WorldWideScience

Sample records for air entraining agents

  1. Modification of the cast concrete mixture by air-entraining agents

    Directory of Open Access Journals (Sweden)

    N.I. Vatin

    2015-06-01

    Full Text Available The paper investigates the combined effect of superplasticizer based on the naphthalene lignosulfonate and the air-entraining surfactant agent on the fluidity, connectivity and air entrainment of concrete. The air-entraining surfactant agent contributes significantly into air entrainment and reduces the water gain and the mortar separation. It was found that under the introduction of air-entraining surfactant agents in the concrete mixture which contains the superplasticizer, the concrete mobility decreases even though the air-entraining agent is a plasticizer itself. The introduction of 0.1 % air-entraining agent decreases mobility: slump Abrams – 5–6 %, slump flow – 18–22 %. Besides, the effect of increasing the connectivity of the concrete mix is associated with the air entrainment. Regardless of the air-entraining surfactant agent, the superplasticizer reduces water separation, and does not have an air-entraining impact, and virtually has no effect on the air entrainment caused by the addition of the air-entraining agent. With the increasing quantity of the air-entraining surfactant agent in the concrete mix, regardless of the superplasticizer dosage, the amount of the entrained air increases from 3 to 7 %, and water separation is reduced to almost 0. Thus, the synergy of the superplasticizer and the air-entraining agent was negative, but it is possible to observe a positive effect in respect of the concrete mix connectivity.

  2. Improving the behavior of concrete exposed to fire by using an air entraining agent (AEA: Assessment of spalling

    Directory of Open Access Journals (Sweden)

    D'Aloia L.

    2013-09-01

    Full Text Available Several concrete mixes have been designed to evaluate the influence of an air entraining agent (AEA on spalling. Tests have been performed under the ISO curve (occasionally under the HCinc curve on specimens of various sizes and shapes to assess spalling. Results were somehow erratic on the smallest specimens whereas the beneficial effect of the air-bubble network could be emphasized on slabs.

  3. Development of a New Type of Green Switch Air Entraining Agent for Wet-Mix Shotcrete and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Guoming Liu

    2016-01-01

    Full Text Available Air entraining agent (AEA can bring a lot of microbubbles into fresh concrete for improving its fluidity; however, high fluidity has adverse effect on the shootability of wet-mix shotcrete. In order to solve the contradictory issue, the paper developed a new type of green switch air entraining agent (GSAE that can improve both the pumpability and shootability. The single-admixture and combination tests containing foaming ability and surface tension were performed with Deer agitator and automatic tension meter. The new AEA was developed with two constituents A and B. A was prepared with Sapindus mukorossi(S-1, dodecyl trimethyl ammonium chloride(1231, and polyacrylamide. B was prepared with lauryl sodium sulfate (K12 and silicone oil. The mass mix proportion was S-1 : 1231 : polyacrylamide : K12 : silicone oil = 1 : 0.33 : 0.2 : 0.33 : 0.47. The application method of GSAE proposed that A was premixed with fresh concrete and then B was added at nozzle. Experimental investigation showed that the optimal mixing amount of GSAE was 0.1%–0.2% relative to cement. All performance measured of wet-mix shotcrete with 0.12% GSAE met the first-grade product requirements of the China National Standard. Compared with the conventional type of AEA, the proposed GSAE is capable of effectively improving pumpability and shootability.

  4. Air entrainment in hairy surfaces

    Science.gov (United States)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  5. Local air entrainment and detrainment

    OpenAIRE

    Kobus, Helmut

    1984-01-01

    Air and water are usually well separated by gravity due to their extreme difference in specific weight. Whenever they are mixed, however, they give rise to a very complex two-phase flow situation. The hydraulic engineer is often faced with the problem of estimating the effects of entrained air upon the flow, because this may be essential for the safe operation of a hydraulic structure.The predominant mechanism in generating airwater mixtures is the inclusion of air at the surface of flowing w...

  6. 防冻剂对混凝土引气剂气泡稳定性能影响研究∗%Impact study of anti-freezing agent on bubble stability performance of concrete air-entraining agent

    Institute of Scientific and Technical Information of China (English)

    张向东; 李庆文; 李广华; 李桂秀

    2015-01-01

    为探究防冻剂对混凝土引气剂气泡稳定性能的影响,考虑4种防冻剂及不同掺量等敏感性因素进行水泥稀浆摇泡实验,分析其对引气剂起泡与稳泡能力影响及作用机理。结果表明,建立摇泡实验的气泡体积衰减指数模型,其参数能表征不同引气剂起泡与稳泡能力;硝酸钙对皂苷类引气剂稳泡能力有正作用,防冻剂对其起泡能力均有负作用;乙二醇对苯磺酸盐类引气剂起泡能力有正作用,对其稳泡能力有正作用,表现为亚硝酸钙>硝酸钙>乙二醇;4种防冻剂对掺皂苷类引气剂的新拌混凝土含气量均有负影响,其显著性为乙二醇最强,亚硝酸钙最弱,钙盐类防冻剂对掺苯磺酸盐类引气剂均有负作用,乙二醇对其有正作用。%In order to explore the influence of anti-freezing agent on bubble stability performance of concrete air-entraining agent,the cement slurry bubble test was carried out considering sensitivity factors which was four kinds of anti-freezing agents and different dosages,and analyzed its effects on foaming ability,stabilizing foam ability and mechanism.The results revealed that bubble volume attenuation index model of shake bubble test was set up,which parameters characterized the foaming ability and stabilizing foam ability of different air-en-training agents.Calcium nitrate had a positive effect on stabilizing foam ability of the saponins air-entraining agent,and anti-freezing agents had a negative effect on it.Ethylene glycol had a positive effect on foaming abili-ty of the benzene sulfonate air-entraining agent,the significance of improving the stabilizing foam ability was calcium nitrite>calcium nitrate>ethylene glycol.Four kinds of anti-freezing agents all had a negative impact on the air content of fresh concrete mixed with the saponins air-entraining agent,the most significant of it was ethylene glycol,and the least significant was calcium nitrite

  7. EFFECTS OF ENTRAINED AIR MANNER ON CAVITATION DAMAGE*

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; LUO Chao

    2011-01-01

    Early in 1953 the experiments by Peterka proved that air entrainment has effects on decreasing cavitation damage. This technology has been widely used in the release works of high dams since the inception of air entrainment in the Grand Goulee Dam in 1960. Behavior, mechanism and application of air entrainment for cavitation damage control have been investigated for over half century. However, severe cavitation damage happened due to complex mechanism of air entrainment. The effects of air entrainment are related to many factors, including geometric parameters, hydraulic parameters and entrained air manners. In the present work an experimental set-up for air entrainment was specially designed, the behavior of reducing cavitation damage was experimentally investigated in the three aspects of entrained air pressure, air tube aera and air tube number. The results show that magnitude of reduction of cavitation damage is closely related to the entrained air tube number as well as entrained air pressure, air tube aera, and that the effect through three air tubes is larger than that through single air tube although the entrained air tubes have the same sum of tube aera, that is, 1 + 1 + 1 > 3. Therefore, it is important to design an effective manner of air entrainment.

  8. Freeze-Thaw Durability of Air-Entrained Concrete

    OpenAIRE

    Huai-Shuai Shang; Ting-Hua Yi

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. T...

  9. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    Science.gov (United States)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  10. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  11. Effect of the Entrained Air Void on Strength and Interfacial Transition Zone of Air-Entrained Mortar

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; ZHANG Xiong; ZHANG Yongjuan

    2015-01-01

    In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 μm) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefifcient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 μm, and the decrease of the porosity, ranging from 200 to 1 600 μm, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.

  12. Air entrainment by plunging water jets

    NARCIS (Netherlands)

    Van de Sande, E.

    1974-01-01

    Gas entrainment caused by the impact of liquid jets upon liquid pool surfaces is a subject which has received too little attention. This well-known phenomenon,which occurs In nature and in numerous industrial operations, has only recently received interest from scientific workers. The influence on p

  13. 一种外掺新型引气剂的水泥胶砂抗折强度试验研究%A Study on the Bending Strength Test of Cement Mortar Added in a New Type of Air Entraining Agent

    Institute of Scientific and Technical Information of China (English)

    李铁军; 郭红兵

    2014-01-01

    In order to improve the mechanical property of cement mortar, admixtures are pro-posed to be put into cement mortar by adding air-entraining agent separately or mixing air en-training agent and water-reducing agent. The bending strength test of cement mortar has been done. The best model and the optimal dosage of air entraining agent in cement mortar have been determined for its optimal mechanical property. The result shows that the bending strength of cement mortar is significantly greater when air entraining agent and water-reducing agent are mixed. 2 # air-entraining agent has better effect in meeting the requirements of the bending strength of cement mortar.%为了提高水泥胶砂的力学性能,提出在水泥胶砂中掺加外加剂的方法,通过在水泥胶砂中单掺引气剂、复掺引气剂与减水剂两种途径,进行水泥胶砂抗折强度检测试验,对比确定水泥胶砂力学性能最优的引气剂型号及其最佳掺量。结果表明:引气剂与减水剂复掺时水泥胶砂的抗折强度明显大于引气剂单掺时水泥胶砂的抗折强度,2#引气剂最能满足水泥胶砂抗折强度要求。

  14. Entrainment of Air into Vertical Jets in a Crosswind

    Science.gov (United States)

    Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.

    2015-12-01

    During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.

  15. A new technology for air-entrainment of concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2008-01-01

    This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...

  16. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    Science.gov (United States)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  17. Effects of Air Entrainment on Fluid Transients in Pumping Systems

    Directory of Open Access Journals (Sweden)

    T.S Lee

    2008-01-01

    Full Text Available In pumping installations, fluid transient computations are necessary to achieve safety, efficiency and economy in design and operation. In some systems, where air content and air entrainment exist, such computations become highly inaccurate when constant wave speed is assumed. In this paper, a numerical model and a computational procedure have been developed to investigate the effects of air entrainment on the pressure transient in pumping systems. Free gas in the fluid and cavitation at the fluid vapour pressure were modeled in the form of variable wave speed model, which was numerically solved by the method of characteristics. This model was tested for the case of pump trips due to power failures. The pressure transient results obtained by this variable wave speed model were analyzed and compared with those results obtained by constant wave speed model and with the experimental results of other investigators.

  18. Universal mechanism for air entrainment during liquid impact

    CERN Document Server

    Hendrix, Maurice H W; van der Meer, Devaraj; Lohse, Detlef; Snoeijer, Jacco H

    2015-01-01

    When a mm-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results to various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume V_b is found to be in agreement with the theoretical scaling V_b/V_...

  19. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    OpenAIRE

    Huai-shuai Shang; Wei-qun Cao; Bin Wang

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles...

  20. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)

    Adelė VAIDELIENĖ

    2014-09-01

    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4871

  1. Sulfate Attack Resistance of Air-entrained Silica Fume Concrete under Dry-Wet Cycle Condition

    Institute of Scientific and Technical Information of China (English)

    YANG Jiansen; WANG Peiming; LI Haoxin; YANG Xu

    2016-01-01

    Based on the erosion resistant coefficient, the effects of water-cement ratio, air-entrained, silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition. A more signiifcant model of concrete resistance to sulfate attack was also established, thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete. The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack, and leads to the remarkable declines of concrete strength and sulfate resistance. Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt. However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure, and then the air bubbles are iflled with sulfate salt crystallization. The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio, 6.0% air-entrained, 5% silica fume and 30% sand ratio. The erosion resistant coefifcientsK80 andK150 of this concrete are increased by 9%, 7%, 9%, and 5% respectively as compared with those of concretes without silica fume and air entraining.

  2. Numerical investigation of air-entrainment in skimming flow over stepped spillways

    Directory of Open Access Journals (Sweden)

    Jiemin Zhan

    2016-05-01

    Full Text Available As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows. In this study, the volume of fluid (VOF, mixture, and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier–Stokes/large eddy simulation (RANS/LES turbulence models. The free surface deformation, air volume fraction, pressure, and velocity are compared for the three different numerical methods. Only the Eulerian+RANS method fails to capture the free-surface aeration. The air volume fraction predicted by the VOF+LES method best matches the experimental measurement, while the mixture+LES method predicts the inception point of the air entrainment more accurately.

  3. What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents

    Science.gov (United States)

    Marshall, B. J.; Andrews, B. J.; Fauria, K.

    2015-12-01

    A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.

  4. Quantification of hood effectiveness and entrained subsurface air in a Seattle Hospital

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.N.; Goodrich, R.W.

    1994-05-01

    An underground 3-story wing of a hospital having problems with sewer air odors was tested with perfluorocarbon tracer (PFI) technology to quantify the performance of the mechanical ventilation system and determine the extent of sewer air entrainment and chemical hood effectiveness.

  5. Impact of air entrainment on the microstructure and mechanical performance of high performance mortar

    OpenAIRE

    Dils, Jeroen; Boel, Veerle; De Schutter, Geert

    2015-01-01

    At the Magnel Laboratory for Concrete Research an intensive vacuum mixer which can regulate the air pressure is available. As such the amount of entrapped air in cementitious materials can be varied. The effect of the reduced air content due to vacuum mixing on the rheology and workability was already investigated in previous work. Furthermore, the previous work investigated the influence of entrained air on the rheological properties. The impact of vacuum mixing on the compressive strength a...

  6. De-entrainment on vertical elements in air droplet cross flow

    International Nuclear Information System (INIS)

    De-entrainment phenomena on vertical elements in air-water droplet cross flow are generated using a horizontal array of water spray nozzles and a draft-induced wind tunnel. These conditions are used to obtain experimental values of the de-entrainment efficiency of isolated elements (25.4-, 63.5-, and 101.6-mm-diam cylinders and a 76.2-mm-square tube), and of an array of 101.6-mm-diam cylinders. A flow model is developed that extrapolates the de-entrainment efficiency of isolated elements through the use of a correlation for the interference effect to predict the efficiency of large arrays of similar elements. This simple model is shown to provide a good prediction of the de-entrainment efficiency of arrays in terms of the efficiency of an isolated element

  7. Experiments on air entrainment into SCS by vortex formation during mid-loop operation

    Energy Technology Data Exchange (ETDEWEB)

    Chug, Moon Ki; Song, Chul Hwa; Jung, Heung Joon; Won, Soon Yeon; Min, Kyung Ho; Chang, Keun Sun [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-05-01

    In this final report, the phenomena of air entrainment into SCS suction nozzle by vortex formation during Mid-Loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the T-shaped suction nozzle. 11 refs., 41 figs., 13 tabs.

  8. The entrainment of air by water jet impinging on a free surface

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee King [University of Wollongong, School of Mechanical, Materials and Mechatronics Engineering, Northfields Ave, NSW (Australia); Khoo, Boo Cheong [National University of Singapore, Department of Mechanical and Production Engineering, 10 Kent Ridge Crescent (Singapore); Yuen, W.Y. Daniel [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-09-01

    High-speed cine and video photographs were used to capture the flow patterns of a column of water jet impinging into a pool of water. The impact results in air entrainment into water in the form of a void with no mixing between the water in the jet and the surrounding water. Conservation of fluid momentum shows that the rate of increase of the height of the air void depends on the drag coefficient of the jet front. By neglecting the frictional losses, the application of energy conservation yields an expression that relates the maximum height of the air void with the properties of the water jet. (orig.)

  9. BEHAVIOR OF AIR-ENTRAINED CONCRETE AFTER FREEZE-THAW CYCLES

    Institute of Scientific and Technical Information of China (English)

    Huaishuai Shang; Yupu Song; Jinping Ou

    2009-01-01

    The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions.

  10. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    Science.gov (United States)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  11. Effect of Air Entrainment on Breakup of Plunging Liquid Jet into Water Pool

    International Nuclear Information System (INIS)

    The steam explosion intensity is largely dependent upon the degree of volumetric fractions of melt droplets and steam in the fuel-coolant mixture. The rate of melt jet breakup and droplet sizes are, therefore, the key physical parameters in the analysis of FCIs. In a recent OECD/NEA international program SERENA, the areas where research may be needed to reduce the level of uncertainties in the code predictions have been identified. The predicted void fractions in the mixture were generally much higher than experimental data and a deficiency in melt jet breakup modeling would be one of the primary causes. In this paper, an extended study of non-boiling liquid jet breakup from the previous jet breakup experiment is reported with an emphasis on the role of air entrainment by plunging liquid jet into water pool. An improved jet breakup model is also presented with comparison to the experimental data. Non-boiling liquid jet breakup experiment was conducted and the debris size was analyzed with a new jet breakup model with an emphasis on the role of air entrainment. The predicted debris size with consideration of entrained air showed good agreement with the experimental data

  12. Effect of Air Entrainment on Breakup of Plunging Liquid Jet into Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoungtak; Bang, Kwanghyun [Korea Maritime Univ., Busan (Korea, Republic of)

    2013-05-15

    The steam explosion intensity is largely dependent upon the degree of volumetric fractions of melt droplets and steam in the fuel-coolant mixture. The rate of melt jet breakup and droplet sizes are, therefore, the key physical parameters in the analysis of FCIs. In a recent OECD/NEA international program SERENA, the areas where research may be needed to reduce the level of uncertainties in the code predictions have been identified. The predicted void fractions in the mixture were generally much higher than experimental data and a deficiency in melt jet breakup modeling would be one of the primary causes. In this paper, an extended study of non-boiling liquid jet breakup from the previous jet breakup experiment is reported with an emphasis on the role of air entrainment by plunging liquid jet into water pool. An improved jet breakup model is also presented with comparison to the experimental data. Non-boiling liquid jet breakup experiment was conducted and the debris size was analyzed with a new jet breakup model with an emphasis on the role of air entrainment. The predicted debris size with consideration of entrained air showed good agreement with the experimental data.

  13. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    Science.gov (United States)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  14. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  15. On the relationship between air entrainment, internal flows and closure mechanism in a ventilated supercavity

    Science.gov (United States)

    Karn, Ashish; Arndt, Roger; Hong, Jiarong

    2015-11-01

    An understanding of underlying physics behind ventilation demand is critical for the operation of underwater vehicles based on ventilated supercavitation for a number of reasons viz. gas entrainment requirements for cavity formation and sustenance. The prior studies on the ventilation demand have reported that the gas entrainment requirement to form a supercavity is substantially larger than that needed to sustain it. This phenomenon, known as ventilation hysteresis, is particularly important from the viewpoint of reduction in gas requirements. However, little physical insights into this phenomenon has yet been provided. In this study, systematic investigations are conducted into ventilation hysteresis with respect to the formation and collapse behaviors of ventilated supercavities. It is suggested that the supercavity formation process is driven by bubble coalescence, whereas its collapse is related to the pressure difference across the supercavity interface at its rear portion. Further, we examine the relationship between ventilation hysteresis, supercavity closures and air entrainment requirements for supercavity formation and sustenance under steady and unsteady flow conditions. These observations are directly related to the internal flows inside the supercavity.

  16. Turbulent hydraulic jumps: Effect of Weber number and Reynolds number on air entrainment and micro-bubble generation

    Science.gov (United States)

    Mortazavi, Milad; Mani, Ali

    2015-11-01

    Air entrainment in breaking waves is a ubiquitous and complex phenomenon. It is the main source of air transfer from atmosphere to the oceans. Furthermore, air entrainment due to ship-induced waves contributes to bubbly flows in ship wakes and also affect their performance. In this study, we consider a turbulent hydraulic jump as a canonical setting to investigate air entrainment due to turbulence-wave interactions. The flow has an inlet Froude number of 2.0, while three different Weber numbers (We = 1820, 729, 292), and two different Reynolds numbers (Re = 11000, 5500) based on the inlet height and inlet velocity are investigated. Air entrainment is shown to be very sensitive to the We number, while Re number has a minor effect. Wave breaking and interface collisions are significantly reduced in the low Weber number cases. As a result, micro-bubble generation is significantly reduced with decreasing Weber number. Vortex shedding events are observed to emerge at the toe of the jump in all of the cases. For high Weber number regimes, shedding of vortices is accompanied by engulfment of air pockets into the jump in a periodic manner, while for lower Webber number regimes such events are significantly suppressed. Reynolds number is shown to have a negligible effect on the air entrainment, wave breaking and micro-bubble generation, contrary to the previous assumptions in other studies. Supported by ONR.

  17. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  18. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byeong Geon; Yun, Byong Jo [Pusan national Univ., Pusan (Korea, Republic of); Kim, Kyoung Du [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  19. Air entrainment in transient flows in closed water pipes: a two-layer approach

    CERN Document Server

    Bourdarias, Christian; Gerbi, Stéphane

    2009-01-01

    In this paper, we first construct a model for transient free surface flows that takes into account the air entrainment by a sytem of 4 partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). Then, we propose a mathematical kinetic interpretation of this system to finally construct a well-balanced kinetic scheme having the properties of conserving the still water steady state and possesing an energy. Finally, numerical tests on closed uniforms water pipes are performed and discussed.

  20. Inerting characteristics of entrained atomized water on premixed methane-air flame

    Institute of Scientific and Technical Information of China (English)

    Cai Feng; Wang Ping; Zhou Jiebo; Li Chao

    2015-01-01

    A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experi-mentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that:for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 mL/(m2 min);for the premixed methane–air gas with a concentration of 9%, the mini-mum inerting atomized water flux is 32.9 mL/(m2 min);for the premixed methane–air gas with a concen-tration of 11%, the minimum inerting atomized water flux is 44.6 mL/(m2 min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.

  1. Formation of air-entraining vortices at horizontal intakes without approach flow induced circulation

    Institute of Scientific and Technical Information of China (English)

    Mustafa GOGUS; Mete KOKEN; Ali BAYKARA

    2016-01-01

    The aim of this experimental study is to investigate the effects of hydraulic parameters on the formation of air-entraining vortices at horizontal intake structures without approach flow induced circulation. Six intake pipes of different diameters were tested in the study. The intake pipe to be tested was horizontally mounted to the front side of a large reservoir and then for a wide range of discharges experiments were conducted and critical submergences were detected with adjustable approach channel sidewalls. Empiri- cal equations were derived for the dimensionless critical submergence as a function of the relevant dimensionless parameters. Availa- ble data is also checked for the possible scale effect. Then, these obtained equations were compared with the similar ones in the literature which showed a quite good agreement.

  2. An experimental investigation of the air entrainment in the shutdown cooling system during mid-loop operation

    International Nuclear Information System (INIS)

    An experimental study on the air entrainment phenomena during mid-loop operation has been performed for Ulchin 3 and 4 nuclear power plant (UCN 3 and 4). The UCN 3 and 4 is the standard Combustion Engineering (CE) System 80, two-loop, 2825 MWt pressurized water reactor which is currently under construction in Korea. This study was undertaken by Korea Atomic Energy Research Institute to provide a basis for modification of CE system 80 design which has relatively small mid-loop operating range, and to investigate the impact of the air entrainment on the shutdown cooling pump. A 1/4 scale model test was performed for two shutdown cooling suction nozzle configurations, with and without bellmouth entry, to obtain data relative to air ingestion and vortex formation at the shutdown cooling suction nozzle during mid-loop operation. The test model size was determined based on Froude number corresponding to that which occurs in plants by considering that the Weber number and Reynolds number are large enough to ensure that liquid surface tension and viscosity would not significantly affect the vortex formation. An empirical correlation between the flow rate and the critical submergence was obtained with respect to the Froude number. The impact of the air entrainment of the pump was also investigated to select parameters for plant operators to monitor the onset of air entrainment into shutdown cooling system (SCS). Effects of the bellmouth entry on the critical submergence were also investigated. (author)

  3. Air entrainment and bubble statistics in three-dimensional breaking waves

    Science.gov (United States)

    Deike, Luc; Melville, W. K.; Popinet, Stephane

    2015-11-01

    Wave breaking in the ocean is of fundamental importance in order to quantify wave dissipation and air-sea interaction, including gas and momentum exchange, and to improve parametrizationsfor weather and climate models. Here, we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution, is found to follow a power law of the radius, r-3and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stages. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  4. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    Science.gov (United States)

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population. PMID:27110835

  5. Influence of Nozzle geometry on spray shape, particle size, spray velocity and Air entrainment of high pressure Diesel spray

    OpenAIRE

    Hespel, Camille; Blaisot, Jean-Bernard; Margot, Xandra; Patouna, S.; Cessou, Armelle; Lecordier, Bertrand

    2010-01-01

    International audience Air/fuel mixing process in the combustion chamber of Diesel engines plays an important role on the combustion efficiency. This mixing depends on the particle size distribution in the spray, on the local velocity of fuel droplets in the spray and on the air entrainment. Nozzle geometry as well as nozzle internal flow conditions influence many of these spray properties. An experimental study of the influence of the nozzle geometry on these properties has been conducted...

  6. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  7. An analysis of air entrainment into residual heat removal pump during the refueling cavity draindown for Kori Unit 2

    International Nuclear Information System (INIS)

    In 1998, 1999 and 2000, the Kori Unit 2 has experienced the air entrainment and loss of flow in the residual heat removal (RHR) pump during a planned draining of the refueling cavity without the fuel assemblies in the reactor vessel. The water level of the refueling cavity was 1 m above reactor vessel flange when the transients occurred and a similiar event was not known so far in domestic and foreign nuclear power plants. The cause of air entrainment into the RHR pump is analyzed using the RELAP5/MOD3 code in this study. Also, it is qualitatively analyzed the reason why such transients do not occur when fuel assemblies are loaded in reactor vessel

  8. Study on Strength and Ultrasonic Velocity of Air-Entrained Concrete and Plain Concrete in Cold Environment

    Directory of Open Access Journals (Sweden)

    Huai-shuai Shang

    2014-01-01

    Full Text Available Nondestructive testing technology is essential in the quality inspection of repair, alteration, and renovation of the existing engineering, especially for concrete structure in severe environment. The objective of this work is to deal with the behavior of ultrasonic velocity and mechanical properties of plain concrete and air-entrained concrete subjected to freeze-thaw cycles (F-T-C. The ultrasonic velocity and mechanical properties (tensile strength, compressive strength, cubic compressive strength, and splitting strength of C30 air-entrained concrete and plain concrete with different water-cement ratio (water-cement ratio was 0.55, 0.45, and 0.50, resp. after F-T cycles were measured. The influences of F-T cycles on ultrasonic velocity and mechanical properties of C30 air-entrained concrete and plain concrete were analyzed. And the relationship between mechanical properties and ultrasonic velocity was established. The experimental results can be useful for the design of new concrete structure, maintenance and life prediction of existing concrete structure such as offshore platform and concrete dock wall.

  9. Potential of ANSYS CFX 12 for the determination of the minimum cover of pump intake nozzles to avoid air entrainment

    International Nuclear Information System (INIS)

    For a reliable and economic pump operation the homogeneous fluid influx is an important parameter. Unfavorable influx conditions cause vibrations, noise development, decrease or breakdown of the delivery rate and increased power consumption. Very often air ingress due to turbulences in the intake region of the pump is causing the disturbances. The authors show that the CFD code ABSYS CFX 12 allows - at least for rotation-free inlet flow - to identify the water surface deformation and to determine the required minimum water cover to avoid air entrainment. Further mesh refinement and improved modeling of the two-phase flow could enhance the quantitative agreement with experimental data.

  10. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Pawelko Ezequiel Eduardo

    2016-01-01

    Full Text Available At Lidar Division of CEILAP (CITEDEF-CONICET a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  11. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    Science.gov (United States)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    At Lidar Division of CEILAP (CITEDEF-CONICET) a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  12. Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    International Nuclear Information System (INIS)

    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this

  13. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  14. Particle re-entrainment from a powder deposit in an horizontal air flow; Mise en suspension d'une contamination particulaire par ecoulement d'air

    Energy Technology Data Exchange (ETDEWEB)

    Alloul, L.; Witschger, O. [CEA/Saclay, Inst. de Protection et de Surete Nucleaire, IPSN/DPEA/SERAC, Lab. de Physique et Metrologie des Aerosols et du Confinement, 91 - Gif-sur-Yvette (France); Renoux, A. [Paris-12 Univ., Lab. de Physique des Aerosols et de Transfert des Contaminations, 94 - Creteil (France); Le Dur, D. [Aerolab, 91 - Courtaboeuf (France); Monnatte, J. [COGEMA, Branche Combustible et Recyclage, Service Qualite Surete, 78 - Saint-Quentin-en-Yvelines (France)

    2000-07-01

    Particle re-entrainment from surfaces to turbulent air flow is an important subject in many different fields like nuclear safety, environmental air pollution, sediment transport by wind, surface contamination in semiconductor operations. Theoretical and experimental studies have been numerous and cover different aspects of the phenomena. Although a number of theoretical works have been devoted for describing the mechanisms of detachment of primary spherical particles form flat smooth surfaces in a turbulent flow, experimental data are still needed in order to comparison. Moreover, the knowledge of the effect of parameters related to the deposit (monolayer, multilayer, cone-like pile), the powder particles (particle-size distribution, adhesive properties), the surface (roughness,...),the airflow (velocity, acceleration, turbulence) or the environment (humidity,...) is still in an elementary stage. The main objective of our work is to contribute to the understanding and quantification of the parameters that govern the particle re-entrainment from a powder deposit in an turbulent horizontal airflow. Therefore, a new experimental facility called BISE (french acronym for wind tunnel for studying particle re-entrainment by airflow) has been designed and built in our laboratory. (authors)

  15. Effect of an entrained air bubble on the acoustics of an ink channel.

    Science.gov (United States)

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  16. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  17. Timescales of Massive Human Entrainment

    OpenAIRE

    Riccardo Fusaroli; Marcus Perlman; Alan Mislove; Alexandra Paxton; Teenie Matlock; Rick Dale

    2014-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We demonstrate that large scale human entrainment may hold across a number of distinct scales, in an exquisitely time locked fashion. Using a large scale database of human communication data, we analyze and describe three different time scales of human entrainment in electro...

  18. Free-surface Flow Interface And Air-Entrainment Modelling Using OpenFOAM

    OpenAIRE

    Lopes, Pedro

    2013-01-01

    The use of hydraulic structures to control flooding has a history of long practice within civil engineering infrastructure. Hydraulic structures under turbulent flow conditions frequently involve free surface fl ow and interactions between air and water. This can be observed in different kinds of structures, e.g. gullies, manholes or stepped spillways. In this doctoral program, Computational Fluid Dynamics numerical models will be used to simulate...

  19. Timescales of Massive Human Entrainment

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan;

    2014-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We demonstrate that large scale human entrainment may hold across a number ...

  20. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim

    2010-01-01

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NOx combustion technologies. In this work, pulverized fuel has...... by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA...... adsorption capacity based on measurements on a carbon black. The NOx formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NOx formation. The type of fuel had high impact on the AEA adsorption behavior of the ash...

  1. A Unified Model Considering Effects of Droplet Break-Up and Air Entrainment at the Initial Stage of Fuel Spray Penetration

    Directory of Open Access Journals (Sweden)

    S. Jafarmadar

    2014-01-01

    Full Text Available This paper proposes a new unified single model that considers droplet break-up and air entrainment impact on three flow regimes (namely, Stokes, Allen, and Newton in the initial stage of fuel spray penetration. Homotopy perturbation method was used to obtain semianalytical solutions of unified single model on diesel fuel’s spray penetration when the influence of air entrainment is small (up to 0.1-0.2 ms after the start of injection. It is demonstrated that the applied analytical method is very straightforward in comparison with existing techniques. Furthermore, it is decidedly effectual in terms of accuracy and rapid convergence. The formulation of the problem is presented in the text as well as the analytical and numerical procedures.

  2. Timescales of Massive Human Entrainment

    CERN Document Server

    Fusaroli, Riccardo; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2014-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We demonstrate that large scale human entrainment may hold across a number of distinct scales, in an exquisitely time locked fashion. Using a large scale database of human communication data, we analyze and describe three different time scales of human entrainment in electronic media. We sought a distinct shared experience that provided a test bed for quantifying large scale human entrainment. We conducted a detailed investigation of the real time unfolding of human entrainment, as expressed by the content and patterns of hundreds of thousands of messages on Twitter, during the 2012 US presidential debates. By time locking these data sources, we quantify the real time impact of the debate on human attention. We show that social behavior covaries second by second to the interactional dynamics...

  3. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G.

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  4. Entrainment Concepts Revisited

    NARCIS (Netherlands)

    Roenneberg, Till; Hut, Roelof; Daan, Serge; Merrow, Martha

    2010-01-01

    The traditional approaches to predict entrainment of circadian clocks by light are based on 2 concepts that were never successfully unified: the non-parametric approach assumes that entrainment occurs via discrete daily phase shifts while the parametric approach assumes that entrainment involves cha

  5. 关于加气混凝土砌块墙体质量控制的探讨%Discuss the Quality Control of Air Entraining Concrete Block Wall

    Institute of Scientific and Technical Information of China (English)

    贺玉超

    2014-01-01

    Air entraining concrete block is the common con-crete block in building wal , and the crack problems in air entraining concrete block wal are common in the building wal , which brought great trouble to the construction enterp-rises. The article analyzes the factors to result in the crack of the wal , and effective prevention and improvement measures are put forward.%加气混凝土砌块是建筑墙体中较为常见的砌块,加气混凝土砌块墙体裂缝问题在建筑房屋墙体中比较常见,给建筑施工企业带来了极大的麻烦。文章对导致墙体开裂的因素进行了深入分析,并提出了有效地防治及改善措施。

  6. Effect of air entraining admixture on mechanical properties and durability of coarse porous concrete%引气剂对大孔混凝土力学性能及耐久性的影响

    Institute of Scientific and Technical Information of China (English)

    张蔚

    2012-01-01

    The addition of air entraining admixture could improve durability of ordinary concrete effectively, while the effect on coarse porous concrete is not obvious. The article describe the reseach on the effect of air entraining admixture on mechanical properties and durability of coarse porous con- crete. The result shows that the compressive strength and resistance properties to freeze--thaw could be improved with the appropriate amount of air entraining admixture by testing.%引气剂能有效改善普通混凝土的耐久性.但对大孔混凝土性能的影响不明确。本文通过试验,研究不同掺量引气剂对大孔混凝土力学性能及耐久性能的影响。结果表明,适量的引气剂能够增强大孔混凝土的抗压强度和改善抗冻性能。

  7. Anti-foaming without defoaming agents

    Science.gov (United States)

    Bick, A.; Ristenpart, W. D.; van Nierop, E.; Stone, H. A.

    2008-11-01

    We study the entrainment of air bubbles as a result of multiple drop impacts on a liquid/air interface. Previous studies from the literature have focused almost exclusively on the mechanism by which a single drop impacting a flat liquid-air interface entrains an air bubble. For sufficiently small droplets at low velocities, the existing literature predicts that no air bubbles will be entrained, but we often observe air entrainment if two drops impact sequentially. We qualitatively identify different entrainment behaviors following the sequential impact of two drops, and we present experimental data quantifying the critical crater depth and the time interval between successive drops necessary to entrain bubbles. We apply this approach to 1 mm diameter drops impacting a liquid surface with speed u 1 m/s (We 10) and find that a critical separation time tfoam formation. The key implication of this technology is the development of liquid-into-liquid dispensers that suppress foam without requiring the use of chemical defoaming agents.

  8. Gas entrainment inception at the border of a flow-swollen liquid surface

    International Nuclear Information System (INIS)

    A rapid liquid flow into a tank may impinge on the free surface, making it swell partially. The returning flow branches off from the free surface and re-submerges at the border of the swollen surface. If the flow velocity along the swollen surface is high enough, gas bubbles are formed at the border and entrained by the liquid flow. The conditions necessary for gas entrainment in a simple system are examined experimentally, using water and air as working fluids. The effect of surface tension is examined by adding a surface active agent to the water. The results show that gas entrainment inception is determined by the flow pattern in the system and the product of the Froude and Weber numbers based on the local velocity at the bubble formation point. (orig.)

  9. Multiple-Agent Air/Ground Autonomous Exploration Systems

    Science.gov (United States)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  10. Entrainment separator performance

    International Nuclear Information System (INIS)

    Clean and dust-loaded ACS entrainment separators mounted upstream of HEPA filters were exposed to a combination of fine water mist and steam at about 700C from one to four hours. In every trial, the ACS entrainment separator prevented measurable deterioration of performance in the following HEPA filter. Droplet size-efficiency evaluation of the ACS entrainment separators showed that, within the accuracy of the measurements, they meet all service requirements and are fully equal to the best separator units available for service on pressurized water reactors

  11. Aerosol entrainment from a sparged non-Newtonian slurry.

    Science.gov (United States)

    Fritz, Brad G

    2006-08-01

    Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model. PMID:16933643

  12. Increasing jet entrainment, mixing and spreading

    Science.gov (United States)

    Farrington, Robert B.

    1994-01-01

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  13. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    Science.gov (United States)

    2011-01-19

    ... Control Agent for Air Potato AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of... Inspection Service has prepared an environmental assessment (EA) relative to the control of air potato... severity of air potato infestations. We are making the EA available to the public for review and...

  14. An Observational Study of Entrainment Rate in Deep Convection

    Directory of Open Access Journals (Sweden)

    Xiaohao Guo

    2015-09-01

    Full Text Available This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. In addition, entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

  15. Effect of low atmospheric pressure of plateau environment on air content and bubble stability of air-entrained concrete%高原低气压环境对引气混凝土含气量及气泡稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    李雪峰; 付智

    2015-01-01

    该文利用低气压试验箱模拟高原气压环境,试验研究了不同配合比及初始含气量水平下环境气压的降低对引气混凝土含气量及其气泡稳定性的影响。结果表明:与常压相比,环境气压的降低能够显著削弱引气剂的引气能力,当混凝土配合比及引气剂掺量一定时,混凝土含气量随环境气压降低呈线性减少,当环境气压降低至50 kPa时,混凝土含气量降低约20%~49%。另外,低气压条件下混凝土气泡稳定性变差,具体表现为混凝土含气量经时损失变大,延长振捣时间导致低压混凝土损失更多气泡,二者均使低压下硬化混凝土的气泡间距系数增大,影响混凝土抗冻性。因此,在高原地区应通过采取优选引气剂类型、增大引气剂掺量以及避免过振等技术措施,以确保高原地区引气混凝土含气量能够达到抗冻设计要求。%The effect of atmospheric pressure reduction of environment on air content and bubble stability of air-entrained concrete were experimentally studied using low-pressure test chamber to stimulate the plateau environment. Three different mixing proportions and three different levels of the initial air content of concretes were prepared for study, and four different common types of air-entraining admixture, saponin, alkyl sulfonate, abietic soap and polyether, were used in the experiments. The results indicated that the change of atmospheric pressure of environment had a significant impact on the performance of air-entraining admixtures. When the mix proportions of concrete and the amount of air-entraining admixtures took a certain value respectively, the air content of fresh concrete decreased linearly with the drop of atmospheric pressure. When the atmospheric pressure was 50 kPa, the air content of fresh concrete fell by roughly 20% to 49%. The higher the air content of fresh concrete mixed in normal atmospheric pressure, the faster the air

  16. The Sappanwood Extract Drying With Carrier Agent Under Air Dehumidification

    OpenAIRE

    Mohamad Djaeni; Meilya Suzan Triyastuti; Febiani Utari; Arianti Nuur Annisa; Dewi Ayu Novita

    2016-01-01

    The sappanwood extract enriched by brazilin can be used for natural colouring agent in food and beverages. The extract is produced in form of dry powder for consummer convenience as well as prolonging storage life. Currently, the sappanwood extract drying still deals with the product sticky that inhibit water transport in drying. As a result, the drying process needs long time to get moisture content below 10%. The extract drying with carrier agent is an option to break the product sticky and...

