reliably in space. Two major constraints are placed on the unit's design; it must be as light as possible and must provide enough protection to immobilize the plutonium fuel to the maximum extent in all phases of the unit's lifetime. The four components are pelletized fuel, platinum-alloy encapsulation, pyrolytic graphite thermal insulation, and high-technology graphite ablation shell. The LWRHU is a cylinder 32 mm (1.26 in.) high and 26 mm (1.02 in.) in diameter. It weighs slightly less than 40 g

  11. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, dai...... the value of the coefficient FRUL and τα, which are obtained experimentally as 6.03 and 0.83 respectively, average. monthly total load that is covered by this solar water heating system is estimated....... consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering...

  12. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  13. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  14. Survey costs associated with the replacement of electric showers for solar heaters

    International Nuclear Information System (INIS)

    This paper aims to explain the benefits of replacing electric shower for solar water heaters, and a consequent drop in peak demand for electric power generation and residential consumption in the economy. For this, will be shown the lifting of solar radiation per square meter in Brazil, studied in 250 locations, the most representative in terms of solar energy in this country. The costs presented are associated with replacement of 5 million, 10 million and 20 million electric showers. (author)

  15. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2011-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  16. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  17. An in situ heater for a phase-change-material-based actuation system

    International Nuclear Information System (INIS)

    This paper reports efforts to develop paraffin actuators that rely on a phase change to achieve actuation. While paraffin phase-change actuators have existed for some time, this work relies on heating the paraffin in situ, rather than using external heaters. Graphite is used to create an in situ heater that utilizes resistive heating as a voltage is applied across the graphite–paraffin wax mixture. The main motivation behind this work is to reduce the actuation time and power required. An added advantage of the developed in situ heater is the use of printed circuit board technology to fabricate the prototypes rapidly and in a cost-effective manner. A video microscope and IR camera are used to characterize the performance of the actuators built in this work. Different compositions of graphite in paraffin wax are used to measure the actuator performance characteristics such as actuation time, actuation height and power required. Both dc and a pulsed power input are used to test the prototypes. Comparison with a similar actuator that utilizes a thin film heater shows a 90% reduction in actuation time for similar power usage. The actuator developed as part of this work resulted in 0.577 mm dot height at 0.69 W power input in 6 s translating to ∼4 J/actuation for an actuator chamber of 2.82 µL. A new performance metric, 'effective actuation time (W s−1 mm−4)', is used to compare the performance of this technology with other phase-change-material-based actuators, and the actuator developed in this work is found to be 10 to 200 times better.

  18. PERFORMANCE DETERIORATION OF THERMOSIPHON SOLAR FLAT PLATE WATER HEATER DUE TO SCALING

    OpenAIRE

    arunachala umesh chandavar

    2011-01-01

    The performance of Flat plate Solar Water Heater deteriorates within five to twelve years of their installation due to factors related to manufacturing, operating conditions, lack of maintenance etc. Especially, problem due to scaling is significant as it is based on quality of water used. The remaining factors are system dependent and could be overcome by quality production. Software is developed by incorporating Hottel Whillier Bliss (H-W-B) equation to ascertain the effect of scaling o...

  19. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  20. Heat transfer behavior on small heaters during saturated pool boiling of FC-72 in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Mullen, J.D. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Yaddanapudi, N. [MetaSensors, Rockville, MD (United States)

    1999-07-01

    Saturated pool boiling of FC-72 on an array of 96 heaters, each 0.27 mm x 0.27 mm in size, was studied in a microgravity environment provided by NASA's KC-135. Each of the heaters was maintained at a constant temperature by means of electronic feedback circuits, and the heat flux through each individual heater was measured at a high sampling rate. Space and time resolved heat flux maps were obtained and correlated with video pictures of boiling on the surface recorded from below. The time resolved heat flux data was then conditionally sampled according to whether or not boiling occurred on the surface and an average heat flux during boiling was obtained. Array averaged heat fluxes in microgravity were slightly larger than in Earth gravity for wall superheats up to about 30 K, but were significantly lower than in Earth gravity at higher superheats. The time-average heat flux conditionally sampled on boiling, however, was independent of the gravity level suggesting that the behavior of small bubbles is not affected by gravity. Heat transfer from the surface occurred primarily through these small bubbles-not much heat transfer was associated with the large bubble that occasionally formed on the surface as a result of coalescence of the small bubbles. (orig.)

  1. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters

    CERN Document Server

    Jayatilleka, Hasitha; Guillen-Torres, Miguel Angel; Caverley, Michael; Hu, Ricky; Jaeger, Nicolas A F; Chrostowski, Lukas; Shekhar, Sudip

    2015-01-01

    We demonstrate that n-doped resistive heaters in silicon waveguides show photoconductive effects having responsivities as high as 271 mA/W. These photoconductive heaters, integrated into microring resonator (MRR)-based filters, were used to automatically tune and stabilize the filter's resonance wavelength to the input laser's wavelength. This is achieved without requiring dedicated defect implantations, additional material depositions, dedicated photodetectors, or optical power tap-outs. Automatic wavelength stabilization of first-order MRR and second-order series-coupled MRR filters is experimentally demonstrated. Open eye diagrams were obtained for data transmission at 12.5 Gb/s while the temperature was varied by 5 C at a rate of 0.28 C/s. We theoretically show that series-coupled MRR-based filters of any order can be automatically tuned by using photoconductive heaters to monitor the light intensity in each MRR, and sequentially aligning the resonance of each MRR to the laser's wavelength.

