WorldWideScience

Sample records for air conditioning equipment

  1. Control of Computer Room Air Conditioning using IT Equipment Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  2. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Science.gov (United States)

    2010-04-01

    ... Electrical Systems § 3280.813 Outdoor outlets, fixtures, air-conditioning equipment, etc. (a) Outdoor.../or air conditioning equipment located outside the manufactured home, shall have permanently affixed, adjacent to the outlet, a metal tag which reads: This Connection Is for Air Conditioning Equipment Rated...

  3. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Science.gov (United States)

    2010-07-01

    ... Optional equipment and air conditioning for test vehicles. For test vehicles selected under §§ 86.1822-01... be expected to influence emissions include, but are not limited to: air conditioning, power steering...) Except for air conditioning, where it is expected that 33 percent or less of a car line, within a...

  4. Proposal for energy saving in air conditioning equipment; Propuesta para ahorro energetico en acondicionadores de aire

    Energy Technology Data Exchange (ETDEWEB)

    Solis Recendez, Daniel H [Division de Ingenieria Electrica, Universidad Nacional Autonoma de Mexico (Mexico)

    2008-10-15

    In the last decades, the air conditioning systems have become a crucial part in the search from comfort in extreme climates. Nevertheless, they have also become one of the greatest energy consumers. In this article it is proposed that the final conditions that the air conditioning equipment looks for not to be fixed, but variable in respect to a certain comfort zone. This zone is a variation of the used one in the bio-climatic chart of Olgyay that considers the rapidity whereupon the reached conditions tend to leave the comfort zone. It is analyzed how to choose the point on the zone that costs less energy in arriving to it. [Spanish] En las ultimas decadas, los sistemas de aire acondicionado se han vuelto una parte crucial en la busqueda de confort en climas extremosos. Sin embargo, tambien se han vuelto de los mayores consumidores de energia. En este articulo se propone que las condiciones finales que busquen lograr los acondicionadores no sean fijas, si no variables respecto a una determinada zona de confort. Dicha zona es una variacion de la utilizada en la carta bioclimatica de Olgyay, que considera la rapidez con que las condiciones alcanzadas tienden a abandonar la zona de confort. Se discute como elegir el punto sobre la zona que cueste menos energia en llegara el.

  5. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  6. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  7. COP Evaluation for a Membrane Liquid Desiccant Air Conditioning System Using Four Different Heating Equipment

    OpenAIRE

    Abdel-Salam, Ahmed; Simonson, Carey

    2015-01-01

    Liquid desiccant air conditioning (LDAC) is a promising technology in terms of energy efficiency, comfort and indoor air quality. The major components of a LDAC system are the dehumidifier and regenerator. The most commonly used design of dehumidifiers/regenerators is the packed-bed, which might result in the entrainment of desiccant droplets in air streams. A promising solution for the entrainment of desiccant droplets in air streams is to use a liquid-to-air membrane energy exchanger (LAMEE...

  8. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  9. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  10. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    Science.gov (United States)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  11. R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.A.; Zaloudek, F.R.

    1987-03-01

    The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

  12. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1998-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  13. Rational use of energy in air conditioning equipment, through an appropriate selection of the main equipment; Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Zuniga, Jose de Jesus; Herrera Ramos, Manuel [Instituto Mexicano del Petroleo (Mexico)

    1996-07-01

    This paper presents an analysis to diminish the consumption of energy in central air conditioning equipment through an appropriate selection of the equipment. The analysis shows the levels of security and toxicity of the refrigerant, the operational, constructive and economic advantages of the equipment, taking as reference the cooling demand and expenses of energy consumption, as well as the ecological impact derived from the use of the refrigerant. Finally, an economic analysis is presented, involving the expenses of the equipment, operation, maintenance, costs of the consumption of used fluids, et cetera. [Spanish] Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal. Este trabajo presenta un analisis para disminuir el consumo de energia en los equipos centrales de aire acondicionado mediante la seleccion apropiada del equipo. El analisis muestra los niveles de seguridad y toxicidad del refrigerante, las ventajas operativas, constructivas y economicas del equipo, tomando como referencia la demanda de enfriamiento y gastos de consumo de energia, asi como el impacto ecologico derivado de su empleo del refrigerante. Finalmente, se presenta un analisis economico, involucrando los gastos del equipo, operacion, mantenimiento, costos de consumos de fluidos utilizados, etcetera.

  14. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  15. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  16. Evaluation of energy saving in pilot projects of window type air conditioning equipment in the domestic sector; Evaluacion del ahorro de energia en proyectos pilotos en equipos de aire acondicionado tipo ventana en el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Duran Ramirez, Ricardo [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the energy saving when replacing low efficiency window type air conditioning equipment, for higher efficiency equipment, as well as the necessary parameters to identify the results obtained by the pilot projects of substitution of conventional equipment for other more efficient in the domestic sector. [Spanish] El presente trabajo muestra los ahorros de energia al sustituir equipos de aire acondicionado tipo ventana de baja eficiencia, por equipos de mayor eficiencia, asi como los parametros necesarios para identificar los resultados obtenidos, por los proyectos pilotos de sustitucion de equipos convencionales por otros mas eficientes en el sector domestico.

  17. REACH. Air Conditioning Units.

    Science.gov (United States)

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  18. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  19. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Katipamula, S.

    1996-10-01

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  20. Energy saving: optimal use of air conditioning equipment by means of the solar control; Ahorro de energia: uso optimo de los acondicionadores de aire mediante el control solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-09-01

    In this article the evaluation of the solar heat gains through the transparent parts of a building (houses of social interest) is presented; with the purpose of determining the heat gains through windows during summer time and under the following conditions: without solar protection, with the use of eaves, solar breakers and, finally, with the use of both elements. With the determined percentage of the diminution of heat gains, the considered potential of energy saving in air conditioning was obtained that would be available if the houses were constructed with solar control. [Spanish] En este articulo se presenta la evaluacion de las ganancias de calor solar a traves de las partes transparentes de un edificio (viviendas de interes social); con el objeto de determinar las ganancias de calor a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin proteccion solar, con el empleo de aleros, con quiebrasoles y, finalmente, con el empleo de ambos elementos. Con el porcentaje determinado de la disminucion de ganancias de calor, se obtuvo el potencial estimado de ahorro de energia en aire acondicionado que se tendria si las viviendas se construyen con control solar.

  1. The Effect of Computers on School Air-Conditioning.

    Science.gov (United States)

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  2. Air conditioning and refrigeration engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kreith, F. [ed.] [Univ. of Colorado, Boulder, CO (US)

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  3. Air-Conditioning Mechanic.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  4. 机场地面专用空调设备制冷试验工况的讨论%Discussion on cooling test conditions of ground air conditioning equipment for airports

    Institute of Scientific and Technical Information of China (English)

    周志钢; 吴兆林; 张华

    2015-01-01

    Analyses the application characteristics of ground air conditioning equipment for airports and the differences compared with unitary air conditioning equipment and direct evaporation all outdoor air handling unit.Points out that the lack of unified standard about cooling test condition causes some confusion on design and evaluation for this type of equipment.Referring to the civil and military standards at home and abroad and the long term climatic data,suggests that the rating cooling performance test condition should take 35 ℃ as dry-bulb temperature and 28 ℃ as wet-bulb temperature.The maximum cooling load test condition for civil equipment should take 46 ℃as dry-bulb temperature and 30 ℃as wet-bulb temperature.The maximum cooling load test condition for military equipment should take 50 ℃ as dry-bulb temperature and 33 ℃as wet-bulb temperature.%分析了机场地面专用空调设备的使用特点及其与单元式空气调节机、直接蒸发式全新风空气处理机组等普通空调设备相比的区别。指出由于没有统一的制冷试验工况标准,机场地面专用空调设备的设计、考核评价等存在混乱现象。参考国内外民用、军用相关标准及气象统计资料,建议机场地面专用空调设备的制冷额定试验工况参数取干球温度35℃、湿球温度28℃,民用设备最大制冷负荷试验工况参数取干球温度46℃、湿球温度30℃,军用设备最大制冷负荷试验工况参数取干球温度50℃、湿球温度33℃。

  5. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  6. Study of thermodynamic properties of HFC refrigerant mixtures for Loretz-cycled niew generation air-conditioning equipment; Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsu rikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Sato, H. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-02-01

    This paper describes thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipment. Equipment has been completed for simultaneous measurement of density and vapor-liquid equilibrium property, accurate measurement of latent heat of vaporization, and accurate measurement of specific heat at constant pressure in liquid phase. Final adjustment and preliminary measurements are currently conducted. Through analytical investigation using actually measured data of thermodynamic properties of HFC refrigerant mixtures, five state equations were obtained, i.e., modified Peng-Robinson state equation which can reproduce the vapor-liquid equilibrium property of refrigerant mixtures, modified Patel-Teja state equation, Helmholtz function type state equation which is applicable in the whole fluid region of refrigerant mixtures, and so on. An evaluation test equipment has been fabricated as a trial for Lorentz-cycled air-conditioning equipments using HFC refrigerant mixtures, and demonstration test is conducted to confirm the validity. 9 refs., 5 figs.

  7. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  8. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  9. Analysis of development of the energy efifciency of major refrigeration and air conditioning products and equipments in China%中国典型空调产品及设备能效水平进展分析

    Institute of Scientific and Technical Information of China (English)

    李燕; 成建宏; 李红旗; 戴世龙; 张秀平; 王汝金

    2014-01-01

    The energy efficiency progress and main influencing factors of the typical refrigeration and air conditioning products and equipments are analyzed in this paper, such as room air conditioners, variable speed room air conditioners, unit air conditioners, multi-connected air condition (heat pump) units and water chillers.%本文对房间空调器、转速可控型房间空调器、单元式空气调节机、多联式空调(热泵)机组及冷水机组等典型制冷空调产品和设备能效水平进展进行了分析。

  10. 30 CFR 56.14114 - Air valves for pneumatic equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air valves for pneumatic equipment. 56.14114... Equipment Safety Devices and Maintenance Requirements § 56.14114 Air valves for pneumatic equipment. A manual master quick-close type air valve shall be installed on all pneumatic-powered equipment if...

  11. 制冷空调设备绿色设计的技术和实践探讨%Technical and Practical Discussions on Green Design of Refrigeration and Air Conditioning Equipments

    Institute of Scientific and Technical Information of China (English)

    朱斌祥; 张缓缓; 曲本连; 彭飞; 李韶强

    2015-01-01

    空调行业作为能源消耗和环境污染的重要源流,对于节能环保承担着重要责任。制冷空调设备绿色设计的应用研究日益受到人们的重视。本文指出了制冷空调产品进行绿色设计的必要性,分析了制冷空调绿色设计中的主要因素及主要内容,对于目前制冷空调产品提出了相应的绿色设计方法,还提出了绿色设计在制冷空调产品中的应用策略,以及绿色产品的评价指标。%As an important part of energy consumption and environment pollution, the air conditioning industry takes a great responsibility for energy saving and environment protection. More and more attentions have been paid on the application investigation in the green design of refrigeration and air conditioning equipments. In the paper the necessity to conduct the green design of refrigeration and air conditioning equipments is pointed out. A series of major factors and technologies are analyzed. The green design methods are proposed for the practical refrigeration and air conditioning equipment. In addition, the application strategy of green design in the air conditioning and refrigeration field is presented and the evaluation indicators on green products are concluded.

  12. 30 CFR 57.14114 - Air valves for pneumatic equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air valves for pneumatic equipment. 57.14114... and Equipment Safety Devices and Maintenance Requirements § 57.14114 Air valves for pneumatic equipment. A manual master quick-close type air valve shall be installed on all pneumatic-powered...