  17. Experimental study of entrainment phenomenon in a trapped vortex combustor

    Institute of Scientific and Technical Information of China (English)

    Zhang Rongchun; Fan Weijun

    2013-01-01

    Trapped vortex combustor (TVC) is an advanced low-pollution gas turbine combustor,with the adoption of staged combustion technique.To achieve low-pollutant emission and better combustion performance,the proportion of the air flow in each combustion zone should be precisely determined in the design of the combustor.Due to the presence of entrainment phenomenon,the total air flow in the cavity zone is difficult to estimate.To overcome the measurement difficulty,this study adopts the indirect measurement approach in the experimental research of entrainment phenomenon in the cavity.In accordance with the measurement principle,a TVC model fueled by methane is designed.Under two experimental conditions,i.e.with and without direct air intake in the cavity,the influence of the mainstream air flow velocity,the air intake velocity in the cavity,the height of inlet channel,the structure of holder and the structural proportion of the cavity on entrainment in the cavity is studied,respectively,through experiment at atmospheric temperature and pressure.The results suggest that the air flow velocity of mainstream,the air intake velocity of the cavity and the structure of the holder exert significant influence on the air entrainment,while the influence of structural proportion of the cavity is comparatively insignificant.The square root of momentum ratio of cavity air to mainstream air could be used to analyze the correlation of the entrainment data.

  18. Entrainment of the Neurospora circadian clock

    NARCIS (Netherlands)

    Merrow, M; Boesl, C; Ricken, J; Messerschmitt, M; Goedel, M; Roenneberg, T

    2006-01-01

    Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment with

  19. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  20. Multi-agent systems and neural networks for automatic target recognition on air images

    Science.gov (United States)

    Cozien, Roger F.; Rosenberger, Christophe; Eyherabide, Partrick; Rossettini, Joaquim; Ceyrolle, Arnaud

    2000-08-01

    Our purpose is, in medium term, to detect in air images, characteristic shapes and objects such as airports, industrial plants, planes, tanks, trucks, ... with great accuracy and low rate of mistakes. However, we also want to value whether the link between neural networks and multi-agents systems is relevant and effective. If it appears to be really effective, we hope to use this kind of technology in other fields. That would be an easy and convenient way to depict and to use the agents' knowledge which is distributed and fragmented. After a first phase of preliminary tests to know if agents are able to give relevant information to a neural network, we verify that only a few agents running on an image are enough to inform the network and let it generalize the agents' distributed and fragmented knowledge. In a second phase, we developed a distributed architecture allowing several multi- agents systems running at the same time on different computers with different images. All those agents send information to a 'multi neural networks system' whose job is to identify the shapes detected by the agents. The name we gave to our project is Jarod.

  1. Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space

    Science.gov (United States)

    Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll

    2000-01-01

    An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.

  2. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  3. Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment

    Science.gov (United States)

    Hannah, W. M.; Maloney, E. D.

    2008-12-01

    Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.

  4. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    Science.gov (United States)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  5. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    Science.gov (United States)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  6. Doing Duo – a Case Study of Entrainment in William Forsythe’s Choreography Duo

    Directory of Open Access Journals (Sweden)

    Elizabeth eWaterhouse

    2014-10-01

    Full Text Available Entrainment theory focuses on processes in which interacting (i.e. coupled rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and a propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all to examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment as a potential aspect to be incorporated into other models.

  7. Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".

    Science.gov (United States)

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522

  8. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt;

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... for syngas production. Experiments have shown that CBS can be successfully processed and gasified in the entrained flow reactor to produce syngas with almost no tar content and low residual carbon formation. High reactor temperature and steam/carbon ratio is favourable for H2 production. At 1400 °C...

  9. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  10. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    Science.gov (United States)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  11. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    Science.gov (United States)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2015-12-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  12. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    Science.gov (United States)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2016-10-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  13. Wind profiler mixing depth and entrainment measurements with chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C. [NOAA Aeronomy Lab., Boulder, CO (United States); Kok, G.L. [NCAR Research Aviation Facility, Boulder, CO (United States)

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  14. An integrative assessment of the commercial air transportation system via adaptive agents

    Science.gov (United States)

    Lim, Choon Giap

    The overarching research objective is to address the tightly-coupled interactions between the demand-side and supply-side components of the United States Commercial Air Transportation System (CATS) in a time-variant environment. A system-of-system perspective is adopted, where the scope is extended beyond the National Airspace System (NAS) level to the National Transportation System (NTS) level to capture the intermodal and multimodal relationships between the NTS stakeholders. The Agent-Based Modeling and Simulation technique is employed where the NTS/NAS is treated as an integrated Multi-Agent System comprising of consumer and service provider agents, representing the demand-side and supply-side components respectively. Successful calibration and validation of both model components against the observable real world data resulted in a CATS simulation tool where the aviation demand is estimated from socioeconomic and demographic properties of the population instead of merely based on enplanement growth multipliers. This valuable achievement enabled a 20-year outlook simulation study to investigate the implications of a global fuel price hike on the airline industry and the U.S. CATS at large. Simulation outcomes revealed insights into the airline competitive behaviors and the subsequent responses from transportation consumers.

  15. Cloud microphysical effects of turbulent mixing and entrainment

    CERN Document Server

    Kumar, Bipin; Shaw, Raymond A

    2013-01-01

    Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively.The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary be...

  16. Study on effects of air-entraining and anti-foaming on performance and apparent morphology of fair-faced concrete%引气剂与消泡剂对清水混凝土性能与表观形貌的影响

    Institute of Scientific and Technical Information of China (English)

    黄快忠; 龚明子; 陈茜; 刘尊玉; 李式龙; 连亚明

    2014-01-01

    There are important effects of air-entraining admixture and anti-foaming admixture on performance of concrete.It discussed the influence of the different air-entraining and anti-foaming ratio in polycarboxylate superplasticizer on concrete fluidity,air content and strength.The optimal ratio between the two made plain fair-faced concrete showed better performance and apparent morphology.The re-sults showed that,when air-entraining admixture dosage was two over ten thousand and anti-foaming dosage was one over ten thousand, the apparent morphology of fair-faced concrete was the best.%引气剂与消泡剂对清水混凝土的性能与表观形貌有重要的影响。论述了不同引气和消泡比例的聚羧酸高效减水剂对清水混凝土流动性、含气量、强度与硬化后表观形貌的影响。为使清水混凝土表现出更好的性能和美观的表面形貌,两者存在一个最佳比例。结果表明:当引气剂掺量为2%、消泡剂掺量为1%时,清水混凝土的表观形貌最佳。

  17. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, Darsh T.

    2007-10-09

    the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  18. Investigation of the Entrainment Phenomenon Using a Scaling Approach

    Science.gov (United States)

    Kishore, Aravind; Ghia, Urmila

    2014-11-01

    Air entrainment is a commonly observed phenomenon; we see it when filling a glass with water from a faucet, in the frothing of the ocean surface, in white water rapids, etc. The focus of our work is the numerical simulation of the entrainment phenomenon associated with laminar plunging jets. With increasing jet velocity, the interfacial cusp formed between the jet and the liquid pool becomes sharper. At a critical jet velocity, entrainment inception occurs, i.e., the interfacial cusp breaks, the interface ruptures, and air is pulled into the liquid pool. We conduct two-fluid simulations using the Volume-Of-Fluid (VOF) methodology. The large range of length scales in the flow presents a major computational challenge. We postulate an approach based on scaling of the underlying physics and this helps alleviate the constraints that the physics poses on the numerical method. The approach is validated using a simple flow configuration - a cylinder rotating at an interface between two fluids. Our simulations capture the sharpening of the interfacial cusp, and the sudden rupture of the interface. The predicted critical entrainment velocities are within 1% of experimental data, thereby providing confidence in the approach. This work was supported by the UC Simulation Center at the University of Cincinnati.

  19. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    Science.gov (United States)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  20. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  1. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    . Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio...... remained nearly unchanged with varying mixing ratio during straw/wood co-gasification, while increased gradually with increasing biomass mixing ratio during biomass/coal co-gasification. A mathematic model of biomass entrained flow gasification was developed. The model included mixing, drying and pyrolysis......, char-gas and soot-gas reactions, detailed gas-phase reactions, and mass and heat transfer. The model could reasonable predict the yields of syngas products obtained in the biomass gasification experiments. Moreover, the simulation results suggest that the soot can be completely converted and thereby...

  2. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  3. THEORETICAL AND EXPERIMENTAL INVESTIGATIONS OF ENTRAINED AND TRANSPORTED CHARACTERISTICS OF SUBMERGED JET

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; WU Chi-gong; YANG YONG-quan

    2004-01-01

    This paper presents entrainment mechanism,and transported and diffusion characteristics at the point of entry of submerged jet. The profiles of both velocity and concentration within the air-water mixing layer were theoretically deduced. And the comparisons between theoretical values and measured data were made. Results show that the velocity profile within the air-water mixing layer exhibits a form of error function. The concentrations of air entrainment in the internal and external regions of air-water mixing layer correspond to Gaussian distribution.

  4. Bubble entrainment, spray and splashing at hydraulic jumps

    Institute of Scientific and Technical Information of China (English)

    CHANSON Hubert

    2006-01-01

    The sudden transition from a high-velocity, supercritical open channel flow into a slow-moving sub-critical flow is a hydraulic jump. Such a flow is characterised by a sudden rise of the free-surface, with some strong energy dissipation and air entrainment, waves and spray. New two-phase flow measurements were performed in the developing flow region using a large-size facility operating at large Reynolds numbers. The experimental results demonstrated the complexity of the flow with a developing mixing layer in which entrained bubbles are advected in a high shear stress flow. The relationship between bubble count rates and void fractions was non-unique in the shear zone, supporting earlier observations of some form of double diffusion process between momentum and air bubbles. In the upper region, the flow consisted primarily of water drops and packets surrounded by air. Visually significant pray and splashing were significant above the jump roller. The present study is the first comprehensive study detailing the two-phase flow properties of both the bubbly and spray regions of hydraulic jumps, a first step towards understanding the interactions between bubble entrainment and droplet ejection processes.

  5. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  6. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    Science.gov (United States)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  7. Autonomous agent-based simulation of an AEGIS Cruiser combat information center performing battle air-defense commander operations

    OpenAIRE

    Calfee, Sharif H.

    2003-01-01

    The AEGIS Cruiser Air-Defense Simulation is a program that models the operations of a Combat Information Center (CIC) team performing the ADC duties in a battle group using Multi-Agent System (MAS) technology implemented in the Java programming language. Set in the Arabian Gulf region, the simulation is a top-view, dynamic, graphics-driven software implementation that provides a picture of the CIC team grappling with a challenging, complex problem. Conceived primarily as a system to assist sh...

  8. RESEARCH ON EARLY STRENGTH AND FREEZE-PROOF RESISTANCE OF AIR-ENTRAINED CONCRETE UNDER 3 ℃CURING%3℃养护下引气混凝土早期强度及抗冻性能研究

    Institute of Scientific and Technical Information of China (English)

    张凯; 王起才; 王庆石; 李盛; 李建新

    2015-01-01

    采用强度试验、压汞法、气孔分析法、快速冻融法,以低温(3±0.2)℃养护下引气混凝土为研究对象,对混凝土的强度、孔隙结构及抗冻耐久性进行了研究。结果表明:在3℃养护下,随着含气量的提高,孔径均匀分布,显著改善了混凝土的内部孔隙结构,但比标准养护条件下同等含气量混凝土的孔结构粗化。为更好地阐述混凝土实际强度受含气量的影响,由孔隙结构可进一步推算出3℃养护下混凝土的实际抗压强度,并与标准养护条件下实际抗压强度对比,显示两者之间的不同。%The strength, the pore structure and freeze-proof durability of air-entrained concrete under 3 ℃temperature curing and with different air contents were researched by taking air-entrained concrete under low temperature curing (3 ±0.2 ) ℃ as the object, adopting strength test mercury intrusion method, pore analytical method and fast freeze-thaw method.The results showed that when concrete of 3 ℃ temperature curing, as the air content was increased, the distribution of pore diameter was uniform and the interior pore structure of concrete was improved significantly, however, the pore structure under the room curing at the same air content of concrete was lower than under 3 ℃curing.In order to expound the influence of air content on the actual concrete strength in an even better fashion, the concrete compressive strength under 3 ℃curing can further be estimated by pore structure, which was compared with the room curing actual compressive strength, showing the difference between the two.

  9. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    Science.gov (United States)

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility. PMID:27652177

  10. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    Science.gov (United States)

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  11. Eulerian Air Traffic Flow Management Agent for the ACES Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of an Eulerian model based en route traffic flow management agent for the ACES software is proposed. The proposed research will use a...

  12. Washing of the AN-107 entrained solids

    International Nuclear Information System (INIS)

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching

  13. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  14. Cooperative Electronic Attack for Groups of Unmanned Air Vehicles based on Multi-agent Simulation and Evaluation

    Directory of Open Access Journals (Sweden)

    Yee Ming Chen

    2012-03-01

    Full Text Available In this paper, the issue of path planning is addressed for unmanned air vehicles (UAVs cooperative joint-forces electronic attack operating in a hostile environment. Specifically, the objective is to plan path to a target location in a way that minimizes exposure to threats while keeping fuel usage at acceptable levels. We consider a scenario where a group of UAVs flies in a close formation and cooperates in their use of jamming resources to prevent being tracked by Surface-to-Air Missile (SAM tracking radars. The main goal of this research effort is develop cooperating UAVs within multi-agent simulation environment. Simulations were generated to test the path planning and control strategies given UAVs/SAM tracking radar network scenarios, and overall UAVs cooperative electronic attack performance in each simulation was analyzed.

  15. Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface

    Institute of Scientific and Technical Information of China (English)

    Xiang Li; Yan-ping Bao; Min Wang; Lu Lin

    2016-01-01

    In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa·s to 820 mPa·s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that in-creasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa·s when the equivalent diameter of the bubbles was increased from 3 mm to 7 mm. We there-fore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water column indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the en-trainment rate decreases with the bubble velocity.

  16. Transboundary air pollution in Europe. Part 1: Emissions, dispersions and trends of acidifying and eutrophying agents

    Energy Technology Data Exchange (ETDEWEB)

    Berge, Erik [ed.

    1997-12-31

    This report was prepared for the twenty first session of the Steering body of EMEP (Co-operative Programme for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe). It gives an overview of the major aims of Norwegian Meteorological Institute, the basic modelling and meteorological tools, the status of the emission data, the trends in transboundary transport and deposition of sulphur and nitrogen since 1980, and the latest transboundary flows of sulphur and nitrogen, in both the 150 km and the 50 km grid. Complete source receptor matrices are now available in the 50 km grid derived from the multi-layer eulerian model. The new 50 km data constitutes a basis for further assessments of acidifying air pollution in the 50 km grid by subsidiary bodies under the Convention of Long Range Transport of Air Pollution. 63 refs., 42 figs., 18 tabs.

  17. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  18. Entrainment, Drizzle, and Cloud Albedo

    Science.gov (United States)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  19. [Validation of measurement methods and estimation of uncertainty of measurement of chemical agents in the air at workstations].

    Science.gov (United States)

    Dobecki, Marek

    2012-01-01

    This paper reviews the requirements for measurement methods of chemical agents in the air at workstations. European standards, which have a status of Polish standards, comprise some requirements and information on sampling strategy, measuring techniques, type of samplers, sampling pumps and methods of occupational exposure evaluation at a given technological process. Measurement methods, including air sampling and analytical procedure in a laboratory, should be appropriately validated before intended use. In the validation process, selected methods are tested and budget of uncertainty is set up. The validation procedure that should be implemented in the laboratory together with suitable statistical tools and major components of uncertainity to be taken into consideration, were presented in this paper. Methods of quality control, including sampling and laboratory analyses were discussed. Relative expanded uncertainty for each measurement expressed as a percentage, should not exceed the limit of values set depending on the type of occupational exposure (short-term or long-term) and the magnitude of exposure to chemical agents in the work environment.

  20. Agent-based modeling and simulation of emergent behavior in air transportation

    NARCIS (Netherlands)

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system a

  1. Agent-Based Modelling and Simulation of Safety and Resilience in Air Transportation

    NARCIS (Netherlands)

    Bouarfa, S.

    2015-01-01

    Purpose: In order to improve the safety, capacity, economy, and sustainability of air transportation, revolutionary changes are required. These changes might range from the introduction of new technology and operational procedures to unprecedented roles of human operators and the way they interact.

  2. Immune multi-agent model using vaccine for cooperative air-defense system of systems for surface warship formation based on danger theory

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Xiaozhe Zhao; Beiping Xu; Wei Wang; Zhiyong Niu

    2013-01-01

    Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative air-defense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics be-tween the CASoSSWF and the BIS, and then designs the mo-dels of components and the architecture for a monitoring agent, a regulating agent, a kil er agent, a pre-warning agent and a com-municating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dy-namic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CA-SoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship forma-tion operation simulation system.

  3. On dust entrainment in photoevaporative winds

    Science.gov (United States)

    Hutchison, Mark A.; Price, Daniel J.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We investigate dust entrainment by photoevaporative winds in protoplanetary discs using dusty smoothed particle hydrodynamics. We use unequal-mass particles to resolve more than five orders of magnitude in disc/outflow density and a one-fluid formulation to efficiently simulate an equivalent magnitude range in drag stopping time. We find that only micron-sized dust grains and smaller can be entrained in extreme-UV radiation-driven winds. The maximum grain size is set by dust settling in the disc rather than aerodynamic drag in the wind. More generally, there is a linear relationship between the base flow density and the maximum entrainable grain size in the wind. A pileup of micron-sized dust grains can occur in the upper atmosphere at critical radii in the disc as grains decouple from the low-density wind. Entrainment is a strong function of location in the disc, resulting in a size sorting of grains in the outflow - the largest grain being carried out between 10 and 20 au. The peak dust density for each grain size occurs at the inner edge of its own entrainment region.

  4. Nonphotic entrainment of the human circadian pacemaker

    Science.gov (United States)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  5. Entrainment and the cranial rhythmic impulse.

    Science.gov (United States)

    McPartland, J M; Mein, E A

    1997-01-01

    Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment. PMID:8997803

  6. Agent-based modeling and simulation of emergent behavior in air transportation

    OpenAIRE

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system are in development both in the USA and Europe. Such a complex socio-technical system may generate various types of emergent behavior, which may range from simple emergence, through weak emergence, u...

  7. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in Air Traffic Management

    CERN Document Server

    Bongiorno, C; Mantegna, Rosario N

    2016-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system that aims at modeling the interactions between aircrafts and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts resolution between flight trajectories can arise during the en-route phase of each flight due to both not detailed flight trajectory planning or unforeseen events that perturb the planned flight plan. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our...

  8. Entrainment and mixing in stratified shear flows

    Science.gov (United States)

    Strang, Eric James

    1997-12-01

    The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. In the parameter ranges investigated the entrainment problem is mainly determined by two parameters, the bulk Richardson number RiB = /Delta bD//Delta U2 and the frequency ratio fN = ND//Delta U. When RiB > 1.5, the buoyancy effects play a governing role, whence interfacial instabilities locally mix heavy and light fluids. The nature of interfacial instabilities is governed by RiB or a related quantity, the mean local gradient Richardson number /overline [Ri]g=/overline [N(z)]2/(/overline[/partial u//partial z)]2, where N(z) is the Brunt-Vaisala frequency local to the interface. When RiB Rif ~ 0.15-0.4) when RiB≃ 3-5. At RiB~ 5, the K-H regime transitions to a new regime wherein the interface is dominated by interfacial/Holmboe wave instabilities. Here, the entrainment rates are much smaller and there is no evidence of interfacial swelling. In the K-H regime, the swelling of the interface introduces its own forcing time scale, which excites and radiates internal waves in the lower layer if it is continuously stratified. Consequently, the amount of energy available for entrainment decreases and, depending on fN, the entrainment velocities in the linearly stratified case can be substantially smaller than the two-layer case (up to 50%). In the interfacial/Holmboe wave breaking regime, internal wave radiation to the bottom layer is much smaller, so as the difference in entrainment rates of the two-layer and linearly stratified cases. Furthermore, when RiB > 5, the entrainment interface shows an approximate balance between the production of turbulent kinetic energy, its dissipation and the buoyancy flux. When entrainment is active RiB/le 5/ (/overline [Ri]g/le 1), the eddy diffusivity for mass Kρ was determined to be approximately 0.3/ cm2[/cdot]sec-1. For RiB > 5,/ Kρ attenuated dramatically. At low RiB/ ([<]5), the eddy diffusivity for

  9. Observational estimates of detrainment and entrainment in non-precipitating shallow cumulus

    Science.gov (United States)

    Norgren, M. S.; Small, J. D.; Jonsson, H. H.; Chuang, P. Y.

    2016-01-01

    Vertical transport associated with cumulus clouds is important to the redistribution of gases, particles, and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus represents an important contribution to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-precipitating cumulus clouds using aircraft observations. The method utilizes equations for three conserved variables: cloud mass, total water, and moist static energy. Optimizing these three equations leads to estimates of the mass fractions of adiabatic mixed-layer air, entrained air and detrained air that the sampled cloud has experienced. The method is applied to six flights of the CIRPAS Twin Otter during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) which took place in the Houston, Texas region during the summer of 2006 during which 176 small, non-precipitating cumuli were sampled. Using our novel method, we find that, on average, these clouds were comprised of 30 to 70 % mixed-layer air, with entrained air comprising most of the remainder. The mass fraction of detrained air was usually very small, less than 2 %, although values larger than 10 % were found in 15 % of clouds. Entrained and detrained air mass fractions both increased with altitude, consistent with some previous observational studies. The largest detrainment events were almost all associated with air that was at their level of neutral buoyancy, which has been hypothesized in previous modeling studies. This new method could be readily used with data from other previous aircraft campaigns to expand our understanding of detrainment for a variety of cloud systems.

  10. Removal of PCDDs/Fs from municipal solid waste incineration by entrained-flow adsorption technology

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hua; PENG Zheng; LU Sheng-yong; LI Xiao-dong; CEN Ke-fa

    2006-01-01

    Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solidwaste incineration (MSWI) process. The effects of operating parameters including flue gas temperature, feeding rate of activated carbon, polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs) concentration at the inlet of the air pollution control device (APCD), filter materials, pressure drop on PCDDs/Fs removal efficiency are reviewed and commented upon in this paper. Evaluation on the various mechanistic models for entrained flow adsorption is carried out based on the computational simulation in terms of the actual operating condition and theoretical analysis. Finally, an advancement of entrained flow adsorption in combination of dual bag filter is introduced.

  11. Droplet impact on a liquid pool and bubble entrainment for low Bond numbers

    Science.gov (United States)

    Sleutel, Pascal; Tsai, Pei Hsun; Bouwhuis, Wilco; Thoraval, Marie-Jean; Visser, Claas-Willem; Wang, An-Bang; Versluis, Michel; Lohse, Detlef

    2015-11-01

    Droplets impacting on a pool of liquid and the subsequent bubble entrainment has been well studied for high Bond numbers where the droplets size is large and velocities are low. Here we study for the first time the droplet impact and bubble entrainment in an entirely new parameter regime (Bo ~ 10-2 -10-3 , U ~ 6-20 m/s, D ~ 0.08-0.4 mm). We follow up on the pioneering work of Oguz & Prosperetti, now in the surface tension dominated regime. We predict the bubble entrainment zone by balancing movement of the cavity bottom and droplet inertia with capillary waves enclosing the bubble. Both high-speed imaging experiments and numerical simulations in Gerris validate the model and show the importance of air for smaller droplet sizes.

  12. Ram-air sample collection device for a chemical warfare agent sensor

    Science.gov (United States)

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  13. An Empirically grounded Agent Based simulator for the Air Traffic Management in the SESAR scenario

    CERN Document Server

    Gurtner, Gérald; Ducci, Marco; Miccichè, Salvatore

    2016-01-01

    In this paper we present a simulator allowing to perform policy experiments relative to the air traffic management. Different SESAR solutions can be implemented in the model to see the reaction of the different stakeholders as well as other relevant metrics (delays, safety, etc). The model describes both the strategic phase associated to the planning of the flight trajectories and the tactical modifications occurring in the en-route phase. An implementation of the model is available as open-source and freely accessible by any user. More specifically, different procedures related to business trajectories and free-routing are tested and we illustrate the capabilities of the model on airspace implementing these concepts. After performing numerical simulations with the model, we show that in a free-routing scenario the controllers perform less operations although they are dispersed over a larger portion of the airspace. This can potentially increase the complexity of conflict detection and resolution for controll...

  14. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    Science.gov (United States)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  15. Relationships of Entrainment Rate with Dynamical and Thermodynamic Properties in Shallow Convection

    Science.gov (United States)

    Lu, C.; Liu, Y.; Zhang, G. J.; Wu, X.; Endo, S.; Cao, L.; Li, Y.; Guo, X.

    2015-12-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that combination of multiple variables can better represent entrainment rate in both the observations and LES than the single-variable fitting equations and the three commonly used parameterizations. A new parameterization is thus presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored. Furthermore, the effects of relative humidity in the entrained dry air on the above relationships are discussed; a possible physical mechanism for the effects is explored.

  16. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  17. Washing of the AW-101 entrained solids

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  18. Washing of the AW-101 entrained solids

    International Nuclear Information System (INIS)

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume

  19. Drugs of Abuse Can Entrain Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Ann E. K. Kosobud

    2007-01-01

    Full Text Available Circadian rhythms prepare organisms for predictable events during the Earth's 24-h day. These rhythms are entrained by a variety of stimuli. Light is the most ubiquitous and best known zeitgeber, but a number of others have been identified, including food, social cues, locomotor activity, and, most recently drugs of abuse. Given the diversity of zeitgebers, it is probably not surprising that genes capable of clock functions are located throughout almost all organs and tissues. Recent evidence suggests that drugs of abuse can directly entrain some circadian rhythms. We have report here that entrainment by drugs of abuse is independent of the suprachiasmatic nucleus and the light/dark cycle, is not dependent on direct locomotor stimulation, and is shared by a variety of classes of drugs of abuse. We suggest that drug-entrained rhythms reflect variations in underlying neurophysiological states. This could be the basis for known daily variations in drug metabolism, tolerance, and sensitivity to drug reward. These rhythms could also take the form of daily periods of increased motivation to seek and take drugs, and thus contribute to abuse, addiction and relapse.

  20. Liquid Droplet Detachment and Entrainment in Microscale Flows

    Science.gov (United States)

    Hidrovo, Carlos

    2005-11-01

    In this talk we will present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. Silicon based microstructures consisting of 23 mm long U-shaped channels of different geometry were used for this purpose. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic. Liquid water is injected through a side slot located 2/3 of the way downstream from the air channel inlet. The water entering the air channel beads up into slugs or droplets that grow in size at this injection location until they fill and flood the channel or are carried away by the air flow. The slugs/droplets dimensions at detachment are correlated against superficial gas velocity and proper dimensionless parameters are postulated and examined to compare hydrodynamic forces against surface tension. It is found that slug/droplet detachment is dominated by two main forces: pressure gradient drag, arising from confinement of a viscous flow in the channel, and inertial drag, arising from the stagnation of the air due to obstruction by the slugs/droplets. A detachment regime map is postulated based on the relative importance of these forces under different flow conditions.

  1. Parameterizing Convective Organization to Escape the Entrainment Dilemma

    Science.gov (United States)

    Mapes, Brian; Neale, Richard

    2011-06-01

    Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate) depend on a new prognostic variable (“organization,” org) meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5) with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme). Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled) air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ˜3 h for a 2o model). Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1) plume base warmth above the mean temperature 2) plume radius enhancement (reduced mixing), and 3) increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model). Since rain evaporation is a source for org, it functions as a time-lagged but

  2. Intravenous, contrast-enhanced MR colonography using air as endoluminal contrast agent: Impact on colorectal polyp detection

    International Nuclear Information System (INIS)

    Purpose: To compare diagnostic accuracy and patient tolerance of MR colonography with intravenous contrast and luminal air (MRC) to conventional colonoscopy (CC). Materials and methods: IRB approval and written informed consent were obtained. Forty-six patients, both screening and symptomatic, underwent MRC followed by CC. The MRC technique employed 3D T1W spoiled gradient echo sequences performed after the administration of gadopenetate dimeglumine, with parallel imaging. The diagnostic accuracy and tolerance of patients for MRC was compared to CC. Results: Twenty-four polyps were detected in eighteen patients with CC (5 polyps ≥10 mm, 4 polyps 6–9 mm, 15 polyps ≤5 mm). MRC was 66.7% (12/18) sensitive and 96.4% (27/28) specific for polyp detection on a per-patient basis. When analyzed by polyp size, sensitivity and specificity of MRC was 100% (5/5) and 100% (19/19), respectively, for lesions greater than 10 mm, 100% (4/4) and 100% (20/20) for lesions 6–9 mm, and sensitivity of 20% (3/15) lesions less than 5 mm. The sensitivity and specificity of MRC for detecting significant lesions (>6 mm) was 100% (9/9) and 100% (15/15), respectively. Regarding tolerance of the exams, there were no significant differences between MRC and CC. Thirty-five percent (n = 16) of patients preferred MRC as a future screening test compared to 33% (n = 15) for CC. Conclusion: MRC using air as an intraluminal contrast agent is a feasible and well-tolerated technique for detecting colonic polyps ≥6 mm in size. Further studies are warranted.

  3. Intravenous, contrast-enhanced MR colonography using air as endoluminal contrast agent: Impact on colorectal polyp detection.

    LENUS (Irish Health Repository)

    Keeling, Aoife N

    2012-02-01

    PURPOSE: To compare diagnostic accuracy and patient tolerance of MR colonography with intravenous contrast and luminal air (MRC) to conventional colonoscopy (CC). MATERIALS AND METHODS: IRB approval and written informed consent were obtained. Forty-six patients, both screening and symptomatic, underwent MRC followed by CC. The MRC technique employed 3D T1W spoiled gradient echo sequences performed after the administration of gadopenetate dimeglumine, with parallel imaging. The diagnostic accuracy and tolerance of patients for MRC was compared to CC. RESULTS: Twenty-four polyps were detected in eighteen patients with CC (5 polyps >\\/=10mm, 4 polyps 6-9mm, 15 polyps <\\/=5mm). MRC was 66.7% (12\\/18) sensitive and 96.4% (27\\/28) specific for polyp detection on a per-patient basis. When analyzed by polyp size, sensitivity and specificity of MRC was 100% (5\\/5) and 100% (19\\/19), respectively, for lesions greater than 10mm, 100% (4\\/4) and 100% (20\\/20) for lesions 6-9mm, and sensitivity of 20% (3\\/15) lesions less than 5mm. The sensitivity and specificity of MRC for detecting significant lesions (>6mm) was 100% (9\\/9) and 100% (15\\/15), respectively. Regarding tolerance of the exams, there were no significant differences between MRC and CC. Thirty-five percent (n=16) of patients preferred MRC as a future screening test compared to 33% (n=15) for CC. CONCLUSION: MRC using air as an intraluminal contrast agent is a feasible and well-tolerated technique for detecting colonic polyps >\\/=6mm in size. Further studies are warranted.

  4. Intravenous, contrast-enhanced MR colonography using air as endoluminal contrast agent: Impact on colorectal polyp detection.

    LENUS (Irish Health Repository)

    Keeling, Aoife N

    2010-12-03

    PURPOSE: To compare diagnostic accuracy and patient tolerance of MR colonography with intravenous contrast and luminal air (MRC) to conventional colonoscopy (CC). MATERIALS AND METHODS: IRB approval and written informed consent were obtained. Forty-six patients, both screening and symptomatic, underwent MRC followed by CC. The MRC technique employed 3D T1W spoiled gradient echo sequences performed after the administration of gadopenetate dimeglumine, with parallel imaging. The diagnostic accuracy and tolerance of patients for MRC was compared to CC. RESULTS: Twenty-four polyps were detected in eighteen patients with CC (5 polyps ≥10mm, 4 polyps 6-9mm, 15 polyps ≤5mm). MRC was 66.7% (12\\/18) sensitive and 96.4% (27\\/28) specific for polyp detection on a per-patient basis. When analyzed by polyp size, sensitivity and specificity of MRC was 100% (5\\/5) and 100% (19\\/19), respectively, for lesions greater than 10mm, 100% (4\\/4) and 100% (20\\/20) for lesions 6-9mm, and sensitivity of 20% (3\\/15) lesions less than 5mm. The sensitivity and specificity of MRC for detecting significant lesions (>6mm) was 100% (9\\/9) and 100% (15\\/15), respectively. Regarding tolerance of the exams, there were no significant differences between MRC and CC. Thirty-five percent (n=16) of patients preferred MRC as a future screening test compared to 33% (n=15) for CC. CONCLUSION: MRC using air as an intraluminal contrast agent is a feasible and well-tolerated technique for detecting colonic polyps ≥6mm in size. Further studies are warranted.

  5. Microphysical imprint of entrainment in warm cumulus

    OpenAIRE

    2013-01-01

    We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above ...

  6. Microphysical imprint of entrainment in warm cumulus

    OpenAIRE

    Small, Jennifer D.; Chuang, Patrick Y.; Jonsson, Haflidi H.

    2013-01-01

    We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above cloud base, ...

  7. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

  8. Rod Driven Frequency Entrainment and Resonance Phenomena

    Science.gov (United States)

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  9. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Science.gov (United States)

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  10. Alignment strategies for the entrainment of music and movement rhythms.

    Science.gov (United States)

    Moens, Bart; Leman, Marc

    2015-03-01

    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music.

  11. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Directory of Open Access Journals (Sweden)

    Saike He

    Full Text Available Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  12. Diurnally entrained anticipatory behavior in archaea.

    Directory of Open Access Journals (Sweden)

    Kenia Whitehead

    Full Text Available By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal. This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms. The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature on O(2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime.

  13. The influence of large-scale structures on entrainment in a decelerating transient turbulent jet revealed by large eddy simulation

    Science.gov (United States)

    Hu, Bing; Musculus, Mark P. B.; Oefelein, Joseph C.

    2012-04-01

    To provide a better understanding of the fluid mechanical mechanisms governing entrainment in decelerating jets, we performed a large eddy simulation (LES) of a transient air jet. The ensemble-averaged LES calculations agree well with the available measurements of centerline velocity, and they reveal a region of increased entrainment that grows as it propagates downstream during deceleration. Within the temporal and spatial domains of the simulation, entrainment during deceleration temporarily increases by roughly a factor of two over that of the quasi-steady jet, and thereafter decays to a level lower than the quasi-steady jet. The LES results also provide large-structure flow details that lend insight into the effects of deceleration on entrainment. The simulations show greater growth and separation of large vortical structures during deceleration. Ambient fluid is engulfed into the gaps between the large-scale structures, causing large-scale indentations in the scalar jet boundary. The changes in the growth and separation of large structures during deceleration are attributed to changes in the production and convection of vorticity. Both the absolute and normalized scalar dissipation rates decrease during deceleration, implying that changes in small-scale mixing during deceleration do not play an important role in the increased entrainment. Hence, the simulations predict that entrainment in combustion devices may be controlled by manipulating the fuel-jet boundary conditions, which affect structures at large scales much more than at small scales.

  14. Research of HLA Air-Defense Simulation System Based on Agent%基于Agent的HLA空防对抗仿真系统研究

    Institute of Scientific and Technical Information of China (English)

    李云芳; 万晓冬

    2012-01-01

    以防空作战为背景,介绍了防空作战仿真系统的组成结构,对防空作战中各成员的功能进行了分析,建立了系统中火力单元指控的Agent模型结构.通过分析各Agent之间的联系,建立了多Agent之间的交互关系,并详细描述了火力单元指控的射击指挥行为过程.最后,给出了基于Agent模型的火力单元指挥控制仿真实例,验证模型的可行性.%The structure of air-defense combat simulation system was introduced, and the member function of air-defense combat was analyzed for air defense operations. Then, Agent model structure of firepower unit command and control was built Through the analysis of the relationship between the various Agent, the interaction between the Agent was established. Also, detailed descriptions of firing command action plan was given. Finally, The simulation example of firepower unit command and control is given based on Agent model, verified the feasibility of the model.

  15. An experimental study of the liquid entrainment from swelled two-phase mixture surface in a reactor vessel

    International Nuclear Information System (INIS)

    An experimental study of liquid entrainment by rapid surface swellig of a two-phase mixture in a vessel has been performed. To investigate the effects of air flow and initial water level on the liquid entrainment, a series of experiments have been performed using air and water as working fluids. A total of 64 experimental liquid entrainment rate data have been obtained for various combinations of test parameters (i.e., six different initial water levels and varying air flow rates from 300 to 1,200 lpm) using two test vessels of the same height and different inner diameters (D=0.15 and 0.30m, respectively) for vertical bubbly and churn-turbulent flow conditions. An empirical correlation for the liquid entrainment rate, E, has been developed in terms of the superficial velocity of air, the initial water level, the density of gas, the surface tension, and the gravity. This correlation shows a good agreement with the present experimental data within 30% over a wide range of flow parameters

  16. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  17. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    Science.gov (United States)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  18. Conditions for super-adiabatic droplet growth after entrainment mixing

    Science.gov (United States)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  19. Relationship between concentrations of microbiological agents in the air of agricultural settings and occurrence of work-related symptoms in exposed persons

    OpenAIRE

    Barbara Mackiewicz; Czesława Skórska; Jacek Dutkiewicz

    2015-01-01

    For assessment of the dose-response relationship between concentrations of microbial agents in the air of various agricultural settings and occurrence of work-related symptoms in exposed workers, a meta-analysis of the results obtained in 1994–2007 on the territory of eastern Poland was performed. The studies on the airborne concentrations of total culturable microorganisms, mesophilic bacteria, Gram-negative bacteria, thermophilic actinomycetes, fungi, and bacterial endotoxins, as well as on...

  20. Stochastic entrainment of a stochastic oscillator.

    Science.gov (United States)

    Wang, Guanyu; Peskin, Charles S

    2015-01-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.

  1. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  2. "Air embolism during fontan operation"

    Directory of Open Access Journals (Sweden)

    Madan Mohan Maddali

    2014-01-01

    Full Text Available In patients with a right to left intracardiac shunt, air embolism results in an obligatory systemic embolization. Nonembolization of entrained air is described in a child with a single ventricle physiology who had earlier undergone bidirectional Glenn shunt construction and Damus-Kaye-Stansel anastomosis. The air entrainment was detected by intra-operative transesophageal echocardiography. The combined effect of a "diving bell" phenomenon and mild aortic valve regurgitation are suggested as the reasons for the confinement of air into the ventricle preventing catastrophic systemic embolization.

  3. Transboundary air pollution in Europe. Part 2: Numerical addendum to emissions, dispersion and trends of acidifying and eutrophying agents

    Energy Technology Data Exchange (ETDEWEB)

    Berge, Erik [ed.

    1997-12-31

    This report was prepared for the twenty first session of the Steering Body of EMEP (Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe). It presents the numerical fields and budgets of the acidifying and eutrophying air pollution in the form of three appendices: annual average air concentrations of acidifying and eutrophying species, 1996; country-to-country deposition budgets for acidifying/eutrophying air pollutants, 1985-95; and grid square deposition of acidifying/eutrophying components allocated to emitting countries, mean 1985-95. 19 figs.