  2. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R [ORNL; BushPE, John D [Electric Power Research Institute (EPRI)

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  3. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  4. Experimental Study of Thermoelectric Heat Pump Water Heater with Exhaust Heat Recovery from Kitchens

    Institute of Scientific and Technical Information of China (English)

    LIU Zhong-bing; ZHANG Ling; YANG Zhang; XU Ming; HAN Tian-he

    2009-01-01

    A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was pre-sented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides be-comes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller eoeffieient of performance.Under an exhaust temperature of 36℃,the coefficient of performance decreases from 1.66 tO 1.22 when the temperature of water increases from 28℃to 46℃with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of ther-moelectric heat pump water heater is more coefficient.

  5. Test results and supporting analysis of a near-surface heater experiment in the Eleana argillite

    International Nuclear Information System (INIS)

    A preliminary evaluation of the in-situ thermomechanical response of argillite to heating was obtained from a near-surface heater test in the Eleana Formation, at the United States Department of Energy, Nevada Test Site. The experiment consisted of a 3.8 kW, 3-m long x 0.3-m diameter electrical heater in a central hole surrounded by peripheral holes containing instrumentation to measure temperature, gas pressures, and vertical displacement. A thermal model of the experiment agreed well with experimental results; a comparison of measured and predicted temperatures indicates that some nonmodeled vertical transport of water and water vapor occurred near the heater, especially at early times. A mechanical model indicated that contraction of expandable clays in the argillite produced a region 1.5 - 2.0 m in radius, in which opening of preexisting joints occurred as a result of volumetric contraction. Results of thermal and mechanical modeling, laboratory property measurements, experimental temperature measurements, and post-test observations are all self-consistent and provide preliminary information on the in-situ response of argillaceous rocks to the emplacement of heat-producing nuclear waste

  6. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  7. Design and development of a thermoelectric cogeneration device integrated in autonomous gas heaters

    Science.gov (United States)

    Codecasa, Matteo P.; Fanciulli, Carlo; Gaddi, Roberto; Passaretti, Francesca

    2012-06-01

    An autonomous heat-radiating gas heater for commercial outdoor environments has been selected as a test case for implementing cogeneration in autonomous gas heaters and stoves, permitting its installation and operation without the need of a connection to the electrical network. A thermoelectric generator (TEG) was selected for this purpose[1], designed for converting an amount of the produced heat into electrical power for auxiliary (ventilation, battery recharge) or ancillary functions (high efficiency LED illumination). The design approach, the layout and structure of the TEG are discussed, as well as the constraints for its integration in the existing gas heater. Design features and main components are examined: hot side heat collector for capturing heat from the flame; thermoelectric module (TEGM) technology and model selection; natural convection heat radiator at cold side; analysis and optimization of the thermal chain; TEG's assembly and its design as a whole. A prototype has been built and tested, its functional behavior has been modeled through multi-physics numerical simulation[2] to allow for further optimization and extrapolation of the results towards larger and/or more complex designs. A patent application has been issued jointly by the authors, covering the design hereinafter described.

  8. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    OpenAIRE

    Sabanskis A.; Virbulis J.

    2016-01-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Result...

  9. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  10. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  11. Comparison of heat capacity and thermal time constant between BWR fuel and simulated heater rod

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    It is important to know the thermal characteristics of BWR fuel, i.e. heat capacity and thermal time constant, in order to evaluate the thermal hydraulics at BWR accidents and the events under thermal-hydraulic and neutronic coupling condition. Further, since the heater rod simulating BWR fuel is used in the tests for BWR accidents and for BWR thermal hydraulics coupled with neutronics, it is important to know the thermal characteristics of the heater rod. Therefore, the author investigated the thermal characteristics of BWR fuel and the heater rod by performing experiments and analyzing with J-TRAC code capable to analyze 2-dimensional heat conduction problem. The heat capacity per unit length of BWR fuel cp{rho}A (kJ/mK) was estimated to be 0.34 kJ/mK - 0.36 kJ/mK in 300 deg. C - 800 deg. C. The heat capacity of the heater rod was almost identical with each other regardless of the differences in rods and positions. It was higher with higher temperature. The heat capacity of the heater rod used in the test for BWR accidents was about 0.38 kJ/mK at 600 deg. C, which was about 9% higher than the average (0.35 kJ/mK) of BWR fuel. On the other hand, the heat capacity used in the test for BWR thermal hydraulics coupled with neutronics was about 0.42 kJ/mK at 600 deg. C, which was about 20% higher than the average of BWR fuel. Thermal time constant was affected by surface heat transfer coefficient, thermal diffusivity, and gap conductance. When the surface heat transfer coefficient is small, it controls the heat transfer and thermal time constant depends mainly on the surface heat transfer coefficient. When the surface heat transfer coefficient is large, the heat conduction controls the heat transfer and thermal time constant depends mainly on the thermal diffusivity. In the former case, one point heat transfer model is applicable and the thermal time constant is proportional to the inverse of the surface heat transfer coefficient. In this case, the thermal time

  12. Molecular hydrogen (H2 combustion emissions and their isotope (D/H signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2012-03-01