  13. 防空导弹武控设备实现CBM方法的探讨%Research on the Condition Based Maintenance for Weapon Control Equipment of Air-defense Missile

    Institute of Scientific and Technical Information of China (English)

    曲宏宇; 向哲

    2012-01-01

    针对解决防空导弹武控设备目前维修方式中的诸多问题,基于状态的维修(CBM)方式是有效解决途径之一。分析了对防空导弹武控设备进行CBM时的状态监测、失效模型建立、故障预测和维修决策等关键技术问题,探讨了防空导弹武控设备实现CBM的技术对策。结果表明,CBM具有诸多优点,它的实践应用必将引发武控设备维修技术的根本变革,促进高新技术在防空导弹武控设备维修领域的应用。%The condition based maintenance(CBM) is one of effective maintenance methods for weapon control equipment of air-defense missile.The key techniques is analyzed about inspecting the condition,establishing invalidation modal,forecasting malfunction,maintenance decision-making of CBM that is used for weapon control equipment of air-defense missile,the technique countermeasure of carrying CBM is introduced.The results show CBM is effective,which will result in radical change in maintenance technique of weapon control equipment,and promote using of new techniques in maintenance for weapon control equipment of air-defense missile.

  14. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  15. Air pollution and air cleaning equipment in buildings

    OpenAIRE

    Evdokimova, Ekaterina

    2011-01-01

    The subject of this thesis work is air pollution and air cleaners in building. Clean air has big significance for human health because different pollutions can cause allergy and disease. The quality of indoor air affects health and effective working. The aim of this thesis is to present methods and devices for cleaning the air.

  16. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  17. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  18. The microbiological quality of air improves when using air conditioning systems in cars

    OpenAIRE

    Holdack-Janssen Hinrich; Kenneweg Björn; Gastmeier Petra; Vonberg Ralf-Peter; Sohr Dorit; Chaberny Iris F

    2010-01-01

    Abstract Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system...

  19. Quality assurance of biomedical equipment repair process on technical condition

    OpenAIRE

    Кучеренко, Валентина Леонідівна

    2014-01-01

    Construction of a system of biomedical equipment repair on the actual technical condition is considered, and results of research in this area are given in the paper. The purpose of the research is to analyze the ways of quality assurance of biomedical equipment repair process in transition to the operation on the actual technical condition. Using the methods and means for the repair process stages automation allows to estimate actual technical condition of biomedical equipment. The analysis o...

  20. Evaluation of Road Equipment with Emphasis on Condition Assessment

    OpenAIRE

    Lundkvist, Sven-Olof

    2008-01-01

    This doctoral thesis deals primarily with condition assessment of road equipment. The road equipment concept is defined by five main groups, road lighting, fences and barriers, vertical signs, horizontal signs and traffic signals, respectively. Of these groups, road markings, street lighting and barriers of three-lane roads have been studied more in detail. A state-of-the-art, comprising information obtained by comprehensive literature studies on condition assessment of road equipment is pres...

  1. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    Science.gov (United States)

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  2. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  3. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    Science.gov (United States)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  4. Airfoil profile optimization of an air suction equipment with an air duct

    Directory of Open Access Journals (Sweden)

    Qiu Li

    2015-01-01

    Full Text Available On the basis of boundary layer with the airfoil profile, this research attempts to investigate the effect of the angle of spread of the winged air suction equipment on the efficiency of operation. The application of Fluent with the split-middle method under the identical operation mode is expected to optimize the spread angle. The investigated airfoil profile is NACA6413, of which the restrictions on the critical angle of spread suggested in literature will be overcome through the interactions between the internal and external flow fields. As a result, the air speed might increase. The wind tunnel test employed in this research offers the solid evidences to support this hypothesis. The test demonstrates that when the angle of spread is larger than 12°, the effect of accelerating the air flow is still observable. Following the optimization, the air suction effect of the equipment would be optimal when its angle of spread reached 30°.

  5. Air Conditioning. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  6. Air Conditioning and Heating Technology--II.

    Science.gov (United States)

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  7. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    Science.gov (United States)

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  8. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  9. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  10. Intelligent Control System of Textile Mill's Air-conditioning

    Institute of Scientific and Technical Information of China (English)

    WU Fu-zhuan; ZHAO Fang

    2009-01-01

    This paper briefly analyzes the present situation of textile mill's air-conditioning system. Since it is difficult to establish detailed math model to control a textile mill's air-conditioning system because of the influence of various factors such as the differences in seasons, regions, etc., most air-conditioning equipment can not he controlled automatically. This paper suggests utilizing multi-function data acquisition card to collect the data about the temperature and humidity of a workshop, processing the data on a PC, comparing them with the expert database, and then using the 485 serial port expanding module to output the parameters, which are used to control the inverter, so that the purpose of adjusting the temperature and humidity of the workshop is achieved.

  11. Carbon Emissions from air-Conditioning

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2013-01-01

    Full Text Available This paper explores electricity consumption and carbon emissions associated with air-conditioning. The total heat load of a room fitted with air conditioner of 1.5 ton capacity has been calculated by calculating conduction and ventilation losses. Solar heat gain and internal gain were taken as the other two parameters for the total heat calculation.

  12. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    2011-06-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  13. Survey of the air-conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, J.; Biederman, R.

    1987-01-01

    The air-conditioning (AC) branch of the refrigeration industry has undergone a period of significant development fueled by open markets, broadened international competition, and increased energy awareness. The average consumer is likely to benefit today as much as during the 1930's, when the foundation for mass usage of air conditioning was established. The focus of this survey is to present recent developments in the AC market and look ahead to further advancements and opportunities for growth. 8 refs.

  14. A survey of energy efficient strategies for effective air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Akyurt, M.M. [King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2004-07-01

    Several methods are presented for lowering the energy consumed during air conditioning of buildings. Some of these strategies can be implemented during the design stage; others can be used to retrofit existing AC systems; and still others can be applied with hardly any changes on existing equipment. The methods that are discussed include heat recovery and utilization, absorption refrigeration systems, thermal cool storage, liquid (refrigerant) pressure amplification, reprogramming of the AC control systems, economical methods of removal of moisture from the air and initiation of awareness programs for the conservation of A/C energy. (author)

  15. Reduced bleed air extraction for DC-10 cabin air conditioning

    Science.gov (United States)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  16. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  17. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  18. Refrigerating and air conditioning systems: dilemmas in the future development

    International Nuclear Information System (INIS)

    harmful influence of CFC fluids, depletion on the ozone layer and global warming of Earth. Survey on the most applied refrigerants and their potentials for harmful influence on the ozone layer and global warming. Montreal protocol and additional regulations (amendments). Measures for a phase-out of CFCs in Republic of Macedonia, projects, forming of training centers, training courses for good maintenance and servicing of refrigerating and air conditioning systems, equipment for recovery and recycling of refrigerants. The newest alternative refrigerants and their properties. Specifics in application of the new HFC fluids. Natural refrigerants: ammonia, carbon-hydrogen's, carbon-dioxide, water, air. Failing (toxicity and flammability) and advantages in their appliance. New concepts of refrigerating and air conditioning systems. Cross way in the future development of refrigerating and air conditioning systems. Crossing of opposite views and interest on the international level. Missing of strategy in Republic of Macedonia in the field of refrigeration and air conditioning. paradox in R. Macedonia: ammonia refrigerating systems go out of use. (Author)

  19. Smart Sensors Enable Smart Air Conditioning Control

    OpenAIRE

    Chin-Chi Cheng; Dasheng Lee

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be contr...

  20. Thermal analysis of car air conditioning

    Science.gov (United States)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  1. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    Science.gov (United States)

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  2. Air conditioning sector marketing. Situazione nel settore del condizionamento dell'aria

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, J.; Biederman, R. (Institute of Gas Technology, Chicago, IL (United States))

    1993-03-01

    Predictions are that the space heating ventilation and air conditioning equipment sector will undergo significant expansion in the coming decade. Substantial technology inputs will be required to make new equipment conform to standards on energy efficiency and environmental compatibility, and strong competition in this sector will force equipment designers to seek low energy cost solutions. The European energy price situation is expected to favour the use of reversible gas heat pumps in space HVAC systems for buildings. New environmental regulations, especially those governing refrigerant typology, indoor air pollution and thermal comfort in office buildings, should also help to increase demand for new technologically advanced equipment conforming with international standards.

  3. Air Conditioning and Refrigeration Book IV.

    Science.gov (United States)

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  4. Fundamentals of Air Conditioning and Refrigeration.

    Science.gov (United States)

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  5. Air Conditioning and Refrigeration Supplementary Units.

    Science.gov (United States)

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  6. Air Conditioning and Refrigeration. Book Two.

    Science.gov (United States)

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  7. Readings in Air Conditioning and Refrigeration.

    Science.gov (United States)

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  8. Air Conditioning and Refrigeration. Book One.

    Science.gov (United States)

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  9. Air Conditioning and Refrigeration Book III.

    Science.gov (United States)

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  10. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  11. Smart sensors enable smart air conditioning control.

    Science.gov (United States)

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  12. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  13. Smart sensors enable smart air conditioning control.

    Science.gov (United States)

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  14. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    OpenAIRE

    Pookongchai Kritsada; Nakornrat Prasit; Sookananta Bongkoj; Buasri Panhathai

    2015-01-01

    This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point...

  15. Air Conditioning System using Rankine Cycle

    Science.gov (United States)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  16. Applied refrigeration and air conditioning engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, K.

    1983-10-01

    The second part of this report deals with transmissions (diagrams) through walls and window panes and the heat produced by lighting, persons and insolation. A graphic description of the total cooling- and heating load of a typical window for office buildings is supplied. An air-conditioner suitable for these requirements has to have a thermal output of 1.25 kW at an outside temperature of -15/sup 0/C. Most air-conditioning systems work best if they operate continually in full-load operation under design conditions or under conditions similar to those. These considerations are followed by explanations on the interrelationship between cooling and heating illustrated with numerical examples of cooling performance. An exact analysis of the cooling or heating demands of a room is obtained by diagrams as they permit a simple determination of the kind and quantity of heat which has to be supplied or removed from or to a certain window under various loads.

  17. Evaporative Condensers in Comfortable Air Conditioning System

    Institute of Scientific and Technical Information of China (English)

    YIN Ying-de; ZHU Dong-sheng; DU Gui-mei; LI Yuan-xi; SUN He-jing; LIU Qing-ming

    2009-01-01

    The operating theory of an evaporative condenser was expatiated.The difference between an e-vaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative con-densers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative con-densing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.

  18. Research of indoor smoke warning and air purification equipment

    Institute of Scientific and Technical Information of China (English)

    Wangronglong; Zhaoyexing; Fuyunhua

    2015-01-01

    In order to reduce indoor smoke concentration and improve indoor air quality,we put forward the intelligent indoor smoke warning and air purification device. This device can quickly reduce the concentration of indoor smoke by the air purification and fire alarm function. It provides a suitable living environment for people.

  19. Maintenance of electromechanical equipment in quality organization under operating conditions

    International Nuclear Information System (INIS)

    The paper outlines the principles adopted by the Thermal Production Service of Electricite de France on the basis of the experience of the first years of operation of its 900 MW(e)PWR units for the purpose of improving quality organization in operating conditions in respect of the maintenance of electromechanical safety equipment. This organization is based on application of the usual principles for quality assurance, adapted in accordance with current French regulations. The paper first recalls the now traditional methods of applying the principles of quality organization in the area of equipment maintenance. It then defines particular so-called ''delicate'' activities which, in accordance with the above regulations, are subjected to additional quality organizational procedures; this applies in particular to the area of pre-maintenance preparation and studies and to the control exercised by the French safety authorities over the execution of those activities. The paper explains how the application of the regulations improves maintenance practices compared with standard quality organization. It describes how the attempt to establish a frontier between these two types of activity (current and ''delicate'') has led to the definition of a classification criterion which is technically correct and simple to use and is based on the professional skills of those performing each activity. The paper then describes in greater detail the principal rules for the performance of those tasks which come under the standard organization and those to which more stringent criteria apply. Lastly, it explains the thinking behind equipment surveillance programmes and the analysis of anomalies discovered through surveillance measures or brought to light by operating incidents, the aim of these being to benefit from the experience gained

  20. [Air conditioning units and warm air blankets in the operating room].