  4. Dilution of aircraft exhaust and entrainment rates for trajectory box models

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Kaercher, B. [Muenchen Univ. (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1997-12-31

    In order to match in-situ measured concentrations of NO and NO{sub 2} in the wake, dilution factors or entrainment rates have to be used which take into account that the largest fraction of the exhaust is captured by the wing tip vortices. This fraction defines the primary wake. Baroclinicity and turbulence detrains parts of it later into the secondary wake. Both wake regimes undergo different chemical and microphysical histories. The rates {omega} are determined at which ambient air becomes entrained into the primary and the secondary portion of the exhaust plume. Numerical simulations of the highly resolved wake is used of cruising aircraft under typical atmosphere conditions with and without ambient turbulence. The simulations are oriented on a case where exhaust and dynamical data behind an eastbound travelling B-747 aircraft have been collected in-situ over the North-Atlantic east of Ireland. (author) 7 refs.

  5. Entrainment rates at the tops of laboratory analogs of cumulus and stratocumulus clouds

    Science.gov (United States)

    Górska, Anna; Malinowski, Szymon P.; Fugal, Jacob

    2015-04-01

    We investigate entrainment at tops of laboratory analogs of convective clouds: cumulus and stratocumulus. Cloudy saturated moist air (T ~22 °C) containing droplets of diameters of ~3-10 μm, is introduced into a laboratory cloud chamber of dimensions of 1.0×1.0×1.8 through an opening in the bottom wall. Initialy cloudy air fills ~60 cm thick layer at the bottom. Mixing between the cloud and unsaturated air above (T ~22 °C, RH ~35 %) results in evaporative cooling triggering convection which, in turn, leads to formation of a well mixed layer capperd with a temperature inversion. The temperature jump is about 2 °C within ~30 cm deep layer. Then updrafts are forced through a 30cm high tube extending from the bottom of the chamber. "Strong' updrafts which penetrate the whole inversion layer mimic overshooting cumulus clouds while "weak' updrafts diverging under the inversion simulate stratocumulus clouds. We use a laser sheet technique to image two-dimensional cross sections through the clouds. A specially developed mutiscale Particle Image Velicimetry (PIV) algorithm allows to retrieve 2D velocity fields. Suitable image processing allows to determine cloud-clear air interface in the images. Extracting velocities of cloudy (ui) and environmental (ua) air on both sides of the interface allows us calculate entrainment / detrainment rates: E = -ρa(ua - ui) - entrainment rate D = ρa(ua - ui) - detrainment rate. On the poster we will present fine structures of entraimnet/dertaiment process and discuss similarities and differences in both investigated types of clouds.

  6. Synchronization and entrainment of coupled circadian oscillators

    CERN Document Server

    Komin, Niko; Hernandez-Garcia, Emilio; Toral, Raul

    2010-01-01

    Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the system of neurons is very efficiently entrained by the 24-hour light-dark cycle. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light dark cycle in neuronal synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of these cellular interactions is seemingly to play a major role in these biochemical processes. In this paper we use a model that considers the neurons of the suprachiasmatic nucleus as chemically-coupled modified Goodwin oscillators, and introduce non-negligible heterogeneity in the periods of all neurons in the form of quenched noise. The system response to the light-dark cycle periodicity is studied as a function of the interneuronal coupling strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that the right amount of heterogeneity hel...

  7. Entrainment of neural oscillations as a modifiable substrate of attention.

    Science.gov (United States)

    Calderone, Daniel J; Lakatos, Peter; Butler, Pamela D; Castellanos, F Xavier

    2014-06-01

    Brain operation is profoundly rhythmic. Oscillations of neural excitability shape sensory, motor, and cognitive processes. Intrinsic oscillations also entrain to external rhythms, allowing the brain to optimize the processing of predictable events such as speech. Moreover, selective attention to a particular rhythm in a complex environment entails entrainment of neural oscillations to its temporal structure. Entrainment appears to form one of the core mechanisms of selective attention, which is likely to be relevant to certain psychiatric disorders. Deficient entrainment has been found in schizophrenia and dyslexia and mounting evidence also suggests that it may be abnormal in attention-deficit/hyperactivity disorder (ADHD). Accordingly, we suggest that studying entrainment in selective-attention paradigms is likely to reveal mechanisms underlying deficits across multiple disorders.

  8. Glucocorticoids entrain molecular clock components in human peripheral cells.

    Science.gov (United States)

    Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2015-04-01

    In humans, shift work induces a desynchronization between the circadian system and the outside world, which contributes to shift work-associated medical disorders. Using a simulated night shift experiment, we previously showed that 3 d of bright light at night fully synchronize the central clock to the inverted sleep schedule, whereas the peripheral clocks located in peripheral blood mononuclear cells (PBMCs) took longer to reset. This underlines the need for testing the effects of synchronizers on both the central and peripheral clocks. Glucocorticoids display circadian rhythms controlled by the central clock and are thought to act as synchronizers of rodent peripheral clocks. In the present study, we tested whether the human central and peripheral clocks were sensitive to exogenous glucocorticoids (Cortef) administered in the late afternoon. We showed that 20 mg Cortef taken orally acutely increased PER1 expression in PBMC peripheral clocks. After 6 d of Cortef administration, the phases of central markers were not affected, whereas those of PER2-3 and BMAL1 expression in PBMCs were shifted by ∼ 9.5-11.5 h. These results demonstrate, for the first time, that human peripheral clocks are entrained by glucocorticoids. Importantly, they suggest innovative interventions for shift workers and jet-lag travelers, combining synchronizing agents for the central and peripheral clocks.

  9. 基于BDI模型的管制员Agent行为建模研究%Research on Behavioral Modeling of Air Traffic Controller Based on BDI Agent

    Institute of Scientific and Technical Information of China (English)

    刘岳鹏; 隋东; 林颖达

    2016-01-01

    针对空中交通仿真系统中的管制员Agent建模问题,通过分析管制操作行为特点,采用BDI结构,建立了基于决策树模型的管制规则知识库,设计了慎思型管制员Agent。基于Jadex平台,构建了管制员Agent模型,将由JADE平台建立的航空器Agent和模拟空管自动化系统Agent与Jadex平台建立的管制员Agent进行通信与协调,通过仿真系统构建仿真场景并验证管制员Agent的BDI推理过程,实现了对管制员的日常指挥行为的模拟。实验结果表明,所构建的管制员Agent模型可以顺利进行推理过程并对飞行冲突进行探测与解脱。%For ATC operational behavior modeling problems in air traffic control simulation,this paper an-alyzed the behavior characteristic of ATC operation,and adopted BDI structure of establishing the conflict detection and resolution rule library of ATC Agent based on decision tree. Finally,this paper designed the deliberative type of ATC Agent. Based on Jadex platform,the model of ATC Agent was constructed. Then this paper have assembled the ATC Agent model to communicate and coordinate with other two kinds of Agent models,namely,aircraft Agent and ATC Automation Systems Agent established on JADE platform. The simulation scenario was constructed through simulation system and the BDI reasoning process of ATC Agent was verified. The results show that: the ATC Agent model can reasoning smoothly and detect and resolute the conflict between aircraft Agents.

  10. High-temperature entrained flow gasification of biomass

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Jensen, Peter Arendt;

    2012-01-01

    Biomass (wood and straw) gasification has been studied in a laboratory scale atmospheric pressure entrained flow reactor. Effects of reaction temperature, steam/carbon molar ratio, excess air ratio, and biomass type on the solid, liquid and gas products were investigated. The biomass was completely...... converted at all investigated operating conditions and the syngas contained nearly no tar but some soot at the highest applied reaction temperature of 1350°C. With a rise of reaction temperature from 1000°C to 1350°C, the yield of producer gas (defined as the sum of H2, CO, CO2 and hydrocarbons up to C3...... species) increased dramatically by 72%. The H2/CO molar ratio in syngas was close to 1 at reaction temperature above 1200°C with steam addition. Higher temperature was beneficial to lower the amount of tar while the soot yield showed a peak of 56.7g/kg fuel at 1200°C. With steam addition, the producer gas...

  11. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang;

    2012-01-01

    . In comparison to pyrolysis, lower yields of soot, H2, and CO were produced during gasification. The yield of soot could be reduced by a longer residence time, larger feeder air flow, lower oxygen concentration, higher excess air ratio, higher steam/carbon ratio, and higher reactor temperature. Changes...... in residence time, feeder air flow, and oxygen concentration did not show a noticeable influence on H2 and CO yields. Increasing the excess air ratio decreased both the H2 and CO yields; increasing the steam/carbon ratio increased the H2 yield but decreased the CO yield; and increasing the reactor temperature......Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90...

  12. Towards an agent based traffic regulation and recommendation system for the on-road air quality control

    OpenAIRE

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and gen...

  13. Numerical Investigation of Entrainment of Turbulent Dense Currents

    Science.gov (United States)

    Bhaganaagar, Kiran; Nayamatulla, Manjure

    2016-04-01

    Entrainment in dense overflows has fundamental importance for understanding the transport of densest water in the ocean. Estimation of entrainment is extremely challenging and to-date we do not have a fundamental framework that parameterizes entrainment. A highly accurate direct numerical simulation and large eddy simulation solvers have been developed to simulate dense currents over range of smooth- and rough-surfaces. Simulations have been performed for both lock-exchange currents and constant flux currents. A mathematical framework has been developed to estimate entrainment of 2-D and 3-D dense currents. Entrainment has been calculated from first-principles as the relative change in the volume of the dense current in time with respect to the buoyancy forcing that drives the dense current. A combination of threshold method, wherein the height of current is evaluated as height corresponding to the specified threshold value and sorting method, wherein, the mixed fluid is sorted into bins ranging from dense fluid at the bottom to ambient fluid at the top has been used to evaluate the interface between the dense and ambient fluid. Entrainment is sensitive to the method of evaluation of the interface height. Finally, we obtained the dependency of entrainment parameter on non-dimensional parameters. Analysis has demonstrated lock-exchange currents have less mixing and entrainment for same Reynolds number and Froude's number than constant flux currents. The differences exist due to differences in nature of Kelvin-Helmholtz instabilities and lobe-cleft currents. Rough-bottom surfaces introduces additional dynamics of the dense currents. The spacing between the roughness elements has demonstrated to be important metric in entrainment parameters for lock-exchange currents. Densely spaced (D-type) currents travel slower as roughness causes hindrance on density current propagation due to enhanced drag and produces additional eddies and instabilities compared to sparsely

  14. Gas entrainment at free surface of liquid, 2

    International Nuclear Information System (INIS)

    The onset conditions of vortex-induced air entrainment were investigated for the suction flow into a vertical drawing pipe in a cylindrical test vessel. It was found that the onset conditions can be represented by the following two types of empirical criteria: Ron = a1.52(H/D)-1.52 for large Fr, Frn = c0.847(H/D)-0.84 for large Ro, (a = 1.9 x 10-4/D, c = 0.14/D), where D is the inner diameter of the suction pipe in the unit of meter, H the submergence, Fr the Froude number (= V12/gH), and Ro the rotational Froude number (= C∞2/gH3). The subscript n on Ro and Fr denotes the onset correlations derived independently from the relation between Ro and H/D and the relation between Fr and H/D. From visual observation and theoretical consideration, it was found that the above two criteria come from the fact that the onset conditions are dominated by the following two factors: whether the air core formed by vortex reaches the pipe, and whether the water flow in the suction pipe is fast enough for the flow to draw bubbles downward. By combing the two onset criteria into single correlation and comparing it with experimental data, the following correlation was derived, log10(Fr/Frn)log10(Ro/Ron) = h, ( h = 5.71 x 10-4(H/D)1.54). It was confirmed that this correlation represents all the experimental data well. (author)

  15. On the maximum grain size entrained by photoevaporative winds

    Science.gov (United States)

    Hutchison, Mark A.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We model the behaviour of dust grains entrained by photoevaporation-driven winds from protoplanetary discs assuming a non-rotating, plane-parallel disc. We obtain an analytic expression for the maximum entrainable grain size in extreme-UV radiation-driven winds, which we demonstrate to be proportional to the mass loss rate of the disc. When compared with our hydrodynamic simulations, the model reproduces almost all of the wind properties for the gas and dust. In typical turbulent discs, the entrained grain sizes in the wind are smaller than the theoretical maximum everywhere but the inner disc due to dust settling.

  16. On the maximum grain size entrained by photoevaporative winds

    CERN Document Server

    Hutchison, Mark A; Maddison, Sarah T

    2016-01-01

    We model the behaviour of dust grains entrained by photoevaporation-driven winds from protoplanetary discs assuming a non-rotating, plane-parallel disc. We obtain an analytic expression for the maximum entrainable grain size in extreme-UV radiation-driven winds, which we demonstrate to be proportional to the mass loss rate of the disc. When compared with our hydrodynamic simulations, the model reproduces almost all of the wind properties for the gas and dust. In typical turbulent discs, the entrained grain sizes in the wind are smaller than the theoretical maximum everywhere but the inner disc due to dust settling.

  17. Music and emotions: from enchantment to entrainment.

    Science.gov (United States)

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances.

  18. Music and emotions: from enchantment to entrainment.

    Science.gov (United States)

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. PMID:25773637

  19. Organic Entrainment and Preservation in Volcanic Glasses

    Science.gov (United States)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  20. Granular motions near the threshold of entrainment

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, athanasios-Theodosios

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.

  1. Liquid transfer and entrainment correlation for droplet-annular flow

    International Nuclear Information System (INIS)

    A correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasi-equilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, cand total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which has not been available previously

  2. Entrainment of a Synthetic Oscillator through Queueing Coupling

    Science.gov (United States)

    Hochendoner, Philip; Mather, William; Butzin, Nicholas; Ogle, Curtis

    2014-03-01

    Many biological systems naturally exhibit (often noisy) oscillatory patterns that are capable of being entrained by external stimuli, though the mechanism of entrainment is typically obscured by the complexity of native networks. A synthetic biology approach, where genetic programs are wired ``by hand,'' has proven useful in this regard. In the present study, we use a synthetic oscillator in Escherichia coli to demonstrate a novel and potentially widespread mechanism for biological entrainment: competition of proteins for degradation by common pathway, i.e. a entrainment by a bottleneck. To faithfully represent the discrete and stochastic nature of this bottleneck, we leverage results from a recent biological queueing theory, where in particular, the queueing theoretic concept of workload is discovered to simplify the analysis. NSF Award 1330180.

  3. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Science.gov (United States)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  4. Entrainment Ranges for Chains of Forced Neural and Phase Oscillators.

    Science.gov (United States)

    Massarelli, Nicole; Clapp, Geoffrey; Hoffman, Kathleen; Kiemel, Tim

    2016-12-01

    Sensory input to the lamprey central pattern generator (CPG) for locomotion is known to have a significant role in modulating lamprey swimming. Lamprey CPGs are known to have the ability to entrain to a bending stimulus, that is, in the presence of a rhythmic signal, the CPG will change its frequency to match the stimulus frequency. Bending experiments in which the lamprey spinal cord has been removed and mechanically bent back and forth at a single point have been used to determine the range of frequencies that can entrain the CPG rhythm. First, we model the lamprey locomotor CPG as a chain of neural oscillators with three classes of neurons and sinusoidal forcing representing edge cell input. We derive a phase model using the connections described in the neural model. This results in a simpler model yet maintains some properties of the neural model. For both the neural model and the derived phase model, entrainment ranges are computed for forcing at different points along the chain while varying both intersegmental coupling strength and the coupling strength between the forcer and chain. Entrainment ranges for chains with nonuniform intersegmental coupling asymmetry are larger when forcing is applied to the middle of the chain than when it is applied to either end, a result that is qualitatively similar to the experimental results. In the limit of weak coupling in the chain, the entrainment results of the neural model approach the entrainment results for the derived phase model. Both biological experiments and the robustness of non-monotonic entrainment ranges as a function of the forcing position across different classes of CPG models with nonuniform asymmetric coupling suggest that a specific property of the intersegmental coupling of the CPG is key to entrainment. PMID:27091694

  5. Differential entrainment of neuroelectric delta oscillations in developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Fruzsina Soltész

    Full Text Available Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language, has been associated with behavioural entrainment deficits. It has been proposed that the phonological 'deficit' that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, 'temporal sampling theory'. Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz, relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, 'phase locking' and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time for control participants only.

  6. Discussion on Control Model of Air Compressors Based on Multi-Agent%基于Multi-Agent的压风机组控制模型的探讨

    Institute of Scientific and Technical Information of China (English)

    史志鹏; 雷汝海

    2011-01-01

    针对当前矿井压风系统由于采用滞后控制方式而导致的耗能问题,通过比较当前几种压风机组控制方式的优劣,提出了一种基于Multi-Agent的压风机组控制模型,给出了Multi-Agent模型框架,阐述了模型框架中的每个Agent的功能以及各个Agent之间的交互方式;并对模型仿真的可行性进行了探讨,提出了以面向对象技术和ACL语言对模型进行仿真的思路.%For the problem of power consumption caused by delay of control mode of current aircompressed system used in mine, a control model of air compressors based on Multi-Agent was proposed by comparing with advantages and disadvantages of several control modes. Model framework of MultiAgent was given, function and interaction mode of each Agent in the framework was described, feasibility of the model simulation was discussed, and a simulation way was put forward which uses object-oriented technology and ACL to simulate model.

  7. Numerical study on onset of gas entrainment from free surface

    Energy Technology Data Exchange (ETDEWEB)

    Tomoaki Kunugi [Department of Nuclear engineering, Kyoto University, Yoshida Sakyou-ku Kyoto (Japan); Toshiki Ezure; Takaaki Sa ka; Kei Ito [Japan Nuclear Cycle Development Institute, 4002 Narita-cho, O-arai-cho Higashi-ibaraki-gun, 311- 1393 (Japan)

    2005-07-01

    Full text of publication follows: A fast breeder nuclear reactor (FBR) has an important role for closing a fuel cycle system in fission nuclear reactor systems. The liquid sodium cooling system of a latest compact FBR concept consists of two loops connected to a heat exchanger (HEX) and a pool-typed reactor vessel with the upper core structures (UCS). The high temperature sodium coolant comes from the reactor core to the vessel and flows through the hot legs towards the HEX. In order to design the compact FBR, it is necessary to clarify a criterion of a cover-gas entrainment from the coolant free surface of the vessel to the HEX through the hot leg. The surface velocity of the coolant in the vessel is considered as one of the key parameters of the gas entrainment phenomena: bubble entrained by free surface vortex, entraining bubbles caused by supercritical flows and gas entrainment by wave breaking. However, there is no clear quantitative explanation and criterion regarding the on-set condition of gas entrainment from the free surface until today. In the present study, numerical simulation of the gas entrainment and the bubble transport from free surface to the hot leg regarding the bubble entrainment due to the supercritical surface flows have been performed by means of the Multi-interface and Advection and Reconstruction Solver (MARS) and the numerical results are compared with that of the small scale fundamental experiments. The final goal of this study is to establish the evaluation procedure and criterion of these phenomena. Experiment performed by Moriya was chosen as the reference data for this comparison study. The test section consisted of an open-upped rectangular box with the inlet and outlet nozzles located at bottom of the box and almost a half height of the test section was filled with water. Resulting from these simulations, the gas entrainment phenomena were observed for both cases at certain flow conditions. In two-dimensional simulations, we found

  8. Numerical study on onset of gas entrainment from free surface

    International Nuclear Information System (INIS)

    Full text of publication follows: A fast breeder nuclear reactor (FBR) has an important role for closing a fuel cycle system in fission nuclear reactor systems. The liquid sodium cooling system of a latest compact FBR concept consists of two loops connected to a heat exchanger (HEX) and a pool-typed reactor vessel with the upper core structures (UCS). The high temperature sodium coolant comes from the reactor core to the vessel and flows through the hot legs towards the HEX. In order to design the compact FBR, it is necessary to clarify a criterion of a cover-gas entrainment from the coolant free surface of the vessel to the HEX through the hot leg. The surface velocity of the coolant in the vessel is considered as one of the key parameters of the gas entrainment phenomena: bubble entrained by free surface vortex, entraining bubbles caused by supercritical flows and gas entrainment by wave breaking. However, there is no clear quantitative explanation and criterion regarding the on-set condition of gas entrainment from the free surface until today. In the present study, numerical simulation of the gas entrainment and the bubble transport from free surface to the hot leg regarding the bubble entrainment due to the supercritical surface flows have been performed by means of the Multi-interface and Advection and Reconstruction Solver (MARS) and the numerical results are compared with that of the small scale fundamental experiments. The final goal of this study is to establish the evaluation procedure and criterion of these phenomena. Experiment performed by Moriya was chosen as the reference data for this comparison study. The test section consisted of an open-upped rectangular box with the inlet and outlet nozzles located at bottom of the box and almost a half height of the test section was filled with water. Resulting from these simulations, the gas entrainment phenomena were observed for both cases at certain flow conditions. In two-dimensional simulations, we found

  9. Turning Off Entrainment: The Role of Particle Size Distributions and Vent GeometryIn The Collapse of Volcanic Jets

    Science.gov (United States)

    Jessop, D.; Jellinek, M.; Roche, O.

    2014-12-01

    Volcanic jets can undergo gravitational collapse to produce pyroclastic density currents (PDCs), or loft material several tens of kilometres and spread out as an ash cloud. The key ingredient that determines which of these two phenomena will occur is the turbulent entrainment of atmospheric air, which adds buoyancy to the jet. Classical models of eruption columns assume that the rate of entrainment is fixed and ~10% of the upflow rate of the jet. In particular, the efficiency of entrainment is assumed to be independent of the vent shape as well as the physical properties of the pyroclastic mixture. However, we show that the presence of particles of certain particle-size distributions (PSDs) in the jet can have a significant effect on the entrainment rate owing to their buoyancy and inertia. As a consequence, the conditions for collapse as previously identified must be revisited. In particular, there is a possibility for an eruption to produce both a buoyant column and a collapsing fountain. Using scaled analogue experiments, we test the likelyhood of collapse and the production of pyroclastic flows according to the source geometry and particle-size distributions.

  10. Voices and views. Indian social agents in the legal framework. Buenos Aires city and countryside in the late colonial period

    Directory of Open Access Journals (Sweden)

    Susana Elsa Aguirre

    2013-03-01

    Full Text Available This paper is concerned to examine the actions of Indian social network caught in the court, either as victims or suspected of a crime, in the campaign and Buenos Aires city in the late colonial period. The aim is to investigate the configuration and the settlement of disputes that involve indigenous, noting both its positioning as the judicial officers, clergy or individuals with certain power at the local level who are involved in these cases. This analysis facilitate the entry into to social interweaving of that time, providing keys to understand it, unveiling a diversity of voices and looks involved in the process of setting and prosecution of crimes

  11. Competitive allocation of resources on a network: an agent-based model of air companies competing for the best routes

    CERN Document Server

    Gurtner, Gérald; Lillo, Fabrizio

    2014-01-01

    We present a stylized model of the allocation of resources on a network. By considering as a concrete example the network of sectors of the airspace, where each node is a sector characterized by a maximal number of simultaneously present aircraft, we consider the problem of air companies competing for the allocation of the airspace. Each company is characterized by a cost function, weighting differently punctuality and length of the flight. We consider the model in the presence of pure and mixed populations of types of airline companies and we study how the equilibria depends on the characteristics of the network.

  12. COP Evaluation for a Membrane Liquid Desiccant Air Conditioning System Using Four Different Heating Equipment

    OpenAIRE

    Abdel-Salam, Ahmed; Simonson, Carey

    2015-01-01

    Liquid desiccant air conditioning (LDAC) is a promising technology in terms of energy efficiency, comfort and indoor air quality. The major components of a LDAC system are the dehumidifier and regenerator. The most commonly used design of dehumidifiers/regenerators is the packed-bed, which might result in the entrainment of desiccant droplets in air streams. A promising solution for the entrainment of desiccant droplets in air streams is to use a liquid-to-air membrane energy exchanger (LAMEE...

  13. Nonassociative learning promotes respiratory entrainment to mechanical ventilation.

    Directory of Open Access Journals (Sweden)

    Shawna M MacDonald

    Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in

  14. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  15. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.;

    2013-01-01

    implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  16. Gas entrainment in scaled model of pool type LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, I.; Chandra, L.; Laxman, D.; Kumar, A.; Gopal, C.A.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2007-07-01

    The reactor Thermal hydraulics plays an important role for successful operation of Prototype Fast Breeder Reactor (PFBR), which is under construction at Kalpakkam, India. One of the issues to be resolved in PFBR is argon cover gas entrainment problem from free liquid sodium surface. The entrained cover gas may hinder the normal reactor operation. High free surface velocity along with the presence of various immersed components in the hot pool is the cause of gas entrainment from free surface. To reduce the free surface velocity and hence gas entrainment, ring type baffle plates were considered. Initially the optimum geometry of the baffle plate was arrived through numerical analysis using PHOENICS, a commercial computational fluid dynamics tool. Finally the experiments were conducted in a 1/4 scale water model of PFBR primary circuit with selected baffle plate geometry. It was found that a baffle plate with radial width of 125 mm in the model and located above intermediate heat exchanger is very effective to reduce the gas entrainment problem in PFBR. (authors)

  17. CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet

    Directory of Open Access Journals (Sweden)

    Martin Schmidtke

    2009-01-01

    Full Text Available This contribution presents different approaches for the modeling of gas entrainment under water by a plunging jet. Since the generation of bubbles happens on a scale which is smaller than the bubbles, this process cannot be resolved in meso-scale simulations, which include the full length of the jet and its environment. This is why the gas entrainment has to be modeled in meso-scale simulations. In the frame of a Euler-Euler simulation, the local morphology of the phases has to be considered in the drag model. For example, the gas is a continuous phase above the water level but bubbly below the water level. Various drag models are tested and their influence on the gas void fraction below the water level is discussed. The algebraic interface area density (AIAD model applies a drag coefficient for bubbles and a different drag coefficient for the free surface. If the AIAD model is used for the simulation of impinging jets, the gas entrainment depends on the free parameters included in this model. The calculated gas entrainment can be adapted via these parameters. Therefore, an advanced AIAD approach could be used in future for the implementation of models (e.g., correlations for the gas entrainment.

  18. Transport, Evolution and Entrainment of Asian Dust/Pollution into the Pacific Marine Boundary

    Science.gov (United States)

    Clarke, A. D.; McNaughton, C. S.; Kapustin, V.; Vetter, O.; Dibb, J. E.; Anderson, B. E.; Browell, E. V.; Carmichael, G.; Landing, B.

    2007-05-01

    Various airborne and ship based studies over the past several years have allowed us to measure Asian dust and pollution aerosol from near its source to locations up to 10,000km downwind where it was entrained into the marine boundary layer (MBL). Dust was found to accumulate up to half of the soluble species such as sulfate and nitrate during passage through pollution regions in Asia before being lofted into the free troposphere near Japan. At times, transport in the free troposphere included regions of subsidence in high pressure regions that brought these "rivers" of dust and pollution down to the top of the MBL. Shipboard measurements and lidar data indicated both clear air entrainment and convective activity, associated with the passage of low pressure systems, facilitated dust transport through the inversion. High temperature volatilization of particles in the MBL up to 900C was used to remove most sulfates, nitrates, carbon and sea-salt to leave only dust measured and sized by an optical particle counter. These shipboard data and concurrent chemical measurements revealed the relation between entrainment of pollution and dust into the MBL associated with passage of high pressure systems. Subsequent passage of low pressure systems also revealed scavenging and removal of aerosol through precipitation to the ocean surface. This process appears to be a common removal pathway for dust over the Pacific and a mechanism for supplying the ocean surface with soluble iron and aluminum to the ocean surface. Measurements in the free troposphere and MBL also captured various aspects of these processes. Airborne missions flown north of Hawaii during the NASA PEM-Tropics and IMPEX missions characterized the vertical structure of subsiding dust and pollution. In-flight mapping of the dust/pollution layers and structure using the NASA Langley DIAL LIDAR show a sloping, subsiding Asian air-mass entraining into the marine boundary layer (MBL). In-situ measurements of the aerosol

  19. Resolving both entrainment-mixing and number of activated CCN in deep convective clouds

    Directory of Open Access Journals (Sweden)

    E. Freud

    2011-12-01

    Full Text Available The number concentration of activated CCN (Na is the most fundamental microphysical property of a convective cloud. It determines the rate of droplet growth with cloud depth and conversion into precipitation-sized particles and affects the radiative properties of the clouds. However, measuring Na is not always possible, even in the cores of the convective clouds, because entrainment of sub-saturated ambient air deeper into the cloud lowers the concentrations by dilution and may cause partial or total droplet evaporation, depending on whether the mixing is homogeneous or extreme inhomogeneous, respectively.

    Here we describe a methodology to derive Na based on the rate of cloud droplet effective radius (Re growth with cloud depth and with respect to the cloud mixing with the entrained ambient air. We use the slope of the tight linear relationship between the adiabatic liquid water mixing ratio and Re3 (or Rv3 to derive an upper limit for Na assuming extreme inhomogeneous mixing. Then we tune Na down to find the theoretical relative humidity that the entrained ambient air would have for each horizontal cloud penetration, in case of homogeneous mixing. This allows us to evaluate both the entrainment and mixing process in the vertical dimension in addition to getting a better estimation for Na.

    We found that the derived Na from the entire profile data is highly correlated with the independent CCN measurements from below cloud base. Moreover, it was found that mixing of sub-saturated ambient air into the cloud at scales of ~100 m and above is inclined towards the extreme inhomogeneous limit, i.e. that the time scale of droplet evaporation is significantly smaller than that for turbulent mixing. This means that ambient air that entrains

  20. Precipitation of antimony from the solution of sodium thioantimonite by air oxidation in the presence of catalytic agents

    Institute of Scientific and Technical Information of China (English)

    杨天足; 赖琼琳; 唐建军; 楚广

    2002-01-01

    The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassium permanganate, phenol, 1,2-dihydroxybenzene and their combination on the oxidation of sodium thioantimonite were investigated. A pilot test was carried out. The results show that the respective use of sodium tartrate, cupric sulfate, potassium permanganate, phenol and 1,2-dihydroxybenzene have little catalytic effect on the oxidation of sodium thioantimonite. However there exists obvious catalytic oxidation by the combination of 0.25 g/L 1,2-dihydroxybenzene, 0.5 g/L potassium permanganate and 1.0 g/L phenol. Moreover, high blast intensity, the increase of temperature and NaOH concentration favor the oxidation of antimony. The oxidation process of antimony has such advantages as quick reaction and low operation costs. The results of the pilot test are consistent with those of laboratory experiments.

  1. On robustness of phase resetting to cell division under entrainment.

    Science.gov (United States)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2015-12-21

    The problem of phase synchronization for a population of genetic oscillators (circadian clocks, synthetic oscillators, etc.) is considered in this paper, taking into account a cell division process and a common entrainment input in the population. The proposed analysis approach is based on the Phase Response Curve (PRC) model of an oscillator (the first order reduced model obtained for the linearized system and inputs with infinitesimal amplitude). The occurrence of cell division introduces state resetting in the model, placing it in the class of hybrid systems. It is shown that without common entraining input in all oscillators, the cell division acts as a disturbance causing phase drift, while the presence of entrainment guarantees boundedness of synchronization phase errors in the population. The performance of the obtained solutions is demonstrated via computer experiments for two different models of circadian/genetic oscillators (Neurospora׳s circadian oscillation model and the repressilator).

  2. A model for droplet entrainment rate in horizontal stratified flow

    International Nuclear Information System (INIS)

    This work proposes an original approach for modeling the entrainment of droplets in a horizontal stratified two-phase wavy flows. This mechanistic model is based on the ripple-waves breakout and entrainment phenomenon by estimating the liquid mass pulled off the wave crests during their fragmentation. The paper presents the modeling procedure for estimating the wavelength of these ripples and the related entrained liquid volume. In regards to these parameters, it is shown that a relatively simple methodology can be obtained to ease the implementation in a system code. This work aims at substituting the current existing empirical correlations in the system code CATHARE 3 by using a flowfield for a liquid dispersed phase. (author)

  3. Saturation point representation of cloud-top entrainment instability

    Science.gov (United States)

    Boers, Reinout

    1991-01-01

    Cloud-top entrainment instability was investigated using a mixing line analysis. Mixing time scales are closely related to the actual size of the parcel, so that local instabilities are largely dependent on the scales of mixing near the cloud top. Given a fixed transport velocity, variation over a small range of parcel length scales (parcel mixing velocities) turns an energy-producing mixing process into an energy-consuming mixing process. It is suggested that a single criterion for cloud-top entrainment instability will not be found due to the role of at least three factors operating more or less independently; the stability of the mixing line, the entrainment speed, and the strength of the internal boundary-layer circulation.

  4. Entrainment of ichthyoplankton and larval fishes during cooling water withdrawal

    International Nuclear Information System (INIS)

    Plantonic fish eggs and larvae are entrained into the Savannah River Plant (SRP) pumping system as Savannah River water is withdrawn for cooling purposes. The American shad contributed 96% of the planktonic fish eggs collected in the Savannah River. Eggs were rare in plankton samples from the intake canals and were assumed to have settled to the bottom as current velocity was reduced in the canal entrance. An estimated 72 million fish eggs were transported past the intake canals. Assuming ''worst case conditions,'' 6.8 million eggs (9.5%) could have been lost due to entrainment. Blueback herring comprised nearly one-half of the 216 million fish larvae susceptible to impact. Spotted sucker and black crappie were also common among the 22 species of fish larvae collected. An estimated 19.6 million (9.1%) fish larvae could have been entrained under ''worst case conditions''

  5. Evidence for Little Shallow Entrainment in Starting Mantle Plumes

    Science.gov (United States)

    Lohmann, F. C.; Phipps Morgan, J.; Hort, M.

    2005-12-01

    Basalts from intraplate or hotspot ocean islands show distinct geochemical signatures. Their diversity in composition is generally believed to result from the upwelling plume entraining shallow mantle material during ascent, while potentially also entraining other deep regions of the mantle. Here we present results from analogue laboratory experiments and numerical modelling that there is evidence for little shallow entrainment into ascending mantle plumes, i.e. most of the plume signature is inherited from the source. We conducted laboratory experiments using glucose syrup contaminated with glass beads to visualize fluid flow and origin. The plume is initiated by heating from below or by injecting hot, uncontaminated syrup. Particle movement is captured by a CCD camera. In our numerical experiments we solve the Stokes equations for a viscous fluid at infinite Prandtl number with passive tracer particles being used to track fluid flow and entrainment rates, simulating laboratory as well as mantle conditions. In both analogue experiments and numerical models we observe the classical plume structure being embedded in a `sheath' of material from the plume source region that retains little of the original temperature anomaly of the plume source. Yet, this sheath ascends in the `slipstream' of the plume at speeds close to the ascent speed of the plume head, and effectively prevents the entrainment of surrounding material into the plume head or plume tail. We find that the source region is most effectively sampled by an ascending plume and that compositional variations in the source region are preserved during plume ascent. The plume center and plume sheath combined are composed of up to 85% source material. However, there is also evidence of significant entrainment of up to 30% of surrounding material into the outer layers of the plume sheath. Entrainment rates are found to be influenced by mantle composition and structure, with the radial viscosity profile of the

  6. 基于Multi-Agent的防空导弹武器系统模型设计%Design of Multi-Agent Based Model on Air Defense Missile Weapon System

    Institute of Scientific and Technical Information of China (English)

    陈宝印; 栾立秋; 张成斌

    2011-01-01

    建立科学的结构模型是进行防空导弹武器系统仿真的基础和关键环节.针对防空导弹武器系统的特点,提出了基于Multi-Agent的防空导弹武器系统模型建模方法,设计了防空导弹武器系统模型结构.利用Multi-Agent建模技术,把防空导弹武器系统实体映射成相应的Multi-Agent系统,并以Agent的形式对防空导弹武器系统这一客观复杂系统进行了深刻的认识,为防空导弹武器系统建模仿真奠定了基础.%Forming a scientific system model is the key of Air Defense Missile Weapon System simulation. According to the characters of Air Defense Missile Weapon System, a modeling method of multi-agent based model on Air Defense Missile Weapon System is given. The framework on Air Defense Missile Weapon System is designed. Using the Multi-Agent modeling technology, maps the Air Defense Missile Weapon System entity the corresponding Multi-Agent system, and carries on the profound understanding by the Agent form to Air Defense Missile Weapon System this objective complicated, which will be helpful to realize the modeling simulation on Air Defense Missile Weapon System.

  7. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    Science.gov (United States)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  8. Efficiency of brainwave entrainment by binaural beats in reducing anxiety

    Directory of Open Access Journals (Sweden)

    Ahmad Alipoor

    2014-04-01

    Full Text Available Background: Anxiety is a fundamental phenomenon that is a common symptom in all mental disorders. The aim of the present study was to assess the effect of brainwave entrainment on anxiety reduction using binaural beats. Methods: In this experimental double-blind study, 30 employees were selected from an engineering research firm through random sampling and replacement and divided into two groups: control group and experimental group. All participants completed the Spielberger’s State-Trait Anxiety Inventory (STAI. Then, the experimental group listened to binaural beats which was recorded on a non-vocal piece of music for 4 weeks, 3 sessions each week. Each session lasted about 20 minutes. At the same time, the control group listened to the background music without any entrainment sound. At the end, both groups completed the anxiety questionnaire and the anxiety scores of both groups obtained before and after intervention were analyzed by ANCOVA. Results: The findings showed that the brainwave entrainment using binaural beats led to the significant reduction of state anxiety (P<0.001 and trait anxiety (P<0.018. Conclusion: Brainwave entrainment using binaural beats is an effective factor in decreasing state and trait anxiety; so, it can be used to reduce anxiety in mental health centers.

  9. Characterization of Residual Particulates from Biomass Entrained Flow Gasification

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Fæster, Søren;

    2013-01-01

    Biomass gasification experiments were carried out in a bench scale entrained flow reactor, and the produced solid particles were collected by a cyclone and a metal filter for subsequent characterization. During wood gasification, the major part of the solid material collected in the filter is soot...

  10. EFFECTS OF CONTINUOUS CHLORINATION ON ENTRAINED ESTUARINE PLANKTON

    Science.gov (United States)

    The effects of continuous chlorination on entrained plankton are investigated in tests using running sea water and adenosine triphosphate (ATP) as an indicator of biomass. Effects were measured by bioluminescence with the use of luciferin-luciferase reagents from firefly lanterns...

  11. Gas entrainment rate coefficient of an ideal momentum atomizing liquid jet

    CERN Document Server

    Medrano, Fermín Franco; Velte, Clara Marika; Hodžić, Azur

    2016-01-01

    We propose a two-phase-fluid model for a turbulent full-cone high speed atomizing liquid jet that describes its dynamics in a simple but comprehensive manner with only the apex angle of the cone being a disposable parameter. The basic assumptions are that (i) the jet is statistically stationary and that (ii) it can be approximated by a mixture of a liquid and a gas with its phases in dynamic equilibrium. To derive the model, we impose conservation of the liquid volume and total momentum fluxes. Our model equation admits analytical solutions for the composite density and velocity of the two-phase fluid, both as functions of the distance from the nozzle, from which the dynamic pressure and gas the entrainment rate coefficient are calculated. Assuming a far-field approximation, we theoretically derive a constant gas entrainment rate coefficient solely in terms of the cone angle. Moreover, we carry out experiments for a single-phase turbulent air jet and show that the predictions of our model compare well with th...