    Full Text Available Molecular hydrogen (H2, its stable isotope signature (δD, and the key combustion parameters carbon monoxide (CO, carbon dioxide (CO2, and methane (CH4 were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally depleted compared to ambient intake air, while CO was significantly elevated. These findings contradict the often assumed co-occurring net H2 and CO emissions in combustion processes and suggest that previous H2 emissions from combustion may have been overestimated when scaled to CO emissions. For the heater exhausts, H2 and δD generally decrease with increasing fuel-to-air ratio, from ambient values of ∼0.5 ppm and +130‰ to 0.2 ppm and −206‰, respectively. These results are interpreted as a combination of an isotopically light H2 source from fossil fuel combustion and a D/H kinetic isotope fractionation of hydrogen in the advected ambient air during its partial removal during combustion. Diesel exhaust measurements from dynamometer test stand driving cycles show elevated H2 and CO emissions during cold-start and some acceleration phases. Their molar H2/CO ratios are 2/CO emission ratios, along with CO global emission inventories, we estimate global H2 emissions for 2000, 2005, and 2010. For road transportation (gasoline and diesel, we calculate 8.6 ± 2.1 Tg, 6.3 ± 1.5 Tg, and 4.1 ± 1.0 Tg, respectively, whereas the contribution from diesel vehicles has increased from 5% to 8% over this time. Other fossil fuel emissions are believed to be negligible but H2 emissions from coal combustion are unknown. For residential (domestic emissions, which are likely dominated by biofuel combustion, emissions for the same years are estimated at 2.7 ± 0.7 Tg, 2.8 ± 0.7 Tg, and 3.0 ± 0.8 Tg, respectively. Our wood combustion measurements are combined with results from the literature to calculate biomass burning emissions. For these estimates, we propose a

  13. Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation

    International Nuclear Information System (INIS)

    Whereas the technical feasibility of solar water heaters (SWHs) has long been established, the economic feasibility of SWHs in regional China remains to be examined. This paper constructs cost models to calculate costs per unit energy saving of SWHs in 27 Chinese provincial capital cities. The cost effectiveness of SWHs is examined at the national level. At a micro level, we analyze the financial attractiveness of consumers’ investment in SWHs. A panel data model is employed to evaluate the effectiveness of a subsidy program in rural China. The results show that SWH costs, ranging from 0.305 to 0.744 CNY/kW h, are much lower than those of other major renewable energies across China. This finding indicates that the diffusion of SWHs is a cost-effective way to reach China’s renewable energy target. For consumers, incentive programs for SWHs are needed to improve the financial attractiveness of the devices in China. Existing subsidy policies for rural China have failed to significantly enhance the deployment of SWHs. The causes of the failure are examined and a new incentive program is suggested for rural areas of the country. - Highlights: • We examine the economic feasibility of solar water heaters in 27 Chinese cities. • We evaluate policy effectiveness of solar water heaters (SWHs) using panel data. • Diffusion of SWHs is cost effective in fulfilling China’s renewable energy target. • Financial attractiveness of SWHs is limited without incentive programs. • The existing subsidy policy is proved to be a failure and a new program is suggested

  14. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  15. Emission factors of gaseous pollutants from recent kerosene space heaters and fuels available in France in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, M.; Pauwels, J.-F.; Hanoune, B. (Univ. Lille 1. PhysicoChimie des Processus de Combustion, Lille (France))

    2012-08-15

    Laboratory measurements of the gaseous emission factors (EF) from two recent kerosene space heaters (wick and injector) with five different fuels have been conducted in an 8-m3 environmental chamber. The two heaters tested were found to emit mainly CO{sub 2}, CO, NO, NO{sub 2}, and some volatile organic compounds (VOCs). NO{sub 2} is continuously emitted during use, with an EF of 100-450 mu per g of consumed fuel. CO is normally emitted mainly during the first minutes of use (up to 3 mg/g). Formaldehyde and benzene EFs were quantified at 15 and 16 mu/g, respectively, for the wick heater. Some other VOCs, such as 1,3-butadiene, were detected with lower EFs. We demonstrated the unsuitability of a 'biofuel' containing fatty acid methyl esters for use with the wick heater, and that the accumulation of soot on the same heater, whatever the fuel, leads to a dramatic increase in the CO EF, up to 16 mg/g, which could be responsible for chronic and acute CO intoxications. (Author)

  16. Graphite–boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures

    Science.gov (United States)

    Xie, Longjian; Yoneda, Akira; Yoshino, Takashi; Fei, Hongzhan; Ito, Eiji

    2016-04-01

    We have investigated the performance of a graphite-boron composite (GBC) with 3 wt % boron as a precursor for a boron-doped diamond heater in a Kawai-type apparatus at 15 GPa. We first tested a machinable cylinder of GBC sintered at 1000°C in Ar/H2 gas (99:1 molar ratio). Boron oxide (B2O3) formed during sintering frequently hindered the GBC heater from stable operation at temperatures higher than 1400°C by producing melt throughout the heater together with oxide and/or silicates. We then rinsed the GBC heater in hydrochloric acid to remove B2O3. After rinsing, we succeeded in stably generating temperatures higher than 2000°C. We also improved a molding process of different-sized GBC tubes for convenient use and tested the molded GBC heater. It was free from the B2O3 problem. The electromotive force of the W/Re thermocouple was successfully monitored up to 2400°C.