    Science.gov (United States)

    Kerwat, Klaus; Piechowiak, Karolin; Wulf, Hinnerk

    2013-01-01

    Nowadays almost all operating rooms are equipped with air conditioning (AC units). Their main purpose is climatization, like ventilation, moisturizing, cooling and also the warming of the room in large buildings. In operating rooms they have an additional function in the prevention of infections, especially the avoidance of postoperative wound infections. This is achieved by special filtration systems and by the creation of specific air currents. Since hypothermia is known to be an unambiguous factor for the development of postoperative wound infections, patients are often actively warmed intraoperatively using warm air blankets (forced-air warming units). In such cases it is frequently discussed whether such warm air blankets affect the performance of AC units by changing the air currents or whether, in contrast, have exactly the opposite effect. However, it has been demonstrated in numerous studies that warm air blankets do not have any relevant effect on the functioning of AC units. Also there are no indications that their use increases the rate of postoperative wound infections. By preventing the patient from experiencing hypothermia, the rate of postoperative wound infections can even be decreased thereby.

  1. Numerical simulation and nasal air-conditioning

    Directory of Open Access Journals (Sweden)

    Keck, Tilman

    2010-01-01

    Full Text Available Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning.

  2. Thermography in air conditioning and refrigeration engineering

    Energy Technology Data Exchange (ETDEWEB)

    Florin, C.

    1989-01-01

    Visible light is one of our most important information sources. In spite of this, engineers in their ever-present thirst for knowledge are still trying to analyze the invisible in their scientific work. Thermographic images are generated by transferring information from other wavelengths of the electromagnetic spectrum into the visible range. The article describes the applications of thermography in air conditioning and refrigeration engineering and discusses its value as an information source.

  3. Low Energy Air Conditioning for Hot Climates

    OpenAIRE

    Almutairi, Hamad Hhn

    2012-01-01

    Fossil fuels are the major sources of electrical power generation in the world. Among all fossil fuels, oil is considered as the most sought-after fuel. The burden on countries that provide subsidized electricity produced from oil-fired power plants is noteworthy. Kuwait is a notable example of these countries. Electricity in Kuwait is heavily consumed by residential air conditioning, which comprises 60% of the total electricity generated at peak times on a hot summer day. From this perspecti...

  4. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  5. Air cleaning system isolation during tornado conditions

    International Nuclear Information System (INIS)

    The occurrence of a tornado at the site of an operating nuclear power generating station creates unstable atmospheric conditions which can be detrimental to the proper operation of the plant air cleaning system. One means of mitigating or preventing this hazard is isolation of the system from the unstable environment by closure of the system openings during the unstable conditions. For maximum system protection the closure should be an automatic response to the adverse conditions themselves, without reliance on manual or remote sensing or signals. The interaction of tornado characteristics with velocity/pressure sensitive isolation devices is modeled. Force and time relationships are investigated to evaluate and predict the interaction. Laboratory test apparatus is developed for simulating the flows and pressures induced by the tornado at system openings. Several isolation devices of various sizes are subjected to a range of simulated tornado conditions for observation and evaluation of response time, sensitivity, and dyamic closing forces. The model, apparatus, experimentation, and results are presented

  6. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    Science.gov (United States)

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  7. CFD SIMULATION OF AIR ION REGIME IN WORK AREAS AT CONDITION OF ARTIFICIAL AIR IONIZATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. The paper supposes creation of a CFD model for calculating the air ion regime in the premises and in work areas at artificial ionization of the air by the ionizer installation indoors with considering the most important physical factors that influence the formation of ions concentration field. Methodology. The proposed CFD model for calculation of the air ion regime in work areas at artificial ionization of the air by installing ionizer indoors is based on the application of aerodynamics, electrostatics and mass transfer equations. The mass transfer equation takes into account the interaction of different polarities of ions with each other and with the dust particles. The calculation of air flow rate in the room is realized on the basis of the potential flow model by using the Laplace equation for the stream function. Poisson equation for the electric potential is used for calculation of the charged particles drift in an electric field. At the simulation to take into account: 1 influence of the working area geometric characteristics; 2 location of the ventilation holes; 3 placement of furniture and equipment; 4 ventilation regime in the room; 5 presence of obstacles on the ions dispersion process; 6 specific location of dust particles emission and ions of different polarity, and their interaction in the room and in the working zones. Findings. The developed CFD model allows determining the concentration of negative ions in the room and in the area of the human respiratory organs. The distribution of the negative ions concentration is presented in the form of concentration field isolines. Originality. The 2D CFD model for calculating the air ion regime in working areas, providing the ability to determine the ions concentration in a given place in the room was created. The proposed model is developed taking into account: placement of furniture and equipment in the room; geometric characteristics of the room; location of dust emissions

  8. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  9. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    Science.gov (United States)

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  10. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  11. On the history of air conditioning; Zur Geschichte der Raumklimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, Klaus; Finke, Ulrich [Klimakonzept Ingenieurgesellschaft, Berlin (Germany)

    2010-01-15

    The theoretical bases of indoor air conditioning originates from the time of enlightenment (Lavoisier 1792). For the first time air conditioning is applied 1836 in the House of Commons in London. Wide application begins in the USA in the 1930s, in Germany due to the war after the 1950s. Starting from 1970 there are advancements in Germany and Northern Europe, which make it possible not to only air-condition but to fulfil thermally comfortable conditions. (orig.)

  12. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  13. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  14. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Science.gov (United States)

    2012-07-17

    ... an opportunity to participate in #0;the rule making prior to the adoption of the final rules. #0; #0... Equipment and Technology ACTION: Notice; request for information. SUMMARY: The FAA seeks information from industry developers, manufacturers, and the public related to effective air cleaning technology and...

  15. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    International Nuclear Information System (INIS)

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments

  16. DESIGN a solar hybrid air conditioning compressor system

    OpenAIRE

    Khalaji Assadi M.; Gilani S. I.; Jun Yen T. C.

    2016-01-01

    To develop and integrate solar hybrid system into conventional air conditioning system which provides the same cooling load with considerably less electricity demand. Solar evacuated tube and DC compressor are used for compressing the refrigerant in an air conditioning system, thus effectively reducing the air conditioning electricity consumption by up to 45%. For the flow through type selected geometry of the designed evacuated U-tube collector, a three dimensional simulation and analysis of...

  17. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    Science.gov (United States)

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  18. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  19. Vibration Analysis of Air Condition Unit on Subway

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2013-06-01

    Full Text Available Subway system has many merits including large passenger carrying ability, high speed, strong controllability and reliability of driving. Nevertheless, subways also have brought many disadvantages for human. In many subway systems, noisy environments are clearly observed and passengers are exposed to higher noise levels than permissible limit. This study presents a study of noise and vibration of subway air condition system, so as to grasp the vibration distribution laws of the air condition system. By the tested of noise and vibration, the researcher find the sound distribution rule of air condition is very important Based on the consequence of the testing, the acceleration of air condition has little to do with the subway speed and more to do with the vibration of fan; When the train driving on the viaduct bridge, the acceleration of air condition is biggish in 125 Hz and In 50-1000 Hz the vibration of air condition is obviously. When the train running underground line, as a result of the resonance of body, air condition’s vibration is biggish in 630 Hz and the vibration is obviously in 125-1250 Hz. With the increase of the speed, the influence of the ground’s second radiation on body vibration is enhanced. The superfine gross wool which is used to air condition can achieve good results for noise reduction. This research has higher reference for the vibration and noise reduction of the subway air condition system.

  20. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Science.gov (United States)

    2012-12-20

    ... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very large commercial package air conditioning and heating equipment, packaged terminal air conditioners and packaged terminal heat pumps, warm air furnaces packaged boilers, storage water heaters,...

  1. 2014 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  2. 2015 German refrigeration and air conditioning meeting. Abstracts

    International Nuclear Information System (INIS)

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  3. DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM

    OpenAIRE

    AMRIT KAUR; ARSHDEEP KAUR

    2012-01-01

    The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.

  4. DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM

    Directory of Open Access Journals (Sweden)

    AMRIT KAUR

    2012-04-01

    Full Text Available The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.

  5. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  6. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  7. Energy Efficiency for Heating, Ventilating, Air-Conditioning Instructors.

    Science.gov (United States)

    Scharmann, Larry, Ed.; Lay, Gary, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in heating, ventilating, and air-conditioning. The following topics are examined: how energy conservation pays, heating, ventilation, air-conditioning,…

  8. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    Science.gov (United States)

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  9. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  10. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  11. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  12. The application of active noise control technology to reduce noise from air pollution control equipment

    Energy Technology Data Exchange (ETDEWEB)

    Depies, C. R.; Kapsos, D. W.

    1996-08-01

    The basic concept of active noise control, i. e. to create a noise field in a space in order to destructively interfere with an existing noise, and in the process create a quieter space, was explained. The manner in which noise control technology can be used in air pollution control equipment was described and guidelines for application were provided. A number of case studies were used to illustrate the suitability of active noise control for low frequency noise problems, especially in the area of air pollution control equipment. Impressive reduction of low frequency noise, energy efficiency, ability to retrofit into an existing duct system, and the hardware`s insensitivity to dirty exhaust environments were cited as the principal reasons for the success of active noise control technology over more traditional in-line passive silencers. 1 ref., 8 figs.

  13. Energy consumption in air-conditioning; Improvement and Reduction

    Directory of Open Access Journals (Sweden)

    Yacoub Yousef Ahmad Alotaibi

    2015-06-01

    Full Text Available Anew technique to reduce latent heat to improve energy consumption in air-conditioning is by using Desiccant . The aim of dehumidification process is to remove the water vapor from the processed air to liquid desiccants. Dehumidification is considered as a key feature of HVAC systems for thermal comfort. Chemical dehumidification is remove the water vapour from the air by transferring it towards a desiccant material (adsorption or absorption. Results illustrate that the application of liquid desiccant in air conditioning can improve indoor air quality, reduce energy consumption and bring environmentally friendly products, also. Lewis number increased rapidly with the increase of solution concentration Therefore liquid desiccant air conditioning systems are drawing more and more attention in recent years.

  14. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  15. DESIGN a solar hybrid air conditioning compressor system

    Directory of Open Access Journals (Sweden)

    Khalaji Assadi M.

    2016-01-01

    Full Text Available To develop and integrate solar hybrid system into conventional air conditioning system which provides the same cooling load with considerably less electricity demand. Solar evacuated tube and DC compressor are used for compressing the refrigerant in an air conditioning system, thus effectively reducing the air conditioning electricity consumption by up to 45%. For the flow through type selected geometry of the designed evacuated U-tube collector, a three dimensional simulation and analysis of the thermal performance was done, using the solar ray-tracing model provided by the ANSYS-FLUENT software.

  16. Experimental tests of a gas fired adsorption air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Poyelle, F.; Guilleminot, J.J.; Meunier, F. [C.N.R.S.-L.I.M.S.I., Orsay Cedex (France); Canal, P.; Soide, I.; Klemsdal, E. [Gaz de Francer Saint Denis La Plaine (France)

    1997-10-01

    Over recent years, there has been growing interest for air conditioning systems, for commercial and offices buildings, transport and residential houses. Gaz de France promote natural gas powered air conditioning systems through the installation of commercial absorption machines, producing chilled and/or hot water. These machines cover loads from 70 kW to 5 MW. Gaz de France`s purpose is to develop a small scale natural gas fueled air conditioning system for residential applications and small commercials (5-20 kW). In order to study the feasibility of a small scale adsorption machine, a prototype has been studied, designed, constructed and tested. (au) 11 refs.

  17. Simulation technology for refrigeration and air conditioning appliances

    Institute of Scientific and Technical Information of China (English)

    DING Guoliang

    2006-01-01

    Simulation technology has been widely used for performance prediction and optimal design of refrigeration and air conditioning appliances. A brief history of simulation technology for refrigeration and air conditioning appliances is reviewed. The models for evaporator, condenser, compressor, capillary tube and thermal insulation layer are summarized, and a fast calculation method for thermodynamic properties of refrigerant is introduced in this paper. The model-based intelligent simulation technology and the simulation technology based on graph theory are also illustrated. Finally, an updated trend of simulation technology development for refrigeration and air conditioning appliances is discussed.

  18. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  19. Performance and evaluation of desiccant based air conditioning system.