  12. Airborne observation of mixing across the entrainment zone during PARADE 2011

    Science.gov (United States)

    Berkes, Florian; Hoor, Peter; Bozem, Heiko; Kunkel, Daniel; Sprenger, Michael; Henne, Stephan

    2016-05-01

    This study presents the analysis of the structure and air mass characteristics of the lower atmosphere during the field campaign PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) on Mount Kleiner Feldberg in southwestern Germany during late summer 2011. We analysed measurements of meteorological variables (temperature, moisture, pressure, wind speed and direction) from radio soundings and of chemical tracers (carbon dioxide, ozone) from aircraft measurements. We focus on the thermodynamic and dynamic properties that control the chemical distribution of atmospheric constituents in the boundary layer. We show that the evolution of tracer profiles of CO2 and O3 indicate mixing across the inversion layer (or entrainment zone). This finding is supported by the analysis of tracer-tracer correlations which are indicative for mixing and the relation of tracer profiles in relation to the evolution of the boundary layer height deduced from radio soundings. The study shows the relevance of entrainment processes for the lower troposphere in general and specifically that the tracer-tracer correlation method can be used to identify mixing and irreversible exchange processes across the inversion layer.

  13. Relationship between concentrations of microbiological agents in the air of agricultural settings and occurrence of work-related symptoms in exposed persons

    Directory of Open Access Journals (Sweden)

    Barbara Mackiewicz

    2015-09-01

    Full Text Available For assessment of the dose-response relationship between concentrations of microbial agents in the air of various agricultural settings and occurrence of work-related symptoms in exposed workers, a meta-analysis of the results obtained in 1994–2007 on the territory of eastern Poland was performed. The studies on the airborne concentrations of total culturable microorganisms, mesophilic bacteria, Gram-negative bacteria, thermophilic actinomycetes, fungi, and bacterial endotoxins, as well as on the frequency of work-related respiratory and general symptoms in the exposed workers, were carried out at grain, thyme, valerian, flax, and hop handling on farms, in cow barns, piggeries, horse stables and in a modern hatchery. The airborne concentrations of the total microorganisms were in the range of 9.2–1236.5 × 10[sup]3[/sup] CFU/m[sup]3[/sup] , of the total mesophilic bacteria 3.5–1225.8 × 10[sup]3[/sup] CFU/m[sup]3[/sup] , of Gram-negative bacteria 0.0- 46.2 × 10[sup]3[/sup] CFU/m[sup]3[/sup] , of thermophilic actinomycetes 0.0–7.1 × 10[sup]3[/sup] CFU/m[sup]3[/sup] , of fungi 2.1–77.9 × 10[sup]3[/sup] CFU/m[sup]3[/sup] , and of bacterial endotoxin 0.00925–429.55 µg/m[sup]3[/sup] . The frequency of work-related symptoms ranged between 21.7–63.8%. In a meta-analysis for assessment of the correlations between the log-transformed concentrations of airborne microbial agents and the occurrence of work-related symptoms, the multiple regression test was applied. Statistically significant correlations were found between the occurrence of work-related symptoms and the concentration of total airborne microorganisms (R=0.748555; P=0.020317, mesophilic bacteria (R=0.7573; P=0.029548, Gram-negative bacteria (R=0.835938; P=0.019129, and endotoxins (R=0.705356; P=0.03378. The correlations between the concentrations of thermophilic actinomycetes and fungi, on one side, and frequency of work-related symptoms on the other, did not attain the

  14. Relationship between concentrations of microbiological agents in the air of agricultural settings and occurrence of work-related symptoms in exposed persons.

    Science.gov (United States)

    Mackiewicz, Barbara; Skórska, Czesława; Dutkiewicz, Jacek

    2015-01-01

    For assessment of the dose-response relationship between concentrations of microbial agents in the air of various agricultural settings and occurrence of work-related symptoms in exposed workers, a meta-analysis of the results obtained in 1994-2007 on the territory of eastern Poland was performed. The studies on the airborne concentrations of total culturable microorganisms, mesophilic bacteria, Gram-negative bacteria, thermophilic actinomycetes, fungi, and bacterial endotoxins, as well as on the frequency of work-related respiratory and general symptoms in the exposed workers, were carried out at grain, thyme, valerian, flax, and hop handling on farms, in cow barns, piggeries, horse stables and in a modern hatchery. The airborne concentrations of the total microorganisms were in the range of 9.2-1236.5 × 10(3) CFU/m(3) , of the total mesophilic bacteria 3.5-1225.8 × 10(3) CFU/m(3) , of Gram-negative bacteria 0.0- 46.2 × 10(3) CFU/m(3) , of thermophilic actinomycetes 0.0-7.1 × 10(3) CFU/m(3) , of fungi 2.1-77.9 × 10(3) CFU/m(3) , and of bacterial endotoxin 0.00925-429.55 µg/m(3) . The frequency of work-related symptoms ranged between 21.7-63.8%. In a meta-analysis for assessment of the correlations between the log-transformed concentrations of airborne microbial agents and the occurrence of work-related symptoms, the multiple regression test was applied. Statistically significant correlations were found between the occurrence of work-related symptoms and the concentration of total airborne microorganisms (R=0.748555; P=0.020317), mesophilic bacteria (R=0.7573; P=0.029548), Gram-negative bacteria (R=0.835938; P=0.019129), and endotoxins (R=0.705356; P=0.03378). The correlations between the concentrations of thermophilic actinomycetes and fungi, on one side, and frequency of work-related symptoms on the other, did not attain the threshold of significance (P=0.087049 and P=0.062963, respectively). Results of the meta-analysis confirm harmful health effects of

  15. Assessment of ichthyoplankton entrainment at Pickering 'A' NGS using a pump/net in lake system

    International Nuclear Information System (INIS)

    Annual entrainment at Pickering 'A' NGS was estimated for alewife as 13.6 X 106 larvae and 409 X 106 eggs. A substantial portion of eggs and larvae entering the intake were dead due to natural mortality (41%-81%) prior to entrainment. Viable eggs and larvae, immediately following entrainment showed mortalities of 54% and 44% respectively. The latent mortality of entrained eggs was 100% (48 h)

  16. Estimated Entrainment of Dungeness Crab During Dredging For The Columbia River Channel Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2002-12-01

    The studies reported here focus on issues regarding the entrainment of Dungeness crab related to the proposed Columbia River Channel Improvement Project and provided direct measurements of crab entrainment rates at three locations (Desdomona Shoals, Upper Sands, and Miller Sands) from RM4 to RM24 during summer 2002. Entrainment rates for all age classes of crabs ranged from zero at Miller Sands to 0.224 crabs per cy at Desdemona Shoals in June 2002. The overall entrainment rate at Desdomona Shoals in September was 0.120 crabs per cy. A modified Dredge Impact Model (DIM) used the summer 2002 entrainment rates to project crab entrainment and adult equivalent loss and loss to the fishery for the Channel Improvement Project. To improve the projections, entrainment data from Flavel Bar is needed. The literature, analyses of salinity intrusion scenarios, and the summer 2002 site-specific data on entrainment and salinity all indicate that bottom salinity influences crab distribution and entrainment, especially at lower salinities. It is now clear from field measurements of entrainment rates and salinity during a period of low river flow (90-150 Kcfs) and high salinity intrusion that entrainment rates are zero where bottom salinity is less than 16 o/oo most of the time. Further, entrainment rates of 2+ and older crab fall with decreasing salinity in a clear and consistent manner. More elaboration of the crab distribution- salinity model, especially concerning salinity and the movements of 1+ crab, is needed.

  17. Thermal creep assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity

    CERN Document Server

    Küpper, Markus

    2015-01-01

    In this work we present laboratory measurements on the reduction of the threshold friction velocity necessary for lifting dust if the dust bed is illuminated. Insolation of a porous soil establishes a temperature gradient. At low ambient pressure this gradient leads to thermal creep gas flow within the soil. This flow leads to a sub-surface overpressure which supports lift imposed by wind. The wind tunnel was run with Mojave Mars Simulant and air at 3, 6 and 9 mbar, to cover most of the pressure range at martian surface levels. Our first measurements imply that the insolation of the martian surface can reduce the entrainment threshold velocity between 4 % and 19 % for the conditions sampled with our experiments. An insolation activated soil might therefore provide additional support for aeolian particle transport at low wind speeds.

  18. Thermal creep-assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity

    Science.gov (United States)

    Küpper, Markus; Wurm, Gerhard

    2015-07-01

    In this work we present laboratory measurements on the reduction of the threshold friction velocity necessary for lifting dust if the dust bed is illuminated. Insolation of a porous soil establishes a temperature gradient. At low ambient pressure this gradient leads to thermal creep gas flow within the soil. This flow leads to a subsurface overpressure which supports lift imposed by wind. The wind tunnel was run with Mojave Mars Simulant and air at 3, 6, and 9mbar, to cover most of the pressure range at Martian surface levels. Our first measurements imply that the insolation of the Martian surface can reduce the entrainment threshold velocity between 4% and 19% for the conditions sampled with our experiments. An insolation activated soil might therefore provide additional support for aeolian particle transport at low wind speeds.

  19. Isospin dependence of entrainment in superfluid neutron stars in a relativistic model

    CERN Document Server

    Kheto, Apurba

    2014-01-01

    We study the entrainment effect between superfluid neutrons and charge neutral fluid (called the proton fluid) which is made of protons and electrons in neutron star interior in a relativistic model where baryon-baryon interaction is mediated by the exchange of $\\sigma$, $\\omega$ and $\\rho$ mesons. This model also includes scalar self interactions. The entrainment matrix and entrainment parameter are calculated using the parameter set of Glendenning (GL). The inclusion of $\\rho$ meson strongly influences the entrainment parameter ($\\epsilon_{mom}$) in a superfluid neutron star. It is constant at the core and drops to the surface. The entrainment parameter takes values within the physical range.

  20. Magnetized neutron stars with superconducting cores: effect of entrainment

    Science.gov (United States)

    Palapanidis, K.; Stergioulas, N.; Lander, S. K.

    2015-09-01

    We construct equilibrium configurations of magnetized, two-fluid neutron stars using an iterative numerical method. Working in Newtonian framework we assume that the neutron star has two regions: the core, which is modelled as a two-component fluid consisting of type-II superconducting protons and superfluid neutrons, and the crust, a region composed of normal matter. Taking a new step towards more complete equilibrium models, we include the effect of entrainment, which implies that a magnetic force acts on neutrons, too. We consider purely poloidal field cases and present improvements to an earlier numerical scheme for solving equilibrium equations, by introducing new convergence criteria. We find that entrainment results in qualitative differences in the structure of field lines along the magnetic axis.

  1. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  2. An entrainment model for the turbulent jet in a coflow

    Science.gov (United States)

    Enjalbert, Nicolas; Galley, David; Pierrot, Laurent

    2009-09-01

    The entrainment hypothesis was introduced by G.I. Taylor to describe one-dimensionally the development of turbulent jets issuing into a stagnant or coflowing environment. It relates the mass flow rate of surrounding fluid entrained into the jet to the characteristic velocity difference between the jet and the coflow. A model based on this hypothesis along with axial velocity assumed to follow a realistic Gaussian distribution is presented. It possesses an implicit analytical solution, and its results are compared and shown to be fully equivalent to previously published models that are rather based on a spreading hypothesis. All of them are found to be in agreement with experimental results, on a wide range of downstream positions and for various coflow intensities. To cite this article: N. Enjalbert et al., C. R. Mecanique 337 (2009).

  3. Mixing and entrainment in hydraulically driven stratified sill flows

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; Pratt, Larry; Helfrich, Karl

    2004-01-01

    -interface entrainment velocity is compared with numerical simulations based on a model with continuously varying stratification and velocity. The locations of critical flow (hydraulic control) in the continuous model are estimated by observing the direction of propagation of small-amplitude long-wave disturbances...... introduced into the flow field. Although some of the trends predicted by the shallow-water model are observed in the continuous model, the agreement between the interface profiles and the position of critical flow is quantitatively poor. A reformulation of the equations governing the continuous flow suggests...... that the reduced gravity model systematically underestimates inertia and overestimates buoyancy. These differences are quantified by shape coefficients that measure the vertical non-uniformities of the density and horizontal velocity that arise, in part, by incomplete mixing of entrained mass and momentum over...

  4. Axially symmetric equations for differential pulsar rotation with superfluid entrainment

    CERN Document Server

    Antonelli, Marco

    2016-01-01

    We propose an analytical two-components model for pulsar rotational dynamics: the aim is to reduce the 3D hydrodynamical problem to a 1D (radial) problem, using the hypothesis of negligible azimuthal inhomogeneities. The result is the construction of a computationally simple model that takes into account for the non-uniform structure of the star, entrainment effect and differential rotation of the superfluid component. For the first time all these ingredients are treated in a fully consistent way within the picture provided by our initial hypotheses. Our treatment clarifies which are the physical inputs needed to build, to current knowledge, more realistic simulations of rotating neutron stars and gives a neat description of the effect of entrainment when straight vortex lines are considered. Moreover, on this basis, we briefly introduce a new method that can be used to put a constraint to the mass of the pulsars that display very large glitches and to the relative spin up timescales.

  5. Updrafts, Downdrafts, Entrainment, and Detrainment in the Giga-LES

    Science.gov (United States)

    Krueger, S. K.; Glenn, I.

    2012-12-01

    We are investigating the properties of evolving three-dimensional updraft and downdraft "cores" in a model dataset from the Giga-LES, a large-domain LES (large-eddy simulation) of tropical oceanic deep convection (Khairoutdinov et al. 2009). We have also applied the analysis method developed by Kuang and Bretherton (2006) to investigate various aspects of the ensemble characteristics of cumulus convection in the Giga-LES. Our results agree with those of Kuang and Bretherton for the cumulus updraft properties. We have examined the relative merits of different entrainment and cloud-top-height assumptions in spectral plume models of cumulus updrafts, the characteristics of downdrafts, and the nature of a rapid transition from shallow to deep convection.isualization of cumulus clouds from the Giga-LES. The realistic structure is associated with entrainment.

  6. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured......-bed reactor. The method using the EFR developed in this study will be applied for further systematic investigation of different additives....

  7. Experimental research of liquid entrainment through ADS-4 in AP1000

    International Nuclear Information System (INIS)

    Highlights: • We performed experimental research of liquid entrainment through ADS-4 in AP1000. • Effect of various factors on entrainment at T-junction was conducted. • Visualization research was conducted to make entrainment mechanism clear. - Abstract: In this study, based on a T-junction that consists of Automatic Depressurization System Stage Four (ADS-4) and hot leg in an AP1000 plant, a small-scale experimental research on entrainment at a T-junction was performed. This study mainly focused on the effect of various factors on entrainment, such as the effect of branch size, branch shape and liquid crossflow. The flow pattern map was plotted from the experimental data, and the visualization research indicated that the entrainment phenomena through a large size branch were apparently different from that through a small branch. Three entrainment phenomena were observed in the studies, two entrainment mechanisms could be found in the stratified flow regime entrainment area, the existence of branch contributed to generating intermittent flow in the horizontal main pipe, and the backflow region was observable in the vicinity of a large size branch inlet. Also, experimental research showed that downstream of the branch of T-junction had an important effect on the onset entrainment, and liquid crossflow did not seem to affect the onset entrainment

  8. Entrainment of coarse grains using a discrete particle model

    International Nuclear Information System (INIS)

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport

  9. Constant darkness restores entrainment to phase-delayed Siberian hamsters.

    Science.gov (United States)

    Ruby, Norman F; Joshi, Nirav; Heller, H Craig

    2002-12-01

    Over 90% of Siberian hamsters (Phodopus sungorus) fail to reentrain to a 5-h phase delay of a 16:8-h photocycle. Because constant darkness (DD) restores rhythms disrupted by constant light, we tested whether DD could also restore entrainment. DD began 0, 5, or 14 days after a 5-h phase delay, and the light-dark cycle was reinstated 14 days later. All hamsters exposed to DD on day 0 reentrained, whereas 42% reentrained irrespective of whether DD began 5 or 14 days later. For these latter two groups, tau (tau) and alpha (alpha) in DD predicted reentrainment; animals that reentrained had a mean tau and alpha of 24.1 and 8.9 h, respectively, whereas those that failed to reentrain maintained a mean tau and alpha of 25.0 and of 7.1 h, respectively. Restoration of entrainment by DD is somewhat paradoxical because it suggests that reentrainment to the photocycle was prevented by continued exposure to that same photocycle. The dichotomy of circadian responses to DD suggests "entrainment" phenotypes that are similar to those of photoperiodic responders and nonresponders.

  10. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  11. Entrainment of respiratory frequency to exercise rhythm during hypoxia.

    Science.gov (United States)

    Paterson, D J; Wood, G A; Marshall, R N; Morton, A R; Harrison, A B

    1987-05-01

    Breathing frequency (f) is often reported as having an integer-multiple relationship to limb movement (entrainment) during rhythmic exercise. To investigate the strength of this coupling while running under hypoxic conditions, two male Caucasians and four male Nepalese porters were tested in the Annapurna region of the Himalayas at altitudes of 915, 2,135, 3,200, 4,420, and 5,030 m. In an additional study in a laboratory at sea level, three male and four female subjects inspired various O2-N2 mixtures [fraction of inspired O2 (FIO2) = 20.93, 17.39, 14.40, 11.81%] that were administered in a single-blind randomized fashion during a treadmill run (40% FIO2 maximum O2 consumption). Breathing and gait signals were stored on FM tape and later processed on a PDP 11/73 computer. The subharmonic relationships between these signals were determined from Fourier analysis (power spectrum), and the coincidence of coupling occurrence was statistically modeled. Entrainment decreased linearly during increasing hypoxia (P less than 0.01). Moreover, a significant linear increase in f occurred during hypoxia (P less than 0.05), whereas stride frequency and metabolic rate remained constant, suggesting that hypoxic-induced increases in f decreased the degree of entrainment. PMID:3597249

  12. Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Bruce [Univ. of Miami, Miami, FL (United States); Ghate, Virendra [Argonne National Lab. (ANL), Argonne, IL (United States); CADeddu, Maria [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-01

    The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the components of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.

  13. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.

  14. An experimental investigation of flow patterns and liquid entrainment in a horizontal-tube evaporator

    Science.gov (United States)

    Barnhart, John Steven

    An experimental study of two-phase flow patterns and droplet entrainment in a horizontal-tube evaporator was conducted. Measurements were made with serpentine aluminum and glass evaporators with geometries typical of those used for domestic refrigeration. The refrigerant in the majority of tests was R134a, which will replace R12 for refrigeration and automotive air-conditioning in 1995. The phenomenon of primary interest was the nonequilibrium transport of droplets within superheated vapor at the evaporator exit. Of particular concern were substantial variations in the liquid rate with time, and corresponding fluctuations in exit temperature. These variations are due to the formation of slugs which rapidly transport a surplus of liquid toward the exit. A flow loop was constructed to circulate oil-free refrigerant through the evaporator under widely varying conditions. Liquid carry over (expressed as a dimensionless entrained mass fraction, EMF) was measured as a function of inlet quality, heat flux, mass flux, and exit superheat. A laser-based phase/Doppler particle analyzer was used to measure droplet diameters and velocities at the evaporator exit. Tests with three refrigerants over wide ranges of operating conditions revealed time-averaged EMF's of no more than 0.1 percent. Analysis of variance showed exit superheat to have the strongest effect, followed by mass flux, inlet quality, and heat flux. Time-averaged EMF's varied with operating conditions by several orders of magnitude, decreasing with increasing superheat level (due to lower entrainment rates near the exit and more rapid droplet vaporization) and mass flux and inlet quality (due to reduced slug formation). The incidence of slug flow and its effect on evaporator exit conditions were documented in time-resolved experiments, using techniques such as auto- and cross-correlation and Fourier transform. Time-resolved EMF's as high as one percent were observed, as well as sharp reductions in exit superheat

  15. The effects of chronic marijuana use on circadian entrainment.

    Science.gov (United States)

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  16. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    OpenAIRE

    Wang, Guoliang; Jensen, Peter Arendt; Hao WU; Bøjer, Martin; Jappe Frandsen, Flemming; Glarborg, Peter

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured, forming water-insoluble K-aluminosilicate. The amount of K captured by 1 g kaolin rose when increasing the molar ratio of K/Si in the reactant. Changing of reaction temperature from 1100 °C to 1300 °C...

  17. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  18. Water entrainment in intercompartmental flows resulting from pipeline breaks: literature study. Topical report

    International Nuclear Information System (INIS)

    The extensive engineering literature on two-phase flow in ducts, nozzles and orifices is reviewed with respect to intercompartmental flows in nuclear reactor safety applications. The topics of flow patterns, holdup or slip, two-phase critical flow and entrainment are reviewed and discussed. The entrainment fraction of droplets in the vapor phase of an annular flow pattern can be estimated in the case of vertical or horizontal steady duct flow at positions well downstream from the duct entrance. No general correlation for the prediction of entrainment is available, however. In addition the literature pertaining to nuclear containment calculation methods, experiments, calculation surveys and verifications is surveyed. The containment analysis methods are quite comprehensive and well-developed. Currently no models for estimating entrainment in containment problems are being used, but entrainment has been treated as an arbitrary parameter and some attention has been given to entrainment in the interpretation of experiments

  19. A Heart for Interaction: Physiological Entrainment and Behavioral Coordination in a Collective, Creative Construction Task

    CERN Document Server

    Fusaroli, Riccardo; Roepstoff, Andreas; Tylén, Kristian

    2015-01-01

    Interpersonal physiological entrainment is increasingly argued to underlie rapport, empathy and even team performance. Inspired by the model of interpersonal synergy, we investigate the presence, temporal development, possible mechanisms and impact of interpersonal heart rate entrainment during individual and collective creative LEGO construction tasks. In Study 1 we show how HR entrainment is driven by a plurality of sources including task constraints and behavioral coordination. Generally, HR entrainment is more prevalent in individual trials (involving participants doing the same things) than in collective ones (involving participants taking turns and performing complementary actions). However, when contrasted against virtual pairs, collective trials display more stable HR entrainment supporting the idea that online social interaction plays a role. Furthermore, HR entrainment is found to grow across collective but not individual trials. In Study 2 we further show that in collective trials the dynamics of H...

  20. In time with the music : the concept of entrainment and its significance for ethnomusicology.

    OpenAIRE

    Clayton, Martin; Sager, Rebecca; Will, Udo

    2005-01-01

    Entrainment, broadly defined, is a phenomenon in which two or more independent rhythmic processes synchronize with each other. To illuminate the significance of entrainment for various directions of music research and promote a nuanced understanding of the concept among ethnomusicologists, this publication opens with an exposition of entrainment research in various disciplines, from physics to linguistics and psychology, while systematically introducing basic concepts that are directly releva...

  1. Separation of Erucic Acid from Rape-Seed Oil Using Supercritical Carbon Dioxide with Entrainer

    Institute of Scientific and Technical Information of China (English)

    云志; 钱仁渊; 等

    2002-01-01

    Separation of erucic acid from rape-seed oil using supercritical carbon dioxide with entrainer was carried on a pilot column with an inner diameter 14 mm and an effective total height 2.2m.Experiments were focused on the effects of entrainers.i.e.acetone.ethanol and ethyl acetate,on the extraction.It is showed that entrainers made selectivity lower,but separation time shorter.

  2. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    Energy Technology Data Exchange (ETDEWEB)

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions.

  3. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    International Nuclear Information System (INIS)

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions

  4. Experimental studies on spray and gas entrainment characteristics of biodiesel fuel: Implications of gas entrained and fuel oxygen content on soot formation

    International Nuclear Information System (INIS)

    Experiments were performed inside the constant volume vessel to simulate the real diesel engine conditions. The LIF–PIV (Laser Induced Florescence – Particulate Image Velocimetry) technique was used to characterize the spray and gas entrainment characteristics of the fuels while the OH-chemiluminescence and two color pyrometry were applied to obtain information about the combustion processes. Biodiesel from palm oil (BDF (Biodiesel Fuel)) and the JIS #2 diesel fuel were utilized. It was observed that the SMD (Sauter mean diameter) obtained through an empirical equation decreased by increasing the injection pressure from 100 to 300 MPa and reducing the nozzle diameter from 0.16 to 0.08 mm. BDF has higher SMD values compared to diesel thus signifying inferior atomization. By increasing the injection pressure up to 300 MPa and reducing the nozzle diameter to 0.08 mm, the normal velocity and total mass flow rate of the entrained gas by the fuels increased. Due to higher viscosity and density properties, BDF possessed inferior atomization characteristics which made the normal velocity and total mass flow rate of the entrained gas lower compared to diesel. Due to inferior atomization which led to less gas being entrained upstream of the lift-off flame, the fuel oxygen content in BDF played a significant role in soot formation processes. - Highlights: • Spray and gas entrainment characteristics of biodiesel (BDF (Biodiesel Fuel)) and fuel were investigated. • Effect of injector parameters on BDF spray and gas entrainment characteristics was identified. • Higher viscosity and density of BDF yielded inferior spray atomization processes. • Gas entrainment velocity and mass flow rate of gas entrained by BDF lower. • Gas entrained had less effect on BDF's soot formation

  5. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.

    Science.gov (United States)

    Elson, R C; Sillar, K T; Bush, B M

    1992-03-01

    1. In crayfish, Pacifastacus leniusculus, remotion of a walking leg stretches the thoraco-coxal (TC) muscle receptor organ (TCMRO), located at the leg's articulation with the thorax. In vitro, alternate stretch and release of the fourth leg's TCMRO entrained the centrally generated rhythmic motor output to that leg, with the remotor phase of the rhythm entraining to TCMRO stretch, the promoter phase to release. This coordination of motor bursts to afferent input corresponds to that of active, rhythmic movements in vivo. 2. Entrainment was rapid in onset (stable coordination resulting within the first or second stimulus cycle) and was relatively phase-constant (whatever the stimulus frequency, during 1:1 entrainment, remotor bursts began near the onset of stretch and promotor bursts began near the onset of release). Outside the range of 1:1 entrainment, 2:1, 1:2, and 1:3 coordination ratios (rhythm:stimulus) were encountered. Resetting by phasic stimulation of the TCMRO was complete and probabilistic: effective stimuli triggered rapid transitions between the two burst phases. 3. The TCMRO is innervated by two afferents, the nonspiking S and T fibers, which generate graded depolarizing receptor potentials in response to stretch. During proprioceptive entrainment, the more phasic T fiber depolarized and hyperpolarized more rapidly or in advance of the more tonic S fiber. These receptor potentials were modified differently in the two afferents by interaction with central synaptic inputs that were phase-locked to the entrained motor rhythm. 4. Injecting slow sinusoidal current into either afferent alone could entrain motor rhythms: promoter phase bursts were entrained to depolarization of the S fiber or hyperpolarization of the T fiber, whereas the converse response was obtained for remotor phase bursts. 5. During proprioceptive entrainment, tonic hyperpolarization of the S fiber weakened entrained promotor bursts and allowed remotor burst durations to increase

  6. Debris entrainment and landform genesis during tidewater glacier surges

    Science.gov (United States)

    Lovell, Harold; Fleming, Edward J.; Benn, Douglas I.; Hubbard, Bryn; Lukas, Sven; Rea, Brice R.; Noormets, Riko; Flink, Anne E.

    2015-08-01

    The englacial entrainment of basal debris during surges presents an opportunity to investigate processes acting at the glacier bed. The subsequent melt-out of debris-rich englacial structures during the quiescent phase produces geometrical ridge networks on glacier forelands that are diagnostic of surge activity. We investigate the link between debris entrainment and proglacial geomorphology by analyzing basal ice, englacial structures, and ridge networks exposed at the margins of Tunabreen, a tidewater surge-type glacier in Svalbard. The basal ice facies display clear evidence for brittle and ductile tectonic deformation, resulting in overall thickening of the basal ice sequence. The formation of debris-poor dispersed facies ice is the result of strain-induced metamorphism of meteoric ice near the bed. Debris-rich englacial structures display a variety of characteristics and morphologies and are interpreted to represent the incorporation and elevation of subglacial till via the squeezing of till into basal crevasses and hydrofracture exploitation of thrust faults, reoriented crevasse squeezes, and preexisting fractures. These structures are observed to melt-out and form embryonic geometrical ridge networks at the base of a terrestrially grounded ice cliff. Ridge networks are also located at the terrestrial margins of Tunabreen, neighboring Von Postbreen, and in a submarine position within Tempelfjorden. Analysis of network characteristics allows these ridges to be linked to different formational mechanisms of their parent debris-rich englacial structures. This in turn provides an insight into variations in the dominant tectonic stress regimes acting across the glacier during surges.

  7. Establishing Communication between Neuronal Populations through Competitive Entrainment.

    Science.gov (United States)

    Wildie, Mark; Shanahan, Murray

    2011-01-01

    The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons. Oscillation is generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent synaptic connections between a locally connected network of excitatory and inhibitory neurons. Competition between stimuli is driven by differences in coherence of oscillation, while transmission of a single selected stimulus is enabled between generating and receiving neurons via Communication-through-Coherence. We explore the effect of varying synaptic parameters on the competitive transmission of stimuli over different neuron models, and identify a continuous region within the parameter space of the recurrent synaptic loop where inhibition-induced oscillation results in entrainment of target neurons. Within this optimal region we find that competition between stimuli of equal coherence results in model output that alternates between representation of the stimuli, in a manner strongly resembling well-known biological phenomena resulting from competitive stimulus selection such as binocular rivalry. PMID:22275892

  8. Establishing communication between neuronal populations through competitive entrainment

    Directory of Open Access Journals (Sweden)

    Mark eWildie

    2012-01-01

    Full Text Available The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase relationships and mechanisms underlying the formation of phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where selection and the transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons. Oscillation is generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent synaptic connections between a locally connected network of excitatory and inhibitory neurons. Competition between stimuli is driven by differences in coherence of oscillation, while transmission of a single selected stimulus is enabled between generating and receiving neurons via Communication-through-Coherence. We explore the effect of varying synaptic parameters on the competitive transmission of stimuli over different neuron models, and identify a continuous region within the parameter space of the recurrent synaptic loop where inhibition-induced oscillation results in entrainment of target neurons. Within this optimal region we find that competition between stimuli of equal coherence results in model output that alternates between representation of the stimuli, in a manner strongly resembling well-known biological phenomena resulting from competitive stimulus selection such as binocular rivalry.

  9. SEQUENTIAL RADIOCHEMICAL ANALYSIS FOR RUTHENIUM, STRONTIUM AND CESIUM IN ENVIRONMENTAL AIR

    Science.gov (United States)

    In routine surveillance operations, the radionuclide measurement of air discharged from an operating nuclear facility involves the entrainment of radionuclides on selective filter or absorptive media, and the determination of their gross beta activity. However, a more sensitive t...

  10. Phase-selective entrainment of nonlinear oscillator ensembles

    Science.gov (United States)

    Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.

    2016-03-01

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.

  11. Entrainment of heterogeneous glycolytic oscillations in single cells

    CERN Document Server

    Gustavsson, A -K; Mehlig, B; Goksör, M

    2015-01-01

    Cell signaling, gene expression, and metabolism are affected by cell-cell heterogeneity and random changes in the environment. The effects of such fluctuations on cell signaling and gene expression have recently been studied intensively using single-cell experiments. In metabolism heterogeneity may be particularly important because it may affect synchronisation of metabolic oscillations, an important example of cell-cell communication. This synchronisation is notoriously difficult to describe theoretically as the example of glycolytic oscillations shows: neither is the mechanism of glycolytic synchronisation understood nor the role of cell-cell heterogeneity. To pin down the mechanism and to assess its robustness and universality we have experimentally investigated the entrainment of glycolytic oscillations in individual yeast cells by periodic external perturbations. We find that oscillatory cells synchronise through phase shifts and that the mechanism is insensitive to cell heterogeneity (robustness) and si...

  12. Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus).

    Science.gov (United States)

    Large, Edward W; Gray, Patricia M

    2015-11-01

    The emergence of speech and music in the human species represent major evolutionary transitions that enabled the use of complex, temporally structured acoustic signals to coordinate social interaction. While the fundamental capacity for temporal coordination with complex acoustic signals has been shown in a few distantly related species, the extent to which nonhuman primates exhibit sensitivity to auditory rhythms remains controversial. In Experiment 1, we assessed spontaneous motor tempo and tempo matching in a bonobo (Pan paniscus), in the context of a social drumming interaction. In Experiment 2, the bonobo spontaneously entrained and synchronized her drum strikes within a range around her spontaneous motor tempo. Our results are consistent with the hypothesis that the evolution of acoustic communication builds upon fundamental neurodynamic mechanisms that can be found in a wide range of species, and are recruited for social interactions. PMID:26147705

  13. Turbulent mixing and entrainment in a gravity current

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Odier, Philippe [ENS-LYON, FRANCE; Chen, Jun [PURDUE UNIV.

    2010-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadratically with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing lenth, approximately constant over the mixing zone of the stratified shear layer. We show how, in different flow configurations, this length can be related to the shear length of the flow ({var_epsilon}/{partial_derivative}{sub z}u{sup 3}){sup 1/2}. We also study the fluctuations of the momentum and density turbulent fluxes, showing how they relate to the mixing phenomena, and to the entrainment/detrainment balance.

  14. Near-field entrainment in black smoker plumes

    Science.gov (United States)

    Smith, J. E.; Germanovich, L. N.; Lowell, R. P.

    2013-12-01

    In this work, we study the entrainment rate of the ambient fluid into a plume in the extreme conditions of hydrothermal venting at ocean floor depths that would be difficult to reproduce in the laboratory. Specifically, we investigate the flow regime in the lower parts of three black smoker plumes in the Main Endeavour Field on the Juan de Fuca Ridge discharging at temperatures of 249°C, 333°C, and 336°C and a pressure of 21 MPa. Such flow conditions are typical for ocean floor hydrothermal venting but would be difficult to reproduce in the laboratory. The centerline temperature was measured at several heights in the plume above the orifice. Using a previously developed turbine flow meter, we also measured the mean flow velocity at the orifice. Measurements were conducted during dives 4452 and 4518 on the submersible Alvin. Using these measurements, we obtained a range of 0.064 - 0.068 for values of the entrainment coefficient α, which is assumed constant near the orifice. This is half the value of α ≈ 0.12 - 0.13 that would be expected for plume flow regimes based on the existing laboratory results and field measurements in lower temperature and pressure conditions. In fact, α = 0.064 - 0.068 is even smaller than the value of α ≈ 0.075 characteristic of jet flow regimes and appears to be the lowest reported in the literature. Assuming that the mean value α = 0.066 is typical for hydrothermal venting at ocean floor depths, we then characterized the flow regimes of 63 black smoker plumes located on the Endeavor Segment of the Juan de Fuca Ridge. Work with the obtained data is ongoing, but current results indicate that approximately half of these black smokers are lazy in the sense that their plumes exhibit momentum deficits compared to the pure plume flow that develops as the plume rises. The remaining half produces forced plumes that show the momentum excess compared to the pure plumes. The lower value of the entrainment coefficient has important

  15. Determination of human EEG alpha entrainment ERD/ERS using the continuous complex wavelet transform

    Science.gov (United States)

    Chorlian, David B.; Porjesz, Bernice; Begleiter, Henri

    2003-04-01

    Alpha entrainment caused by exposure to a background stimulus continuously flickering at a rate of 8 1/3 Hz was affected by the appearance of a foreground target stimulus to which the subjects were requested to press a button. With the use of bipolar derivations (to reduce volume conduction effects), scalp recorded EEG potentials were subjected to a continuous wavelet transform using complex Morlet wavelets at a range of scales. Complex Morlet wavelets were used to calculate efficiently instantaneous amplitudes and phases on a per-trial basis, rather than using the Hilbert transform on band-pass filtered data. Multiple scales were employed to contrast the pattern of alpha activity with those in other bands, and to determine whether the harmonics observed in the spectral analysis of the data were simply a result of the non-sinusoidal response to the entraining signal or a distinct neural phenomenon. We were thus able to calculate desynchronization/resynchronization for both the entrained and non-entrained alpha activity. The occurance of the target stimulus caused a sharp increase in amplitude in both the entrained and non-entrained alpha activity, followed by a sharp decrease, and then a return to baseline, over a period of 2.5 seconds. However, the entrained alpha activity showed a much more rapid recovery than non-entrained activity.

  16. Quantification of the effect of oil layer thickness on entrainment of surface oil

    NARCIS (Netherlands)

    Zeinstra-Helfrich, M.; Koops, W.; Dijkstra, K.; Murk, A.J.

    2015-01-01

    This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly proporti

  17. Accuracy of circadian entrainment under fluctuating light conditions : Contributions of phase and period responses

    NARCIS (Netherlands)

    Beersma, DGM; Daan, S; Hut, RA

    1999-01-01

    The accuracy with which a circadian pacemaker can entrain to an environmental 24-h zeitgeber signal depends on (a) characteristics of the entraining signal and (b) response characteristics and intrinsic stability of the pacemaker itself. Position of the sun, weather conditions, shades, and behaviora

  18. Bubble-type gas entrainment into liquid from free surface by vortex

    International Nuclear Information System (INIS)

    A gas entrainment rate into liquid by a vortex formed on the free surface was examined experimentally. Water flowed into a cylindrical vessel from a wall tangentially. Swirl flow was formed in the vessel, and then water left from the bottom outlet of the vessel. The flow state of the entrainment was visually observed by using a high speed video camera. The gas entrainment rate into water was measured. A stable vortex was formed in the test vessel. When the flow velocity; the velocity at the bottom outlet, was low, a single bubble was periodically torn off from the bottom tip of the vortex and the bubble-type gas entrainment was observed. As the flow rate was increased, the bottom tip of the vortex penetrated into the outlet pipe and the bubble-type gas entrainment continued. A further increase in the flow velocity resulted in the transition from the bubble-type gas entrainment to the vortex-type gas entrainment and the gas entrainment rate considerably increased with the flow velocity. After the vortex tip penetrated into the outlet pipe, the rotation speed of the vortex decayed. As a result of it, the Kelvin-Helmholtz instability wave length got long and the size of the generated bubble became large. Then, the outlet pipe was filled with the large bubbles and the flow state in the outlet pipe turned to the slug/churn flow and a large amount of gas began to be carried out form the test vessel. (author)

  19. The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps

    Science.gov (United States)

    Frank, F.; McArdell, B. W.; Huggel, C.; Vieli, A.

    2015-11-01

    This study describes an investigation of channel-bed entrainment of sediment by debris flows. An entrainment model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the entrainment model, an empirical relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the average rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the entrainment model. We find that by including bulking due to entrainment (e.g., by channel erosion) in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without entrainment show more lateral outflow from the channel where it has not been observed in the field. Therefore the entrainment model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.

  20. Parameterization of entrainment in a sheared convective boundary layer using a first-order jump model

    NARCIS (Netherlands)

    Kim, S.W.; Park, S.U.; Pino, D.; Vilà-Guerau de Arellano, J.

    2006-01-01

    Basic entrainment equations applicable to the sheared convective boundary layer (CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order jump model. Large-eddy simulation data are used to determine the constants involved in the parameterizations of the entrainment

  1. How oil properties and layer thickness determine the entrainment of spilled surface oil.

    Science.gov (United States)

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2016-09-15

    Viscosity plays an important role in dispersion of spilled surface oil, so does adding chemical dispersants. For seven different oil grades, entrainment rate and initial droplet size distribution were investigated using a plunging jet apparatus with coupled camera equipment and subsequent image analysis. We found that amount of oil entrained is proportional to layer thickness and largely independent of oil properties: A dispersant dose of 1:200 did not result in a significantly different entrainment rate compared to no dispersants. Oil viscosity had a minor to no influence on entrainment rate, until a certain threshold above which entrainment was impeded. The mean droplet size scales with the modified Weber number as described by Johansen. The obtained results can help improve dispersion algorithms in oil spill fate and transport models, to aid making an informed decision about application of dispersants.