  17. Development of an Operation Control System for Photovoltaics and Electric Storage Heaters for Houses Based on Information in Weather Forecasts

    Science.gov (United States)

    Obara, Shin'ya

    An all-electric home using an electric storage heater with safety and cleaning is expanded. However, the general electric storage heater leads to an unpleasant room temperature and energy loss by the overs and shorts of the amount of heat radiation when the climate condition changes greatly. Consequently, the operation of the electric storage heater introduced into an all-electric home, a storage type electric water heater, and photovoltaics was planned using weather forecast information distributed by a communication line. The comfortable evaluation (the difference between a room-temperature target and a room-temperature result) when the proposed system was employed based on the operation planning, purchase electric energy, and capacity of photovoltaics was investigated. As a result, comfortable heating operation was realized by using weather forecast data; furthermore, it is expected that the purchase cost of the commercial power in daytime can be reduced by introducing photovoltaics. Moreover, when the capacity of the photovoltaics was increased, the surplus power was stored in the electric storage heater, but an extremely unpleasant room temperature was not shown in the investigation ranges of this paper. By obtaining weather information from the forecast of the day from an external service using a communication line, the heating system of the all-electric home with low energy loss and comfort temperature is realizable.

  18. Super-heater tube failure due to overheating when using bagasse as fuel

    Directory of Open Access Journals (Sweden)

    John Jairo Coronado Marín

    2010-04-01

    Full Text Available A super-heater’s boiler tubes presented external longitudinal cracks. The tubes’ external surfaces presented a reddish-white layer consisting of paraffin chains: CH, functional groups: CO, NH and sulphur compounds. This brittle layer prevented heat transfer, thereby causing increased tube temperature. Creep led to failure due to long-term overheating. The steel tubes’ microstructure presented grain growth, cementite globulisation and intergranular cracks on the external surface. The foregoing observations support microstructure deterioration facilitated by the presence of unsuitable super-heater tube material when just using bagasse as fuel.

  19. Chalcogenide Random Access Memory Cell with Structure of W Sub-Microtube Heater Electrode

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; FENG Gao-Ming; WU Liang-Cai; SONG Zhi-Tang; LIU Qi-Bin; FENG Song-Lin; CHEN Bomy

    2007-01-01

    @@ In order to reduce the reset current of chalcogenide random access memory, a W sub-microtube heater electrode with outer/inner diameter of 260/100nm, which was fabricated with standard 0.18-μm technology, is proposed for the first time to achieve a reset current of about 0.5mA. The reasons may be that sub-microtube increases the number of electrode edge and thermal efficiency is improved greatly because the thermal density on the edge of sub-microtube electrode is generally the highest.

  20. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  1. Experimental investigation of an adjustable ejector for CO_2 heat pump water heaters

    Institute of Scientific and Technical Information of China (English)

    Guang-ming CHEN; Li-xia LIANG; Li-ming TANG; Xiao-xiao XU; Zhi-jiang ZHU; Qi CHEN

    2009-01-01

    An adjustable ejector expansion device for a CO_2 heat pump water heater (HPWP) is proposed to improve the system performance. It has been designed to investigate experimentally the effects of the motive nozzle throat area of the ejector, entrained flow pressure, back pressure and primary flow pressure on the entrainment ratio. Experiments based on different motive nozzle throat areas were conducted and the results of the prototype ejector using CO_2 as working fluid are presented. The results show that an adjustable ejector can achieve high performance and work well in a wide range of working conditions.

  2. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions.

  3. 热泵与家用太阳热水器联合供热性能试验%Performance jointly test of heat pump water heater with household solar heating

    Institute of Scientific and Technical Information of China (English)

    谌学先; 高文峰; 兰青; 唐润生; 夏朝凤

    2011-01-01

    为解决家用太阳能热水器供热的间歇性和不稳定性,应用热泵辅助可达到全天候供热,该文通过对这种联合供热系统的供热性能和运行性能进行了测试,并对热水器的升温、保温和热泵的加热进行了试验和分析,结果表明:空气源热泵辅助型真空管家用太阳热水系统仅在累积太阳辐照量小于14 MJ/m2时,需要空气源热泵辅助加热,总制热性能系数可达6.18.%To solve the problems of heating intermittent and instability for household solar water heater, application of heat pump for evacuated tube solar water heater system can achieved auxiliary heat supply round-the-clock. Heating performance test and operation of the system were conducted and the temperature rise performance, heat preservation of the solar water heater system and the heating performance of heat pump were tested and analyzed in this paper. The result showed that when the solar radiation was less than 14 MJ/m2 , the system needed heating by air source heat pump,on this occasion, the system total coefficient of performance could reach 6.18.

  4. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  5. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process

    Directory of Open Access Journals (Sweden)

    Wei-Zhen Liao

    2013-09-01

    Full Text Available The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 µm complementary metal oxide semiconductor (CMOS process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm.

  6. Failure analysis of austenitic stainless steel tubes in a gas fired steam heater

    International Nuclear Information System (INIS)

    Highlights: ► 304H stainless steel is more susceptible to caustic SCC compared to SA335 alloy steel. ► Caustic attacks the protective layer of stainless steel superheater tubes. ► Sigma phase formation at the weld zone causes crack initiation in fired heater tubes. -- Abstract: Carryover of caustic soda (NaOH) in the steam path caused catastrophic failure of superheater 304H stainless steel tubes in a gas fired heater and led to an unexpected shutdown after just 5 months of continuous service following the start of production. The cause of the failure was studied, with a focus on the effect of caustic embrittlement on stress corrosion cracking (SCC). The cracks were examined at the seam weld, heat affected zone (HAZ), and U-bend areas. Hardness was measured for the base metal, HAZ, and weld metal, and microstructures were examined using optical microscopy and scanning electron microscopy (SEM). Crack initiation is attributed to gouging on the precipitated carbide at the HAZ and also the formation of sigma phase in the weld metal, as shown by energy dispersive X-ray (EDX) analysis. In addition, cracking was propagated by caustic embrittlement because of residual stresses and hammering. Finally, the characteristic feature of fracture was illustrated by SEM fractography, and consists mostly of intergranular SCC and some quasi-cleavage transgranular.