    Directory of Open Access Journals (Sweden)

    Gaurav S. Wani

    2014-12-01

    Full Text Available This Project work presents study and experimental analysis of Desiccant based air conditioning system.The main purpose of this project is to increase the efficency of air conditioning system.In the convenstional air conditioning system cooling coli has two load latent load and sensible load. Cooling has to cool the air and simultaneously to dehumidify it.It increases load on cooling coil and affects performance to the system. To increase the efficiency the air conditioning system desiccant materials are used at the inlet of the air conditioning test rig. Desiccant materials attract moisture based on differences in vapor pressure. Due to their enormous affinity to absorb water and considerable ability to hold water. Due to use of desiccant material load on the cooling coil reduces since moisture is absorbed by desiccant; cooling coil has to take only sensible load. Analysis is done using different desiccant materials and based on the observation, power consumption before and after desiccant is calculated. From this conclusion is made that desiccant material improves the efficiency of air conditioning test rig

  20. MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    NARCIS (Netherlands)

    HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW

    1994-01-01

    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble deter

  1. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Larry G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  2. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  3. Extreme conditions in a dissolving air nanobubble

    Science.gov (United States)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  4. Extreme conditions in a dissolving air nanobubble.

    Science.gov (United States)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution. PMID:27575216

  5. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Air-conditioning of buildings has played a very positive role for economic development in warm climates. Still its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even...... in the built environment: better indoor air quality increases productivity and decreases SBS symptoms; unnecessary indoor pollution sources should be avoided; the air should be served cool and dry to the occupants; personalized ventilation, i.e. small amounts of clean air, should be provided gently, close...

  6. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1999-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms......: better indoor air quality increases productivity and decreases SBS symptoms; unnecessary indoor pollution sources should be avoided; the air should be served cool and dry to the occupants; small amounts of clean air should be served gently, close to the breathing zone of each individual; individual...

  7. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2001-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms......: better indoor air quality increases productivity and decreases SBS symptoms; unnecessary indoor pollution sources should be avoided; the air should be served cool and dry to the occupants; “personalized air”, i.e. a small amount of clean air, should be served gently, close to the breathing zone of each...

  8. Application of Solar Energy to Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    M, Nash J; J, Harstad A

    1976-11-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/ Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  9. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  10. Portable air pollution control equipment for the control of toxic particulate emissions

    Energy Technology Data Exchange (ETDEWEB)

    Chaurushia, A.; Odabashian, S.; Busch, E. [Northrop Grumman Corp., El Segundo, CA (United States). Military Aircraft Systems Div.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  11. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ωin,air and TReg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The Tsup,air, ωsup,air, COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  12. Methodology for development of condition-based maintenance program for surface drilling equipment

    OpenAIRE

    Sizov, Ilya

    2012-01-01

    Maintenance is the essential part of production process in today’s industry. There are several philosophies (e.g. corrective maintenance and preventive maintenance) and concepts (e.g. overall equipment efficiency and reliability-centered maintenance) that are applied in industry. The challenge here is to choose the proper ones for the specific operation conditions and equipment. The solution to this challenge can be found through implementation of a reliability-centered mainten...

  13. [Ways to optimize working conditions of medical personnel servicing modern hi-tech medical equipment].

    Science.gov (United States)

    Kravchenko, O K

    2007-01-01

    The author analyzed health state of medical personnel through various parameters. Hygienic characteristics of work conditions for medical personnel subjected to physical factors when servicing modern hi-tech medical equipment are presented. Occupational groups at high risk are defined. The article covers main directions in improving work conditions and preserving health for medical personnel in these groups.

  14. Decentralized and overall condition monitoring system for large-scale mobile and complex equipment

    Institute of Scientific and Technical Information of China (English)

    Cao Jianjun; Zhang Peilin; Ren Guoquan; Fu Jianping

    2007-01-01

    It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example,the design and realization of the decentralized and overall condition monitoring system is introduced specifically.Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.

  15. Controlled air incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings specifications, calculations, and costs. It aids duplication of the process at other facilities

  16. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  17. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  18. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  19. Effects of suspension of air-conditioning on airtight-type racks.

    Science.gov (United States)

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  20. Multi-equipment condition based maintenance optimization by multi- objective genetic algorithm

    Directory of Open Access Journals (Sweden)

    Š. Valčuha

    2011-04-01

    Full Text Available Purpose: This paper deals with the optimization of the condition based maintenance (CBM applied on manufacturing multi-equipment system under cost and benefit criteria.Design/methodology/approach: The system is modeled using Discrete Event Simulation (DES and optimized by means of the application of a Multi-Objective Evolutionary Algorithm (MOEA.Findings: Solution for the joint optimization of the condition based maintenance model applied on several equipment has been obtained.Research limitations/implications: The developed approach has been successfully applied to the optimization of condition based maintenance activities of a hubcap production system composed by three plastic injection machines and a painting station, for management decision support.Originality/value: This paper provides a solution for the joint optimization of CBM strategies applied on several equipments

  1. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  2. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  3. Fuzzy systems for condition assessment of equipment in electric power systems

    OpenAIRE

    Krontiris, Athanasios

    2012-01-01

    In this thesis the use of fuzzy logic techniques for condition assessment and diagnostic analysis of equipment in electric power systems is discussed. Condition assessment may be performed at a strategic level so as to assist in planning long and medium-term maintenance and replacement, or at operational level focusing on day-to-day maintenance. The first part of the thesis addresses the application of fuzzy systems for the purpose of strategic and operational condition assessment using the e...

  4. Study of operational conditions of dentistry X-ray equipment of Roraima State, Brazil

    International Nuclear Information System (INIS)

    This paper presents the results of the evaluation of the operating conditions of X-ray equipment installed in dental clinics in Boa Vista, Roraima State, Brazil. The results showed that 17% of the X-ray equipment operate with 50kV, what is not recommended by the Brazilian Health Authority. In 70% of the equipment the discrepancy between the preset time and the real irradiation time was higher than 10%, while 35% of the inspected units present discrepancy higher than 10% between the preset and the applied kV. The survey indicate also that 21,4% of the equipment present total filtration lower than 1,5 mm of Al, value recommended by the national rules. (author)

  5. Air Conditioning Systems from a 2nd Law Perspective

    OpenAIRE

    Luigi Marletta

    2010-01-01

    In this paper exergy analysis is used to assess the performance of the three most common air conditioning plant schemes: all-air, dual-duct and fan-coil systems. The results are presented in terms of flow diagrams to provide a clear picture of the exergy flow across the systems. The most relevant outcomes are that the air cooling and dehumidification is the process most responsible for the exergy loss and that the exergy efficiency of the overall systems is rather low; thus the quest for more...

  6. Containment vessel, its auxiliary system and plant air conditioning system of advanced thermal reactor Fugen

    International Nuclear Information System (INIS)

    The functional requirement for, the design and the construction of, and the functional test on the containment vessel, its auxiliary system, the plant air conditioning and ventilation system of the advanced thermal reactor, Fugen, are described in detail. The main specifications of the containment vessel are as follows: The type enclosed cylinder, the maximum operating pressure 1.35 kg/cm2g, the maximum operating temperature 100 deg C, the leak rate 0.4%/day, the inner diameter 36 m. The height 64 m, the volume 40,900 m3, and the material JIS G3118, SGV-49. The containment vessel is provided with an hatch of 5 m diameter for carrying equipments in two air locks, many high and low voltage cable penetrations, pipe penetrations, a transfer shoot and isolation values. The functions and the specifications of the containment vessel and its auxiliary equipments are explained. The relating auxiliary systems are composed of the containment vessel spray system, the pool facility for steam blow-down, the recirculation system for the air in the vessel, the annulus evacuation system and its pressure control devices, the pressure measuring instruments and pressure relief valves and the temperature measuring devices for the containment vessel, and the object, function, layout and installation of these systems are explained. Concerning the air conditioning system, each main building has the special subsystem, and they are introduced. The progress stage of construction works and the procedure and results of the functional test at the site are described. (Nakai, Y.)

  7. Waste energy recovery in window air conditioning system

    Directory of Open Access Journals (Sweden)

    R. Sasidharan

    2014-03-01

    Full Text Available “Faster, mightier & smaller” is still the keyword for every invention and development. In day-to-day world we concentrate on the compactness and efficiency of every product. Keeping this in thought, the “Waste Energy Recovery in Window Air conditioning System” is designed and fabricated in an economical manner. “Human comfort is that condition of mind, which expresses itself with the thermal environment”. In this two rival properties of cool water and heat water are obtained. This system can be used continuously. By using this system there is no need of going for a separate air conditioner or water heater and water cooler. As both purposes are served by a single system, the cost is also lowered to a considerable level.   Keywords: Waste Energy, Window Air Conditioning System.

  8. Sustainable air-conditioning for the tropical buildings

    Directory of Open Access Journals (Sweden)

    Asrul Mahjuddin Ressang Aminuddin

    2008-12-01

    Full Text Available Tropical climates are thermally uncomfortable and are mostly unhealthy to the occupants of the modern skyscrapers. The temperatures are usually on the hot side coupled with high relative humidity. The population living in the tropics, especially in Malaysia, is getting affluent and can afford air-conditioning their residences and offices. This leads to increased electricity consumption in the buildings. However, switching off the air-conditioning is not an option for the modern buildings as it would affect the health of the people and their productivity. This paper proposes innovative indoor units that will contribute to energy conservation by utilising principles of partial air-conditioning. The outdoor units could be utilised for clothes drying or for providing hot water to the occupants of the building. This will successfully address the issues on sustainable building technologies and techniques. It will lead to considerable savings in energy consumption in buildings in the tropical climate.

  9. The Impact of Air Exchange Effectiveness on Thermal Comfort in an Air-Conditioned Office

    Directory of Open Access Journals (Sweden)

    Roonak Daghigh

    2009-01-01

    Full Text Available Problem statement: Impact of air exchange effectiveness on thermal comfort has not been investigated and, therefore, not well understood .Therefore, the influence of air exchange effectiveness on thermal comfort is investigated in this study. Approach: The main objective of this research is to investigate the thermal comfort level of an air-conditioned office room under 14 windows-door opening arrangements as a function of maximum, minimum and mean Air Exchange Effectiveness (AEE, as has not been inquired into already. The tracer gas decay method has been applied during the experimental procedures to estimate air exchange effectiveness, on the basis of room average and local mean age of air. Simultaneously, thermal comfort variables were measured and through these data, the thermal comforts Fanger's indices (PMV and PPD were calculated. Staff answered a survey on their sensation of the indoor climate. Results: Results of 60 survey responses to thermal comfort questions in office and indoor air quality are presented. This study has shown that there are relationship between AEE and thermal comfort and three linear regression equations of PMV versus AEE can be derived for this air-conditioned office. Conclusion: Studies on the effect of air exchange effectiveness on thermal comfort in an office have shown that Thermal comfort is influenced by AEE, which go beyond the six factors which have been taken into account in PMV modeling.

  10. Breakthrough for greener air-conditioning in cars

    International Nuclear Information System (INIS)

    Alter more than a decade of research and development work at SINTEF and NTNU, a patented CO2-based car air-conditioning system is now being adopted by the automotive industry. The Japanese company Denso Corporation has acquired a licence for the use of the CO2-technology in air conditioning and heat pump systems for cars. The new system offers improved energy efficiency, eliminates the emission of greenhouse gas refrigerants, and can be operated in the heat-pump mode for rapid heating in the winter season. (author)

  11. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    Science.gov (United States)

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  12. 42 CFR 410.38 - Durable medical equipment: Scope and conditions.

    Science.gov (United States)

    2010-10-01

    ... supporting documentation, including pertinent parts of the beneficiary's medical record (for example, history... 42 Public Health 2 2010-10-01 2010-10-01 false Durable medical equipment: Scope and conditions... HUMAN SERVICES MEDICARE PROGRAM SUPPLEMENTARY MEDICAL INSURANCE (SMI) BENEFITS Medical and Other...

  13. Air conditioning: Low-cost autonomous air conditioning systems for bionic buildings; Klimatechnik: Bezahlbare, autarke Klimatisierung von bionischen Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H. [ARCADIS, Maastricht (Netherlands); Kutzker, A. [RUBITHERM GmbH, Hamburg (Germany)

    2005-05-01

    Termites in Africa construct buildings that are respectfully referred to as ''cathedrals'' by experts. Millions of insects inhabit these structures that are efficiently air conditioned: While the outside temperatures vary from 10 C at night to 45 C in daytime, the air inside has a constant temperature of 29 C +/- 1 C. The contribution presents a low-cost solution for human buildings. (orig.)