  2. How oil properties and layer thickness determine the entrainment of spilled surface oil.

    Science.gov (United States)

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2016-09-15

    Viscosity plays an important role in dispersion of spilled surface oil, so does adding chemical dispersants. For seven different oil grades, entrainment rate and initial droplet size distribution were investigated using a plunging jet apparatus with coupled camera equipment and subsequent image analysis. We found that amount of oil entrained is proportional to layer thickness and largely independent of oil properties: A dispersant dose of 1:200 did not result in a significantly different entrainment rate compared to no dispersants. Oil viscosity had a minor to no influence on entrainment rate, until a certain threshold above which entrainment was impeded. The mean droplet size scales with the modified Weber number as described by Johansen. The obtained results can help improve dispersion algorithms in oil spill fate and transport models, to aid making an informed decision about application of dispersants. PMID:27345705

  3. The performative pleasure of imprecision: a diachronic study of entrainment in music performance.

    Science.gov (United States)

    Geeves, Andrew; McIlwain, Doris J; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.

  4. The performative pleasure of imprecision: a diachronic study of entrainment in music performance

    Directory of Open Access Journals (Sweden)

    Andrew eGeeves

    2014-10-01

    Full Text Available This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Nonverbal communicative exchanges, via eye contact, gesture and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.

  5. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  6. Trabajos de la sociedad de estudios de patología quirúrgica: infección quirúrgica por los agentes del aire

    OpenAIRE

    Villamizar G., Félix E.

    2013-01-01

    Considerando el mayor o menor grado de septicidad del medio ambiente, es el aire el que presenta menos peligros de todos los elementos que rodean al habitante humano. El individuo introduce en sus pulmones al rededor de 450 litros de aire por hora y puede suponerse cuáles serían los trastornos resultantes de esa ventilación pulmonar si la flora microbiana fuera numerosa y de elevado poder patógeno, no obstante las defensas naturales escalonadas a lo largo del conducto respiratorio, pues, seún...

  7. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    Science.gov (United States)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment

  8. Entrainment Across a Sheared Density Interface in High Richardson Number Cavity Flow

    Science.gov (United States)

    Williamson, Nicholas; Kirkpartick, Michael; Armfield, Steve

    2015-11-01

    The turbulent entrainment of fluid across a sharp density interface has been examined experimentally in a purging cavity flow. In the experiments, a long straight cavity with sloped entry and exit boundaries is located in the base of a straight open channel. Saline fluid is entrained from the cavity into the overflow. The cavity geometry has been designed to ensure there is no separation of the overflow in the cavity region with the goal of obtaining a single mode of entrainment, related only to the interface properties rather than to cavity specific mechanisms. The bulk entrainment rate has been measured and correlated with bulk Richardson number over Ri = 1 . 0 - 20 at Reynolds number Re = 7100 - 15100 . The entrainment rate is shown to scale with the local bulk Richardson number E ~= CRi - 1 . 38 , very close to the established result for entrainment across a sharp two layer density interface in a recirculating water channel (Strang and Fernando, J Fluid Mech., 428, 2001) but with an order of magnitude lower coefficient C. Experiments instrumented with PIV/LIF were used to relate the bulk Ri to the local gradient Richardson number of the interface. In the cavity setting the interface appears to remain sharper, resulting in larger Rig and reduced entrainment.

  9. Quadrupedal Locomotion-Respiration Entrainment and Metabolic Economy in Cross-Country Skiers.

    Science.gov (United States)

    Boldt, Kevin; Killick, Anthony; Herzog, Walter

    2016-02-01

    A 1:1 locomotion-respiration entrainment is observed in galloping quadrupeds, and is thought to improve running economy. However, this has not been tested directly in animals, as animals cannot voluntarily disrupt this entrainment. The purpose of this study was to evaluate metabolic economy in a human gait involving all four limbs, cross-country skiing, in natural entrainment and forced nonentrainment. Nine elite cross-country skiers roller skied at constant speed using the 2-skate technique. In the first and last conditions, athletes used the natural entrained breathing pattern: inhaling with arm recovery and exhaling with arm propulsion, and in the second condition, the athletes disentrained their breathing pattern. The rate of oxygen uptake (VO2) and metabolic rate (MR) were measured via expired gas analysis. Propulsive forces were measured with instrumented skis and poles. VO2 and MR increased by 4% and 5% respectively when skiers used the disentrained compared with the entrained breathing pattern. There were no differences in ski or pole forces or in timing of the gait cycle between conditions. We conclude that breathing entrainment reduces metabolic cost of cross-country skiing by approximately 4%. Further, this reduction is likely a result of the entrainment rather than alterations in gait mechanics. PMID:26252735

  10. Quadrupedal Locomotion-Respiration Entrainment and Metabolic Economy in Cross-Country Skiers.

    Science.gov (United States)

    Boldt, Kevin; Killick, Anthony; Herzog, Walter

    2016-02-01

    A 1:1 locomotion-respiration entrainment is observed in galloping quadrupeds, and is thought to improve running economy. However, this has not been tested directly in animals, as animals cannot voluntarily disrupt this entrainment. The purpose of this study was to evaluate metabolic economy in a human gait involving all four limbs, cross-country skiing, in natural entrainment and forced nonentrainment. Nine elite cross-country skiers roller skied at constant speed using the 2-skate technique. In the first and last conditions, athletes used the natural entrained breathing pattern: inhaling with arm recovery and exhaling with arm propulsion, and in the second condition, the athletes disentrained their breathing pattern. The rate of oxygen uptake (VO2) and metabolic rate (MR) were measured via expired gas analysis. Propulsive forces were measured with instrumented skis and poles. VO2 and MR increased by 4% and 5% respectively when skiers used the disentrained compared with the entrained breathing pattern. There were no differences in ski or pole forces or in timing of the gait cycle between conditions. We conclude that breathing entrainment reduces metabolic cost of cross-country skiing by approximately 4%. Further, this reduction is likely a result of the entrainment rather than alterations in gait mechanics.

  11. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    Science.gov (United States)

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  12. Neurobiological Foundations of Neurologic Music Therapy: Rhythmic Entrainment and the Motor System

    Directory of Open Access Journals (Sweden)

    Michael eThaut

    2015-02-01

    Full Text Available AbstractEntrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks and biological systems (e.g. fire flies. However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al, 1999. Physiological, kinematic and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of Neurologic Music Therapy.

  13. Gas entrainment in the IHX vessel of top-entry loop-type LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Y. (FBR Development Dept., Japan Atomic Power Co., Tokyo (Japan)); Yamamoto, K. (FBR Development Dept., Japan Atomic Power Co., Tokyo (Japan)); Funada, T. (FBR Development Dept., Japan Atomic Power Co., Tokyo (Japan)); Tanaka, N. (Central Research Inst. of Electric Power Industry, Tokyo (Japan)); Moriya, S. (Central Research Inst. of Electric Power Industry, Tokyo (Japan)); Tanimoto, K. (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Ogura, K. (Toshiba Corp., Tokyo (Japan)); Suzuki, T. (Hitachi Ltd., Tokyo (Japan)); Maekawa, I. (Kawasaki Heavy Industries Ltd., Tokyo (Japan))

    1994-02-01

    The effects of scale and fluid properties on gas entrainment onset were experimentally studied for the free surface flow in an IHX vessel of a proposed Japanese demonstration FBR. Water experiments were performed using the 1/10-th, 1/6-th, 1/3-rd and 1/1.6-th scaled models of the IHX. The experimental results indicate that the scale has a strong effect on gas entrainment onset and that the critical Fr number decreases in proportion to the -0.5-th power of the scale. Applicability of a computational method to the gas entrainment is also discussed by comparing computational and experimental results. (orig.)

  14. Effects of entrainment through Oconee Nuclear Station on carbon-14 assimilation rates of phytoplankton

    International Nuclear Information System (INIS)

    Carbon assimilation rates of phytoplankton communities entrained through Oconee Nuclear Station were measured on six dates during 1974. Thermal, mechanical, condenser, and multiple entrainment effects on uptake rates were compared by incubating samples in vitro in controlled-temperature water baths. Duplicate light and dark bottles containing water from four cooling-system locations were exposed to temperatures approximating intake and discharge temperatures. The relationships were variable, but exposure of the hypolimnetic intake water at near-discharge temperatures (thermal effect) stimulated primary productivity in four of six experiments. Multiple entrainment and mechanical effects caused no consistent change in assimilation rates

  15. Experimental study on scale effect on gas entrainment at free surface

    International Nuclear Information System (INIS)

    It is necessary to understand effects of scale and fluid properties on gas entrainment phenomena for prediction of gas entrainment in a fast breeder reactor (FBR). In the present study, three models of different scales but of similar geometry were used for water tests to examine the effects of scale and viscosity. The results have shown that the critical Froude (Fr) number, above which gas entrainment appears, drastically decreases as the scale increase. A prediction method using the Fr-Re map is proposed in the present paper for the sodium flow in an FBR. (orig.)

  16. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2008-06-30

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is

  17. A study of annular flows with bubbles in the liquid ring and entrained droplets by means of stochastic analysis techniques

    International Nuclear Information System (INIS)

    By employing stochastic analysis techniques, an experimental study of a large number of annular flows with bubbles in the liquid ring and entrained droplets has been undertaken in the experimental air-water loop FREDLI, in which the information carrier is two visible light beams crossing the diameter of the tube and modulated by the scattering of the photons at the randomly arriving interfaces; also, some earlier neutron noise measurements in the upper part of a commercial BWR core are carefully analyzed. For the BWR measurements, it is shown for the first time that in the upper part of the core, there are usually three peaks in the cross-correlation function and that all noise analytic functions look extraordinarily similar to the corresponding noise analytic functions of some of the investigated annular flows at the FREDLI loop; a plausible explanation of these findings is given. (Auth.)

  18. Entrainment of free troposphere Asian dust/pollution into the marine boundary layer North of Hawai`i during INTEX-B

    Science.gov (United States)

    McNaughton, C.; Clarke, A.; Kapustin, V.; Dibb, J.; Anderson, B.; Browell, E.; Carmichael, G.

    2006-12-01

    During NASA's INTEX-B experiment (April, 2006), regional and global chemical transport models (CTM's) successfully predicted two Asian dust/pollution outbreaks. The dusty airmasses were transported from Asia to the Pacific Ocean north of Hawai`i via the free troposphere (FT) and reached locations as far south the Mauna Loa atmospheric observatory. Five research flights using the NASA DC-8 were flown in order to characterize the long-range transport of trace gases and aerosols from Asia and in order to calibrate/validate both CTM predictions and satellite retrievals. In-flight mapping of the dust/pollution layers using the NASA Langley DIAL LIDAR show a sloping, subsiding Asian airmass entraining into the marine boundary layer (MBL). Using in-situ measurements of the aerosol size distribution, chemistry, optical properties and the increase in light scattering as a function of relative humidity [f(RH)], we are able to characterize and discriminate between MBL air, FT Asian dust/pollution and an external mixture of the two airmasses during entrainment. After entrainment aerosols are removed via wet deposition ahead of the trailing low pressure front. The entire episode is put further into context using models, satellite observations and data from the Mauna Loa Observatory. We include a discussion of dust-flux to the ocean surface due to wet-deposition, a potentially important source of iron to the oligotrophic waters of the North Pacific Subtropical Gyre.

  19. Reduced bleed air extraction for DC-10 cabin air conditioning

    Science.gov (United States)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  20. Kinematics of flow and sediment particles at entrainment and deposition

    Science.gov (United States)

    Antico, Federica; Sanches, Pedro; Aleixo, Rui; Ferreira, Rui M. L.

    2015-04-01

    A cohesionless granular bed subjected to a turbulent open-channel flow is analysed. The key objective is to clarify the kinematics of entrainment and deposition of individual sediment particles. In particular, we quantify a) the turbulent flow field in the vicinity of particles at the instants of their entrainment and of their deposition; b) the initial particle velocity and the particle velocity immediately before returning to rest. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameters in the range 0.007 to 0.03. Froude numbers ranged from 0.63 to 0.95 while boundary Reynolds numbers were in the range 130 to 300. It was observed that the bed featured patches of regular arrangements: face centered cubic (fcc) or hexagonal close packing (hcp) blocks alternate with and body centered cubic (bcc) blocks. The resulting bed surface exhibits cleavage lines between blocks and there are spatial variations of bed elevation. The option for artificial sediment allowed for a simplified description of particle positioning at the instant of entrainment. In particular support and pivoting angles are found analytically. Skin friction angles were determind experimentally. The only relevant variables are exposure (defined as the ratio of the actual frontal projection of the exposed area to the area of a circle with 5 mm diameter) and protrusion (defined as the vertical distance between the apex of the particle and the mean local bed elevation

  1. Changes in music tempo entrain movement related brain activity.

    Science.gov (United States)

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  2. Engine jet entrainment in the near field of an aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, F.; Jacquin, L.; Laverdant, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.

  3. Modelling wind turbine wakes using the turbulent entrainment hypothesis

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo

    2015-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. Jensen (1983; see also Katić et al. 1986) developed a model assuming that the wake radius grows linearly with distance x, approximating the velocity deficit with a top-hat profile. While this model has been widely implemented in the wind energy community, recently Bastankhah & Porté-Agel (2014) showed that it does not conserve momentum. They proposed a momentum-conserving theory, which assumed a Gaussian velocity deficit and retained the linear-spreading assumption, significantly improving agreement with experiments and LES. While the linear spreading assumption facilitates conceptual modeling, it requires empirical estimates of the spreading rate, and does not readily enable generalizations to other turbine designs. Furthermore, field measurements show sub-linear wake growth with x in the far-wake, consistently with results from fundamental turbulence studies. We develop a model by relying on a simple and general turbulence parameterization, namely the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. Without assuming similarity, we derive an analytical solution for a circular turbine wake, which predicts a far-wake radius increasing with x 1 / 3, and is consistent with field measurements and fundamental turbulence studies. Finally, we discuss developments accounting for effects of stratification, as well as generalizations to other turbine designs.

  4. COP Prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning

    OpenAIRE

    Nat Suvarnakuta; Nutthanun Keerlatiyadatanapat; Thanarath Sriveerakul

    2014-01-01

    This paper presents the COP prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning. Using computational fluid dynamics (CFD) technique, the performance of an ejector was analyzed in term of the entrainment ratio (Rm) and critical back pressure (CBP). The results from this study were compared with a previous study of combined ejector refrigeration system for automotive air conditioning application [1] which the entrainment ratio (R...

  5. A review of the interference of carbon containing fly ash with air entrainment in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Skjøth-Rasmussen, Martin Skov;

    2008-01-01

    adsorption capacity per mass of carbon. Cases reporting increased residual carbon content due to low-NO, combustion are described, together with observations from a pilot scale experiment, where increased AEA adsorption capacity of carbon appeared to relate with firing at low-NO, conditions. Post-treatment...... on the adsorption capacity of AEAs. The type of fuel used in the combustion process influences the amount and properties of the residual carbon. Fly ash derived from bituminous coal has generally higher carbon content compared with fly ash produced from subbituminous coal or lignite, but shows a lower AEA...... methods applied to improve fly ash quality are described in the review. Ozonation, thermal treatment and physical cleaning of carbon have been found to improve the fly ash performance for concrete utilization. Ultimately, recommendations for further work are outlined in the discussion....

  6. Turbulent flow field and air entrainment in laboratory plunging breaking waves

    Science.gov (United States)

    Na, Byoungjoon; Chang, Kuang-An; Huang, Zhi-Cheng; Lim, Ho-Joon

    2016-05-01

    This paper presents laboratory measurements of turbulent flow fields and void fraction in deep-water plunging breaking waves using imaging and optical fiber techniques. Bubble-size distributions are also determined based on combined measurements of velocity and bubble residence time. The most excited mode of the local intermittency measure of the turbulent flow and its corresponding length scale are obtained using a wavelet-based method and found to correlate with the swirling strength and vorticity. Concentrated vortical structures with high intermittency are observed near the lower boundaries of the aerated rollers where the velocity shear is high; the length scale of the deduced eddies ranges from 0.05 to 0.15 times the wave height. The number of bubbles with a chord length less than 2 mm demonstrates good correlation with the swirling strength. The power-law scaling and the Hinze scale of the bubbles determined from the bubble chord length distribution compare favorably with existing measurements. The turbulent dissipation rate, accounting for void fraction, is estimated using mixture theory. When void fraction is not considered, the turbulent dissipation rate is underestimated by more than 70% in the initial impinging and the first splash-up roller. A significant discrepancy of approximately 67% between the total energy dissipation rate and the turbulence dissipation rate is found. Of this uncounted dissipation, 23% is caused by bubble-induced dissipation.

  7. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    The main purpose of the wire is to avoid collision between adjacent rods.. Furthermore, a vortex induced vibration can be mitigated by wire spacers. In this study, the RANS based CFD methodology using an innovative grid generation has been evaluated in the 7-pin, 37-pin, and 217-pin wire wrapped fuel assembly, which is using the general purpose commercial CFD code, CFX. The RANS-based CFD methodology using the innovative hexagonal grid generation with the in-house code and the GGI function of the CFX code has been evaluated in the 7-pin, 37-pin, and 217-pin wire wrapped fuel assembly. SFR (Sodium-cooled Fast Reactor) system is one of the nuclear reactors in which a recycling of transuranics (TRUs) by reusing spent nuclear fuel sustains the fission chain reaction. This situation strongly motivated Korea Atomic Energy Research Institute (KAERI) to start a Prototype Gen Sodium-cooled Fast Reactor (PGSFR) design project under the national nuclear R and D program. Generally, SFR system has tight package of the fuel bundle and the high power density. The fuel assembly of SFR system is consisted of wire wrapped fuel bundles with triangular loose array. The bundles of the SFR fuel assembly usually consisted of rods and wire spacers. The innovative RANS-based CFD methodology can remarkably reduce the number of meshes. Grid sensitivity study of the wall y grid scale with SST turbulence model in 7-pin fuel assembly has been carried out, and the uncertainty of friction factor was under the 6.0%. It has been validated that the GGI function of CFX code is very conservative interpolation function. The innovative RANS based CFD methodology can be successfully extended to real 217- pin wire-wrapped fuel assembly of KAERI 2014 PGSFR

  8. Miniature Sample Collection and Delivery System using Gas-Entrained Powder Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a miniature system for acquisition and delivery of solid samples to landed planetary instruments. This system would entrain powder produced by...

  9. Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge

    Science.gov (United States)

    Tian, Yang; Kuang, Zhiming

    2016-04-01

    The dependence of entrainment rate on environmental conditions and cloud characteristics is investigated using large eddy simulations (LES) of the response of shallow cumulus convection to a small-amplitude temperature perturbation that is horizontally uniform and localized in height. The simulated cumulus fields are analyzed in the framework of an ensemble of entraining plumes by tracking a large number of Lagrangian parcels embedded in the LES and grouping them into different plumes based on their detrainment heights. The results show that fractional entrainment rate per unit height of a plume is inversely proportional to the plume's vertical velocity and its distance to the cloud edge, while changes in environmental stratification and relative humidity, the plume's buoyancy, or the vertical gradient of its buoyancy due to the temperature perturbation have little effect on the plume's entrainment rate.

  10. Neural entrainment to rhythmically-presented auditory, visual and audio-visual speech in children

    Directory of Open Access Journals (Sweden)

    Alan James Power

    2012-07-01

    Full Text Available Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal ‘samples’ of information from the speech stream at different rates, phase-resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (‘phase locking’. Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase-locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically-developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate based on repetition of the syllable ba, presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a talking head. To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the ba stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a ba in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling

  11. Rev-erbα in the brain is essential for circadian food entrainment

    OpenAIRE

    Julien Delezie; Stéphanie Dumont; Cristina Sandu; Sophie Reibel; Paul Pevet; Etienne Challet

    2016-01-01

    Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, ...

  12. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    Science.gov (United States)

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  13. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    Science.gov (United States)

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment.

  14. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2-79%CO2, 30%O2-70% O2 and 35%O2-65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2-79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  15. CATS-based Agents That Err

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  16. A state-of-the-art report on modelling of liquid entrainment phenomena in two-phase flow

    International Nuclear Information System (INIS)

    Since the interfacial area density of liquid droplet flow is extremely higher than that of general two-phase flows (bubbly, slug, churn, or annular flow), characteristics of interfacial mass, momentum, and heat transfers are also quite different. In this work the modelling of liquid droplet entrainment phenomena is investigated, which is divided into onset of droplet entrainment, droplet size, entrainment amount, and entrainment rate models. The droplet entrainment models of RELAP5/MOD3 and CATHARE2 codes are also covered in this work. Both of the codes use the two-fluid model for two-phase flow. Therefore the entrained droplet and continuous liquid phase are not distinguished from each other by fluid-field equations. But, they are differently simulated by so-called flow regime map. In case of two-fluid model, droplet can exist in annular-mist flow, mist flow, inverted annular-mist flow regimes, etc. In this case, onset of liquid droplet is used as one of the flow-regime transition criteria, and the 'entrainment amount' models to predict the amount of liquid phase that exists as droplet form. Recently three-or four-field models have been developed where the entrained droplet is modelled by a set of field equations. These models use the 'entrainment rate' model as a source term in the mass conservation equation. The last section of this report describes 'liquid entrainment' and 'vapor pull-through' models for horizontal T-junctions. 5 tabs., 40 figs., 47 refs. (Author)

  17. 保鲜剂与低温气调处理对甜椒贮藏品质的影响%Effect of Antistaling Agent and Low Temperature Air Conditioning on the Quality of Sweet Pepper During the Storage Time

    Institute of Scientific and Technical Information of China (English)

    彭燕; 车振明; 曾朝懿

    2013-01-01

    以甜椒为考察对象,采用品质比较法对壳聚糖肉桂精油涂膜保鲜剂结合低温气调综合处理的保鲜性能进行了研究。结果表明:保鲜剂+低温气调处理能够有效降低样品失重率,减少Vc损失,控制SOD、CAT和POD酶活性,可较好地保持甜椒的营养价值。%In this paper,the antistaling properties of chitosan coating enriched with cinnamon oil and low temperature air conditioning was investigated using sweet pepper as the object of study by quality comparison method. Results showed that the comprehensive treatment of antistaling agent and low temperature air conditioning could reduce the weight loss rate and the loss of VC, control the activity of SOD, CAT and POD enzyme and maintain the nutritional value of sweet pepper.

  18. Antibiotic Agents

    Science.gov (United States)

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  19. Entrained Flow Black Liquor Gasification - Detailed Experiments and Mathematical Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Per (Energy Technology Centre, Piteaa (Sweden)), e-mail: per.carlsson@etcpitea.se

    2009-07-01

    Black liquor, a by-product from the Kraft pulping process is a highly viscous fluid consisting of approximately 30% water, 30 % alkali salts and 40 % combustible material. The alkali salts originating from the pulp making process need to be recovered in order for the pulp mill to be economical and to satisfy environmental regulation. Currently, the recovery takes place in large boilers called Tomlinson recovery boilers. However, a more energy efficient way to recover the chemicals could be via gasification in a pressurized, entrained flow, high temperature gasifier. To demonstrate this technology a development plant (DP1) was built in 2005 by the technology vendor Chemrec. Since then, the plant has been running for more than 10,000 h and frequently been updated and optimized. As steps towards commercialization and scale-up different computational models of varying sophistication are used as design and optimization tools for the process. Still, the engineering tools can only provide sensible predictions if they are properly validated and verified. This thesis is concerned with validation of a comprehensive mathematical model based on Computational Fluid Dynamics (CFD) describing the gasification reactor and experimental investigations of the process characteristics in the DP1 gasifier. Paper A describes the system design and methodology for high temperature gas sampling during pressurized black liquor gasification. In this work a water-cooled gas sampling probe is installed in the hot part of the DP1 gasification reactor and several gas samples are withdrawn and analyzed. The experimentally obtained data in Paper A are then used as validation data for the CFD-model described in Paper B. In Paper C the obtained data from Paper A are thoroughly analyzed and the influence of reactor operation on producer gas composition is determined. In Paper D black liquor sprays from a gas assisted nozzle is experimentally investigated using high speed photography. Furthermore, the

  20. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2012-11-01

    Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.

    A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.

    Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction

  1. Evaluation of gas entrainment flow rate using numerical simulation with interface-tracking method

    International Nuclear Information System (INIS)

    The gas entrainment (GE) due to free surface vortex is one of the important issues in the safety study on sodium-cooled fast reactors. In fact, a great deal of theoretical, experimental and numerical research has been performed to investigate the GE behaviors. The authors also have conducted a simple experiment to investigate the gas entrainment flow rate under various flow and/or fluid property conditions. In this experiment, a hollow vortex is formed in a cylindrical tank and gas is entrained into liquid when the vortex strength is intensified sufficiently to generate highly-elongated gas core along the vortex core. The influence of fluid property on the gas entrained flow rate also has been investigated experimentally. In this paper, the authors perform numerical simulations of the simple experiment. To simulate interfacial deformations accurately, a high-precision interface-tracking method is employed, in which appropriate physics models, e.g. the mechanical balance model of pressure and surface tension at gas-liquid interface, are introduced. Two kinds of fluids, i.e. water and silicone oil, are considered as the working fluid in the simulations and the flow rate is changed over a wide range as the simulation parameter for both fluids. As a result of the numerical simulations, the evaluated values of the entrained gas flow rate shows good agreement with the experimental data. In addition, both the simulation results and experimental data provide the entrained gas flow rate in proportional to the average velocity at the cylindrical tank outlet. Furthermore, the influence of the fluid property on the entrained gas flow rate observed in the experiment is reproduced by the numerical simulations, that is, the high viscosity fluid, i.e. silicone oil, provides much smaller entrained gas flow rate than that of the low viscosity fluid, i.e. water. Similarly, the proportionality constant between the entrained gas flow rate and the outlet velocity becomes smaller in the

  2. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  3. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics

    Science.gov (United States)

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid. PMID:27375465

  4. Searching for roots of entrainment and joint action in early musical interactions

    Directory of Open Access Journals (Sweden)

    Jessica ePhillips-Silver

    2012-02-01

    Full Text Available When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment. In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation, which in turn support musical behavior (imitation and complementary joint action. To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy.

  5. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    Science.gov (United States)

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  6. Droplet entrainment and deposition rate models for determination of boiling transition in BWR fuel assembly

    International Nuclear Information System (INIS)

    Droplet entrainment and deposition rates are of vital importance for mechanistic determination of critical power and location of boiling transition in a BWR fuel assembly. Data from high-pressure, high-temperature steam-water adiabatic experiments conducted in very tall test sections are used to develop a combination of equilibrium entrainment-deposition rate. Application of this combination to the heated tests conducted in a shorter test section of typical height of a BWR fuel assembly shows that correct split of total liquid in form of the film and droplets at the onset of annular-mist flow regime is also important to obtain good prediction of film flow rates/entrainment fraction. The improved model is then applied to simulate critical power tests in annulus and rod bundles. (author)

  7. Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model

    CERN Document Server

    Kheto, Apurba

    2015-01-01

    We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of $\\sigma$, $\\omega$, and $\\rho$ mesons and scalar self interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass shedding (Kepler) limit within the RMF model with different parameter sets. ...

  8. Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System

    Science.gov (United States)

    Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl

    2010-11-01

    Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Late emergence chronotypes of fruit flies Drosophila melanogaster exhibit higher accuracy of entrainment.

    Science.gov (United States)

    Nikhil, K L; Vaze, Koustubh M; Sharma, Vijay Kumar

    2015-01-01

    Inter-individual variation in phase-of-entrainment (chronotype) is widely observed in many species, but the underlying mechanisms and its consequences remain largely unexplored. In light of considerable limitations of previous studies proposing that the late chronotypes exhibit weakly stable rhythms, we employed outbred Drosophila populations exhibiting early and late emergence chronotypes to re-visit such associations. Contrary to previous reports, we observed that the late chronotypes consistently exhibit higher stability in emergence and activity-rest rhythms as compared to the early chronotypes, both under laboratory and semi-natural conditions, which is not associated with higher precision of circadian clocks, thus demonstrating the existence of genetic correlations between accuracy of entrainment and chronotype. Our results, along with the previously reported clock property differences between the early and the late emergence chronotypes highlights a possible complex interplay of clock period, phase response curve and accuracy in determining phase-of-entrainment. PMID:26595175

  10. Studies on gas entrainment due to vortex activation at free surface of fast breeder reactor

    International Nuclear Information System (INIS)

    Fast Reactor systems consist of many cylindrical components which are partially submerged in liquid sodium and partially exposed to argon gas, maintained above the sodium pool. Horizontal sodium flows past these components leads to the formation of von Kármán vortices. These vortices form dimples of argon gas that leads to entrainment. The present work is focused on to identify the criteria for onset of gas entrainment. In order to understand this, interactions between free surface waves and underlying viscous wakes are investigated for flow past a surface piercing cylinder incorporating volume of fluid (VOF) method. The results show that the free surface inhibits the vortex generation near the interface for all range of Froude numbers (FrD). For various inflow velocities, the re-submergence angles are measured. It is found that, for FrD ≤ 0.5, and re-submergence angle < 12°, there is no risk of entrainment due to vortex activation. (author)

  11. The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock

    Directory of Open Access Journals (Sweden)

    Raphaela Heussen

    2015-01-01

    Full Text Available The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.

  12. Preparation and application of central air-conditioner environment-friendly water treatment agents%中央空调环保型水处理剂的研究及应用

    Institute of Scientific and Technical Information of China (English)

    刘玉林

    2011-01-01

    Based upon the water quality characteristics in Zhengzhou and the water quality and scaling analysis of the central air-conditioning circulating water system of Hualian Trade Center,Zhengzhou,a brand new lowphosphorus environment-friendly water treatment agent, HL-08 has been prepared. Its phosphorus (PO43-) content is less than 5%. The static and dynamic experiments as well as its application in central air-conditioning circulating water systems show that HL-08 has good effects on corrosion and scale inhibition. Meanwhile, the wastewater from the circulating water system contains less than 1.0 mg/L phosphorus,which meets the requirements of the discharge standard (GB 8978-1996).%根据郑州华联商贸城中央空调循环水系统的水质情况和结垢分析,结合郑州地区水质特点,制备了一种新型低磷环保型的水质处理剂HL-08,其磷含量≤5%(以PO(3-)4).静态、旋转挂片、动态试验及在中央空调循环水系统中的实际应用结果表明,该处理剂缓蚀阻垢效果良好,循环水排污水中磷质量浓度<1.0mg/L(以P计),符合国标(GB8978-1996)的要求.

  13. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  14. Entrained solvent separation by charcoal adsorption from aqueous streams generated during uranium recovery from phosphoric acid

    International Nuclear Information System (INIS)

    During the two cycle solvent extraction process for the separation of uranium from phosphoric acid, solvents such as D2EHPA, di nonyl phenyl phosphoric acid (DNPPA), tri butyl phosphate (TBP), etc., get dissolved/entrained in the various aqueous phases such as WPA, ammonium carbonate solution, MGA and sulphuric acid. These solvents have to be separated both from process economy point of view and for industrial acceptability. Systematic experiments showed that recovery of solvents by diluent washing is not effective for alkaline solution. Hence studies were undertaken to study the feasibility of activated charcoal adsorption for entrained/dissolved solvent separation. (author)

  15. Revisiting the Saffman-Taylor Experiment: Imbibition Patterns and Liquid-Entrainment Transitions

    Science.gov (United States)

    Levaché, Bertrand; Bartolo, Denis

    2014-07-01

    We revisit the Saffman-Taylor experiment focusing on the forced-imbibition regime where the displacing fluid wets the confining walls. We demonstrate a new class of invasion patterns that do not display the canonical fingering shapes. We evidence that these unanticipated patterns stem from the entrainment of thin liquid films from the moving meniscus. We then theoretically explain how the interplay between the fluid flow at the contact line and the interface deformations results in the destabilization of liquid interfaces. In addition, this minimal model conveys a unified framework which consistently accounts for all the liquid-entrainment scenarios that have been hitherto reported.

  16. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    Science.gov (United States)

    Li, J. H.; Albu, M.; Ludwig, T. H.; Hofer, F.; Arnberg, L.; Schumacher, P.

    2016-03-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting.

  17. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  18. Vortex ring induced large bubble entrainment during drop impact

    CERN Document Server

    Thoraval, Marie-Jean; Thoroddsen, Sigurdur T

    2016-01-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops which are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and pool, controls the crater deformations and pinch-off. However, it is not the strongest vortex rings which are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices which can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts, are not produced by oblate dro...

  19. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  20. Time-Specific Fear Acts as a Non-Photic Entraining Stimulus of Circadian Rhythms in Rats.

    Science.gov (United States)

    Pellman, Blake A; Kim, Earnest; Reilly, Melissa; Kashima, James; Motch, Oleksiy; de la Iglesia, Horacio O; Kim, Jeansok J

    2015-01-01

    Virtually all animals have endogenous clock mechanisms that "entrain" to the light-dark (LD) cycle and synchronize psychophysiological functions to optimal times for exploring resources and avoiding dangers in the environment. Such circadian rhythms are vital to human mental health, but it is unknown whether circadian rhythms "entrained" to the LD cycle can be overridden by entrainment to daily recurring threats. We show that unsignaled nocturnal footshock caused rats living in an "ethological" apparatus to switch their natural foraging behavior from the dark to the light phase and that this switch was maintained as a free-running circadian rhythm upon removal of light cues and footshocks. Furthermore, this fear-entrained circadian behavior was dependent on an intact amygdala and suprachiasmatic nucleus. Thus, time-specific fear can act as a non-photic entraining stimulus for the circadian system, and limbic centers encoding aversive information are likely part of the circadian oscillator network that temporally organizes behavior.

  1. Complex Patterns of Metabolic and Ca2+ Entrainment in Pancreatic Islets by Oscillatory Glucose

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Mosekilde, Erik; Polonsky, Kenneth S.;

    2013-01-01

    fluorescence microscopy to demonstrate that glucose oscillations can induce distinct 1:1 and 1:2 entrainment of oscillations (one and two oscillations for each period of exogenous stimulus, respectively) in islet Ca2+ , NAD(P)H, and mitochondrial membrane potential. To our knowledge, this is the first...... experimental findings could be recapitulated by our recently developed mathematical model, and simulations suggested that interislet variability in 1:2 entrainment patterns reflects differences in their glucose sensitivity. Finally, our simulations and recordings showed that a heterogeneous group of islets...... synchronized during 1:2 entrainment, resulting in a clear oscillatory response from the collective. In summary, we demonstrate that oscillatory glucose can induce complex modes of entrainment of metabolically driven oscillations in islets, and provide additional support for the notion that entrainment promotes...

  2. Time-Specific Fear Acts as a Non-Photic Entraining Stimulus of Circadian Rhythms in Rats.

    Science.gov (United States)

    Pellman, Blake A; Kim, Earnest; Reilly, Melissa; Kashima, James; Motch, Oleksiy; de la Iglesia, Horacio O; Kim, Jeansok J

    2015-01-01

    Virtually all animals have endogenous clock mechanisms that "entrain" to the light-dark (LD) cycle and synchronize psychophysiological functions to optimal times for exploring resources and avoiding dangers in the environment. Such circadian rhythms are vital to human mental health, but it is unknown whether circadian rhythms "entrained" to the LD cycle can be overridden by entrainment to daily recurring threats. We show that unsignaled nocturnal footshock caused rats living in an "ethological" apparatus to switch their natural foraging behavior from the dark to the light phase and that this switch was maintained as a free-running circadian rhythm upon removal of light cues and footshocks. Furthermore, this fear-entrained circadian behavior was dependent on an intact amygdala and suprachiasmatic nucleus. Thus, time-specific fear can act as a non-photic entraining stimulus for the circadian system, and limbic centers encoding aversive information are likely part of the circadian oscillator network that temporally organizes behavior. PMID:26468624

  3. Twilight and Photoperiod Affect Behavioral Entrainment in the House Mouse (Mus musculus)

    NARCIS (Netherlands)

    Comas, M.; Hut, R. A.

    2009-01-01

    The effect of twilight transitions on entrainment of C57BL/6JOlaHsd mice (Mus musculus) was studied using light-dark cycles of different photoperiods (6, 12, and 18 h) and twilight transitions of different durations (0, 1, and 2 h). Phase angle differences of the onset, center of gravity, and offset

  4. Fractal gait patterns are retained after entrainment to a fractal stimulus.

    Science.gov (United States)

    Rhea, Christopher K; Kiefer, Adam W; Wittstein, Matthew W; Leonard, Kelsey B; MacPherson, Ryan P; Wright, W Geoffrey; Haran, F Jay

    2014-01-01

    Previous work has shown that fractal patterns in gait can be altered by entraining to a fractal stimulus. However, little is understood about how long those patterns are retained or which factors may influence stronger entrainment or retention. In experiment one, participants walked on a treadmill for 45 continuous minutes, which was separated into three phases. The first 15 minutes (pre-synchronization phase) consisted of walking without a fractal stimulus, the second 15 minutes consisted of walking while entraining to a fractal visual stimulus (synchronization phase), and the last 15 minutes (post-synchronization phase) consisted of walking without the stimulus to determine if the patterns adopted from the stimulus were retained. Fractal gait patterns were strengthened during the synchronization phase and were retained in the post-synchronization phase. In experiment two, similar methods were used to compare a continuous fractal stimulus to a discrete fractal stimulus to determine which stimulus type led to more persistent fractal gait patterns in the synchronization and post-synchronization (i.e., retention) phases. Both stimulus types led to equally persistent patterns in the synchronization phase, but only the discrete fractal stimulus led to retention of the patterns. The results add to the growing body of literature showing that fractal gait patterns can be manipulated in a predictable manner. Further, our results add to the literature by showing that the newly adopted gait patterns are retained for up to 15 minutes after entrainment and showed that a discrete visual stimulus is a better method to influence retention.

  5. Volume entrained in the wake of a disk intruding into an oil-water interface

    NARCIS (Netherlands)

    Peters, I.R.; Madonia, M.; Lohse, D.; Meer, van der R.M.

    2016-01-01

    An object moving through a plane interface into a fluid deforms the interface in such a way that fluid from one side of the interface is entrained into the other side, a phenomenon known as Darwin's drift. We investigate this phenomenon experimentally using a disk which is started exactly at the int

  6. Inducing attention not to blink: auditory entrainment improves conscious visual processing.

    Science.gov (United States)

    Ronconi, Luca; Pincham, Hannah L; Szűcs, Dénes; Facoetti, Andrea

    2016-09-01

    Our ability to allocate attention at different moments in time can sometimes fail to select stimuli occurring in close succession, preventing visual information from reaching awareness. This so-called attentional blink (AB) occurs when the second of two targets (T2) is presented closely after the first (T1) in a rapid serial visual presentation (RSVP). We hypothesized that entrainment to a rhythmic stream of stimuli-before visual targets appear-would reduce the AB. Experiment 1 tested the effect of auditory entrainment by presenting sounds with a regular or irregular interstimulus interval prior to a RSVP where T1 and T2 were separated by three possible lags (1, 3 and 8). Experiment 2 examined visual entrainment by presenting visual stimuli in place of auditory stimuli. Results revealed that irrespective of sensory modality, arrhythmic stimuli preceding the RSVP triggered an alerting effect that improved the T2 identification at lag 1, but impaired the recovery from the AB at lag 8. Importantly, only auditory rhythmic entrainment was effective in reducing the AB at lag 3. Our findings demonstrate that manipulating the pre-stimulus condition can reduce deficits in temporal attention characterizing the human cognitive architecture, suggesting innovative trainings for acquired and neurodevelopmental disorders. PMID:26215434

  7. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    Science.gov (United States)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  8. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    Science.gov (United States)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  9. Influences of the chemical structure of entrainers on the activity coefficients in presence of biodiesel

    International Nuclear Information System (INIS)

    In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.