  7. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  8. Solar heaters, should they be seen or not?; Calentadores solares, mostrarlos u ocultarlos?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martinez, Octavio [Modulo Solar, S.A. de C.V., Cuernavaca, Morelos (Mexico)

    2000-07-01

    Talking about Solar Heaters, architects have two opposite points of view about aesthetics. Some architects are convinced that the collector field should be integrated into the original design or in buildings already built, these fields should be adapted and fully shown. On the other hand, there are those who prefer collectors not to be seen. This work, based on our experience since 1975, will show with photographOut experience since 1975 will be show with solutions that have satisfy each part. With worldwide expectations of massive use of solar energy in the first decade of the millennium, we think that is important to discuss whether: SOLAR HEATERS, should they be seen or not?. [Spanish] Con respecto a los aspectos esteticos de los equipos solares, en el medio arquitectonico existen dos corrientes plenamente contrapuestas: 1.- Aquellos que estan convencidos que hay que integrar los campos de colectores al diseno original o que hay que resolver en las edificaciones existentes la adaptacion de los mismos mostrandolos plenamente y 2.- Aquellos que prefieren ocultarlos. En este trabajo, basado en experiencias desde 1975, mostrara, mediante imagenes, ejemplos de soluciones que hay satisfecho a cada corriente. Con las expectativas mundiales del uso masivo de la energia solar en la primera decada del milenio, seria importante, de una buena vez, encauzar la polemica: EQUIPOS SOLARES SE DEBEN VER O NO?.

  9. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  10. 1000 solar water heaters in the newly built area Woudhuis in Apeldoorn, Netherlands

    International Nuclear Information System (INIS)

    In the end of 1990 a large scale solar boiler project was initiated for the title area. The aim of the project is to gain experience in project planning of the implementation of solar water heaters in newly built areas and to investigate to what extent this could contribute to a cost reduction of the solar boilers. The target was a total of 1,000 solar boilers in the Woudhuis area, in which 1,700 houses will be built in the period 1993-1995. A cost reduction of 10-20% is estimated. Descriptions of the project, the Woudhuis area and the planning method are given. It is expected that the installation of 1,000 solar water heaters and the estimated cost reduction will be realized. The Woudhuis project will be a part of the European Community research program THERMIE and provided much knowledge on how to plan such a project in newly built areas. It also has very positive effects on other similar follow-up projects. 2 figs

  11. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1997-01-01

    A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line meas

  12. Design and operation of a thermionic converter in air

    International Nuclear Information System (INIS)

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance

  13. Thin air

    OpenAIRE

    Jasanoff, Sheila

    2013-01-01

    Clearing the air How do we grasp the air? Without Michel Callon’s guidance, I might never have asked that question. Years ago, when I first entered environmental law practice, I took it for granted that problems such as air pollution exist “out there” in the real world for science to discover and law to fix. It is a measure of Callon’s influence that I understand the law today as a metaphysical instrument, no less powerful in its capacity to order nature than the tools of the ancient oracular...

  14. Design of Control System of Parallel Solar Assisted Heat Pump Water Heater%并联式太阳能热泵热水器控制系统设计

    Institute of Scientific and Technical Information of China (English)

    张建成; 吴永明; 苗文凭

    2012-01-01

    阐述了并联式太阳热泵热水器是最易受推广使用的太阳能热泵热水器类型;针对23目前并联式太阳能热泵热水器存在的集成化控制问题,分析了并联式太阳热泵热水器控制系统的控制要求,采用水位、温差与时间相结合的控制方法,以ATmega48单片机为核心,研究了控制系统的工作原理、硬件结构及控制数据流程;系统能够根据天气、水温等不同情况自动选择太阳能机组或空气能热泵机组来制取热水,并且具有主要设备的故障自诊断功能、压缩机延时保护功能及智能化霜功能,提高了该热水器的稳定性和低温制热效率;测试结果表明:使用该集成系统后,系统平均能源利用率提高了约23%.%Among all the solar assisted heat pump water heater, the paralle type is the most easily promoted. According to the integrated problem that exists in the control of the parallel solar assisted heat pump water heater, on the basis of analyzing requirements of the control system of the parallel solar assisted heat pump water heater, the control method associating with water-level, difference in temperature and time is applied. The realization principle, hardware structure and controlling data flow of the control system are studied based on AT-mega48. The system can select automatically solar-energy or air-energy heat -pump to make hot water according to weather and water temperature. Combined with the functions of fault self -diagnosis for key facilities, delay protection for compressor and automatically defrosting, the control system can improve the stability and thermal efficiency of the water heater under the low temperature. The results show that 23%of the average energy efficiency have been improved by using the integrated control system.