  14. Thermal stratification level of low sidewall air supply with air-conditioning system in large space

    Institute of Scientific and Technical Information of China (English)

    黄晨; 蔡宁; 高雪垒

    2009-01-01

    The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simulation. Based on the simulation of experiment condition,the air velocity and vertical temperature distribution in a large space were simulated at different air-outlet velocities,and then the thermal stratification level line was obtained. The simulation results well match with the experimental ones and the average relative error is 3.4%. The thermal stratification level is heightened by increasing the air-outlet velocity with low sidewall air supply mode. It is concluded that when air-outlet velocity is 0.29 m/s,which is the experimental case,a uniform thermal environment in the higher occupied zone and a stable stratification level are formed. When the air-outlet velocity is low,such as 0.05 m/s,the thermal stratification level is too low and the air velocity is too small to meet the human thermal comfort in the occupied zone. So,it would be reasonable that the air-outlet velocity may be designed as 0.31 m/s if the height of the occupied zone is 2 m.

  15. Droplets spectrum of air-assisted boom sprayers under different environmental and operational conditions

    Directory of Open Access Journals (Sweden)

    Robson S. Sasaki

    2016-01-01

    Full Text Available ABSTRACT During pesticide spraying, the psychrometric conditions of the air may cause evaporation of the droplets along their trajectory from the nozzle to the target. Thus, this study aimed to evaluate the effect of air psychrometric conditions and operating pressure on the droplet spectrum of air-assisted boom sprayers. The test was performed using a prototype equipped with an axial fan, a flow homogenizer, temperature and relative air humidity sensors, a spray nozzle and a gas-heating system to warm up the airflow. With the assembled system and the aid of a particle analyser, the JSF 11002 spray nozzle was evaluated with respect to droplet spectrum in four air psychrometric conditions (7, 14, 21 and 28 hPa and at four operating pressures (200, 300, 400 and 500 kPa. At the end, evaporation losses were observed during the sprayings. For a given operating pressure and for each increment of 1 hPa in vapor pressure deficit, there was a diameter reduction of approximately 0.0759, 0.518 and 1.514 μm for the parameters DV0.1, DV0.5 and DV0.9, respectively. The diameter of the droplets decreased as the operating pressure increased.

  16. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2014-04-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  17. Greenhouse effect: effects on refrigerating and air conditioning industries; Effet de serre: impacts sur les professions du froid et de la climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Le Boru, B. [Association Francaise de Froid, Alliance Froid Climatisation Environnement, 75 - Paris (France)

    1997-12-31

    The various factors (refrigerant characteristics, design and operating performance, insulation type, etc.) involved in greenhouse gas emission from refrigerating and air conditioning equipment are listed with the potential actions that may be taken at the different stages of equipment design, engineering, installation, operation, maintenance and dismantling, in order to reduce pollutant emissions

  18. Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers

    OpenAIRE

    Kalenik Marek

    2015-01-01

    Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift p...

  19. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  20. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  1. Solar air conditioning researches and demonstrations in China

    Institute of Scientific and Technical Information of China (English)

    Wang Ruzhu

    2009-01-01

    This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy systems for buildings. The match of solar collector types and chiller types have been discussed and suggested.

  2. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    Science.gov (United States)

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  3. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  4. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    Science.gov (United States)

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  5. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    Science.gov (United States)

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  6. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    Science.gov (United States)

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  7. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  8. Modelling and simulation of air-conditioning cycles

    Science.gov (United States)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  9. Efficient air conditioning. Part 2. Air quality; Effiziente Klimatisierung - Teil 2. Luftqualitaet

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Herbert [Paul Wurth S.A., Luxembourg (Luxembourg)

    2002-05-01

    Like other air conditioning systems, solar air conditioners should provide 'dry cool air', i.e. hygienically acceptable air at a comfortable temperature. In the summer season and in big cities, this is not possible without air filtering and dehumidification. [German] Im Herbst vergangenen Jahres wurden in dieser Zeitschrift am Markt vorhandene Systeme fuer eine solargestuetzte Klimatisierung verglichen.In dem Artikel fordern die Verfasser 'trockene kuehle Luft fuer die Nutzer'. Diese Forderung sollte eigentlich lauten 'schadstoff- und staubarme Luft im Aufenthaltsbereiche mit Temperatur und Feuchte innerhalb des Behaglichkeitsfeldes' oder kurz gesagt: 'hygienisch einwandrei und angenehm temperiert'. Diese Forderung ist allerdings ohne eine Luftfilterung und ohne Entfeuchtung in den Innenstaedten im Sommer nicht realisierbar. (orig.)

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  11. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  12. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  13. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    Science.gov (United States)

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings.

  14. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    Science.gov (United States)

    Son Le, Thanh; Buu Ngo, Quoc; Dung Nguyen, Viet; Chau Nguyen, Hoai; Hien Dao, Trong; Tin Tran, Xuan; Kabachkov, E. N.; Balikhin, I. L.

    2014-03-01

    Nitrogen-doped TiO2 nanoparticle photocatalysts were synthesized by a sol-gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV-Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15-20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m-3) within 120 min in a 10 m3 box. These photodegradation activities of N-TiO2 are higher than that of the commercial nano-TiO2 (Skyspring Inc., USA, particle size of 5-10 nm).

  15. Design and Implementation of Air Conditioning System in Operating Room

    Directory of Open Access Journals (Sweden)

    Htet Htet Aung

    2014-10-01

    Full Text Available The system is air conditioning system in operating room. The main objective of the system was implemented to provide air balance and temperature necessary conditions and to control airflow system for ventilation units in operating room. The operation room can be controlled with fuzzy expert system and describes the desired outputs. Input parameters such as temperature, humidity, oxygen and particle are used and output parameters are chosen as air conditioning motor speed and exhaust motor speed. Input parameters of the system are taken into account optimal conditions based on oxygen as medium and other parameters are chosen minimum condition for operating room. The airflow control system is determined the two components: the airflow block and the thermal block for ventilation units in operating room. The mathematical modeling of each such system based on a computational procedure and to combine them together in an efficient manner. Whether it supports to the most suitable control for the system prototype was determined by simulating the operation with varying the number of personnel and duration of time. Finally, according to the combination of temperature and airflow regulations with PI controller, the results of simulation of the entire ventilation unit control system is obtained.

  16. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    Science.gov (United States)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  17. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M.; Anderson, D.P. [Spectro Incorporated, Littleton, Massachusetts (United States)

    1997-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  18. Impact of surface disinfection and sterile draping of furniture on room air quality in a cardiac procedure room with a ventilation and air-conditioning system (extrusion airflow, cleanroom class 1b (DIN 1946-4)).

    Science.gov (United States)

    Below, Harald; Ryll, Sylvia; Empen, Klaus; Dornquast, Tina; Felix, Stefan; Rosenau, Heike; Kramer, Sebastian; Kramer, Axel

    2010-09-21

    In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air.Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b.

  19. Inspection and auditing of air-conditioning facilities in Europe - A new efficiency target

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Maxime; Adnot, Jerome [Ecole des Mines de Paris (France).Center for Energy and Processes

    2005-07-01

    In coming years, the European stock of air conditioning equipment in use will partly become obsolete. In 2012, 50% of the Air-Conditioning market of EU-15 will be used to replace existing obsolete equipment (more than 15 years of operation) so that an opportunity exists to introduce higher efficiency systems. Indeed, the EPBD (European Energy Performance of Building Directive) introduced the technical obsolescence as a possible cause of replacement in addition to simple failure. A regular inspection of buildings equipped with Air-Conditioning systems is now obligatory. First of all, the paper details the EPBD Article 9 (European Parliament 2003) on the inspection and explains its scope, objectives and stakes. Indeed, too costly or too frequent inspections could create market distortions by leading building owners to prefer low capacity equipment that can be less energy-efficient. The paper focuses on the definition and the relevance of the 12-kilowatt limit and then on the type of installations included in the scope of that inspection. Despite problems, stakes are important in terms of energy savings because there is a strong link between the inspection and the audit, which is the first step toward Energy-Efficiency. After that first phase, we model inspection and audit markets in the European Union, especially in the five biggest markets. The model shows that the Air-Conditioning market will increase a lot in the future and that present stock will become obsolete very soon. Inspection and audit markets are therefore enormous and Member States have to prepare the transposition as quickly as possible. Last of all, standardisation is one way to accelerate the adoption process for this regulation. The draft standard (CEN 2004) developed by CEN (European Committee of Standardization) is a step in that direction but seems to be imperfect and several questions remain. However, facing with the quantity of buildings and the lack of time, several Member States could adopt

  20. New principle of organization of working process of air conditioning systems at railway and sea transport

    Directory of Open Access Journals (Sweden)

    Andrey KRAJNIUK

    2008-01-01

    Full Text Available An indispensable component of ensuring safe control of railway and sea transport in conditions of hot climate is maintenance of comfortable temperature of air in control cabins and living spaces. Now the interest is restored to use the Air Refrigerating Plants (ARP as they have a wide potential of low-temperature cooling without use of ozone-destructive cooling agents prohibited by decision of the Montreal meeting. At the same time, air conditioning installations on the basis of turbo-expanders have low refrigerating factor, they are very expensive in manufacturing and require a high level of maintenance service.Alternative trend of perfection of air refrigeration units is connected with a new principle of organization of working process, based on the use as expander and compressor of aggregates of cascade exchanger of pressure (CPE. Besides of unsurpassed efficiency of exchange processes, CPE is characterized by simplicity of design and high reliability, including, due to low frequency of rotation (2000-3000 min-1 with practically absence of consumption of mechanical energy on the drive of the rotor. The attractive aspect of application of equipment of conditioning with CPE is the opportunity of organization of working process only due to thermal energy including the utilization in the heat-power installation of transport vehicle.

  1. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  2. Working fluid concentration measurement in solar air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Basurto-Pensado, M.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico); Jimenez-Heredia, A.H.; Sanchez-Mondragon, J.J. [Departamento de Optica, Instituto Nacional de Astrofisica Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Apartado Postal 51 y 216, C.P. 72000, Puebla (Mexico)

    2006-02-15

    In order to evaluate on-line corrosive electrolyte concentration in solar air conditioning systems, an optical technique to determine the concentration is being proposed. With this optical sensing method, it is possible to measure the percentage concentration of the aqueous corrosive lithium bromide solution at temperatures ranging from 25{sup o}C to 70{sup o}C and a maximum concentration of 60%. The measurement system is based on the refractive index of the solution and the data correlation, at several temperature and concentration values. The results of this work present a direct method for concentration measurement of corrosive liquids and also show the correlation among the three parameters: refractive index, temperature and weight concentration. This correlation can be used to develop the optical device for solar air conditioning systems to control and improve efficiency. (author)

  3. Solar air-conditioning-active, hybrid and passive

    Energy Technology Data Exchange (ETDEWEB)

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  4. Novel Reduced GWP Refrigerant Compositions for Stationary Air Conditioning

    OpenAIRE

    Leck, Thomas J.; Naicker, Pavan K.; Hughes, Joshua; Hydutsky, Bianca

    2014-01-01

    The current fluids most widely used for small and mid-sized air conditioning systems globally are R-410A and R-22. While these fluids have many positive attributes for cooling, they are the subject of valid criticisms regarding their high direct global warming potential (GWP) and, in the case of R-22, ozone depletion potential (ODP) also. In the interest of improved environmental sustainability, a new class of refrigerant molecule has been developed, the hydrofluoroolefin, or HFO. While the v...