  10. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging

    Science.gov (United States)

    Nozaradan, Sylvie

    2014-01-01

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. PMID:25385771

  11. Evaluation by entrained imaging of the positioning precision and repositioning in fractionated stereotaxic radiotherapy

    International Nuclear Information System (INIS)

    The differences of daily positioning have been quantified and the precision of this king of contention has been evaluated. The buccal support improves the positioning precision. The daily use of the entrained image is feasible in routine and allows a measurable improvement of the treatment precision. (N.C.)

  12. Circadian Entrainment by Different Daylengths: The Roles of Dawn and Dusk

    NARCIS (Netherlands)

    Daan, S.; Comas, M.; Spoelstra, K.; Hut, R.; Beersma, D.

    2009-01-01

    In the early days of circadian rhythms research there were two competing views on entrainment by light: through parametric action on the velocity of the endogenous cycle (Aschoff) versus non-parametric discrete phase shifts elicited by the lights-on and –off transitions (Pittendrigh). Although the p

  13. Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model

    Science.gov (United States)

    Kheto, Apurba; Bandyopadhyay, Debades

    2015-02-01

    We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid, called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of σ , ω , and ρ mesons, and scalar self-interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass-shedding (Kepler) limit within the RMF model with different parameter sets. It is observed that for the global properties of rotating superfluid neutron stars in particular, the Kepler limit is modified compared with the case that does not include the contribution of ρ mesons in the entrainment effect.

  14. How oil properties and layer thickness determine the entrainment of spilled surface oil

    NARCIS (Netherlands)

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J.

    2016-01-01

    Viscosity plays an important role in dispersion of spilled surface oil, so does adding chemical dispersants. For seven different oil grades, entrainment rate and initial droplet size distribution were investigated using a plunging jet apparatus with coupled camera equipment and subsequent image a

  15. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  16. Entrainment Dissociates Transcription and Translation of a Circadian Clock Gene in Neurospora

    NARCIS (Netherlands)

    Tan, Ying; Dragovic, Zdravko; Roenneberg, Till; Merrow, Martha

    2004-01-01

    Circadian systems coordinate the daily sequence of events in cells, tissues, and organisms. In constant conditions, the biological clock oscillates with its endogenous period, whereas it is synchronized to the 24 hr light:dark cycle in nature. Here, we investigate light entrainment of Neurospora cra

  17. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  18. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock.

    Science.gov (United States)

    Jagannath, Aarti; Butler, Rachel; Godinho, Sofia I H; Couch, Yvonne; Brown, Laurence A; Vasudevan, Sridhar R; Flanagan, Kevin C; Anthony, Daniel; Churchill, Grant C; Wood, Matthew J A; Steiner, Guido; Ebeling, Martin; Hossbach, Markus; Wettstein, Joseph G; Duffield, Giles E; Gatti, Silvia; Hankins, Mark W; Foster, Russell G; Peirson, Stuart N

    2013-08-29

    Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms.

  19. Novel non-indolic melatonin receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude

    NARCIS (Netherlands)

    Drijfhout, W.J; de Vries, J.B; Homan, E.J; Brons, H.F; Copinga, S; Gruppen, G; Beresford, I.J M; Hagan, R.M; Grol, Cor; Westerink, B.H.C.

    1999-01-01

    In this study we have examined the ability of melatonin and four synthetic melatonin receptor agonists to entrain endogenous melatonin secretion in rats, free running in constant darkness. The circadian melatonin profile was measured by trans-pineal microdialysis, which not only reveals the time of

  20. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120.

    Directory of Open Access Journals (Sweden)

    Akiko Furutani

    Full Text Available The circadian peripheral clock is entrained by restricted feeding (RF at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA and/or eicosapentaenoic acid (EPA. Tuna oil (high DHA/EPA, menhaden oil (standard, and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock.

  1. Entrainment and task co-representation effects for discrete and continuous action sequences.

    Science.gov (United States)

    van der Wel, Robrecht P R D; Fu, En

    2015-12-01

    A large body of work has established an influence of other people's actions on our own actions. For example, actors entrain to the movements of others, in studies that typically employ continuous movements. Likewise, studies on co-representation have shown that people automatically co-represent a co-actor's task, in studies that typically employ discrete actions. Here we examined entrainment and co-representation within a single task paradigm. Participants sat next to a confederate while simultaneously moving their right hand back and forth between two targets. We crossed whether or not the participant and the confederate moved over an obstacle and manipulated whether participants generated discrete or continuous movement sequences, while varying the space between the actors and whether the actors could see each other's movements. Participants moved higher when the confederate cleared an obstacle than when he did not. For continuous movements, this effect depended on the availability of visual information, as would be expected on the basis of entrainment. In contrast, the co-actor's task modulated the height of discrete movements, regardless of the availability of visual information, which is consistent with co-representation. Space did not have an effect. These results provide new insights into the interplay between co-representation and entrainment for discrete- and continuous-action tasks. PMID:25911443

  2. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  3. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks

    Directory of Open Access Journals (Sweden)

    Yasuda Akio

    2006-02-01

    Full Text Available Abstract Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ, triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight

  4. Studies on scaled models for gas entrainment in the surge tank of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ramdasu, D.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Rammohan, S.; Sreekala, S.K.; Manikandan, S.; Saseendran, S. [Fluid Control Research Institute, Palghat (India)

    2007-07-01

    This paper presents the studies carried out in the different scale models of Surge tank used in the secondary circuit of Liquid metal fast breeder reactor (LMFBR). Surge tank acquires importance because of its ability to take care of pressure surges in case of a sodium water reaction in Steam Generators (SG). The blanket of argon cover gas above the sodium free surface in the surge tank acts as a cushion for the surges. At the same time, argon gas is a source of entrainment into the sodium which is undesirable from the consideration of effective heat transfer in Inter mediate Heat Exchanger and SG, cavitation in pumps and operational problems of continuous feed and bleed of cover gas, thus leading to unfavourable reactor operating conditions. To investigate the phenomenon of gas entrainment in surge tank, hydraulic experiments were conducted in water using 1/38, 1/32, 1/22 and 1/12 scale models with Froude similarity. The minimum height of liquid column required to avoid gas entrainment was determined using different types of internal devices. Experiments were carried out in the 5/8 scale model to confirm the results of the smaller scale models. It was found that free surface height to avoid gas entrainment varies for different scale models. The combination of Pepper pot with ring plate was found to be the most effective in avoiding gas entrainment at H/D equals 1.28 where H is the height of liquid column in the tank from tank bottom and D is the inner diameter of surge tank.

  5. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    Science.gov (United States)

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. PMID:23916752

  6. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2012-05-01

    Full Text Available The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.

  7. Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties

    Science.gov (United States)

    Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.

    2004-03-01

    Smoke and pollutants from Canadian forest fires are sometimes transported over the United States at low altitudes behind advancing cold fronts. An unusual event occurred in July 2002 in which smoke from fires in Quebec was observed by satellite, lidar, and aircraft to arrive over the Washington, D.C., area at high altitudes. This elevated smoke plume subsequently mixed to the surface as it was entrained into the turbulent planetary boundary layer and had adverse effects on the surface air quality over the region. Trajectory and three-dimensional model calculations confirmed the origin of the smoke, its transport at high altitudes, and the mechanism for bringing the pollutants to the surface. Additionally, the modeled smoke optical properties agreed well with aircraft and remote sensing observations provided the smoke particles were allowed to age by coagulation in the model. These results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  8. Influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades físico-químicas do suco de açaí em pó Influence of drying air temperature and carrier agent concentration on the physicochemical properties of açai juice powder

    Directory of Open Access Journals (Sweden)

    Renata Valeriano Tonon

    2009-06-01

    Full Text Available A influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades físico-químicas do suco de açaí em pó produzido por spray drying foi avaliada. O processo foi realizado em um mini spray dryer de bancada e maltodextrina 10DE foi utilizada como agente carreador. A temperatura do ar de secagem variou de 138 a 202 °C e a concentração de maltodextrina variou de 10 a 30%. As características analisadas foram: umidade, higroscopicidade, retenção de antocianinas, cor, distribuição do tamanho de partículas e morfologia. O aumento da temperatura resultou em partículas maiores, menos úmidas, mais higroscópicas e com menor retenção de antocianinas, além de provocar uma diminuição do parâmetro de cor L* e do ângulo de tom H*. O aumento na concentração de maltodextrina resultou em partículas maiores e menos higroscópicas, com maior luminosidade (L*, menores valores de C* e maiores valores de H*. Em relação à morfologia, o aumento da temperatura levou à formação de uma maior quantidade de partículas com superfície lisa, fato atribuído à maior transferência de calor e, consequentemente, à formação mais rápida de uma membrana ao redor da gota atomizada.The objective of this work was to study the influence of inlet air temperature and maltodextrin concentration on the physicochemical properties of açai juice powder produced by spray drying. The process was carried out in a mini spray dryer and the maltodextrin 10DE was used as carrier agent. Inlet air temperature varied from 138 to 202 °C and maltodextrin concentration varied from 10 to 30%. The characteristics analyzed were: moisture content, hygroscopicity, anthocyanin retention, color, particle size distribution, and morphology. The increase in the temperature resulted in particles with larger size, less moisture content, more hygroscopy and with lower anthocyanin retention, besides promoting a reduction in the color

  9. Importance of the surface size distribution of erodible material: an improvement of the Dust Entrainment And Deposition DEAD

    Directory of Open Access Journals (Sweden)

    M. Mokhtari

    2011-11-01

    Full Text Available This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create a global mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP and the Food and Agriculture Organization (FAO soil type database in SURFEX, based on both Shao (1993 and Marticorena and Bergametti (1995 parameterizations. An arrangement on the Dust Entrainment And Deposition scheme (DEAD is proposed in this paper by introducing the geographic variation of surface size distribution, the Marticorena and Bergametti (1995 formulation of horizontal saltation flux and the Shao (2001 formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the code DEAD, both sensitivity and comparative studies are realized in 0 dimensions (0-D and then in 3 dimensions (3-D between the old DEAD and that developed in this paper. The results in the 0-D simulations indicate that the developed DEAD scheme represents the dust source emission better, particularly in the Bodélé depression and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and developed DEAD schemes for the simulated Aerosol Optical Depth (AOD compared with the photometer AErosol RObotic NETwork (AERONET measurements available in the African Monsoon Multidisciplinary Analyses (AMMA databases. But, for the surface concentration a remarkable improvement is noted for the developed DEAD scheme.

  10. Importance of the surface size distribution of erodible material: an improvement on the Dust Entrainment And Deposition (DEAD Model

    Directory of Open Access Journals (Sweden)

    M. Mokhtari

    2012-05-01

    Full Text Available This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create an appropriate mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP, and the Food and Agriculture Organization (FAO soil type database in SURFEX. An improvement on the Dust Entrainment And Deposition scheme (DEAD is proposed in this paper by introducing the geographical variation of surface soil size distribution, the Marticorena and Bergametti (1995 formulation of horizontal saltation flux and the Shao et al. (1996 formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the DEAD, both sensitivity and comparative studies are conducted in 0 dimensions (0-D and then in 3 dimensions (3-D between the old DEAD and the new DEAD. The results of the 0-D simulations indicate that the revised DEAD scheme represents the dust source emission better, particularly in the Bodélé depression, and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and the revised DEAD for the simulated Aerosol Optical Depth (AOD compared with the AErosol RObotic NETwork (AERONET photometer measurements available in the African Monsoon Multidisciplinary Analyses (AMMA databases. For the surface concentration, a remarkable improvement is noted for the revised DEAD scheme.

  11. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  12. Time-dependent effects of dim light at night on re-entrainment and masking of hamster activity rhythms.

    Science.gov (United States)

    Frank, David W; Evans, Jennifer A; Gorman, Michael R

    2010-04-01

    Bright light has been established as the most ubiquitous environmental cue that entrains circadian timing systems under natural conditions. Light equivalent in intensity to moonlight (circadian function in a number of entrainment paradigms. For example, compared to completely dark nights, dim nighttime illumination accelerated re-entrainment of hamster activity rhythms to 4-hour phase advances and delays of an otherwise standard laboratory photocycle. The purpose of this study was to determine if a sensitive period existed in the night during which dim illumination had a robust influence on speed of re-entrainment. Male Siberian hamsters were either exposed to dim light throughout the night, for half of the night, or not at all. Compared to dark nights, dim illumination throughout the entire night decreased by 29% the time for the midpoint of the active phase to re-entrain to a 4-hour phase advance and by 26% for a 4-hour delay. Acceleration of advances and delays were also achieved with 5 hours of dim light per night, but effects depended on whether dim light was present in the first half, second half, or first and last quarters of the night. Both during phase shifting and steady-state entrainment, partially lit nights also produced strong positive and negative masking effects, as well as entrainment aftereffects in constant darkness. Thus, even in the presence of a strong zeitgeber, light that might be encountered under a natural nighttime sky potently modulates the circadian timing system of hamsters.

  13. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; KP Brooks; LK Jagoda

    2000-08-02

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft{sup 2}, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to

  14. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    International Nuclear Information System (INIS)

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft2, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to pre

  15. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  16. The controls and consequences of substrate entrainment by pyroclastic density currents at Mount St Helens, Washington (USA)

    Science.gov (United States)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2016-10-01

    Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are

  17. Trading Agents

    CERN Document Server

    Wellman, Michael

    2011-01-01

    Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abst

  18. Dungeness Crab Dredging Entrainment Studies in the Lower Columbia River, 2002 – 2004: Loss Projections, Salinity Model, and Scenario Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2005-01-01

    Dungeness crab studies conducted in 2002 for the Portland District of the U.S. Army Corps of Engineers (Corps) constituted a major step forward in quantifying crab entrainment through statistical projections of adult equivalent loss (AEL) and loss to the fishery (LF) from proposed construction and maintenance dredging in the Columbia River navigation channel (Pearson et al. 2002, 2003). These studies also examined the influence of bottom salinity on crab abundance and entrainment rates. Additional sampling was conducted in 2004 to tighten loss projections, further develop the crab salinity model, and apply the model to assess correlations of entrainment rates and projected losses with seasonal salinity changes.

  19. Air flow management in raised floor data centers

    CERN Document Server

    Arghode, Vaibhav K

    2016-01-01

    The Brief discuss primarily two aspects of air flow management in raised floor data centers. Firstly, cooling air delivery through perforated tiles will be examined and influence of the tile geometry on flow field development and hot air entrainment above perforated tiles will be discussed. Secondly, the use of cold aisle containment to physically separate hot and cold regions, and minimize hot and cold air mixing will be presented. Both experimental investigations and computational efforts are discussed and development of computational fluid dynamics (CFD) based models for simulating air flow in data centers is included. In addition, metrology tools for facility scale air velocity and temperature measurement, and air flow rate measurement through perforated floor tiles and server racks are examined and the authors present thermodynamics-based models to gauge the effectiveness and importance of air flow management schemes in data centers.

  20. An applied model for the height of the daytime mixed layer and the entrainment zone

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1994-01-01

    A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth...... proposed by Gryning and Batchvarova (1994). However, mast zero-order slab type models of mixed-layer height may be applied. The use of the model requires only information on those meteorological parameters that are needed in operational applications of ordinary zero-order slab type models of mixed-layer......, although this is usually neglected in operational models of mixed-layer height owing to lack of data. Model performance is tested using data from the CIRCE experiment....

  1. An ongoing investigation on modeling the strength properties of water-entrained cement-based materials

    DEFF Research Database (Denmark)

    Esteves, L.P.

    2012-01-01

    Water-entrained cement based materials by superabsorbent polymers is a concept that was introduced in the research agenda about a decade ago. However, a recent application in the production of high performance concrete revealed potential weaknesses when the proportioning of this intelligent...... material is not well performed, raising doubts among both academic and industrial society about the usability of superabsorbent polymers in cement-based materials. This work constitutes the baseline tentatively to be used on modeling the compressive strength of SF-modified water-entrained cement......-based materials. Beyond the discussion of whether or not the introduction of superabsorbent polymers leads to a strength reduction, this paper uses both experimental and theoretical background to separate the effect of SAP in both pore structure and internal relative humidity and the effect from the active...

  2. Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle.

    Science.gov (United States)

    Dies, Marta; Galera-Laporta, Leticia; Garcia-Ojalvo, Jordi

    2016-04-18

    The correct functioning of cells requires the orchestration of multiple cellular processes, many of which are inherently dynamical. The conditions under which these dynamical processes entrain each other remain unclear. Here we use synthetic biology to address this question in the case of concurrent cellular oscillations. Specifically, we study at the single-cell level the interaction between the cell division cycle and a robust synthetic gene oscillator in Escherichia coli. Our results suggest that cell division is able to partially entrain the synthetic oscillations under normal growth conditions, by driving the periodic replication of the genes involved in the oscillator. Coupling the synthetic oscillations back into the cell cycle via the expression of a key regulator of chromosome replication increases the synchronization between the two periodic processes. A simple computational model allows us to confirm this effect.

  3. A hybrid model to predict the onset of gas entrainment with surface tension effects

    International Nuclear Information System (INIS)

    The onset of gas entrainment, in a single downward oriented discharge from a stratified gas-liquid region with was modeled. The assumptions made in the development of the model reduced the problem to that of a potential flow. The discharge was modeled as a point-sink. Through use of the Kelvin-Laplace equation the model included the effects of surface tension. The resulting model required further knowledge of the flow field, specifically the dip radius of curvature prior to the onset of gas entrainment. The dip shape and size was investigated experimentally and correlations were provided to characterize the dip in terms of the discharge Froude number. The experimental correlation was used in conjunction with the theoretical model to predict the critical height. The results showed that by including surface tension effects the predicted critical height showed excellent agreement with experimental data. Surface tension reduces the critical height through the Bond number

  4. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment

    Science.gov (United States)

    Chou, Yi-Ju; Shao, Yun-Chuan

    2016-04-01

    In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.

  5. Interactions between Cognition and Circadian Rhythms: Attentional Demands Modify Circadian Entrainment

    OpenAIRE

    Gritton, Howard J.; Sutton, Blair C.; Martinez, Vicente; Sarter, Martin; Lee, Theresa M.

    2009-01-01

    Animals and humans are able to predict and synchronize their daily activity to signals present in their environments. Environmental cues are most often associated with signaling the beginning or the end of a daily activity cycle but they can also be used to time the presentation or availability of scarce resources. If the signal occurs consistently, animals can begin to anticipate its arrival and ultimately become entrained to its presence. While many stimuli can produce anticipation for a da...

  6. Fractal gait patterns are retained after entrainment to a fractal stimulus.

    Directory of Open Access Journals (Sweden)

    Christopher K Rhea

    Full Text Available Previous work has shown that fractal patterns in gait can be altered by entraining to a fractal stimulus. However, little is understood about how long those patterns are retained or which factors may influence stronger entrainment or retention. In experiment one, participants walked on a treadmill for 45 continuous minutes, which was separated into three phases. The first 15 minutes (pre-synchronization phase consisted of walking without a fractal stimulus, the second 15 minutes consisted of walking while entraining to a fractal visual stimulus (synchronization phase, and the last 15 minutes (post-synchronization phase consisted of walking without the stimulus to determine if the patterns adopted from the stimulus were retained. Fractal gait patterns were strengthened during the synchronization phase and were retained in the post-synchronization phase. In experiment two, similar methods were used to compare a continuous fractal stimulus to a discrete fractal stimulus to determine which stimulus type led to more persistent fractal gait patterns in the synchronization and post-synchronization (i.e., retention phases. Both stimulus types led to equally persistent patterns in the synchronization phase, but only the discrete fractal stimulus led to retention of the patterns. The results add to the growing body of literature showing that fractal gait patterns can be manipulated in a predictable manner. Further, our results add to the literature by showing that the newly adopted gait patterns are retained for up to 15 minutes after entrainment and showed that a discrete visual stimulus is a better method to influence retention.

  7. Pulse and entrainment to non-isochronous auditory stimuli: the case of north Indian alap.

    Science.gov (United States)

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one's internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects' internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting 'social' effects of temporally regular music. PMID:25849357

  8. Activating and relaxing music entrains the speed of beat synchronized walking.

    Directory of Open Access Journals (Sweden)

    Marc Leman

    Full Text Available Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  9. Activating and relaxing music entrains the speed of beat synchronized walking.

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  10. Observational estimates of detrainment and entrainment in non-precipitating shallow cumulus

    OpenAIRE

    Norgren, M. S.; Small, J. D.; Jonsson, H. H.; Chuang, P.Y.

    2016-01-01

    Vertical transport associated with cumulus clouds is important to the redistribution of gases, particles, and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus represents an important contribution to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-...

  11. Fractal Gait Patterns Are Retained after Entrainment to a Fractal Stimulus

    Science.gov (United States)

    Rhea, Christopher K.; Kiefer, Adam W.; Wittstein, Matthew W.; Leonard, Kelsey B.; MacPherson, Ryan P.; Wright, W. Geoffrey; Haran, F. Jay

    2014-01-01

    Previous work has shown that fractal patterns in gait can be altered by entraining to a fractal stimulus. However, little is understood about how long those patterns are retained or which factors may influence stronger entrainment or retention. In experiment one, participants walked on a treadmill for 45 continuous minutes, which was separated into three phases. The first 15 minutes (pre-synchronization phase) consisted of walking without a fractal stimulus, the second 15 minutes consisted of walking while entraining to a fractal visual stimulus (synchronization phase), and the last 15 minutes (post-synchronization phase) consisted of walking without the stimulus to determine if the patterns adopted from the stimulus were retained. Fractal gait patterns were strengthened during the synchronization phase and were retained in the post-synchronization phase. In experiment two, similar methods were used to compare a continuous fractal stimulus to a discrete fractal stimulus to determine which stimulus type led to more persistent fractal gait patterns in the synchronization and post-synchronization (i.e., retention) phases. Both stimulus types led to equally persistent patterns in the synchronization phase, but only the discrete fractal stimulus led to retention of the patterns. The results add to the growing body of literature showing that fractal gait patterns can be manipulated in a predictable manner. Further, our results add to the literature by showing that the newly adopted gait patterns are retained for up to 15 minutes after entrainment and showed that a discrete visual stimulus is a better method to influence retention. PMID:25221981

  12. Pulse and entrainment to non-isochronous auditory stimuli: the case of north Indian alap.

    Directory of Open Access Journals (Sweden)

    Udo Will

    Full Text Available Pulse is often understood as a feature of a (quasi- isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani classical music performances (alap, jor and jhala. The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one's internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects' internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic experience and may be an important process supporting 'social' effects of temporally regular music.

  13. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    OpenAIRE

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the p...

  14. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  15. Investigations of entrainment mortality among larval and juvenile fishes using a Power Plant Simulator

    International Nuclear Information System (INIS)

    A Power Plant Simulator (PPS) was constructed at the Oak Ridge National Laboratory to examine the component sources of entrainment mortality. This experimental apparatus circulates temperature-controlled water through a closed loop consisting of a pump, a condenser bundle, and vertically adjustable piping. Larval bluegill, channel catfish, carp, largemouth bass, and smallmouth bass and juvenile bluegill and mosquitofish were exposed to different combinations of pump speed and water temperatures in the PPS. Wide differences among species in their sensitivity to pipe and condenser passage were observed. For most of the species tested, short-term conditional mortalities resulting from the physical stresses of pipe and condenser passage increased with ΔT and/or pumping rate. Pump passage was not a major source of physical damage, and no clear relationship was found between pump efficiency and mortality. Susceptibility to physical stresses associated with entrainment was inversely related to the size of the entrained organisms. Delayed mortality frequently occurred among fishes exposed to stresses in the PPS. However, delayed mortality estimates in these experimental groups were significantly greater than corresponding values in handling control groups in only 15 of 64 comparisons. Like short-term mortalities, relatively higher delayed mortalities were often observed for the smaller species tested

  16. Ichthyoplankton entrainment at Wylfa power station, Anglesey and implications for a further siting proposal

    International Nuclear Information System (INIS)

    A 12 month survey of ichthyoplankton in the cooling water system of Wylfa Power Station and the surrounding 40 km2 of sea, was carried out between October 1986 and September 1987. The larvae of 31 species and the eggs of 8 species were identified in the survey. Samples taken from the cooling water system and by boat from offshore were largely similar in respect of species diversity and density. Estimates of annual losses due to entrainment are given both in terms of immediate losses and consequential losses of adults to the population. Estimates of losses of six commercially exploited species are considered in terms of loss to the commercial fishery. Assuming the 'worst case' of a 100% mortality of eggs and larvae passing through the cooling system, losses of ichthyoplankton due to entrainment at the existing 'magnox' nuclear power station at Wylfa Point are small and could have no significant adverse effect on fish populations of those species entrained. The operation of the proposed 'pressurised water reactor' nuclear power station on the same site would increase losses by up to 100%. Such an increase would still not alter the existing situation. No significant adverse effect is likely. (author)

  17. Measuring the critical conditions for gas entrainment inception at the free surface of water

    International Nuclear Information System (INIS)

    In a liquid metal nuclear reactor using a sodium as coolant, the upper plenum of reactor vessel has a free surface where the coolant sodium contacts with the cover gas. If the cover gas is entrained by the sodium flow at the free surface, the gas causes a change in reactivity of the core and also reduces the heat removal capability of the intermediate heat exchanger. It is important to investigate the critical conditions for the inception of gas entrainment at the free surface. An experimental study has been carried out to measure the critical conditions in the 1/4 section of KALIMER upper plenum with 1/4 length scale in the water test facility. The experimental variables are the mean water level and the flow rate. The measurements have been carried out according to three cases of inception condition. In all of the cases, the relations between the mean level (H) and the flow rate (Q) are represented as H=b1n(Q-a). but the constants a and b are different. Also it is observed that the gas entrainment in the free surface occurs easily when the vane level becomes higher

  18. Entrained phase adsorption of PCDD/F from incinerator flue gases.

    Science.gov (United States)

    Everaert, K; Baeyens, J; Degrève, J

    2003-03-15

    The emission abatement of polychlorinated dioxins and furans (PCDD/F) issued from municipal solid waste incineration (MSWI) is growing in importance because of more stringent emission standards and general health concern. These substances cannot be separated by conventional gas cleanup processes. They are successfully removed through adsorption onto carbonaceous materials, and the entrained-phase injection of pulverized adsorbents in the flue gas, followed by high-efficiency separation, is widely applied. Operating conditions and results obtained in Flemish MSWIs are given. The results illustrate the excellent overall removal efficiency: the regulation limit of 0.1 ng TEO/Nm3 dry gas at 11% O2 can be achieved. Furans are adsorbed to a slightly higher extent than the dioxins. The PCDD/F removal by carbonaceous adsorbents is thereafter modeled from first principles for the contribution of both entrained-phase (eta1) and cake filtration (eta2) to the overall efficiency (etaT), with dominant parameters being the operating temperature, the dosage and activity of adsorbent, and the fraction of adsorbent in the filter cake. Application of the model equations and comparison of measured and predicted overall efficiencies for the Flemish MSWIs demonstrate the validity of the model, which enables the MSWI operators both to predict the adsorption efficiencies for combinations of major operating parameters and to assess the sensitivity of the process to varying operating conditions. Finally, some practical difficulties encountered with the entrained-phase adsorption are discussed. PMID:12680678

  19. Experimental Study on Aqueous Phase Entrainment in a Mixer-settler with Double Stirring Mode

    Institute of Scientific and Technical Information of China (English)

    Wang Shuchan; Zhang Tingan; Zhao Qiuyue; Liu Yan; Wu Qiuyang

    2013-01-01

    The mixer-settler is a core device of solvent extraction for separating rare earth elements. There are some adverse effects like high rare earth accumulation and poor production efifciency during industrial production. Current researches usually focus on changing the structure of the mixer-settler without making a breakthrough towards gravity clariifcation. In this paper, in order to improve the efifciency of clariifcation, a mixer-settler with double stirring mode was designed and manufactured by adding a stirring device in the settler after reducing the volume of the settler. The innovation of this research involves adopting the ultraviolet-visible spectrophotometer to investigate the quantity of aqueous phase entrainment at the settler outlet in order to measure the clariifcation degree. Experimental results show that the clariifcation effect with stirring is better than that without stirring. The clariifcation effect is ameliorated as the stirring speed increases. Generally, the clariifcation effect shows a best condition when the offset distance is 12.5 cm, making the phase entrainment reduced to less than 0.1%. When the clearance over the tank bottom is 7 cm and 10 cm, respectively, the quantity of aqueous phase entrainment is better than the case with a clearance of 4 cm. The results show that the stirring paddle close to the mixed phase zone can better promote the two-phase separation.

  20. Leak detection on the DIII-D tokamak using helium entrainment techniques

    International Nuclear Information System (INIS)

    The entrainment of helium in a viscous gas flow was utilized first to compartmentalize, and then to pinpoint a leak across the inner skin of the double-walled DIII-D vacuum vessel. Inaccessible from the outside, the leak connected the cooling channels in the wall interspace with the primary vacuum chamber. By entraining helium in the pressurized flow from the single-pass DIII-D gas circulation system, it was possible to expose well-defined portions of the wall to helium without disassembly of the poorly accessible cooling channel manifolds. Varying the point on the gas inlet manifold at which helium was injected permitted the localization of the leak to a single 300 toroidal sector of the vessel. The exact location of the leak was found from inside the vessel by spraying helium on suspect regions of the armor-clad skin, while sweeping the contents of the small-bore cooling channels to the foreline of a Varian Contraflow/T leak detector with a 0.1 Pa-m3/s flow of nitrogen. Model calculations of the cooling tube geometry were used to predict the response time to entrained helium of the actual leak detection setup

  1. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  2. Observing entrainment in music performance : video-based observational analysis of Indian musicians’ tanpura playing and beat marking.

    OpenAIRE

    Clayton, Martin R. L.

    2007-01-01

    Entrainment has been suggested as an important phenomenon underlying aspects of musical behaviour, and is attracting increasing attention in music psychology (see e.g. Large and Jones, 1999; Large, 2000), and in ethnomusicology (Clayton, Sager and Will, 2005). Approaches to its study in ethnomusicology must address a significant methodological problem: how to study entrainment phenomena in an ecologically valid manner, and to integrate this process into a programme of ethnographic research. V...

  3. Maternal entrainment of the developing circadian system in the Siberian hamster (Phodopus sungorus).

    Science.gov (United States)

    Duffield, G E; Ebling, F J

    1998-08-01

    The aim of these studies was to investigate maternal entrainment of developing circadian locomotor activity rhythms in the Siberian hamster. In Experiment 1, mothers were transferred from a 16:8 LD cycle into constant dim red light (DD) from the day of parturition, and wheel-running activity of the mother and pups was individually monitored from the time of weaning. The phases of the individual pups' rhythms were found to be synchronized both to the phase of the mother and to the phase of lights off (ZT 12) of the photo cycle that the mother was exposed to until the day of parturition. To investigate whether this synchrony might reflect direct effects of light acting upon the fetal circadian system in late gestation, the experiment was repeated but with mothers placed into DD early in pregnancy (circadian system. The third experiment investigated whether this entrainment occurred during the postnatal period. Breeding pairs were maintained on alternative light-dark cycles, LD and DL, that were 12 h out of phase. Litters born to mothers on one light-dark cycle were exchanged on the day of birth with foster mothers from the reversed light-dark cycle, then raised in DD. Control litters exchanged between mothers from the same light-dark cycle had similar litter synchrony as shown by nonfostered litters of Experiment 1. However, pups cross-fostered with mothers on reversed LD cycles showed a very different distribution of pup phases. Pups were not synchronized to their natural mother but to their foster mother. Moreover, pups were more scattered over the 24-h period and were found to be significantly synchronized to the phase of the reversed LD cycle. These results demonstrate the occurrence of postnatal entrainment in the Siberian hamster. The increased scatter produced by the cross-fostering paradigm results from some litters being completely entrained to the phase of the foster mother, some with an intermediate distribution between the phase of the natural and foster

  4. An agent framework for dynamic agent retraining: Agent academy

    OpenAIRE

    Mitkas, P.; A. Symeonidis; Kechagias, D.; Athanasiadis, I.N.; Laleci, G.; KURT, G.; Kabak, Y.; Acar, A.; Dogac, A.

    2004-01-01

    Agent Academy (AA) aims to develop a multi-agent society that can train new agents for specific or general tasks, while constantly retraining existing agents in a recursive mode. The system is based on collecting information both from the environment and the behaviors of the acting agents and their related successes/failures to generate a body of data, stored in the Agent Use Repository, which is mined by the Data Miner module, in order to generate useful knowledge about the application domai...

  5. Are non-human primates capable of rhythmic entrainment?Evidence for the gradual audiomotor evolution hypothesis

    Directory of Open Access Journals (Sweden)

    Hugo eMerchant

    2014-01-01

    Full Text Available We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in nonhuman primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing. This hypothesis accommodates the fact that nonhuman primates (i.e. macaques performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception, but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization and continuation. Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of nonhuman primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  6. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor

    International Nuclear Information System (INIS)

    Highlights: ► Gasification phenomena of raw bamboo, torrefied bamboo, and coal are studied. ► The carbon conversions of the three fuels are higher than 90%. ► The coal gas efficiency is sensitive to the type of fuel. ► The gasification performance of torrefied bamboo is enhanced and closer to that of coal. ► With optimum operation, syngas formation from torrefied biomass is amplified by 88%. - Abstract: Gasification of torrefied biomass is a promising technique for producing synthesis gas (syngas) of higher quality than has previously been available. In this study, in order to evaluate the potential of the technique, gasification processes for three different materials, which include raw bamboo, torrefied bamboo (at 280 °C for 1 h), and high-volatile bituminous coal in an entrained-flow gasifier using O2 as the gasification agent, are studied numerically and compared to each other. The obtained results suggest that in all cases, the carbon conversions of the three fuels are higher than 90%. However, the cold gasification efficiency for raw bamboo is low, mainly due to the relatively lower calorific value of the material. In the case of the torrefied bamboo fuel, the gasification performance is enhanced significantly and is quite similar to the coal gasification under the same conditions. It appears that the optimum oxygen-to-fuel mass flow ratios for the gasification of raw bamboo, torrefied bamboo, and coal are 0.9, 0.7, and 0.7, and their equivalence ratios are 0.692, 0.434, and 0.357, respectively. Under optimum conditions with respect to the equivalence ratio, the cold gas efficiency of torrefied bamboo is improved by 88%, as compared to raw bamboo

  7. INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gorshkov Pavel Vladimirovich

    2012-10-01

    Full Text Available Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4 and ductile ones (with the water-to-cement ratio equal to 0.5…0.7. Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength. However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

  8. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    Science.gov (United States)

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972685

  9. Experimental Investigation of Entrainment Rate by Debris Flows: from Shear Stress to Granular Temperature

    Science.gov (United States)

    Hill, K. M.; Longjas, A.; Moberly, D.

    2015-12-01

    Debris flows - flows of boulders, gravel, sand, fine particles, and fluids - erode sediment from steep hillsides and deposit them at lower slopes. Current model frameworks for erosion by debris flow vary significantly and include those that consider macroscopic fields such as excess shear stresses, similar to traditional models of bedload transport, to those that consider the "granular" physics, from force chains (related to bed fabric) to granular temperatures (related to random kinetic energy of the flow). We perform experiments to investigate the underlying mechanics associated with entrainment of bed materials by overlying flows in an instrumented laboratory debris flow flume. In particular, we investigate how the erosion rate of a flowing mass impinging on an erodible bed of particles depends on boundary conditions, dynamics of the flow, and the state of the bed. Using high speed imaging to capture average and instantaneous particle dynamics simultaneously with bed stress measurements, we investigate the effectiveness of a variety of model frameworks for capturing the relationships between flow dynamics and erosion rates. We find no correlation between the bed shear stress associated with the mass of the flow and erosion rate. Similarly, we found no correlation between the erosion rate and a Reynolds stress, that is, the stress associated with correlations between downstream and vertical velocity fluctuations. On the other hand, we found that granular temperature is well-correlated with entrainment rate during particular phases of our experimental debris flow. In particular, we found the instantaneous entrainment rate ɛ is linearly dependent on the ratio of the granular temperature Tg to the kinetic energy associated with the average flow velocity u: ɛ ~ (Tg / ρm u2) where ρm is the local instantaneous density of the flow. We present these results and discuss how they vary with the state of the flow, boundary conditions, and particle mixtures.

  10. A real-scale field experiment of debris flow for investigating its deposition and entrainment

    Science.gov (United States)

    Paik, J.; Son, S.; Kim, T.; Kim, S.

    2012-12-01

    In mountain area debris flows typically mobilize from slides and entrain channel materials as they propagate down over the surface of hill slope and valley. Consequently, cross-sectional averaged discharge of debris flows may increases due to the entrainment of channel materials over steep slopes while decrease due to deposition of large material at mile slopes. In this work, the erosional and depositional patterns of debris flow have been investigated through a real-scale field experiment in a mountain basin in Gangwon, Korea. The experimental basin is about 800 m long and the channel width ranges between 8 m and 25 m. The angle of the channel slope varies from 38° near the upstream end to 5° at the downstream end where a check has been installed. In the experiment, 300 cubic meters of saturated solid-fluid mixture is suddenly released by opening a gate of a concrete reservoir installed at the upstream of the basin, along with additional 10.0 cubic meters of water per second for 30 seconds. We employ several sensors for measuring the speed, depth variation and total normal and fluid pore pressures at the channel bed as the debris flow propagates downslope. The velocity and depth of the debris flow are measured using ultrasonic sensors with a measuring range up to 10 m and video recording systems. A load cell and eight pore pressure transducers ranging up 30 psia are used to measure the total normal and pore-water pressures at the base of the debris flow. Through a quantitative analysis of these experimental measurements and high-resolution LiDAR topographic data we investigate the deposition and entrainment features of debris flow. We introduce the details of the full-scale experimental basin, facility, sensors and procedure, and provide some our experimental observations.

  11. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  12. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  13. Co-combustion of coal and SRF in an entrained flow reactor: a preliminary study

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming;

    2009-01-01

    Investigations on co-firing of SRF with two kinds of bituminous coal were carried out in an entrained flow reactor. The experimental results showed that co-combustion of coal and SRF increased the unburnt carbon in fly ashes. The emissions of NO and SO2 were reduced with an increasing share of SRF...... slightly with an increasing share of SRF. For SAKLEI coal and SRF cocombustion, the deposit formation rate showed an increasing trend up to 10 mass percent of SRF, and started to decrease at a higher SRF share. By analyzing the ash samples, it has been found that the concentrations of some trace elements...

  14. Entrained Flow Reactor Study of K-Capture by Solid Additives

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao;

    2016-01-01

    A method to simulate the reaction between gaseous K-species and solid additives, at suspension fired conditions has been developed, using an entrained flow reactor (EFR). A water slurry containing solid additives (kaolin or coal fly ash) and KCl, is injected into the EFR and the solid products...... of additives, rose when increasing the molar ratio of K/(Al+Si) in the reactants. A change of the reaction temperature, from 1100 °C to 1450 °C, did not significantly influence the extent of the reaction, which is in contradiction to the trend observed in previous fixed-bed reactor studies. The method using...

  15. Agent Chameleons: Virtual Agents Real Intelligence

    OpenAIRE

    O'Hare, Gregory; Duffy, Brian; Schoen-Phelan, Bianca; Martin, Alan; Bradley, John

    2003-01-01

    Agent Chameleons provides virtual agents powered by real intelligence, delivering next generation autonomic entities that can seamlessly migrate, mutate and evolve on their journey between and within physical and digital information spaces.