  15. Waste energy recovery in window air conditioning system

    Directory of Open Access Journals (Sweden)

    R. Sasidharan

    2014-03-01

    Full Text Available “Faster, mightier & smaller” is still the keyword for every invention and development. In day-to-day world we concentrate on the compactness and efficiency of every product. Keeping this in thought, the “Waste Energy Recovery in Window Air conditioning System” is designed and fabricated in an economical manner. “Human comfort is that condition of mind, which expresses itself with the thermal environment”. In this two rival properties of cool water and heat water are obtained. This system can be used continuously. By using this system there is no need of going for a separate air conditioner or water heater and water cooler. As both purposes are served by a single system, the cost is also lowered to a considerable level.   Keywords: Waste Energy, Window Air Conditioning System.

  16. Air Pollution

    Science.gov (United States)

    ... to a close in June 2013 when the company, Conscious Clothing, was awarded the My Air grand ... Page Options: Request Translation Services Facebook Twitter LinkedIn Google+ Reddit Email Evernote More Increase Font Size Decrease ...

  17. Nano fluid ZrO2 to cool the surface of the vertical plate heater experimental study

    International Nuclear Information System (INIS)

    One attempt to increase the effectiveness of the cooling process is by replacing the coolant itself, for example by replacing water with nano fluid. The nano fluid is a homogenous mixture of water with nano particles of 10-7-10-9 m in diameter. This homogeneous solution is expected to improve the capability of the coolant for transferring heat energy. The study is done by creating an experimental equipment consisting of a flat shaped heater as the heat source and nano fluid ZrO2 as coolant supplied to the heater to remove heat from its surface. Because of the temperature difference between the heater and the coolant, the heat energy generated in the heater will be transferred by the coolant. The effectiveness of this energy transfer process are influenced by the nature of the material and the coolant fluid thermal hydraulics characteristic. Data obtained from this experimental study are used to calculate the convection heat transfer coefficient (h) of the nano fluid ZrO2. The result confirms that heat transfer coefficient of nano fluid ZrO2 is 1.08 higher than the heat transfer coefficient of the water. This indicates that nano fluid ZrO2 is more effective than water for heat transfer. (author)

  18. Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater

    DEFF Research Database (Denmark)

    Taherian, H.; Kolaei, Alireza Rezania; Sadeghi, S.;

    2011-01-01

    This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center...

  19. Replacement of the level control of draining tanks MSRS and powered water heaters with the OVATION system in Asco NPP

    International Nuclear Information System (INIS)

    The current MSR drains and heaters tanks level control is local control individual, pneumatic and without action from Control room. The system has level switches for the generation of alarms, isolations and shots of bombs. Single control room operators have level alarms, final race of valves of control and indication of temperature and pressure of some tanks.

  20. Theoretical heating coefficient of a heat pump water heater with heat recovery applied in household bathing room

    Institute of Scientific and Technical Information of China (English)

    KOUGuangxiao; WANGHanqing; GUWeili; KOUJianguo

    2003-01-01

    Presents the components and flow diagram of a heat pump water heater with heat reclaim applied In household bathing room, analyzes its characteristics from thermodynamical principle, calculates its theoretical heating coefficient under different operating conditions. The result shows that the maximum value of its heating coefficient is 12.9 under a typical operating condition.

  1. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, Arvind; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  2. Vol. 34 - Optimization of quench protection heater performance in high-field accelerator magnets through computational and experimental analysis

    CERN Document Server

    Salmi, Tiina

    2016-01-01

    Superconducting accelerator magnets with increasingly hi gh magnetic fields are being designed to improve the performance of the Large Hadron Collider (LHC) at CERN. One of the technical challenges is the magnet quench p rotection, i.e., preventing damage in the case of an unexpected loss of superc onductivity and the heat generation related to that. Traditionally this is d one by disconnecting the magnet current supply and using so-called protection he aters. The heaters suppress the superconducting state across a large fraction of the winding thus leading to a uniform dissipation of the stored energy. Preli minary studies suggested that the high-field Nb 3 Sn magnets under development for the LHC luminosity upgrade (HiLumi) could not be reliably protected using the existing heaters. In this thesis work I analyzed in detail the present state-of-the-art protection heater technology, aiming to optimize its perfo rmance and evaluate the prospects in high-field magnet protection. The heater efficiency analyses ...

  3. Residence time distribution (RTD) of particulate foods in a continuous flow pilot-scale ohmic heater.

    Science.gov (United States)

    Sarang, Sanjay; Heskitt, Brian; Tulsiyan, Priyank; Sastry, Sudhir K

    2009-08-01

    The residence time distribution (RTD) of a model particulate-fluid mixture (potato in starch solution) in the ohmic heater in a continuous sterilization process was measured using a radio frequency identification (RFID) methodology. The effect of solid concentration and the rotational speed of the agitators on the RTD were studied. The velocity of the fastest particle was 1.62 times the mean product velocity. In general, particle velocity was found to be greater than the product bulk average velocity. Mean particle residence time (MPRT) increased with an increase in the rotational speed of the agitators (P < 0.05), and no particular trend was observed between the MPRT and the solid concentration. The distribution curves E (theta) were skewed to the right suggesting slow moving zones in the system.

  4. Using the column wall itself as resistive heater for fast temperature gradients in liquid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Pursch, Matthias; Desmet, Gert

    2015-11-13

    A new system is proposed for applying fast temperature gradients in liquid chromatography. It consists of a 0.7 mm × 150 mm fused-silica column coated with a 50 μm Nickel-layer, which is connecting with a power source and a temperature control system to perform fast and reproducible temperature gradients using the column wall itself as a resistive heater. Applying a current of 4A and passive cooling results in a maximal heating and cooling rate of, respectively, 71 and -21 °C/min. Multi-segment temperature gradients were superimposed on mobile phase gradients to enhance the selectivity for three sets of mixtures (pharmaceutical compounds, a highly complex mixture and an insecticide sample). This resulted in a higher peak count or better selectivities for the various mixtures.