  5. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 oC, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 oC)

  6. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  7. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  8. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting

    International Nuclear Information System (INIS)

    Nitrogen-doped TiO2 nanoparticle photocatalysts were synthesized by a sol–gel procedure using tetra-n-butyl orthotitanate as a titanium precursor and urea as a nitrogen source. Systematic studies for the preparation parameters and their impact on the material's structure were carried out by multiple techniques: thermogravimetric and differential scanning calorimetric analysis, x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray spectroscopy and UV–Vis diffuse reflectance spectrophotometry showed that the nitrogen-doped TiO2 calcined at 500 °C for 3 h exhibited a spherical form with a particle size about 15–20 nm and crystal phase presented a mixture of 89.12% anatase. The obtained product was deposited on a porous quartz tube (D = 74 mm; l = 418 mm) to manufacture an air photocatalytic cleaner as a prototype of the TIOKRAFT company's equipment. The created air cleaner was able to remove 60% of 10 ppm acetone within 390 min and degrade 98.5% of bacteria (total aerobic bacteria and fungi, 300 cfu m−3) within 120 min in a 10 m3 box. These photodegradation activities of N-TiO2 are higher than that of the commercial nano-TiO2 (Skyspring Inc., USA, particle size of 5–10 nm). (paper)

  9. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  10. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  11. STOCHASTIC ANALYSIS OF AN AIR CONDITION COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    Punam Phartyal

    2011-01-01

    Full Text Available The present study deals with the stochastic analysis of a real existing industrial systemmodel of a central air-condition (AC system. The system consists of three different subsystemsnamely- Air Blower, Compressor, water pump. All these subsystems are arranged in seriesnetwork. Transition probabilities as well as the recurrence relations for various reliability andcost effective measures are developed. Failure time distributions of all the subsystems are takenas exponential whereas repair time distributions are general. By using regenerative pointtechnique we have obtained various measures of system effectiveness such as –Reliability,MTSF, Availability, Busy period of repairman and Net expected profit. The results are alsodrawn in a particular case when repair time distributions are assumed as exponentials.

  12. Response of continuous air monitors in simulated conditions

    International Nuclear Information System (INIS)

    Continuous air monitors (CAM) are widely used in nuclear industry for checking airborne activity in radioactive areas. Mathematical equations related to response of CAM's in assessing airborne activities are derived and presented in this paper. A case study is carried out for a model with necessary inputs. Assumed model is similar to areas in nuclear power plants. Graphical simulation results are used to analyze the conditions and its radiological significance. The response predictions can also be used to calculate alarm set points that correspond to appropriate limits on the concentration of airborne radioactivity in the sampled air. Equations can be modified further to find the response for different scenarios. Using these we can predict the escape rate of activity from the system even in minute levels. (author)

  13. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1998-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  14. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  15. The conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK

    Directory of Open Access Journals (Sweden)

    V.M. Yakubson

    2014-04-01

    Full Text Available On April, 11th, in Lenexpo the XVI conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK “Effective HVAC and Heat Supply Systems” took place. There were a lot of presentations of new equipment for building systems and networks. All these reports were dedicated to the ways to make buildings more comfortable for people, to increase the energy efficiency, to reduce expenses and to improve the production efficiency. But besides the specific equipment, there were some reports dedicated to more general problems in design, installation and maintenance of building systems and networks

  16. Investigation of air cleaning system response to accident conditions

    International Nuclear Information System (INIS)

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported

  17. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  18. Engine-driven hybrid air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    Chaokui QIN; Hongmei LU; Xiong LIU; Gerhard SCHMITZ

    2009-01-01

    A hybrid air-conditioning system that com-bines an engine-driven chiller with desiccant dehumidifi-cation was configured and experimentally tested to provide reliable data for energy consumption and operation cost. The engine performance and the desiccant wheel perfor-mance were measured and a numeric model previously set up for dehumidification capacity prediction was validated. For a reference building, the results based upon measured data show that under present electricity/gas price ratio, more than 40% of operation cost can be saved by the hybrid system.

  19. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  20. 30 CFR 75.507-1 - Electric equipment other than power-connection points; outby the last open crosscut; return air...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment other than power-connection... requirements. (a) All electric equipment, other than power-connection points, used in return air outby the last... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.507-1 Electric...

  1. An effective silencer design for artificially air conditioned environment.

    Science.gov (United States)

    Fujiwara, Kyoji; Pang, Li Feng

    2004-11-01

    An effective silencer for an air conditioning duct is studied. A duct with an acoustically soft boundary is employed as an effective silencer. On the acoustically soft boundary the sound pressure is zero and it is impossible to realize such boundary in the air-borne sound field, because of the non-existence of a much lighter medium than the air. In this study, the arrangement of one-quarter wave-length acoustic tubes is employed as a soft boundary. This acoustic tube has frequency dependence, but the sound pressure becomes nearly zero at the tube mouth around the odd resonance frequency. The relation between the noise reduction efficiency and this acoustically soft boundary is examined experimentally and more than 40 dB noise reduction is obtained in a one-half octave band around the first resonance frequency. It is also made clear that more than one wave length of soft boundary is required to get enough reduction compared with the reduction obtained in the case of quite a long soft boundary.

  2. Control strategies study of a complete solar assisted air conditioning system in an office building using TRNSYS

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2009-01-01

    It is now clearly assumed that solar assisted air conditioning is able to minimize environmental impact and CO2 production of buildings operation. How to reach highest energy savings is still a work in progress. In former literature, equipment control has been point out as a critical feature of energy consumption. Control becomes more and more important as system is complex. The complete simulation environment was developed in previous work, it includes the absorption chiller ...

  3. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average...

  4. Absorption and adsorption chillers applied to air conditioning systems

    Science.gov (United States)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  5. Fuzzy systems for condition assessment of equipment in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Krontiris, Athanasios

    2012-03-15

    In this thesis the use of fuzzy logic techniques for condition assessment and diagnostic analysis of equipment in electric power systems is discussed. Condition assessment may be performed at a strategic level so as to assist in planning long and medium-term maintenance and replacement, or at operational level focusing on day-to-day maintenance. The first part of the thesis addresses the application of fuzzy systems for the purpose of strategic and operational condition assessment using the example of high-voltage circuit breakers. Due to the high dimensionality of operational condition assessment schemes, direct definition of the fuzzy rule base could become quite tedious; for this reason, an alternative approach is proposed here. The second part of the thesis discusses the application of fuzzy logic for diagnostic analysis in power systems, in particular for the purpose of Dissolved Gas Analysis (DGA). The standard DGA interpretation scheme, defined in IEC 60599, is extended by fuzzy reasoning, and the added value is demonstrated by a case study on high-voltage instrument transformers. Furthermore, for diagnostic analysis of power transformers, an adaptive fuzzy DGA interpretation scheme is developed on the basis of the standard scheme. The presented case studies aim at assisting decision makers in power system maintenance departments in developing fuzzy systems for condition assessment and diagnostic analysis.

  6. Development of air conditioning system and labor saving technology for efficient hydroponic cultivation; Konoritsuna suiko saibai no tame no kucho to shoryokuka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okano, T.; Terazoe, H.; Shoji, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Yonezawa, K.; Otani, F. [Chugoku Electric Power Co. Inc., Hiroshima (Japan); Sekiyama, T.; Kosakai, K.; Sato, H.

    1997-06-01

    Equipment which made experiments on air conditioning and hydroponic cultivation possible was set up at the technical research center of the Chugoku Electric Power Co., to study an air conditioning system using night power and energy saving technology for the cultivation. Vegetables suitable to the cultivation were selected. For air conditioning, adopted was a water heat storage air conditioning system using night power. The space between the shade curtain and the greenhouse roof was ventilated to prevent increase in cooling load caused by rise in curtain temperature. Moreover, the cultivation equipment was covered with transparent vinyl film to cool the inside of the equipment. The hydroponic cultivation equipment was trially manufactured which makes the continued production by one worker possible. The cultivation of spinach, leaf lettuce and chingensai throughout the year became possible. The yield of chingensai reached the target, but those of spinach and leaf lettuce were approximately 70% of the targets. Vegetables to be produced in the air-conditioned greenhouse by hydroponic cultivation are thought to be those that can have added values such non-pesticides and ingredients, young plants which were increased by cutting or tissue culturing, etc. 5 refs., 19 figs., 8 tabs.

  7. Solar desiccant air-conditioning. Practical experience regarding operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Haller, A.; Trinkl, C.; Wittmann, R.; Zoerner, W. [Ingolstadt Univ. of Applied Sciences (Germany). Kompetenzzentrum Solartechnik; Hanby, V. [De Montfort Univ., Leicester (GB). Inst. of Energy and Sustainable Development (IESD)

    2007-07-01

    The Kompetenzzentrum Solartechnik of Ingolstadt University of Applied Sciences (Centre of Excellence for Solar Engineering) investigates the renewable-only based HVAC system of a multipurpose building. The 10.000 m{sup 2} gross floor area building is part of the biggest logistic-centre in the region serving the AUDI automobile production facilities. On the one hand, the investigation is supposed to demonstrate the potential of solar-assisted cooling, on the other hand, the monitoring, financed by the Bavarian Ministry of Environmental Affairs, focuses on the total energy balance of the building and the various innovative building technologies. Next to a ground source heat pump plant for base-load heating and cooling, the building is equipped with two arrays of solar-thermal flat-plate collectors (100 m{sup 2} of Conergy, Germany, and 180 m{sup 2} of Solahart, Australia) and a desiccant air-conditioning system (DEC, WOLF Anlagen-Technik, Germany). This consists of two plants with an air flow of 8.000 m{sup 3}/h and a nominal cooling capacity of 42 kW each. One of the two plants is monitored. The plant itself is considered a black box in a first approach, i.e. all incoming and outgoing energy flows and the air condition are measured. Apart from the investigation of the performance of the solar-assisted air-conditioning system, the feasibility of DEC-operation using flat-plate collectors available on the market is investigated. (orig.)

  8. Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile.

    Science.gov (United States)

    Astorga, Berbeli; Lorenzo-Morales, Jacob; Martín-Navarro, Carmen M; Alarcón, Verónica; Moreno, Johanna; González, Ana C; Navarrete, Elizabeth; Piñero, José E; Valladares, Basilio

    2011-01-01

    Free-living amoebae (FLA) of the genus Acanthamoeba are widely distributed in the environment, in the air, soil, and water, and have also been isolated from air-conditioning units. The objective of this work was to investigate the presence of this genus of FLA in the air-conditioning equipment at the Institute of Public Health of Chile in Santiago, Chile. Water and air samples were collected from air-conditioning systems and were checked for the presence of Acanthamoeba spp. Positive samples were further classified at the genotype level after sequencing the highly variable diagnostic fragment 3 (DF3) region of the 18S rRNA gene. This is the first report of the T3, T4, and T11 genotypes of Acanthamoeba in air-conditioning units from Chile. Overall, the widespread distribution of potentially pathogenic Acanthamoeba strains in the studied source demands more awareness within the public and health professionals in Chile as this pathogen is emerging as a risk for human health worldwide.

  9. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  10. Controller recovery from equipment failures in air traffic control: A framework for the quantitative assessment of the recovery context

    International Nuclear Information System (INIS)

    Air Traffic Control (ATC) involves a complex interaction of human operators (primarily air traffic controllers), equipment and procedures. On the rare occasions when equipment malfunctions, controllers play a crucial role in the recovery process of the ATC system for continued safe operation. Research on human performance in other safety critical industries using human reliability assessment techniques has shown that the context in which recovery from failures takes place has a significant influence on the outcome of the process. This paper investigates the importance of context in which air traffic controller recovery from equipment failures takes place, defining it in terms of 20 Recovery Influencing Factors (RIFs). The RIFs are used to develop a novel approach for the quantitative assessment of the recovery context based on a metric referred to as the Recovery Context Indicator (RCI). The method is validated by a series of simulation exercises conducted at a specific ATC Centre. The proposed method is useful to assess recovery enhancement approaches within ATC centres

  11. Voltage controller design for air conditioning; Diseno de controlador de voltaje para aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Andrade, R; Lopez Villalobos, J.J; Valderrama Chairez, J; Ramirez, R.L. [Instituto Tecnologico de Nuevo Leon, Guadalupe, Nuevo Leon (Mexico)]. E-mails: roxana_garciaandrade@yahoo.com; xe2n@yahoo.com.mx; jose.valderrama@ieee.org

    2013-03-15

    This paper discusses the design of a voltage controller for an air conditioning system in order to generate additional power in activation or startup of the system, for which as a first stage is presented the modeling power generation of electric current through alternative means, such as solar energy. The results of this study will be the basis for development of the physical prototype of this system controller. [Spanish] El presente trabajo trata sobre el diseno de un controlador de voltaje para un sistema de aire acondicionado con el fin de generar energia adicional en la activacion o arranque de dicho sistema, para lo cual como primer fase se presenta el modelado de la generacion de corriente electrica mediante medios alternos, como lo es la energia solar. Los resultados de este trabajo seran la base para desarrollo del prototipo fisico de este sistema controlador.