  16. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  17. Study on Models of Multi-Agent System Based Group Aircraft Cooperative Air Combat Command Control System%基于 Multi-Agent System的群机协同空战指挥控制系统模型的研究

    Institute of Scientific and Technical Information of China (English)

    刘金星; 佟明安

    2001-01-01

    研究了由多个智能Agent(Multi-Agent System)组成的群机协同空战指挥控制系统的总体结构及基于BDI(Belief、Desire、Intention)结构的Agent对空战环境的感知模型、作战意图模型、决策模型和通讯行为.

  18. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review

    Science.gov (United States)

    Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu

    2016-04-01

    This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.

  19. Interacting agents in finance

    NARCIS (Netherlands)

    C. Hommes

    2008-01-01

    Interacting agents in finance represent a behavioural, agent-based approach in which financial markets are viewed as complex adaptive systems consisting of many boundedly rational agents interacting through simple heterogeneous investment strategies, constantly adapting their behaviour in response t

  20. Episodic entrainment of deep primordial mantle material into ocean island basalts.

    Science.gov (United States)

    Williams, Curtis D; Li, Mingming; McNamara, Allen K; Garnero, Edward J; van Soest, Matthijs C

    2015-01-01

    Chemical differences between mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) provide critical evidence that the Earth's mantle is compositionally heterogeneous. MORBs generally exhibit a relatively low and narrow range of (3)He/(4)He ratios on a global scale, whereas OIBs display larger variability in both time and space. The primordial origin of (3)He in OIBs has motivated hypotheses that high (3)He/(4)He ratios are the product of mantle plumes sampling chemically distinct material, but do not account for lower MORB-like (3)He/(4)He ratios in OIBs, nor their observed spatial and temporal variability. Here we perform thermochemical convection calculations which show the variable (3)He/(4)He signature of OIBs can be reproduced by deep isolated mantle reservoirs of primordial material that are viscously entrained by thermal plumes. Entrainment is highly time-dependent, producing a wide range of (3)He/(4)He ratios similar to that observed in OIBs worldwide and indicate MORB-like (3)He/(4)He ratios in OIBs cannot be used to preclude deep mantle-sourced hotspots. PMID:26596781

  1. Finding the beat: From socially coordinated vocalizations in songbirds to rhythmic entrainment in humans.

    Directory of Open Access Journals (Sweden)

    Jonathan Isaac Benichov

    2016-06-01

    Full Text Available Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds’ abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a vocal robot partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.

  2. Finding the Beat: From Socially Coordinated Vocalizations in Songbirds to Rhythmic Entrainment in Humans

    Science.gov (United States)

    Benichov, Jonathan I.; Globerson, Eitan; Tchernichovski, Ofer

    2016-01-01

    Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds' abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a “vocal robot” partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans. PMID:27375455

  3. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  4. Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique

    Directory of Open Access Journals (Sweden)

    Juan Antonio Bravo-Aranda

    2015-05-01

    Full Text Available Measurements on 27 June 2011 were performed over the Southern Iberian Peninsula at Granada EARLINET station, using active and passive remote sensing and airborne and surface in-situ data in order to study the entrainment processes between aerosols in the free troposphere and those in the planetary boundary layer (PBL. To this aim the temporal evolution of the lidar depolarisation, backscatter-related Angström exponent and potential temperature profiles were used in combination with the PBL contribution to the aerosol optical depth (AOD. Our results show that the mineral dust entrainment in the PBL was caused by the convective processes which ‘trapped’ the lofted mineral dust layer, distributing the mineral dust particles within the PBL. The temporal evolution of ground-based in-situ data evidenced the impact of this process at surface level. Finally, the amount of mineral dust in the atmospheric column available to be dispersed into the PBL was estimated by means of POLIPHON (Polarizing Lidar Photometer Networking. The dust mass concentration derived from POLIPHON was compared with the coarse-mode mass concentration retrieved with airborne in-situ measurements. Comparison shows differences below 50 µg/m3 (30% relative difference indicating a relative good agreement between both techniques.

  5. Rev-erbα in the brain is essential for circadian food entrainment.

    Science.gov (United States)

    Delezie, Julien; Dumont, Stéphanie; Sandu, Cristina; Reibel, Sophie; Pevet, Paul; Challet, Etienne

    2016-01-01

    Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability. PMID:27380954

  6. Entrainment phenomenon in gas–liquid two-phase flow: A review

    Indian Academy of Sciences (India)

    R K Bagul; D S Pilkhwal; P K Vijayan; J B Joshi

    2013-12-01

    The gas–liquid separation equipments are aimed to be designed for maximum efficiency of phase separation. In order to maximize their capacity the flow rates are required to be optimized for the capital cost of equipment. This leads to the situation where the gas phase leaves the separation interface with high velocities and carry liquid phase along with it in the form of droplets reducing the equipment efficiency. This is known as entrainment or carryover. Depending on the nature of the separation interface i.e., turbulence intensity, bubble dynamics, the size and velocity distribution of liquid fragments, droplets at the separation interface varies. This is the main source of empiricism involved in the analysis of such equipments. The mechanics of motion of the dispersed liquid phase in bulk of gas is relatively well studied. In the present paper the various experimental, analytical and numerical investigations carried out to address the issues of entrainment/carryover are carefully analyzed. Further, a critical review has been presented for bringing out a coherent theme and a current status of the subject under reference.

  7. Biological evaluation of devices used for reducing entrainment and impingement losses at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Szluha, A.T.

    1978-01-01

    A preliminary survey of fish protection devices either in use or proposed for water intake structures was conducted for the purpose of assessing their potential for reducing impingement and entrainment. All the designs examined can be divided into two basic categories: behavioral screening systems and physical screening systems. The behavioral screening devices rely upon the ability of fish to sense artificial stimuli and respond by swimming away from hazardous areas. These systems are of little or no value in protecting planktonic fish eggs, larvae, and disoriented, heat-shocked, or lethargic adult fishes. Many of the physical screening devices, on the other hand, require the impingement of organisms against a screen before they can be removed from the intake system, thus subjecting survival. Some of the designs incorporate both behavioral and physical sceening concepts. Six devices were selected for further consideration based on their potential or demonstrated effectiveness in reducing impingement and entrainment losses at a variety of intake situations. The structures evaluated were modified vertical traveling screens, louvers, angled vertical traveling screens, horizontal traveling screens, center-flow screens, and wedge-wire screens. Since some of these intake structures represent new concepts, few laboratory or in situ biological studies have been carried out. For others, actual reductions in fish losses have been demonstrated. The design features and status of biological testing is discussed for each device, and an evaluation of their fish protection potential is presented.

  8. Experimental investigation of free surface vortices and definition of gas entrainment occurrence maps

    Science.gov (United States)

    Caruso, G.; Cristofano, L.; Nobili, M.; Vitale Di Maio, D.

    2014-04-01

    For the future development of Generation IV nuclear reactors, both safety and economic targets have to be achieved. In order to increase, at the same time, the power density generation and the safety features, a huge R&D effort is still required. Referring especially to Liquid Metal Cooled Fast Reactors, much attention is placed on Gas Entrainment (GE) phenomena, which could cause unlikely positive reactivity insertion accident. The GETS experimental facility (Gas Entrainment Test Section), especially aimed at studying the free surface vortices occurrence, has been built in the thermal-hydraulics laboratory of the DIAEE. The main purpose of this facility is to identify the most important parameters affecting the whirlpools formation and evolution. Experimental tests and preliminary observations have been performed. Different vortex behaviours related to different experimental conditions have been identified and presented in the present paper. 2D occurrence maps as function of different dimensionless groups (Reynolds, Froude and Weber numbers and H* = H/d ratio) have been defined. In the present paper, the results of a first experimental campaign, carried out with tap water, are discussed.

  9. Removal of PCDD/F from incinerator flue gases by entrained-phase adsorption.

    Science.gov (United States)

    Everaert, K; Basyens, J; Degrève, J

    2002-12-01

    The emission abatement of polychlorinated dioxins and furans (PCDD/F) Issued from municipal solid waste incineration is growing in importance because of more stringent emission standards and general concern about their toxic characteristics. These substances cannot be separated by conventional gas cleanup processes but are successfully removed through adsorption onto carbonaceous materials. The simplest technique is the entrained-phase injection of pulverized adsorbents in the flue gas, followed by fabric filter separation. The various related techniques are briefly reviewed here. Operating conditions and results obtained from Flemish MSWIs are given. The results illustrate the excellent overall removal efficiency. Furans are adsorbed to a slightly higher extent than dioxins. PCDD/F removal by carbonaceous adsorbents is thereafter modeled from first principles for the contribution of both entrained-phase (eta1) and cake filtration (eta2) to the overall efficiency (etaT). Application of the model equations and comparison of measured and predicted overall efficiencies for the Flemish municipal solid waste incinerators (MSWIs) demonstrate that the approach is meaningful and that the dominant parameters are the operating temperature, the dosage and activity of adsorbent, and the fraction of adsorbent in the filter cake. The model equations enable the MSWI operators to predict the adsorption efficiencies for any combination of operating parameters and to assess the sensitivity of the process to varying operating conditions. PMID:12540043

  10. Experimental investigation of free surface vortices and definition of gas entrainment occurrence maps

    International Nuclear Information System (INIS)

    For the future development of Generation IV nuclear reactors, both safety and economic targets have to be achieved. In order to increase, at the same time, the power density generation and the safety features, a huge R and D effort is still required. Referring especially to Liquid Metal Cooled Fast Reactors, much attention is placed on Gas Entrainment (GE) phenomena, which could cause unlikely positive reactivity insertion accident. The GETS experimental facility (Gas Entrainment Test Section), especially aimed at studying the free surface vortices occurrence, has been built in the thermal-hydraulics laboratory of the DIAEE. The main purpose of this facility is to identify the most important parameters affecting the whirlpools formation and evolution. Experimental tests and preliminary observations have been performed. Different vortex behaviours related to different experimental conditions have been identified and presented in the present paper. 2D occurrence maps as function of different dimensionless groups (Reynolds, Froude and Weber numbers and H* = H/d ratio) have been defined. In the present paper, the results of a first experimental campaign, carried out with tap water, are discussed.

  11. Investigations of Protostellar Outflow Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular Emission

    CERN Document Server

    Offner, S S R

    2013-01-01

    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from $\\theta$=0.01-0.1 and find that even well collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in the surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to a simulation of a cluster of protostars, which is not gravitationally ...

  12. A visual study of the growth and entrainment of turbulent spots

    International Nuclear Information System (INIS)

    An investigation of turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate is reported. The plate is towed through an 18 m water channel. The plate is mounted under a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated by a solenoid valve that ejects a small amount of water through a small hole located downstream from the leading edge. The displacement thickness Reynolds number at the ejection hole is 625. Several visualization techniques are employed that utilize fluorescent dye. In one novel technique, thin horizontal dye layers are laid prior to towing the plate. These layers remain thin due to the inhibition of vertical motion caused by a weak saline stratification in the tank. The layers remain quiescent until visible disturbed by the spot on the towed plate. The fluorescent dye is made visible by using sheets of argon laser light which are projected perpendicular to each of the three axes as required. The experimental results are documented on cine films, and provide further insight into the growth and entrainment of turbulent spots. In particular, the results strongly suggest that another mechanism, in addition to entrainment, is needed to explain the lateral growth characteristics of the turbulent zone defining the spot. This mechanism appears to be a result of the turbulence in the spot destabilizing the unstable laminar boundary layer in the neighborhood of the spot. (orig.)

  13. Volume entrained in the wake of a disk intruding into an oil-water interface

    Science.gov (United States)

    Peters, Ivo R.; Madonia, Matteo; Lohse, Detlef; van der Meer, Devaraj

    2016-07-01

    An object moving through a plane interface into a fluid deforms the interface in such a way that fluid from one side of the interface is entrained into the other side, a phenomenon known as Darwin's drift. We investigate this phenomenon experimentally using a disk which is started exactly at the interface of two immiscible fluids, namely, oil and water. First, we observe that due to the density difference between the two fluids the deformation of the interface is influenced by gravity and show that there exists a time window of universal behavior. Second, we show by comparing with boundary integral simulations that, even though the deformation is universal, our results cannot be fully explained by potential flow solutions. We attribute this difference to the starting vortex, which is created in the wake of the disk. Besides contributing significantly to entrainment directly, the vortex also influences the interface deformation due to Darwin's drift. Universal behavior is preserved, however, because the size and strength of the vortex shows the same universality as the potential flow solution.

  14. Characterization of liquid entrainment in the AP1000 automatic depressurization system from APEX tests

    International Nuclear Information System (INIS)

    Full text of publication follows: The AP1000 is a 1000 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 relies heavily on the 600 MWe AP600 which received design certification in 1999. A critical part of the AP600 design certification process involved the testing of the passive safety systems. A one-fourth height, one-fourth pressure test facility, APEX-600, was constructed at the Oregon State University to study design basis events, and to provide a body of data to be used to validate the computer models used to analyze the AP600. This facility was extensively modified to reflect the design changes for AP1000 including higher power in the electrically heated rods representing the reactor core, and changes in the size of the pressurizer, core makeup tanks and automatic depressurization system. The APEX-1000 test facility was used to perform design basis accident simulations and separate effects tests to support the AP1000 design certification process. In the event of a LOCA, the AP1000 passive core cooling system provides sources of core makeup water along with an automatic depressurization system (ADS) consisting of several stages of valves which reduce the reactor coolant system pressure in a controlled manner. The final stage of this system, ADS-4, consists of four large valves that open off the hot legs, reducing the pressure to allow gravity injection from the in-containment refueling water storage tank (IRWST) and eventually the containment sump. The 67% increase in power from AP600 to AP1000 results in proportionally larger steam velocities exiting the core. Higher steam velocities could increases the potential for significant liquid entrainment out the ADS-4 lines, affecting the liquid inventory in the reactor. Tests were performed in APEX-1000 to characterize the two

  15. Characterization of liquid entrainment in the AP1000 automatic depressurization system from APEX tests

    Energy Technology Data Exchange (ETDEWEB)

    Richard F Wright; Terry L Schulz [Westinghouse Electric Co., PO Box 355, Pittsburgh, PA (United States); Jose N Reyes; John Groome [Oregon State University, Corvallis, OR (United States)

    2005-07-01

    Full text of publication follows: The AP1000 is a 1000 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 relies heavily on the 600 MWe AP600 which received design certification in 1999. A critical part of the AP600 design certification process involved the testing of the passive safety systems. A one-fourth height, one-fourth pressure test facility, APEX-600, was constructed at the Oregon State University to study design basis events, and to provide a body of data to be used to validate the computer models used to analyze the AP600. This facility was extensively modified to reflect the design changes for AP1000 including higher power in the electrically heated rods representing the reactor core, and changes in the size of the pressurizer, core makeup tanks and automatic depressurization system. The APEX-1000 test facility was used to perform design basis accident simulations and separate effects tests to support the AP1000 design certification process. In the event of a LOCA, the AP1000 passive core cooling system provides sources of core makeup water along with an automatic depressurization system (ADS) consisting of several stages of valves which reduce the reactor coolant system pressure in a controlled manner. The final stage of this system, ADS-4, consists of four large valves that open off the hot legs, reducing the pressure to allow gravity injection from the in-containment refueling water storage tank (IRWST) and eventually the containment sump. The 67% increase in power from AP600 to AP1000 results in proportionally larger steam velocities exiting the core. Higher steam velocities could increases the potential for significant liquid entrainment out the ADS-4 lines, affecting the liquid inventory in the reactor. Tests were performed in APEX-1000 to characterize the two

  16. Operations on Rigid Formations of Autonomous Agents

    OpenAIRE

    Eren, Tolga; Anderson, Brian D. O.; Morse, A. Stephen; Whiteley, Walter; Belhumeur, Peter N.

    2003-01-01

    This paper is concerned with the maintenance of rigid formations of mobile autonomous agents. A key element in all future multi-agent systems will be the role of sensor and communication networks as an integral part of coordination. Network topologies are critically important for autonomous systems involving mobile underwater, ground and air vehicles and for sensor networks. This paper focuses on developing techniques and strategies for the analysis and design of sensor a...

  17. Halide test agent replacement study

    Energy Technology Data Exchange (ETDEWEB)

    Banks, E.M.; Freeman, W.P.; Kovach, B.J. [and others

    1995-02-01

    The intended phaseout of the chlorofluorocarbons (CFCs) from commercial use required the evaluation of substitute materials for the testing for leak paths through both individual adsorbers and installed adsorbent banks. The American Society of Mechanical Engineers (ASME) Committee on Nuclear Air and Gas Treatment (CONAGT) is in charge of maintaining the standards and codes specifying adsorbent leak test methods for the nuclear safety related air cleaning systems. The currently published standards and codes cite the use of R-11, R-12 and R-112 for leak path test agents. All of these compounds are CFCs. There are other agencies and organizations (USDOE, USDOD and USNRC) also specifying testing for leak paths or in some cases for special life tests using the above compounds. The CONAGT has recently developed criteria for the suitability evaluation of substitute test agents. On the basis of these criteria, several compounds were evaluated for their acceptability as adsorbent bed leak and life test agents. The ASME CONAGT Test Agent Qualification Criteria. The test agent qualification is based on the following parameters: (1) Similar retention times on activated carbons at the same concentration levels as one of the following: R-11, R-12, R-112 or R-112a. (2) Similar lower detection limit sensitivity and precision in the concentration range of use as R-11, R-12, R-112 and R-112a. (3) Gives the same in-place leak test results as R-11, R-12, R-112, or R-112a. (4) Chemical and radiological stability under the use conditions. (5) Causes no degradation of the carbon and its impregnant or of the other NATS components under the use conditions. (6) Is listed in the USEPA Toxic Substances Control Act (TSCA) inventory for commercial use.

  18. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  19. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number. PMID:25225935

  20. WALL PRESSURE FLUCTUATIONS OF TURBULENT FLOW OVER BACKWARD-FACING STEP WITH AND WITHOUT ENTRAINMENT: MICROPHONE ARRAY MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    KE Feng; LIU Ying-zheng; WANG Wei-zhe; CHEN Han-ping

    2006-01-01

    Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acquire the time-averaged static pressure and fluctuating pressure, respectively. The differences of two flows were scrutinized in terms of static pressure characteristics, pressure fluctuations, cross-correlation and coherence of wall pressure. Introduction of the entrainment increased scale of large-scale vortical structure and reduced its convection velocity. However, shedding frequency of large-scale vortical structures was found to be the same for both flows.

  1. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2015-01-01

    analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process....... The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated...... torrefaction benefits most from the integration of electrolysis....

  2. Fluid forces or impacts, what governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?

    CERN Document Server

    Pähtz, Thomas

    2016-01-01

    To sustain steady sediment transport, the loss of transported particles that become trapped in the soil bed must be balanced by the entrainment of bed particles through fluid forces or energetic impacts of transported particles. Here we show that the transition to fully impact-sustained transport occurs at a critical impact number $\\mathrm{Im}=\\Theta\\mathrm{Re}\\sqrt{s}\\approx3$, where $\\Theta$ is the Shields number, $\\mathrm{Re}$ the particle Reynolds number, and $s$ the particle-fluid-density ratio. Hence, fluid entrainment is negligible for most regimes, including turbulent bedload transport.

  3. Hydraulic air pumps for low-head hydropower

    OpenAIRE

    Howey, DA; Pullen, KR

    2009-01-01

    Hydropower is a proven renewable energy resource and future expansion potential exists in smaller-scale, low-head sites. A novel approach to low-head hydropower at run-of-river and tidal estuary sites is to include an intermediate air transmission stage. Water is made to flow through a siphon, rather than a conventional water turbine, and at the top of the siphon the pressure is sub-atmospheric and air is entrained into the water. The siphon forms a novel, hydraulically powered vacuum pump or...

  4. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  5. Volume entrained in the wake of a disc intruding into an oil-water interface

    CERN Document Server

    Peters, Ivo R; Lohse, Detlef; van der Meer, Devaraj

    2016-01-01

    An object moving through a plane interface into a fluid deforms the interface in such a way that fluid from one side of the interface is entrained into the other side, a phenomenon known as Darwin's drift. We investigate this phenomenon experimentally using a disc which is started exactly at the interface of two immiscible fluids, namely oil and water. First, we observe that due to the density difference between the two fluids the deformation of the interface is influenced by gravity, and show that there exits a time window of universal behavior. Secondly, we show by comparing with boundary integral simulations that, even though the deformation is universal, our results cannot be fully explained by potential flow solutions. We attribute this difference to the starting vortex, which is created in the wake of the disc. Universal behavior is preserved, however, because the size and strength of the vortex shows the same universality as the potential flow solution.

  6. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier

    Energy Technology Data Exchange (ETDEWEB)

    See Hoon Lee; Sang Jun Yoon; Ho Won Ra; Young Il Son; Jai Chang Hong; Jae Goo Lee [Korean Institute of Energy Research, Taejon (Republic of Korea). Gasification Research Group

    2010-08-15

    To enhance clean energy utilization and reduce greenhouse gases, various gasification technologies have been developed in the world. The gasification characteristics, such as syngas flow rate, compositions, cold gas efficiency and carbon conversion, of petroleum coke and mixture of petroleum coke and lignite were investigated in a 1 T/d entrained-flow gasifier (ID. 0.2 m x height 1.7 m) with quencher as a syngas cooler. CO concentration was 31-42 vol% and H{sub 2} concentration was almost 22 vol% in the gasification experiments of petroleum coke. In the case of mixture of petroleum coke and lignite, CO concentration was 37-47 vol% and H{sub 2} concentration was almost 25 vol% due to synergy effect. The gasification of mixture resulted in higher syngas heating value and cold gas efficiency because of the higher H{sub 2} and CO composition in syngas.

  7. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, See Hoon; Yoon, Sang Jun; Ra, Ho Won; Son, Young Il; Hong, Jai Chang; Lee, Jae Goo [Gasification Research Group, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-08-15

    To enhance clean energy utilization and reduce greenhouse gases, various gasification technologies have been developed in the world. The gasification characteristics, such as syngas flow rate, compositions, cold gas efficiency and carbon conversion, of petroleum coke and mixture of petroleum coke and lignite were investigated in a 1 T/d entrained-flow gasifier (I.D. 0.2 m x height 1.7 m) with quencher as a syngas cooler. CO concentration was 31-42 vol% and H{sub 2} concentration was almost 22 vol% in the gasification experiments of petroleum coke. In the case of mixture of petroleum coke and lignite, CO concentration was 37-47 vol% and H{sub 2} concentration was almost 25 vol% due to synergy effect. The gasification of mixture resulted in higher syngas heating value and cold gas efficiency because of the higher H{sub 2} and CO composition in syngas. (author)

  8. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    Science.gov (United States)

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  9. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

    Science.gov (United States)

    Choi, Kyuhyun; Lee, Youngin; Lee, Changwoo; Hong, Seokheon; Lee, Soonje; Kang, Shin Jung; Shin, Ki Soon

    2016-01-01

    The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ -aminobutyric acid) is a major inhibitory neurotransmitter activating both GABAA receptors and GABAB receptors. Depending on intracellular chloride concentration, however, GABAA receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABAA receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABAB receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABAA and inhibitory GABAB receptors, thereby entraining the firing of MHb neurons. PMID:27703268

  10. Hydrodynamically-driven colloidal assembly in the thin-film entrainment regime

    CERN Document Server

    Colosqui, Carlos E; Stone, Howard H

    2012-01-01

    We study numerically the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth and uniform substrates. Below a critical withdrawal speed of the substrate, capillary forces required to deform the meniscus prevent colloidal particles from entering the coating film. Capillary forces are overcome by hydrodynamic drag only after a minimum number of particles organize in a close-packed formation within the meniscus. Once within the film, the formed assembly moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces can thus produce periodic and regular structures within the curved meniscus that extends below the withdrawn film. The hydrodynamically-driven assembly documented here is consistent with stripe pattern formations observed experimentally in the so-called thin-film entrainment regime.

  11. Theoretical analysis of the onset of liquid entrainment for slots of finite width

    International Nuclear Information System (INIS)

    The onset of liquid entrainment during discharge from large reservoirs containing a stratified mixture of two immiscible fluids through a side slot of a finite width is considered theoretically. A previously reported analysis in which the slot was approximated as a two-dimensional line sink has been extended to account for the finite width of the slot. The model resulting from the present analysis is expressed in terms of two simple algebraic equations suitable for hand calculations. According to the present results, the ratio of the critical height to the slot width is dependent only on the Froude number. Numerical results show that the present model approaches the correct physical limits at low Froude numbers and it converges to the predictions of the previously reported simple model at high Froude numbers. (author)

  12. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea

    Science.gov (United States)

    He, Xianqiang; Xu, Dongfeng; Bai, Yan; Pan, Delu; Chen, Chen-Tung Arthur; Chen, Xiaoyan; Gong, Fang

    2016-08-01

    The South China Sea (SCS) is the world's largest tropical marginal sea with an oligotrophic basin. In June 2015, a rare large phytoplankton bloom, which is ~500 km long, 100 km wide and lasting more than 19 days, was captured in the northern SCS basin by satellite daily chlorophyll images. Water within the bloom area had a feature of low salinity and high temperature measured by an accidental-passing cruise. Meanwhile, satellite sea level anomaly images and drifter trajectory proved there was a cyclonic eddy nearby. No typhoon and heavy rain happened in this period, so we believed the bloom was triggered by the injection of nutrient-rich Pearl River plume driven by eddy. This is the first report on eddy-entrained Pearl River plume into the SCS, which would raise a new view on irregular transportation of nutrient and carbon and its related biogeochemical influence on the oligotrophic ocean.

  13. Entrainment dominates the interaction of microalgae with micron-sized objects

    CERN Document Server

    Jeanneret, Raphaël; Polin, Marco

    2016-01-01

    The incessant activity of swimming microorganisms has a direct physical effect on surrounding microscopic objects, leading to enhanced diffusion far beyond the level of Brownian motion with possible influences on the spatial distribution of non-motile planktonic species and particulate drifters. Here we study in detail the effect of eukaryotic flagellates, represented by the green microalga Chlamydomonas reinhardtii, on microparticles. Macro- and micro-scopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. This heterogeneous dynamics is likely to depend on generic features of the near-field of swimming microorganisms with front-mounted flagella.

  14. INFLUENCE OF THE GAS-DENSITY ON THE GAS ENTRAINMENT RATE AND GAS HOLD-UP IN LOOP-VENTURI REACTORS

    NARCIS (Netherlands)

    CRAMERS, PHMR; VANDIERENDONCK, LL; BEENACKERS, AACM

    1992-01-01

    The hydrodynamics of a loop-venturi reactor were investigated using a downflow liquid jet ejector. Both the gas entrainment rate of the ejector and the gas hold-up in the main holding vessel were shown to be influenced by the gas density. The amount of volumetrically entrained gas as well as the gas

  15. Feasibility studies for the removal of entrained and dissolved tributyl phosphate (TBP) from purex stream using Duolite S-861 (Preprint No. CT-11)

    International Nuclear Information System (INIS)

    In the reprocessing plant following purex process for the separation of U and Pu, the problem occured in concentrating the uranium product in the intercycle evaporators due to the presence of entrained and dissolved TBP. Present scrubbing procedure is not quite satisfactory. This paper investigates the feasibility studies for the removal of entrained and dissolved TBP using Duolite S-861. (author)

  16. The importance of biotic entrainment for base flow fluvial sediment transport

    Science.gov (United States)

    Rice, Stephen P.; Johnson, Matthew F.; Mathers, Kate; Reeds, Jake; Extence, Chris

    2016-05-01

    Sediment transport is regarded as an abiotic process driven by geophysical energy, but zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It is therefore prudent to measure the contribution that biota make to sediment transport, but comparisons of abiotic and biotic sediment fluxes are rare. For a stream in the UK, the contribution of crayfish bioturbation to suspended sediment flux was compared with the amount of sediment moved by hydraulic forcing. During base flow periods, biotic fluxes can be isolated because nocturnal crayfish activity drives diel turbidity cycles, such that nighttime increases above daytime lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation contributed at least 32% (474 kg) to monthly base flow suspended sediment loads; this biotic surcharge added between 5.1 and 16.1 t (0.21 to 0.66 t km-2 yr-1) to the annual sediment yield. As anticipated, most sediment was moved by hydraulic forcing during floods and the biotic contribution from baseflow periods represented between 0.46 and 1.46% of the annual load. Crayfish activity is nonetheless an important impact during baseflow periods and the measured annual contribution may be a conservative estimate because of unusually prolonged flooding during the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish burrowing supplies sediment to the channel for mobilization during floods so that the total biotic effect of crayfish is potentially greater than documented in this study. These results suggest that in rivers, during base flow periods, bioturbation can entrain significant quantities of fine sediment into suspension with implications for the aquatic ecosystem and base flow sediment fluxes. Energy from life rather than from elevation can make significant contributions to sediment fluxes.

  17. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.

    Science.gov (United States)

    Vukelić, Mathias; Gharabaghi, Alireza

    2015-05-01

    Neurofeedback of self-regulated brain activity in circumscribed cortical regions is used as a novel strategy to facilitate functional restoration following stroke. Basic knowledge about its impact on motor system oscillations and functional connectivity is however scarce. Specifically, a direct comparison between different feedback modalities and their neural signatures is missing. We assessed a neurofeedback training intervention of modulating β-activity in circumscribed sensorimotor regions by kinesthetic motor imagery (MI). Right-handed healthy participants received two different feedback modalities contingent to their MI-associated brain activity in a cross-over design: (I) visual feedback with a brain-computer interface (BCI) and (II) proprioceptive feedback with a brain-robot interface (BRI) orthosis attached to the right hand. High-density electroencephalography was used to examine the reactivity of the cortical motor system during the training session of each task by studying both local oscillatory power entrainment and distributed functional connectivity. Both feedback modalities activated a distributed functional connectivity network of coherent oscillations. A significantly higher skill and lower variability of self-controlled sensorimotor β-band modulation could, however, be achieved in the BRI condition. This gain in controlling regional motor oscillations was accompanied by functional coupling of remote β-band and θ-band activity in bilateral fronto-central regions and left parieto-occipital regions, respectively. The functional coupling of coherent θ-band oscillations correlated moreover with the skill of regional β-modulation thus revealing a motor learning related network. Our findings indicate that proprioceptive feedback is more suitable than visual feedback to entrain the motor network architecture during the interplay between motor imagery and feedback processing thus resulting in better volitional control of regional brain activity.

  18. Slag properties of blending coal in an industrial OMB coal water slurry entrained-flow gasifier

    International Nuclear Information System (INIS)

    Highlights: • Slag properties of blending coal from an industrial gasifier are investigated. • Transformation behaviors of mineral matters are calculated by thermodynamic model. • The optimized blending ratio of given coals is in the range of 0.3–0.5. - Abstract: Blending coal as feedstock is a potential cost-effective way to reduce the gasifier operation cost. Slag properties of blending coal from an industrial Opposed Multi-Burner (OMB) coal water slurry entrained-flow gasifier was investigated in this paper. Experimental data from an OMB entrained-flow gasifier using a blend of high quality coal with a relatively high ash content coal as feedstock were analyzed. The transformation behaviors of the slag from an industrial gasifier were investigated by viscosity analysis and thermodynamic calculation with assistance of FactSage software and validated by the industrial data. The results show that the slag properties were diversified and differ based on the coal blending ratios. It was discovered that the optimized blending ratio (high quality coal/high ash content coal) was in the range of 0.3–0.5. Most of the mineral matter was transformed into Ca aluminosilicates with relatively high liquidus temperatures around 1500 °C. As the proportion of coal with higher ash and SiO2 content increases, the slag shows a trend of transformation to mullite. The liquidus temperature decreased at first and then increased gradually as the ratio was increased, which provided a minimum blending ratio of ∼0.3, consequently with about 8% reduction of feeding cost. Meanwhile, the viscosity of the slag also increased as the blending ratio of higher ash and SiO2 content coal increased. At this point it should be noted that the loading and operating temperature of the gasifier had to be adjusted as the blending ratio fluctuated in order to maintain proper operation

  19. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    Science.gov (United States)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  20. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury

    Energy Technology Data Exchange (ETDEWEB)

    Ghorishi, S.B.; Keeney, R.M.; Serre, S.D.; Gullett, B.K.; Jozewicz, W.S. [ARCADIS, Durham, NC (USA)

    2002-10-15

    Elemental mercury is present in considerable concentrations in emissions from some coal-fired plants and its removal presents more of a challenge than the capture of oxidized forms of mercury. Efforts to discern the role of an activated carbon's surface functional group on the adsorption of elemental mercury (Hg{sup 0}) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORIT Americas Inc. (FGD)) was Cl-impregnated (Cl-FGD) (5 lb (2.3 kg) per batch) and tested for entrained-flow, short-time-scale capture of Hg{sup 0}. In an entrained flow reactor, the Cl-DFGD was introduced in Hg{sup 0}-laden flue gases of various compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg{sup 0} removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg{sup 0} removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). The experimental conditions simulated those common in the flue gas of coal-fired boilers burning western subbituminous or lignite coal containing less than 1 ppm HCl. Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200{degree}C) had minimal effects on Hg{sup 0} removal by the Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator. 26 refs., 7 figs., 3 tabs.

  1. Evaluation of the Zone of Influence and Entrainment Impacts for an Intake Using a 3-Dimensional Hydrodynamic and Transport Model

    Directory of Open Access Journals (Sweden)

    Shwet Prakash

    2014-04-01

    Full Text Available Ballast water systems in large LNG carriers are essential for proper operations and stability. Water withdrawn from the surrounding environment to supply to the ballast can pose entrainment and impingement risk to the resident fish population. Quantification of these risks and the net effect on population is usually quite challenging and complex. Various methods over the last several decades have been developed and are available in the literature for quantification of entrainment of mobile and immobile lifestages of resident fish. In this study, a detailed 3-dimensional model was developed to estimate the entrainment of ichthyoplankton (fish eggs and larvae and fish from an estuarine environment during the repeated short-term operation of a ballast water intake for an LNG carrier. It was also used to develop a zone of influence to determine the ability of mobile life stages to avoid impingement. The ichthyoplankton model is an Equivalent Adult Model (EAM and assesses the number of breeding adults lost to the population. The EAM incorporates four different methods developed between 1978 and 2005. The study also considers the uncertainty in estimates for the lifestage data and, as such, performs sensitivity analyses to evaluate the confidence level achievable in such quantitative estimates for entrainment.

  2. The behaviour of entrainment defects formed in commercial purity Mg alloy cast under a cover gas of SF6

    Science.gov (United States)

    Li, T.; Griffiths, W. D.

    2016-03-01

    In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.

  3. Enhancing kinetic energy entrainment in LES of large wind farms by unconventional forcing at the turbine rotors

    Science.gov (United States)

    Verhulst, Claire; Meneveau, Charles

    2015-11-01

    Vertical entrainment of mean kinetic energy is believed to be a limiting factor for power generation in very large wind farms, which operate in the turbulent atmospheric boundary layer and experience detrimental wake effects. A new approach, meant to increase vertical entrainment and aid wake recovery, is proposed and evaluated with a preliminary ``proof of concept'' test using Large Eddy Simulation (LES) with periodic boundary conditions to obtain realistic fully developed flow. In addition to the traditional actuator thrust force, a synthetic vertical force is applied at the turbine rotors to force high-speed flow downward and low-speed flow upward. The ratio of the vertical force and the thrust force, held constant within each case, ranges from 0 to 1 across six cases and is applied independently at each turbine. The proposed approach is found to increase the power extraction and mean kinetic energy entrainment significantly, by up to 95% when the vertical force is similar in magnitude to the thrust force. The effect of the forcing scheme on the mean velocity field is considered in detail. In addition, a quadrant analysis is performed to determine how the synthetic forcing changes the statistical characteristics of the mean kinetic energy entrainment within the wind farm. This work was supported by NSF grant 1243482 (the WINDINSPIRE project).

  4. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    Science.gov (United States)

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  5. Listening to debris flows: What can ground vibrations tell us about debris-flow entrainment and flow density?

    Science.gov (United States)

    Kean, J. W.; Coe, J. A.; Coviello, V.; Smith, J. B.; McCoy, S. W.; Arattano, M.

    2015-12-01

    Debris flows generate seismic waves as they travel downslope and can grow in size and destructive potential by entraining sediment along their paths. Recent observations from the Chalk Cliffs monitoring site in central Colorado show there is a systematic relation between the magnitude of seismic waves and both (1) the amount of erodible sediment beneath the flow, and (2) the density of the flow. Specifically, we observed that the spectral power of debris-flow induced ground motion increased by two orders of magnitude after a 34-cm layer of bed sediment was eroded from a bedrock channel. We also observed that high-density (sediment-rich) debris-flow surges generate about two orders of magnitude greater spectral power than low-density (water-rich) surges of similar thickness. These observations lead us to the hypothesis that the recorded ground motions are generated primarily by the impacts of grains on bedrock sections of the channel. This hypothesis is supported by ball drop tests which showed that impacts on deformable loose bed sediment in the channel (if present) generate negligibly small surface waves compared to impacts on bedrock. We thus expect debris-flow induced ground motion to increase as sediment entrainment exposes bedrock in channel, and as the flow density (and number of grains) increase. We explored the connection between ground motions and debris-flow entrainment/density by adapting a model from fluvial seismology [Tsai et al., GRL, 2012]. We used the adapted model to estimate rates of sediment entrainment and the density of flows over bare bedrock channels. Our estimates of sediment entrainment compared favorably with previous direct measurements of entrainment rates at the site. Estimates of flow density are sufficiently accurate to distinguish between three density levels: low (<1200 kg/m3), medium (1200-1600 kg/m3), and high (<1600 kg/m3). Although more testing is needed, these initial results suggest the approach may be a new indirect way to

  6. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    Science.gov (United States)

    Davis, Jeremiah J.; Jackson, Patrick; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  7. EXPERIMENTAL STUDY ON THE VORTEX FORMATION AND ENTRA-INMENT CHARACTERISTICS FOR A ROUND TRANSVERSE JET IN SHALLOW WATER

    Institute of Scientific and Technical Information of China (English)

    FAN Jing-yu; ZHANG Yan; WANG Dao-zeng

    2009-01-01

    The vortex formation and entrainment characteristics for a round transverse jet in shallow water were experimentally investigated by means of a combination of LIF flow visualization and PIV measurement. A scarf vortex wrapped around the main body of the jet is formed in the near-wall region due to the interaction between the resulting wall jet and sufficiently shallow crossflow, with some more or less unsteady flow properties and with spreading ranges as functions of both the velocity ratio and the water depth within the near field. The entrainment of the ambient crossflow fluid into the jet main body is closely associated with the time-evolving features of the shear layer between the jet and surrounding fluid as well as the induced vortical structures near the wall. In the case of slight impingement upon the wall, the interaction between the jet shear layer and the weak, unstable scarf vortex gives rise to an appreciable local entrainment enhancement, confined in the near-wall region in the vicinity of the stagnation point. While in the case of intense impingement upon the wall, the well-organized and stable scarf vortex gives rise to a greatly enhanced entrainment and a greatly increased lateral spreading rate nearly throughout the overall near field as compared to the conventional wall jet. In addition, the entrainment of the ambient crossflow fluid by the scarf vortex in this case occurs largely on the surface of the unique spiral roller structure by itself due to the presence of smaller and unorganized eddies, and accordingly the scarf vortex is likely to keep its spiral roller structure steadily to a relatively great downstream distance within the near field.