  5. Temperature buffer test. Installation of buffer, heaters and instruments in the deposition hole

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Barcena, Ignacio; Garcia-Sineriz, Jose Luis [Aitemin, Madrid (Spain)

    2010-12-15

    During 2003 the Temperature Buffer Test was installed in Aespoe Hard Rock Laboratory. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. Most of the cables from the transducers are led in the deposition hole through slots in the rock surface of the deposition hole in watertight tubes to the data collection system in a container placed in the tunnel close to the deposition hole. This report describes the work with the installations of the buffer, heaters, and instruments and yields a description of the final location of all instruments. The report also contains a description of the materials that were installed and the densities yielded after placement.

  6. Performance of polypropylene and steel tubes in solar water heaters with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Riazi, M.R. [Kuwait Univ., Safat (Kuwait). Chemical Engineering Dept.; Razavi, J. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Chemical Engineering Dept.

    1997-02-01

    Performance of solar water heaters in thermosyphonic flow with polypropylene and steel tubes was studied experimentally. An experimental apparatus consisting of 36 south-facing parallel tubes was designed and built especially for this study. Experiments were performed at Sharif University of Technology in Tehran during July--August 1994 from 0900 to 1700, when the ambient temperature varied from 29 to 36 C. Overall, 30 experiments were conducted for both types of tubes. At first, it was found that the best collector slope for both types of tubes was 36{degree} and it is independent of tube type. Generally, it was found that polypropylene tubes under similar conditions can increase water temperature by 10 C more than steel tubes. Based on the results shown in this study, use of polypropylene tubes in solar water heating systems is recommended.

  7. Safety analysis for the Galileo light-weight radioisotope heater unit

    Science.gov (United States)

    Johnson, Ernest W.

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope Pu 238 in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  8. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  9. Low temperature ceiling heater of element construction. Niedertemperatur-Deckenheizung in Elementbauweise

    Energy Technology Data Exchange (ETDEWEB)

    Treinies, N.

    1980-03-13

    The purpose of the invention is to create a ceiling heater, which can manage with as low a temperature of the heat medium as possible, so that it will match the use of solar collectors and heat pumps, where the emission of heat upwards is to be kept as small as possible, and where a smooth underside of the ceiling without gaps is to be achieved. According to the invention, this problem is solved by the individual elements consists of a lower flat through metal plate, a hard foam core and a top through cover sheet forming a sandwich, and that the hard foam core has cut-outs corresponding to the shape of the heating duct on the side towards the lower metal plate. (HWJ).

  10. Epinephrine plus argon plasma or heater probe coagulation in ulcer bleeding

    Institute of Scientific and Technical Information of China (English)

    Ahmet Karaman; Mevlut Baskol; Sebnem Gursoy; Edip Torun; Alper Yurci; Banu Demet Ozel; Kadri Guven; Omer Ozbakir; Mehmet Yucesoy

    2011-01-01

    AIM: To compare the effectiveness of argon plasma coagulation (APC) and heater probe coagulation (HPC) in non-variceal upper gastrointestinal bleeding. METHODS: Eighty-five (18 female, 67 male) patients admitted for acute gastrointestinal bleeding due to gastric or duodenal ulcer were included in the study. Upper endoscopy was performed and HPC or APC were chosen randomly to stop the bleeding. Initial hemostasis and rebleeding rates were primary and secondary end-points of the study. RESULTS: Initial hemostasis was achieved in 97.7% (42/43) and 81% (36/42) of the APC and HPC groups, respectively (P 0.05). CONCLUSION: APC is an effective hemostatic method in bleeding peptic ulcers. Larger multicenter trials are necessary to confirm these results.

  11. An efficient plate heater with uniform surface temperature engineered with effective thermal materials

    CERN Document Server

    Liu, Yichao; He, Sailing; Ma, Yungui

    2014-01-01

    Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered therm...

  12. Using Thin-Film Thermometers as Heaters in Thermal Control Applications

    Science.gov (United States)

    Cho, Hyung J.; Penanen, Konstantin; Sukhatme, Kalyani G.; Holmes, Warren A.; Courts, Scott

    2010-01-01

    A cryogenic sensor maintains calibration at approximately equal to 4.2 K to better than 2 mK (< 0.5 percent resistance repeatability) after being heated to approximately equal 40 K with approximately equal 0.5 W power. The sensor withstands 4 W power dissipation when immersed in liquid nitrogen with verified resistance reproducibility of, at worst, 1 percent. The sensor maintains calibration to 0.1 percent after being heated with 1-W power at approximately equal 77 K for a period of 48 hours. When operated with a readout scheme that is capable of mitigating the self-heating calibration errors, this and similar sensors can be used for precision (mK stability) temperature control without the need of separate heaters and associated wiring/cabling.