  12. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......-conditioning and ventilation was carried out for the different climates of major cities in Spain. Such climates can be characterized as cool and dry, hot and dry, cool and humid and hot and humid. In this study, the indoor air temperature had to be maintained for all climates at 23oC with a relative humidity of 40......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...

  13. Microbial air-sampling equipment, part 1: meeting United States pharmacopeia chapter 797 standards.

    Science.gov (United States)

    Kastango, Eric S

    2008-01-01

    The most recent changes to Chapter 797 of the United States Pharmcopeia-National Formulary initiated an intense controversy about the frequency of cleanroom air sampling that is required to prevent the contamination of sterile preparations. For compounders who must purchase an air sampler to use in the cleanroom, choices abound. Included in this article are a review of United States Pharmacopeia-National Formulary requirements that pertain to air sampling, a discussion of how recent revision to Chapter 797 affect air sampling and patient safety, and, for easy reference, a table that features specifications for various models of microbial air samplers.

  14. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  15. Experimental Research on Liquid Desiccant Air-conditioning Unit

    Directory of Open Access Journals (Sweden)

    Feng Yueyan

    2016-01-01

    Full Text Available An experimental device of liquid desiccant air conditioning system is established. Experimental tests about the temperature difference between diluted solution of inlet and concentrated solution of exit in the solution heat exchanger are carried on, and CaCl2 solution is used as desiccant. Results show that: the fluctuation range in the day at different times of the basic difference of the measured temperature does not exceed 1°C, and the temperature difference between diluted solution of inlet and concentrated solution of exit in solution heat exchanger appears the minimum value of 2.7°C and the maximum value of 10.2°C. Also, the percent of the additional load and the ratio of additional load to the evaporator load are analyzed.

  16. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  17. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Science.gov (United States)

    2010-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  18. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning idle test procedure... Complete Heavy-Duty Vehicles; Test Procedures § 86.165-12 Air conditioning idle test procedure. (a) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions...

  19. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Science.gov (United States)

    2010-07-01

    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  20. 77 FR 33315 - Protection of Stratospheric Ozone: Alternative for the Motor Vehicle Air Conditioning Sector...

    Science.gov (United States)

    2012-06-06

    ... Air Conditioning Sector Under the Significant New Alternatives Policy (SNAP) Program AGENCY...) within the refrigeration and air-conditioning sector. This final rule only concerns the use of CO 2 in... their suppliers with a refrigerant option subject to use conditions for motor vehicle air...

  1. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  2. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    Science.gov (United States)

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted. PMID:11288304

  3. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coles, Garill A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivans, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wootan, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  4. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  5. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute.

  6. Modelling of cooled-ceiling air-conditioning systems: Influences on indoor environment and energy consumption. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Niu, J.

    1994-06-14

    The contents presented in this thesis consist of four principal parts: (1) the critical review of turbulence CFD (Computational Fluid Dynamics) techniques and their application in building air flow study, and the experimental evaluation of the widely used k-epsilon turbulence model for in-room air flow situations; (2) the development of a thermodynamic mathematical model for cooled-ceiling air-conditioning systems, and the enhancement of an existing computer code ACCURACY, and the experimental validation of the convective parameters involved in the models; (3) the combined use of building dynamic simulation and CFD technique for the investigation of thermal comfort and ventilation effectiveness performance of three typical air-conditioning systems, the air-panel type cooled-ceiling (ACC) system, and the water-panel type cooled ceiling (CC) system; and (4) the use of the dynamic model coupled with air-handling-unit (AHU) and primary equipment models to simulate the annual energy consumption of CC systems and all-air systems and to estimate thermal performances of some passive cooling schemes, especially the evaporative free-cooling scheme. The review of the state-of-the-art of turbulence modeling shows that the k-epsilon turbulence model still remains the most-widely used engineering model.

  7. The new solar energy air conditioning system of CERIT (Pordenone, Italy). First experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Casasola, L. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici; CERIT SpA, Pordenone (Italy))

    For air conditioning in the CERIT (Regional Center for Technological Research) building of Pordenone (Italy), a solar plant was installed, with a surface area of 430 square meters of evacuated-tube collectors, a reflecting surface of the same area, and an absorption refrigerating system. Furthermore, this plant was equipped with a 43 cubic meter heat storage unit at the temperature of 80-90 degrees C and also a 150 cubic meter cold storage unit. The choice of the collectors was made after a series of tests on various models existing on the market. A careful calculation was carried out on the advantages of flat reflectors. An estimate, reflecting results after one year of operation, of the plant's performance was developed.

  8. Microbial air-sampling equipment, part 2: experiences of compounding pharmacists.

    Science.gov (United States)

    Mixon, Bill; Cabaleiro, Joe; Latta, Kenneth S

    2008-01-01

    The most recent changes to Chapter 797 of the United States Pharmacopeia-National Formulary initiated an intense controversy about the frequency of cleanroom air sampling that is required to prevent the contamination of sterile preparations. For compounders who must purchase an air sampler to use in the cleanroom, choices abound. This article summarizes discussions from compounding pharmacists and their experiences with air sampling devices.

  9. The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

    Science.gov (United States)

    Bogacki, Marek; Macuda, Jan

    2014-12-01

    calculations of air pollutions from analyzed motors were performed with a mathematical modelling method using Gaussian plum. The results of calculations could be used for evaluating spatial distribution of maximum 1 hour concentrations (S1), incidence of exceeding admissible 1 hour concentration values (P(D1)), percentile 99.8 or 99.726 from 1 hour concentrations and average concentrations (Sa) for selected most important for the air quality contaminants, i.e. NOx (as NO2), SO2, CO, PM10, benzo(a)pyrene, benzene, toluene, xylene, formaldehyde, acetaldehyde and acrolein. The results of calculated air concentrations of selected substances on the rig border are listed in table 9, whereas spatial distributions of NOx and PM10 concentrations in figures 3 to 8. The analysis of the obtained results did not reveal cases of exceeding Polish emission standards. However, nitrogen oxide (NOx) or dust PM10 can be expected to exceed these values, e.g. in a situation when the total power installed in motors driving technological systems in the course of hydraulic fracking will be higher than assumed in the analyses. The results of calculations show to a significant impact of nitrogen oxides (NOx) and dust PM10 emissions on air quality. The risk that emission standards are exceeded beyond the rig area is conditioned both by technological factors (total power of operating motors, parameters of combusted fuel, reduced emission technologies applied to engines, duration of frac jobs, etc.) and a number of external factors, e.g. meteorological and orographic factors or high level of emitted substances in air within the rig area. Proces hydraulicznego szczelinowania skał łupkowych wiąże się z emisją do powietrza zanieczyszczeń pyłowo-gazowych z silników wysokoprężnych dużej mocy napędzających agregaty pompowe do szczelinowania skał oraz inne urządzenia technologiczne. Łączna moc silników napędzających urządzenia technologiczne uzależniona jest od specyfiki złoża oraz

  10. Intraoral air pressure and oral air flow under different bleed and bite-block conditions.

    Science.gov (United States)

    Putnam, A H; Shelton, R L; Kastner, C U

    1986-03-01

    Intraoral pressures and oral flows were measured as normal talkers produced /p lambda/ and /si/ under experimental conditions that perturbed the usual aeromechanical production characteristics of the consonants. A translabial pressure-release device was used to bleed off intraoral pressure during /p/. Bite-blocks were used to open the anterior bite artificially during /s/. For /p/, intraoral pressure decreased and translabial air leakage increased as bleed orifice area increased. For /s/, flow increased as the area of sibilant constriction increased, but differential pressure across the /s/ oral constriction did not vary systematically with changes in its area. Flow on postconsonantal vowels /lambda/ and /i/ did not vary systematically across experimental conditions. The data imply that maintenance of perturbed intraoral pressure was more effective when compensatory options included opportunity for increased respiratory drive and structural adjustments at the place of consonant articulation rather than increased respiratory drive alone.

  11. Energy performance assessment on central air-conditioning system of commercial building:A case study in China

    Institute of Scientific and Technical Information of China (English)

    周璇; 练斯甄; 闫军威; 康英姿

    2015-01-01

    Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity.A “holistic” approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP (coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.

  12. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  13. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    Science.gov (United States)

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  14. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  15. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations.

    Science.gov (United States)

    Jimenez-Relinque, E; Castellote, M

    2014-10-01

    Nowadays, a large proportion of photocatalytic oxidation (PCO) devices are being implemented in heating, ventilation and air-conditioning systems. However, no systematic studies have been carried out regarding the influence of inlet air preconditioning. To analyse the impact of the inlet air-conditions into photocatalytic efficiency, a simulated air-conditioning duct with flowing gas through inside was designed. Isobutylene was chosen as the target VOCs. The concentration in the gas phase was monitored using a photoionization detector. The influence of flow rate, relative humidity and temperature on the VOC removal efficiency was analysed. Experimental results were presented in terms of gas-removal efficiency (η) and clean air delivery rate (CADR) and analysed on a kinetic basis. From them, the weight of each parameter in the global process has been determined, from bigger to smaller contribution, flow>temperature>relative humidity. Also, the relevance of the inlet air conditions has been illustrated in a model room in order to determinate the time necessary to obtain a threshold value accomplishing with enough air quality and the energy consumption of the device. Additionally, the photocatalytic decontamination has been assimilated to the "air exchange rate", a parameter commonly used in indoor air quality studies. The results show that preconditioning of air can improve the efficiency of photocatalytic devices and bring important energy savings.

  16. Indoor Air quality related to occupancy at an air-conditioned public building

    Directory of Open Access Journals (Sweden)

    Karina Ponsoni

    2010-02-01

    Full Text Available To characterize the influence of occupancy on the indoor air quality, a public office building with air-conditioning system was selected for this study. The indoor parameters included total bacteria count, total fungal count, temperature, relative humidity, and carbon dioxide concentration. The number of occupants, which varied throughout the day, was recorded in each sample. The samples were taken before the beginning of the working day and during 3 h, at an interval of 30 min between each sampling, and continued for five working days during a week. Correlation analysis demonstrated that occupancy rates were positively correlated with airborne bacteria, CO2, and temperature. No significant association between the number of occupants and fungus was observed. The results of this study provided information on the variability of indoor air parameters during the time-varying occupancy over the course of the day in at air-conditioned buildings where occupancy was quite dynamic.Com o objetivo de caracterizar a influência da ocupação na qualidade do ar interior, um edifício público com sistema de ar condicionado foi selecionado. As variáveis ambientais consideradas incluíram contagem total de bactérias e fungos, temperatura, umidade relativa e concentração de dióxido de carbono. O número de ocupantes, que variou durante todo o dia, foi estimado em cada amostragem. As amostras foram coletadas antes do início do expediente de trabalho e durante 3 horas, em intervalos de 30 minutos, por 5 dias úteis consecutivos. A análise de correlação demonstrou que a taxa de ocupação foi correlacionada positivamente com a concentração de bactérias, dióxido de carbono e temperatura. Nenhuma associação significativa foi observada entre o número de ocupantes e concentração de fungos. Os resultados deste estudo fornecem informações quanto à variabilidade nos parâmetros do ar interior no decorrer do dia em um edifício onde a ocupação

  17. A ground water source heat pump for the air-conditioning of a supermarket; Une PAC sur nappe phreatique pour climatiser un hypermarche

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-04-01

    A thermodynamical solution involving a ground water source heat pump and 19 roof top air-conditioners has been retained for the air-conditioning of a 41000 m{sup 2} supermarket of Colmar (Alsace, France). The supermarket is also equipped with a computer-monitored refrigeration system for the food products and a centralized technical management for the optimization of the installation operation. (J.S.)