  8. Defence System of Respiratory Tract and Clearence of Inhalation Agents

    OpenAIRE

    Nesrin Ocal

    2016-01-01

    It is well known that inhaled urban air contains many particles and gases. On the other hand, the anesthetic agents used in respiratory diseases comprise pharmaceutical particles. Deposition and cleaning processes of both the inhaled foreign particles and gases from room air, and inhalation agents from respiratory tract are very important clinically. These processes are carried out by the defense mechanisms of the respiratory system. In this review, the defence system of respiratory tract and...

  9. AgentChess : An Agent Chess Approach

    OpenAIRE

    Fransson, Henric

    2003-01-01

    The game of chess has many times been discussed and used for test purpose by science departments of Artificial Intelligence (AI). Although the technique of agent and as well multi-agent systems is quite old, the use of these offspring of AI within chess is limited. This report describes the project performed applying the use of agents to a chess program. To measure the performance of the logic has tests between the developed program main parts been performed. Further tests against a tradition...

  10. Circadian Entrainment, Sleep-Wake Regulation and Neurobehavioral Performance During Extended Duration Space Flight

    Science.gov (United States)

    Czeisler, Charles A.

    1999-01-01

    Long-duration manned space flight requires crew members to maintain a high level of cognitive performance and vigilance while operating and monitoring sophisticated instrumentation. However, the reduction in the strength of environmental synchronizers in the space environment leads to misalignment of circadian phase among crew members, coupled with restricted time available to sleep, results in sleep deprivation and consequent deterioration of neurobehavioral function. Crew members are provided, and presently use, long-acting benzodiazepine hypnotics on board the current, relatively brief space shuttle missions to counteract such sleep disruption, a situation that is only likely to worsen during extended duration missions. Given the known carry-over effects of such compounds on daytime performance, together with the reduction in emergency readiness associated with their use at night, NASA has recognized the need to develop effective but safe countermeasures to allow crew members to obtain an adequate amount of sleep. Over the past eight years, we have successfully implemented a new technology for shuttle crew members involving bright light exposure during the pre-launch period to facilitate adaptation of the circadian timing system to the inversions of the sleep-wake schedule often required during dual shift missions. However for long duration space station missions it will be necessary to develop effective and attainable countermeasures that can be used chronically to optimize circadian entrainment. Our current research effort is to study the effects of light-dark cycles with reduced zeitgeber strength, such as are anticipated during long-duration space flight, on the entrainment of the endogenous circadian timing system and to study the effects of a countermeasure that consists of scheduled brief exposures to bright light on the human circadian timing system. The proposed studies are designed to address the following Specific Aims: (1) test the hypothesis that

  11. Dworshak Kokanee Population and Entrainment Assessment 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Eric J. [Idaho Department of Fish and Game

    2008-11-06

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. We tested one set of nine strobe lights flashing at a rate of 360 flashes/min in front of turbine 3 while operating at higher discharges than previously tested. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On five nights between January 31 and February 28, 2006, when no lights were present, fish counts near turbine 3 averaged eight fish and densities averaged 91 fish/ha. When strobe lights were turned on during five adjacent nights during the same period, mean counts dropped to four fish and densities dropped to 35 fish/ha. The decline in counts (49%) was not statistically significant (p = 0.182), but decline in densities (62%) was significant (p = 0.049). There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of turbines operating at higher discharges, which would be sufficient to improve sportfish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2005. Estimated abundance of kokanee decreased from the 2004 population estimate. Based on hydroacoustic surveys, we estimated 3,011,626 kokanee (90% CI {+-} 15.2%) in Dworshak Reservoir, July 2005. This included 2,135,986 age-0 (90% CI {+-} 15.9%), 769,175 age-1 (90% CI {+-} 16.0%), and 107,465 age-2 (90% CI {+-} 15.2%). Poor survival of kokanee from age-1 to age-2 continued to keep age-2 densities below the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site split-beam hydroacoustics a minimum of two days

  12. Riot Control Agents

    Science.gov (United States)

    ... a person has been exposed to riot control agents. Long-term health effects of exposure to riot control agents Prolonged ... person is removed from exposure to riot control agents, long-term health effects are unlikely to occur. How you can ...

  13. Reasoning about emotional agents

    NARCIS (Netherlands)

    Meyer, J.-J.

    2008-01-01

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in this f

  14. Agents modeling agents in information economies

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J.M.; Durfee, E.H. [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-12-31

    Our goal is to design and build agents that act intelligently when placed in an agent-based information economy, where agents buy and sell services (e.g. thesaurus, search, task planning services, etc.). The economy we are working in is the University of Michigan Digital Library (UMDL), a large scale multidisciplinary effort to build an infrastructure for the delivery of library services. In contrast with a typical economy, an information economy deals in goods and services that are often derived from unique sources (authors, analysts, etc.), so that many goods and services are not interchangeable. Also, the cost of replicating and transporting goods is usually negligible, and the quality of goods and services is difficult to measure objectively: even two sources with essentially the same information might appeal to different audiences. Thus, each agent has its own assessment of the quality of goods and services delivered.

  15. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    Energy Technology Data Exchange (ETDEWEB)

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  16. The mobility of rock avalanches: disintegration, entrainment and deposition - a conceptual approach

    Science.gov (United States)

    Knapp, Sibylle; Mamot, Philipp; Krautblatter, Michael

    2015-04-01

    Massive rock slope failures cause more than 60% of all catastrophic landslide disasters. Failures usually progress through three consecutive phases: detachment, disintegration and flow. While significant advances have been achieved in modelling Rock Avalanche Phase 1 "Detachment" and Phase 3 "Flow", the crucial link between both during Phase 2 "Disintegration", is still poorly understood. Disintegration of the detached rock mass is often initiated by its first major impact with the ground surface. This is a preliminary setup of a PhD project in which we aim at understanding the importance of disintegration and on site conditions at the impact site on fluidization and mobilization. The TUM Landslides Group is experienced in near surface geophysics of rockwalls and under Alpine conditions and has also developed laboratory experience in testing resistivity and P-/S-wave velocity of anisotropic and fractured rocks in the laboratory. In addition, there is a more than ten year experience in the analysis of different magnitudes of rock slope failure. Many of these studies took part in the Wetterstein Mountains and close to the Zugspitze. In this project we plan to compare one very small (Steingerümpel, Rein valley, Germany, with 0.003 km³) and two larger test sites (Eibsee, Zugspitze area, Germany, with 0.3 km³ and Flims, Grisons, Switzerland, with 12 km³) situated in limestone rocks. From our preliminary work we know that the Steingerümpel bergsturz shows a low degree of fracturing in spite of a high impact; the latter ones are high-magnitude rock slope failures which both partially collapsed into a lake and were highly disintegrated and fluidized. We intend to use the smaller Eibsee rock avalanche as a training site where we can try to understand the full dynamics of the flow using sedimentology, geophysics and surface geomorphology which indicated compressive and extensional flow, superelevation and runups. Regarding entrainment processes, we will carry out a

  17. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale

  18. Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment.

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K R; Bhat, G S

    2011-09-27

    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles--e.g., from a "cauliflower" congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl-Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112

  19. Entrainment and mixing dynamics of surface-stress-driven linearly stratified flow in a cylinder

    Science.gov (United States)

    Manucharyan, Georgy; Caulfield, C. P.

    2012-11-01

    We consider experimentally a linearly stratified fluid (with constant buoyancy frequency N) in a cylinder of depth H subject to surface stress forcing from a disk spinning at constant angular velocity Ω. A turbulent mixed layer develops bounded by a sharp interface of constant thickness. Its depth h / H ~(N / Ω)-2/3(Ωt)x2/9 . We argue this is a consequence of: the kinetic energy of the mixed layer staying constant with time (as previously observed in a two layer flow by Shravat et al. 2012) the entrainment at the interface being governed entirely by local processes; and the rate of increase of the total potential energy of the fluid being dependent only on the global dissipation rate and the ratio N2 /Ω2 . Below the moving primary interface, we also observe in some circumstances the formation of another partially mixed layer, separated by a secondary interface from the linearly stratified fluid below. Depending on the local flow properties, the secondary interfaces can exhibit rich time-dependent dynamics including drift towards or away from the primary interface, merger and/or decay. The secondary interfaces appear to develop due to the non-monotonic dependence of buoyancy flux on stratification as originally argued by Phillips (1972).

  20. Entrainment of chaotic activities in brain and heart during MBSR mindfulness training.

    Science.gov (United States)

    Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Zhang, Zhiguo; Chang, Chunqi; Hung, Yeung-Sam; Fung, Peter Chin Wan; Sik, Hin Hung

    2016-03-11

    The activities of the brain and the heart are dynamic, chaotic, and possibly intrinsically coordinated. This study aims to investigate the effect of Mindfulness-Based Stress Reduction (MBSR) program on the chaoticity of electronic activities of the brain and the heart, and to explore their potential correlation. Electroencephalogram (EEG) and electrocardiogram (ECG) were recorded at the beginning of an 8-week standard MBSR training course and after the course. EEG spectrum analysis was carried out, wavelet entropies (WE) of EEG (together with reconstructed cortical sources) and heart rate were calculated, and their correlation was investigated. We found enhancement of EEG power of alpha and beta waves and lowering of delta waves power during MBSR training state as compared to normal resting state. Wavelet entropy analysis indicated that MBSR mindfulness meditation could reduce the chaotic activities of both EEG and heart rate as a change of state. However, longitudinal change of trait may need more long-term training. For the first time, our data demonstrated that the chaotic activities of the brain and the heart became more coordinated during MBSR training, suggesting that mindfulness training may increase the entrainment between mind and body. The 3D brain regions involved in the change in mental states were identified. PMID:26784361

  1. Hubble Space Telescope Observations of Dusty Filaments in Hercules A: Evidence for Entrainment

    CERN Document Server

    O'Dea, Christopher P; Tremblay, Grant R; Kharb, Preeti; Cotton, William D; Perley, Rick A

    2013-01-01

    We present U, V, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier HST observations. The filaments are associated with a faint blue continuum light (possibly from young stars) and faint H-alpha emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of the galaxy. The morphology of the filaments is different on the two sides - the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow moving boundary layer outside the relativistic flow. As suggested by Fabian et al. (2008), magnetic fields in the filaments may stabilize them against disruption. We consider a...

  2. Entrainment of chaotic activities in brain and heart during MBSR mindfulness training.

    Science.gov (United States)

    Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Zhang, Zhiguo; Chang, Chunqi; Hung, Yeung-Sam; Fung, Peter Chin Wan; Sik, Hin Hung

    2016-03-11

    The activities of the brain and the heart are dynamic, chaotic, and possibly intrinsically coordinated. This study aims to investigate the effect of Mindfulness-Based Stress Reduction (MBSR) program on the chaoticity of electronic activities of the brain and the heart, and to explore their potential correlation. Electroencephalogram (EEG) and electrocardiogram (ECG) were recorded at the beginning of an 8-week standard MBSR training course and after the course. EEG spectrum analysis was carried out, wavelet entropies (WE) of EEG (together with reconstructed cortical sources) and heart rate were calculated, and their correlation was investigated. We found enhancement of EEG power of alpha and beta waves and lowering of delta waves power during MBSR training state as compared to normal resting state. Wavelet entropy analysis indicated that MBSR mindfulness meditation could reduce the chaotic activities of both EEG and heart rate as a change of state. However, longitudinal change of trait may need more long-term training. For the first time, our data demonstrated that the chaotic activities of the brain and the heart became more coordinated during MBSR training, suggesting that mindfulness training may increase the entrainment between mind and body. The 3D brain regions involved in the change in mental states were identified.

  3. Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust

    CERN Document Server

    Carter, B; Haensel, P; Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    2004-01-01

    The relative current density $n^i$ of conduction neutrons in a neutron star crust beyond the neutron drip threshold can be expected to be related to the corresponding particle momentum covector $p_i$ by a linear relation of the form $n^i=K^{ij}p_j$ in terms of a physically well defined mobility tensor $K^{ij}$. This result is describable as an ``entrainment'' whose effect - wherever the crust lattice is isotropic - will simply be to change the ordinary neutron mass m to an effective mass $m_\\star$ such that in terms of the relevant number density n of unconfined neutrons we shall have $K^{ij}=n/m_\\star\\gamma^{ij}$. In a preceding analysis based on an independent particle treatment using Bloch boundary conditions to obtain the distribution of energy $E_k$ and associated group velocity $v_k^i=\\partial E_k/\\partial\\hbar k_i$ as a function of wavenumber $k_i$, it was shown that the mobility tensor would be given by $K^{ij}\\propto\\int d^3 k v_k^i v_k^j\\delta\\{E_k-\\mu\\}$, where $\\mu$ is the Fermi energy. Using the ...

  4. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Brianne Alyssia Kent

    2014-09-01

    Full Text Available Alzheimer’s disease (AD is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behaviour and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.

  5. Modeling light adaptation in circadian clock: prediction of the response that stabilizes entrainment.

    Science.gov (United States)

    Tsumoto, Kunichika; Kurosawa, Gen; Yoshinaga, Tetsuya; Aihara, Kazuyuki

    2011-01-01

    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature.

  6. Impingement and entrainment of fishes at the Savannah River Plant: an NPDES 316b demonstration

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, R.W.; Frietsche, R.F.; Miracle, R.D.

    1978-02-01

    Environmental impacts of the Savannah River Plant's withdrawal of Savannah River water include impingement of juvenile and adult fish on trash removal screens, and entrainment of planktonic fish eggs and larval fish into the pumping system. The Savannah River Plant (SRP) has the capacity to pump 3.6 million cubic meters of water per day--25% of the minimal river discharge--for cooling and other purposes. Present removal is 7% of the actual river discharge. In the river and intake canals reside sixty-nine species of fishes. The species composition of the resident fish community of the intake canals is similar to the species composition in the river, but different in relative species abundance. The dominant sunfishes tend to reside in the canals for long periods and seldom go from canal to canal. The fish impingement rate at the plant ranks very low in comparison with electric power plants on inland waters. Thirty-five species of fishes were impinged during 1977. The average impingement rate of 7.3 fish per day extrapolates to 2,680 fish per year. No single species comprised more than 10% of the sample. The most commonly impinged species were bluespotted sunfish, warmouth, channel catfish, and yellow perch. The relative abundance of those species impinged deviates from their relative abundance in the canal fish population.

  7. Improvement of gas entrainment prediction method. Introduction of surface tension effect

    International Nuclear Information System (INIS)

    A gas entrainment (GE) prediction method has been developed to establish design criteria for the large-scale sodium-cooled fast reactor (JSFR) systems. The prototype of the GE prediction method was already confirmed to give reasonable gas core lengths by simple calculation procedures. However, for simplification, the surface tension effects were neglected. In this paper, the evaluation accuracy of gas core lengths is improved by introducing the surface tension effects into the prototype GE prediction method. First, the mechanical balance between gravitational, centrifugal, and surface tension forces is considered. Then, the shape of a gas core tip is approximated by a quadratic function. Finally, using the approximated gas core shape, the authors determine the gas core length satisfying the mechanical balance. This improved GE prediction method is validated by analyzing the gas core lengths observed in simple experiments. Results show that the analytical gas core lengths calculated by the improved GE prediction method become shorter in comparison to the prototype GE prediction method, and are in good agreement with the experimental data. In addition, the experimental data under different temperature and surfactant concentration conditions are reproduced by the improved GE prediction method. (author)

  8. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    Science.gov (United States)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released ~ 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream ~ 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  9. Oil in Water: An Experimental Study of Splashing and Entrainment from Droplets and Jets

    Science.gov (United States)

    Mittal, Raina; Halper, Kristen; Mittal, Rajat

    2015-11-01

    This study is motivated by the interaction between oil and water that is associated with events such as oil spills, oil slicks and underwater oil leaks. For instance, the impact of rain drops on a floating oil slick can lead to the formation of satellite droplets and oil entrainment into the water, that could subsequently lead to further dispersion of the oil slick. Furthermore, the dynamics of high speed jets of oil in water is relevant to underwater oil leaks, but the motion of such oil jets is not well studied. In the current study, we use high-speed videography with various types of commonly available oils to study the impact of water droplets on oil slicks of varying thicknesses. Results show that an oil slick with intermediate thickness leads to the most significant formation of satellite droplets. This behavior seems to be related to the competing effect of oil viscosity and surface tension on the dynamics of splashing. We also use high-speed videography to study the motion and dispersion of underwater oil jets and correlate the breakup of the jet with the inclination of the jet.

  10. Turbulent transport and entrainment in jets and plumes: a DNS study

    CERN Document Server

    van Reeuwijk, Maarten; Hunt, Gary R; Craske, John

    2016-01-01

    We present a new DNS data set for a statistically axisymmetric turbulent jet, plume and forced plume in a domain of size $40 r_0 \\times 40 r_0 \\times 60 r_0$, where $r_0$ is the source diameter. The data set provides evidence of the validity of the Priestley and Ball entrainment model in unstratified environments (excluding the region near the source), which is corroborated further by the Wang and Law and Ezzamel \\emph{et al.} experimental data sets, the latter being corrected for a small but influential co-flow that affected the statistics. We show that the turbulence in the core region of the jet and the plume are practically indistinguishable, although the invariants of the anisotropy tensor reveal a significant change in the turbulence near the plume edge. The DNS data indicates that the turbulent Prandtl number is about 0.7 for both jets and plumes. For plumes, this value is a result of the difference in the ratio of the radial turbulent transport of radial momentum and buoyancy. For jets however, the va...

  11. Entrainment dominates the interaction of microalgae with micron-sized objects

    Science.gov (United States)

    Jeanneret, Raphaël; Kantsler, Vasily; Polin, Marco

    Swimming microorganisms usually navigate through fluids containing a variety of microparticles, with which they inevitably interact with important biological and ecological implications. Regarding the prokaryotic realm, it has been shown that the colloidal dynamics within bacterial suspensions is well described by a persistent random walk. As to the other major class of microorganisms, the eukaryotes, much less is known. By directly tracking polystyrene colloids in baths of the model puller-type alga Chlamydomonas reinhardtii, a pioneering work has shown that they still behave diffusively asymptotically with diffusivities linearly increasing with the concentration. The values reported as well as the distribution of displacements having exponential tails are well explained theoretically when considering the hydrodynamic far-field contribution of the algae. However nothing has yet been described regarding the short range interactions that inevitably exist. In this work we show, by means of 3 different experiments, that the coarse-grained dynamics of the colloids is in fact dominated by very rare but large jumps due to entrainment by the algae leading to a total effective diffusion an order of magnitude higher than previously reported.

  12. Melatonin is a redundant entraining signal in the rat circadian system.

    Science.gov (United States)

    Houdek, Pavel; Nováková, Marta; Polidarová, Lenka; Sládek, Martin; Sumová, Alena

    2016-07-01

    The role of melatonin in maintaining proper function of the circadian system has been proposed but very little evidence for such an effect has been provided. To ascertain the role, the aim of the study was to investigate impact of long-term melatonin absence on regulation of circadian system. The parameters of behavior and circadian clocks of rats which were devoid of the melatonin signal due to pinealectomy (PINX) for more than one year were compared with those of intact age-matched controls. PINX led to a decrease in spontaneous locomotor activity and a shortening of the free-running period of the activity rhythm driven by the central clock in the suprachiasmatic nuclei (SCN) in constant darkness. However, the SCN-driven rhythms in activity and feeding were not affected and remained well entrained in the light/dark cycle. In contrast, in these conditions PINX had a significant effect on amplitudes of the clock gene expression rhythms in the duodenum and also partially in the liver. These results demonstrate the significant impact of long-term melatonin absence on period of the central clock in the SCN and the amplitudes of the peripheral clocks in duodenum and liver and suggest that melatonin might be a redundant but effective endocrine signal for these clocks. PMID:27167607

  13. Autonomic function assessment in Parkinson's disease patients using the kernel method and entrainment techniques.

    Science.gov (United States)

    Kamal, Ahmed K

    2007-01-01

    The experimental procedure of lowering and raising a leg while the subject is in the supine position is considered to stimulate and entrain the autonomic nervous system of fifteen untreated patients with Parkinson's disease and fifteen age and sex matched control subjects. The assessment of autonomic function for each group is achieved using an algorithm based on Volterra kernel estimation. By applying this algorithm and considering the process of lowering and raising a leg as stimulus input and the Heart Rate Variability signal (HRV) as output for system identification, a mathematical model is expressed as integral equations. The integral equations are considered and fixed for control subjects and Parkinson's disease patients so that the identification method reduced to the determination of the values within the integral called kernels, resulting in an integral equations whose input-output behavior is nearly identical to that of the system in both healthy subjects and Parkinson's disease patients. The model for each group contains the linear part (first order kernel) and quadratic part (second order kernel). A difference equation model was employed to represent the system for both control subjects and patients with Parkinson's disease. The results show significant difference in first order kernel(impulse response) and second order kernel (mesh diagram) for each group. Using first order kernel and second order kernel, it is possible to assess autonomic function qualitatively and quantitatively in both groups.

  14. Real-scale numerical simulation of gas entrainment phenomena in fast reactor

    International Nuclear Information System (INIS)

    To evaluate gas entrainment (GE) phenomena in a large-scale sodium-cooled fast reactor, the authors are developing a high-precision numerical simulation algorithm for gas-liquid two-phase flows based on a volume-of-fluid methodology. In this simulation algorithm, the PLIC (Piecewise Linear Interface Reconstruction) algorithm is employed to achieve accurate interface-tracking. Moreover, physically appropriate formulations have been conducted on gas-liquid interfaces to eliminate unphysical behaviors. Thanks to this improvements, it is confirmed that the developed simulation algorithm can reproduce the GE phenomena in a simple experiment. In this study, the simulation algorithm is applied to a real-scale GE test to check the applicability of the algorithm to the GE phenomena in the fast reactor. The mesh resolution and boundary conditions are considered carefully to be suitable for the numerical simulation of the two-phase flow around inlet and outlet pipes. As a result, transient behaviors of the vortical flows around the pipes and the accompanied GE phenomena are simulated well. In particular, the origin of the flow which induces the GE phenomena is showed clearly. Finally, from the investigation of a lot of GE phenomena observed in the simulation result, it is verified that the GE phenomena by relatively strong vortical flows are important in terms of the GE suppression in the fast reactor. (author)

  15. Phenotype as Agent for Epigenetic Inheritance

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-07-01

    Full Text Available The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state.

  16. Phenotype as Agent for Epigenetic Inheritance.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  17. Phenotype as Agent for Epigenetic Inheritance

    Science.gov (United States)

    Torday, John S.; Miller, William B.

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  18. The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy.

    Science.gov (United States)

    Thaut, Michael H

    2015-01-01

    The discovery of rhythmic auditory-motor entrainment in clinical populations was a historical breakthrough in demonstrating for the first time a neurological mechanism linking music to retraining brain and behavioral functions. Early pilot studies from this research center were followed up by a systematic line of research studying rhythmic auditory stimulation on motor therapies for stroke, Parkinson's disease, traumatic brain injury, cerebral palsy, and other movement disorders. The comprehensive effects on improving multiple aspects of motor control established the first neuroscience-based clinical method in music, which became the bedrock for the later development of neurologic music therapy. The discovery of entrainment fundamentally shifted and extended the view of the therapeutic properties of music from a psychosocially dominated view to a view using the structural elements of music to retrain motor control, speech and language function, and cognitive functions such as attention and memory. PMID:25725919

  19. Time-Specific Fear Acts as a Non-Photic Entraining Stimulus of Circadian Rhythms in Rats

    OpenAIRE

    Pellman, Blake A.; Earnest Kim; Melissa Reilly; James Kashima; Oleksiy Motch; de la Iglesia, Horacio O.; Kim, Jeansok J.

    2015-01-01

    Virtually all animals have endogenous clock mechanisms that “entrain” to the light-dark (LD) cycle and synchronize psychophysiological functions to optimal times for exploring resources and avoiding dangers in the environment. Such circadian rhythms are vital to human mental health, but it is unknown whether circadian rhythms “entrained” to the LD cycle can be overridden by entrainment to daily recurring threats. We show that unsignaled nocturnal footshock caused rats living in an “ethologica...

  20. Measurement of aqueous entrainment in the organic product of 40 mm dia DFRP centrifugal extractor. Contributed Paper RD-01

    International Nuclear Information System (INIS)

    Water content in the organic phase product of 40 mm dia DFRP centrifugal extractor was analyzed by Karlfisher titration technique. Based on the base solubility value of water in the organic phase, the aqueous phase carryover in the organic phase was estimated and was found to vary nearly linearly with O/A. In all the experimental conditions, the entrainment was observed to be lower than flooding limit for centrifugal extractor. (author)

  1. Resetting and Entrainment of Reentrant Arrhythmias: Part I: Concepts, Recognition, and Protocol for Evaluation: Surface ECG versus Intracardiac Recordings

    OpenAIRE

    Almendral, Jesús; CAULIER-CISTERNA, RAÚL; Rojo-Álvarez, José Luis

    2013-01-01

    In this paper, we review the information accumulated over the years regarding the phenomena of resetting and entrainment of reentrant arrhythmias. Over three decades of research and clinical applications, these phenomena have demonstrated that they stay as a main tool for an intellectual understanding of reentry and to base strategies for localization of critical areas for ablative therapies. This review will be divided into two parts. This first part deals with the bases for the concept deve...

  2. THE INTEGRATED AGENT IN MULTI-AGENT SYSTEMS

    OpenAIRE

    Maleković, Mirko; Čubrilo, Mirko

    2000-01-01

    [n this paper, we characterize the integrated agent in multi-agent systems. The following result is proved: if a multi-agent system is reflexive (symmetric, transitive, Euclidean) then the integrated agent of the multi-agent system is reflexive (symmetric, transitive, Euclidean), respectively. We also prove that the analogous result does not hold for multi-agent system's serial ness. A knowledge relationship between the integrated agent and agents in a multiagent system is presented.

  3. Daily scheduled high fat meals moderately entrain behavioral anticipatory activity, body temperature, and hypothalamic c-Fos activation.

    Directory of Open Access Journals (Sweden)

    Christian M Gallardo

    Full Text Available When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA, is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903. In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal.

  4. iGen 0.1: the automated generation of a parameterisation of entrainment in marine stratocumulus

    Science.gov (United States)

    Tang, D. F.; Dobbie, S.

    2011-09-01

    In a previous paper we described a new technique for automatically generating parameterisations using a program called iGen. iGen generates parameterisations by analysing the source code of a~high resolution model that resolves the physics to be parameterised. In order to demonstrate that this technique scales up to deal with models of realistic complexity we have used iGen to generate a parameterisation of entrainment in marine stratocumulus. We describe how iGen was used to analyse the source code of an eddy resolving model (ERM) and generate a parameterisation of entrainment velocity in marine stratocumulus in terms of the large-scale state of the boundary layer. The parameterisation was tested against results from the DYCOMS-II intercomparison of ERM models and iGen's parameterisation of mean entrainment velocity was found to be 5.27 × 10-3 ± 0.62 × 10-3 m s-1 compared to 5.2 × 10-3 ± 0.8 × 10-3 m s-1 for the DYCOMS-II ensemble of large eddy simulation (LES) models.

  5. GRK2 Fine-Tunes Circadian Clock Speed and Entrainment via Transcriptional and Post-translational Control of PERIOD Proteins

    Directory of Open Access Journals (Sweden)

    Neel Mehta

    2015-08-01

    Full Text Available The pacemaker properties of the suprachiasmatic nucleus (SCN circadian clock are shaped by mechanisms that influence the expression and behavior of clock proteins. Here, we reveal that G-protein-coupled receptor kinase 2 (GRK2 modulates the period, amplitude, and entrainment characteristics of the SCN. Grk2-deficient mice show phase-dependent alterations in light-induced entrainment, slower recovery from jetlag, and longer behavioral rhythms. Grk2 ablation perturbs intrinsic rhythmic properties of the SCN, increasing amplitude and decreasing period. At the cellular level, GRK2 suppresses the transcription of the mPeriod1 gene and the trafficking of PERIOD1 and PERIOD2 proteins to the nucleus. Moreover, GRK2 can physically interact with PERIOD1/2 and promote PERIOD2 phosphorylation at Ser545, effects that may underlie its ability to regulate PERIOD1/2 trafficking. Together, our findings identify GRK2 as an important modulator of circadian clock speed, amplitude, and entrainment by controlling PERIOD at the transcriptional and post-translational levels.

  6. Dworshak Dam Impacts Assessment and Fisheries Investigation Project: Kokanee Entrainment Losses at Dworshak Reservoir, 1996 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maiolie, Melo A.; Elam, Steve

    1998-10-01

    We used split-beam hydroacoustics to monitor kokanee Oncorhynchus nerka kennerlyi abundance in Dworshak Reservoir from 1995 to 1996 in order to quantify the impacts of water releases from Dworshak Dam. The kokanee population was at a record high level of 1.9 million age-1 and age-2 fish (350 fish/ha) during June 1995. Large discharges of water during July and August of 1995 did not result in major losses of kokanee. Mid-winter flooding in February. March, and April of 1996: however, caused entrainment losses of 90% of all kokanee in the reservoir. The population declined to 140,000 kokanee. High flows during spring runoff used another 50% of the kokanee to be lost, further reducing the population to 71,000 fish (13 fish/ha). Entrainment losses were partially explainable by the distribution of kokanee in the reservoir. During winter, all age-classes of kokanee congregated near the dam making them susceptible to high releases of water. Kokanee appeared to be less susceptible to entrainment during summer and early fall because most kokanee were in other parts of the reservoir: adults were in the upper reservoir staging to spawn, fry were in the upper reservoir having emerged from tributary streams, and juvenile kokanee were spread throughout the reservoir.

  7. Bed-Load Transport Rate Based on the Entrainment Probabilities of Sediment Grains by Rolling and Lifting

    CERN Document Server

    Li, Jun-De; Lin, Binliang

    2016-01-01

    A function for the bed-load sediment transport rate is derived. This is achieved from the first principle by using the entrainment probabilities of the sediment grains by rolling and lifting, and by introducing two travel lengths, respectively, for the first time. The predictions from the new bed-load function agree well with the experimental results over the entire experimental range and show significant improvement over the commonly used formula for bed-load transport rate. The new function shows that, in terms of contributing to the bed-load transport rate, the total entrainment probability of the sediment grains is a weighted summation of those by the lifted and rolling grains, rather than a simple addition of the two. The function has also been used to predict the total entrainment probability, saltation length and the bed layer thickness at high bed-load transport rate. These predictions all agree well with the experimental results. It is found that, on average, the travel length for the rolling sand gr...

  8. LES and Proper Orthogonal Decomposition analysis of vertical entrainment of kinetic energy in large wind farms (Invited)

    Science.gov (United States)

    Meneveau, C. V.; VerHulst, C.

    2013-12-01

    Vertical entrainment of kinetic energy has been shown to be an important limiting factor in the performance of very large wind turbine arrays. Given high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled Large Eddy Simulation (LES) to predict flow within large wind farm. We use Proper Orthogonal Decomposition (POD) to identify energetically important large-scale structures in the flow. The primary large-scale structures are found to be streamwise counter-rotating vortices located above the height of the wind turbines. The contribution of each flow structure to the kinetic energy entrainment is quantified. Surprisingly, fewer flow structures (POD modes) contribute to the vertical kinetic energy flux than to the kinetic energy in the flow, for which the POD analysis is optimal. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the orientation of the wind turbines in the array. The various modes' contributions to variability and intermittency is also quantified. The POD analysis is performed for aligned and staggered wind turbine arrays as well as for atmospheric flow without wind turbines. This research is supported by a NSF Graduate Fellowship and by the WINDINSPIRE project, funded through NSF-OISE 1243482.

  9. Refrigerant and Lubricant Mass Distribution in a Convertible Split System Residential Air-Conditioner

    OpenAIRE

    Wujek, Scott S.; Bowers, Chad D.; Powell, Joshua W.; Urrego, Roberto A.; Hessell, Edward T.; Benanti, Travis L.

    2014-01-01

    Lubricants are utilized in air-conditioning systems for the purpose of decreasing friction and wear within the compressor. While ideally the lubricant remains in the compressor, some lubricant is entrained and transported by the refrigerant to the other system components. During operational transients, the lubricant is redistributed throughout the various system components. The equilibrium distribution of lubricant depends among other things on fluid properties, phase change processes, flow r...

  10. Air Distribution in Rooms with Ceiling-mounted Obstacles and Three-Dimensional Isothermal Flow

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Evensen, Louis; Grabau, Peter;

    The air supply openings in ventilated rooms are often placed close to the ceiling. A recirculating flow is generated in the room, and the region between the ceiling and the occupied zone serves as an entrainment and velocity decay area for the wall jets. Ceiling-mounted obstacles may disturb...... this flow and, in particular, certain dimensions and positions of the obstacles cause a downward deflection of the jets into the occupied zone resulting in reduced thermal comfort for the inhabitants....

  11. Two-phase air-water flows: Scale effects in physical modelling

    OpenAIRE

    Pfister, Michael; Chanson, Hubert

    2014-01-01

    Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical mo...

  12. Study on CO2-supercritical fluid extraction used to extract three kinds of tanshinones from the root of salvia meltiorrhiza bunge with different entrainers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To extract three kinds of tanshinones from the root of Salvia miltiorrhiza Bunge by CO2-supercritical fluid extraction technology with different entrainers at different flow rates, and to investigate the effects of different entrainers. Methods:Three kinds of tanshinones were extracted at the optimal operation condition, and the massconcentration of three kinds of tanshinones in the extracts was determined by HPLC. Results: Among the three entrainers, the extracting effects of ethanol is the best, for the stronger polarity, followed by ethanol and normal octane. Conclusion: To increase the extracting rate of three kinds of tanshinones by CO2-supercritical fluid extraction technics, it is essential to use polar solvent as entrainer.

  13. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    Science.gov (United States)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  14. Chemical crowd control agents.

    Science.gov (United States)

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  15. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  16. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    Directory of Open Access Journals (Sweden)

    H. Y. Hussin

    2012-10-01

    Full Text Available The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10–50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps. The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  17. On the Use of Radar Echo from Chaff to Study Entrainment in Stratocumulus Topped Marine Boundary Layers

    Science.gov (United States)

    Ghate, V. P.; Albrecht, B. A.; Jonsson, H.; PopStefanija, I.

    2015-12-01

    Marine stratocumulus clouds persist year-round and cover vast areas of the Eastern subtropical oceans. As these clouds have significantly higher albedo than the background sea surface and have warmer cloud top temperatures, they have a net cooling effect on the sea surface and the atmosphere. Hence, these clouds have a huge impact on the Earth's radiation budget and need to be accurately represented in Global Climate Models (GCM) aimed at predicting the future climate and energy needs. The entrainment occurring near the stratocumulus cloud top is one of the key factors influencing the stratocumulus cloud cover and lifetime. In this study, we have used the observations made during the Stratocumulus Entrainment and Precipitation Studies (SEPS) field campaign to quantify and characterize the entrainment in stratocumulus clouds. The data collected by the Compact Frequency Modulated Continuous Wave (CFMCW) W-band Doppler radar, and the in-situ aerosol, cloud, and precipitation size distribution measuring instruments onboard the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS)'s Twin Otter research aircraft formed the basis of this study. We have also used the data collected by the ground-based scanning X-band phased array radar (abbreviated as MWR-05XP) in this study. Finely cut radar chaff fibers corresponding to half the wavelength of the two radars were introduced ~300 m above a uniform stratocumulus cloud layer in a three-line formation on four separate days. The spatial and temporal evolution of the chaff as it dispersed in the free troposphere was tracked for more than two hours by the MWR-05XP that made sector scans every 20 seconds at a 75 m range resolution. The fine-scale evolution of the chaff needles and that of the cloud layer was observed and characterized by the CFMCW radar operating at a 5 m and 3 Hz resolution and by the other instruments onboard the aircraft. The relative dispersion rate of the chaff needles in the free

  18. Study on entrainment into high speed gas jet in stagnant liquid and droplet behavior

    International Nuclear Information System (INIS)

    A two dimensional air jet was blown out from a nozzle into water in a thin vessel. The behavior of the interface between water and the air jet were recorded with a high speed video camera. Filament-like ears and wisps pulled-out from the wavy water surface were noticed in the recorded photos. As the air velocity increased, the number of droplets created by the air jet increased lineally and the smaller droplets increased. The correlation for the droplet diameter distribution developed for the annular dispersed two-phase flow in a pipe predicted well the present results. The correlations for the droplet diameter developed for the annular dispersed two-phase flow in a pipe and for the jet blowing out from the stagnant water pool considerably underpredict the experimental results. (author)

  19. Dancers Entrain More Effectively than Non-Dancers to Another Actor’s Movements

    Directory of Open Access Journals (Sweden)

    Auriel eWashburn

    2014-10-01

    Full Text Available For many everyday sensorimotor tasks, trained dancers have been found to exhibit distinct and sometimes superior (more stable or robust patterns of behavior compared to non-dancers. Past research has demonstrated that experts in fields requiring specialized physical training and behavioral control exhibit superior interpersonal coordination capabilities for expertise-related tasks. To date, however, no published studies have compared dancers’ abilities to coordinate their movements with the movements of another individual—i.e., during a so-called visual-motor interpersonal coordination task. The current study was designed to investigate whether trained dancers would be better able to coordinate with a partner performing short sequences of dance-like movements than non-dancers. Movement time series were recorded for individual dancers and non-dancers asked to synchronize with a confederate during three different movement sequences characterized by distinct dance styles (i.e., dance team routine, contemporary ballet, mixed style without hearing any auditory signals or music. A diverse range of linear and nonlinear analyses (i.e., Cross-correlation, Cross-Recurrence Quantification Analysis (CRQA, and Cross-Wavelet analysis provided converging measures of coordination across multiple time scales. While overall levels of interpersonal coordination were influenced by differences in movement sequence for both groups, dancers consistently displayed higher levels of coordination with the confederate at both short and long time scales. These findings demonstrate that the visual-motor coordination capabilities of trained dancers allow them to better synchronize with other individuals performing dance-like movements than non-dancers. Further investigation of similar tasks may help to increase the understanding of visual-motor entrainment in general, as well as provide insight into the effects of focused training on visual-motor and interpersonal

  20. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.

    Science.gov (United States)

    Petersen, Christian C; Patton, Danica F; Parfyonov, Maksim; Mistlberger, Ralph E

    2014-12-01

    Rats can anticipate a daily feeding time. This has been interpreted as a rhythm controlled by food-entrainable circadian oscillators, because the rhythm persists during several cycles of total food deprivation and fails to track mealtimes if the feeding schedule deviates substantially from 24. These and other properties distinguish anticipation of daily meals from anticipation of food rewards provided at intervals in the seconds-to-minutes range, suggesting distinct mechanisms. It has been reported that rats can anticipate meals at long, but noncircadian, intervals if they are required to work for food, and that anticipation of daily meals, expressed in operant behavior, shows the scalar property, a hallmark of timing intervals in the seconds-to-minutes range. These observations raise the possibility of a universal timing system, rather than unique mechanisms for circadian and noncircadian intervals. To test whether circadian constraints on daily meal timing depend on the measure of behavior, we re-examined formal properties of food anticipation using lever pressing and motion sensors. We observed robust anticipation in both measures to meals at 24-hr intervals but no anticipation of meals at 18-hr intervals in light-dark or constant light and no evidence that the duration of anticipation scales with the interval between lighting transitions and mealtime. We are therefore unable to confirm reports that operant measures can reveal timing at long, but noncircadian, intervals. If timing processes exist that do permit anticipation of events at long, but noncircadian, intervals, the conditions under which these can be revealed are evidently highly constrained. PMID:25285457