  13. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Swapnil; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2008-07-15

    In this paper, an integrated combined system of a photovoltaic (glass-glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February-April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers. (author)

  14. Residence time distribution (RTD) of particulate foods in a continuous flow pilot-scale ohmic heater.

    Science.gov (United States)

    Sarang, Sanjay; Heskitt, Brian; Tulsiyan, Priyank; Sastry, Sudhir K

    2009-08-01

    The residence time distribution (RTD) of a model particulate-fluid mixture (potato in starch solution) in the ohmic heater in a continuous sterilization process was measured using a radio frequency identification (RFID) methodology. The effect of solid concentration and the rotational speed of the agitators on the RTD were studied. The velocity of the fastest particle was 1.62 times the mean product velocity. In general, particle velocity was found to be greater than the product bulk average velocity. Mean particle residence time (MPRT) increased with an increase in the rotational speed of the agitators (P < 0.05), and no particular trend was observed between the MPRT and the solid concentration. The distribution curves E (theta) were skewed to the right suggesting slow moving zones in the system. PMID:19723195

  15. Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, P.M.E.; Andoh, H.Y.; Gbaha, P. [Laboratoire d' Energies Nouvelles et Renouvelables, Institut National Polytechnique Felix Houphoeuet-Boigny, B.P. 1526 Yamoussoukro (Ivory Coast); Toure, S. [Laboratoire d' Energie Solaire, Universite de Cocody, 22 B.P. 582, Abidjan 22 (Ivory Coast); Ado, G. [Laboratoire des Procedes, Industriels de Syntheses de l' Environnement et de l' Energie Nouvelle, INP-HB 22, B.P. 1093 Yamoussoukro (Ivory Coast)

    2008-08-15

    This study presents a theoretical and experimental analysis of the thermal performance of a solar water heater prototype with an internal exchanger using a thermosiphon system. The heat exchanger made of a rolled copper tube is placed diagonally in the storage tank so that the hot fluid crosses a significant mass of stored water. The results focus mainly on the levels of the heat fluxes, temperatures recorded, mass flow rate and efficiency of the collector. During the main insulation period, one obtains satisfactory qualitative and quantitative agreement between the experimental and theoretical results of mass flow rate and temperatures. Those indicate heat fluxes whose peak reaches 989 W/m{sup 2}, collector outlet water temperature levels of more than 85.5 C and a collector thermal effectiveness around 58%. (author)

  16. Solar water heaters. A review of systems research and design innovation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Brian [Dublin Institute of Technology (Ireland). Dublin Energy Lab.

    2011-07-01

    Solar water heating can be considered to be an established mature technology. The achievement of this status is the outcome of over a century of system development that culminated with a flourish of innovation in the last thirty years. Drivers for research and development have been achieving economic viability by devising systems that, for specific applications in particular climate contexts produced more hot water per unit cost. Reductions in both initial capital and installation costs have been achieved as well as in those associated with subsequent operation and maintenance. Research on solar water heating is discussed with the emphasis on overall systems though some key aspects of component development are also outlined. A comprehensive taxonomy is presented of the generic types of solar water heater that have emerged and their features, characteristics and performance are discussed. (orig.)

  17. Two-phase CFD modeling of flow causing the heater vibration

    International Nuclear Information System (INIS)

    Vibrations of heater rods were observed in a heated annulus with water flow under boiling conditions. In order to find out the cause of such vibrations, CFD model of this annulus has been prepared in CFD code STAR-CCM+. Two-phase flow in the annulus was described using a two-fluid model with number of sub-models to describe the mass, momentum and energy transfer between phases. The model was validated using experimental data from reference. The validated model was used to perform a steady state calculation of flow parameters under different conditions. Results of CFD simulations were compared to experimentally detected vibration offset. It was found out that vibration increase caused by heating the channel is connected with the vibration offset. The results and their extension to nuclear safety were discussed. (author)

  18. Benchmark of CFD Simulations Using Temperatures Measured Within an Enclosed Array of Heater Rods Oriented Vertically and Horizontally

    Science.gov (United States)

    Chalasani, Narayana Rao

    Experiments and computational fluid dynamics/radiation heat transfer simulations of an 8x8 array of heated rods within an aluminum enclosure are performed. This configuration represents a region inside the channel of a spent boiling water reactor (BWR) fuel assembly between two consecutive spacer plates. The heater rods can be oriented horizontally or vertically to represent transport or storage conditions, respectively. The measured and simulated rod-to-wall temperature differences are compared for various heater rod power levels (100, 200, 300, 400 and 500W), gases (Helium and Nitrogen), enclosure wall temperatures, pressures (1, 2 and 3 atm) and orientations (Horizontal and Vertical) to assess the accuracy of the computational fluid dynamics (CFD) code. For analysis of spent nuclear fuel casks, it is crucial to predict the temperature of the hottest rods in an assembly to ensure that none of the fuel cladding exceeds its temperature limit. The measured temperatures are compared to those determined using CFD code to assess the adequacy of the computer code. Simulations show that temperature gradients are much steeper near the enclosure walls than they are near the center of the heater rod array. The measured maximum heater rod temperatures are above the center of heater rod array for nitrogen experiments in both horizontal and vertical orientations, whereas for helium the maximum temperatures are at the center of heater rod array irrespective of the orientation due to the high thermal conductivity of the helium gas. The measured temperatures of rods at symmetric locations are not identical, and the difference is larger for rods close to the enclosure wall than for those far from it. Small but uncontrolled deviations of the rod positions away from the design locations may cause these differences. For 2-inch insulated nitrogen experiment in vertical orientation with 1 atm pressure and a total heater rod power of 500 W, the maximum measured heater rod and enclosure

  19. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  20. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)