  18. Does urban vegetation mitigate air pollution in northern conditions?

    International Nuclear Information System (INIS)

    It is generally accepted that urban vegetation improves air quality and thereby enhances the well-being of citizens. However, empirical evidence on the potential of urban trees to mitigate air pollution is meager, particularly in northern climates with a short growing season. We studied the ability of urban park/forest vegetation to remove air pollutants (NO2, anthropogenic VOCs and particle deposition) using passive samplers in two Finnish cities. Concentrations of each pollutant in August (summer; leaf-period) and March (winter, leaf-free period) were slightly but often insignificantly lower under tree canopies than in adjacent open areas, suggesting that the role of foliage in removing air pollutants is insignificant. Furthermore, vegetation-related environmental variables (canopy closure, number and size of trees, density of understorey vegetation) did not explain the variation in pollution concentrations. Our results suggest that the ability of urban vegetation to remove air pollutants is minor in northern climates. -- Highlights: ► The ability of northern urban vegetation to remove air pollutants is minor. ► Vegetation-related environmental variables had no effect on air pollution levels. ► The ability of vegetation to clean air did not differ between summer and winter. ► Dry deposition passive samplers proved applicable in urban air pollution study. -- The ability of urban vegetation to remove air pollutants seems to be minor in northern climates

  19. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    Science.gov (United States)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  20. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  1. Control Techniques in Heating, Ventilating and Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    H. Mirinejad

    2008-01-01

    Full Text Available Problem statement: Heating, Ventilating and Air Conditioning (HVAC systems are among the main installations in residential, commercial and industrial buildings. The purpose of the HVAC systems is normally to provide a comfortable environment in terms of temperature, humidity and other environmental parameters for the occupants as well as to save energy. Achieving these objectives requires a suitable control system design. Approach: In this overview, thermal comfort level and ISO comfort field is introduced, followed by a review and comparison of the main existing control techniques used in HVAC systems to date. Results: The present overview shows that intelligent controllers which are based on the human sensation of thermal comfort have a better performance in providing thermal comfort as well as energy saving than the traditional controllers and those based on a model of the HVAC system. Conclusion: Such an overview provides an insight into current control methods in HVAC systems and can help scholars and HVAC learners to have the comprehensive information about a variety of control techniques in the field of HVAC and therefore to better design a proper controller for their work

  2. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... manufacturers currently manufacturing, advertising, or selling TSO-C67 compliant equipment. Therefore, given the... cancelling TSO-C67. Please note that TSO-C87, Airborne Low Range Radio Altimeter, is currently used for...

  3. The system of thermoelectric air conditioning based on permeable thermoelements

    OpenAIRE

    Cherkez R. G.

    2009-01-01

    There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of compute...

  4. Automobile air pollution: control equipment. Volume 1. 1964-1978 (citations from the NTIS data base). Report for 1964-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-02-01

    Research reports on air pollution control equipment used in automobiles are cited. Topics include the design and performance of catalytic and thermal reactors, retrofit devices, carburetors, and ignition timing systems. Also covered are studies of the catalysts as well as the equipment regulations that the industry must follow. (This updated bibliography contains 259 abstracts, none of which are new entries to the previous edition.)

  5. Application of Computer Model to Estimate the Consistency of Air Conditioning Systems Engineering

    Directory of Open Access Journals (Sweden)

    Amal El-Berry

    2013-04-01

    Full Text Available Reliability engineering is utilized to predict the performance and optimization of the design and maintenance of air conditioning systems. There are a number of failures associated with the conditioning systems. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely are mainly due to a variety of problems with one or more components of an air conditioner or air conditioning system. To maintain the system forecasting for system failure rates are very important. The focus of this paper is the reliability of the air conditioning systems. The most common applied statistical distributions in reliability settings are the standard (2 parameter Weibull and Gamma distributions. Reliability estimations and predictions are used to evaluate, when the estimation of distributionsparameters is done. To estimate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several companies’ departments is checked. This air conditioning system is divided into two systems, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40 - 45oF (4 - 7oC. The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, with the application of the Weibull and Gamma distributions it is indicated that the reliability for the systems equal to 86.012% and 77.7% respectively . A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families is studied. It is found that Weibull method has performed well for decision making .

  6. The probabilistic prediction of NPP equipment life time under erosion-corrosion wear conditions

    International Nuclear Information System (INIS)

    There is considered the method of the non-failure probability (NFP) estimation for the NNP equipment subjected to erosion-corrosion wear (ECW). The break process under conditions of ECW consists of two stages is supposed. The first stage is erosion-corrosion friability (ECF) stage connected with surface friability without of erosion-corrosion products carrying out, and the second-erosion-.corrosion wear (ECW) stage, being accompanied by wall thickness decrease. The first stage time (incubation) estimation is based on damage summation from the blow action of water drops in steam-water flow. The method is based on the Central Limit Theorem applied to the sum of the micro damages from the water drops blow action. Expectation and dispersion formulas for the micro damages are obtained. The EC method also takes into account the possible defects presence in tube material. The incubative time and life time estimation model is constructed. The method allows to obtain probabilistic characteristics of life time taking into account distribution of the material and operating parameters. The demonstration of the reliability estimation model worked out for the steam pipe bending with two-phase flow under erosion-corrosion wear (EC) is presented. (Author) 4 refs

  7. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  8. Production of Zinc Borate for Pilot-Scale Equipment and Effects of Reaction Conditions on Yield

    Directory of Open Access Journals (Sweden)

    Melek BARDAKCI

    2013-05-01

    Full Text Available In this study, zinc borate (ZB was synthesized by reacting zinc oxide and boric acid in the presence of standard ZB (w/w, in terms of boric acid in order to promote crystallization. The effects of seed, H3BO3/ZnO (boric acid/zinc oxide ratio, reaction time, water volume, reaction temperature and cooling temperature on yield were investigated for pilot-scale equipment. The results indicated that the addition of seed (w/w to a saturated solution of reactants increased the yield of the reaction. The results of reaction yields obtained from either magnetically or mechanically stirred systems were compared. At various reaction times, the optimal yield was 86.78 % in a saturated aqueous solution. The products were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR and Thermogravimetric / Differential Thermal Analysis (TG/DTA. The results displayed that ZB was successfully produced under the optimized reaction conditions and the product synthesized had high thermal stability.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4432

  9. Novel compact sorption generators for car air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E. [School of Engineering, University of Warwick, Gibet Hill Road, Coventry CV4 7AL (United Kingdom)

    2009-06-15

    A prototype compact generator using the activated carbon-ammonia pair based on the plate heat exchanger concept has been designed and built at Warwick University. The novel generator has low thermal mass and good heat transfer. The heat exchanger uses nickel-brazed shims and spacers to create adsorbent layers only 4 mm thick between pairs of liquid flow channels of very low thermal mass. The prototype sorption generator manufactured was evaluated under EU car air conditioning test conditions. The prototype sorption generator is described and its experimental performance reported. While driven with waste heat from the engine coolant water (at 90 C), a pair of the current prototype generators (loaded with about 1 kg of activated carbon) operating out of phase has produced an average cooling power 1.6 kW with about 2 kW peaks. The typical average COP obtained is 0.22. (author) [French] Un prototype du generateur compact, base sur le concept des echangeurs de chaleur a plaques et utilisant la paire charbon actif-ammoniac, a ete concu et construit a l'Universite de Warwick. Le nouveau generateur a une faible inertie thermique et un excellent transfert de chaleur. L' echangeur utilise des plaques ayant des micro-canaux et des intercalaires brases au Nickel pour creer des couches d'adsorbant de 4 mm d'epaisseur entre les paires de plaques a l'interieur desquelles circule le fluide liquide. Le prototype du generateur a sorption ainsi fabrique a ete teste suivant des conditions prescrites par la Norme Europeenne de la Climatisation Automobile. Le prototype du generateur a sorption est decrit et ses performances experimentales presentees. Une paire dudit prototype (contenant chacun 1 kg the charbon actif), operant avec dephasage et ulisant des pertes thermiques en provenance de l'eau de refroidissement de moteur (a 90 C), a produit une puissance frigorifique moyenne de 1.6 kW avec une valeur maximum de 2 kW. La valeur typique du COP moyen est de

  10. Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaohong; LIU Hongmin; YE Xiaojiang; LI Kejun; WANG Ruzhu; ZHAO Liping; Lisa. X. Xu; CHEN Yazhu; JIN Xinqiao; GU Bo; BAI Jingfeng

    2004-01-01

    In this research, high voltage static electricity and ultraviolet technologies were integrated to an air purifying device which can be used to trap and kill airborne bacteria and viruses in central air-conditioning systems. An experimental platform was built to mimic the central air system, in which the efficacy of the newly built device was examined. In addition to the standard physical and chemical tests, bacteriophages were used to simulate airborne viruses in the experimental system. The bacteriophage suspension was aerosolized into the air with ultrasonic wave atomization. The result showed that more than 86% removal efficiency of micro-particles (<10 micron in diameter) were removed after the device was in operation in a building and more than 95% of bacteriophages in the experimental system. It is concluded that the integrated air purifier is suitable for controlling air quality and preventing virus transmission through the central air system.

  11. 42 CFR 410.52 - Home dialysis services, supplies, and equipment: Scope and conditions.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Home dialysis services, supplies, and equipment... Medical and Other Health Services § 410.52 Home dialysis services, supplies, and equipment: Scope and... patient in his or her home: (1) Purchase or rental, installation, and maintenance of all...

  12. Influences of the Indoor Environment on Heat, Air and Moisture Conditions in The Building Component: Boundary Conditions Modeling

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans

    2008-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the surface transfer coefficients. Such models cannot accurately predict the HAM...... conditions in the component and on the surface of the component with non-uniform air temperature or relative humidity distributions in an indoor space. Moreover, the heat and moisture surface transfer coefficients strongly depend on the local air velocity, local temperature, water-material interactions...... and water content at the material surface and surface texture of the material. The objective of the present paper is to analyze the influence of the non-uniform local air velocity near the surface of a building component on the HAM conditions in the component. A case study and sensitivity study have been...

  13. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    Science.gov (United States)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  14. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  15. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large...

  16. 75 FR 6338 - Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector...

    Science.gov (United States)

    2010-02-09

    ... to use conditions as a substitute for CFC-12 in motor vehicle air conditioning. The proposed... AGENCY 40 CFR Part 82 Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector Under the Significant New Alternatives Policy (SNAP) Program AGENCY:...

  17. Computerized Simulation of Automotive Air-Conditioning System: Development of Mathematical Model and Its Validation

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2012-03-01

    Full Text Available A semi-empirical model for simulating thermal and energy performance of an automotive air-conditioning (AAC system in passenger vehicles has been developed. The model consists of two sections, namely empirical evaporator correlations and dynamic load simulation. The correlations used consider sensible and latent heat transfer performance of the evaporator coil. The correlations were obtained from the experimental data of actual air conditioning system for a compact size passenger car. The sensible heat transfer correlation relates the evaporator air off dry-bulb temperature to inlet air dry-bulb temperature, humidity ratio, evaporator air velocity, condenser inlet air dry-bulb temperature, condenser air velocity and compressor speed. The latent heat transfer correlation relates the coil air-off humidity ratio to the same six independent variables. The dynamic load simulation model was developed based on the z-transfer function method with a one-minute time step. The cooling load calculations were performed using heat gain weighting factors. Heat extraction rate and cabin air dry-bulb temperature calculations were carried out using air temperature weighting factors. The empirical evaporator sensible and latent heat transfer correlations were embedded in the loads calculation program to enable the determination of evaporator inlet and outlet air conditions, the cabin air temperature and relative humidity. Comparisons with road test data indicated that the program was capable of predicting the performance of the automotive air-conditioning system with reasonable accuracy.

  18. Gap Analysis of ISO 26000 in Two Atlas Copco Companies in China: : Atlas Copco (Nanjing) Construction and Mining Equipment Co., Ltd. and Wuxi Pneumatech Air/ Gas Purity Equipment Co., Ltd.

    OpenAIRE

    Zhang, Wenjie

    2012-01-01

    Social Responsibility(SR)is gathering accumulative attentionrecently.It has become a key criterion of business campaign among companies.This thesis studiesthe current SR performancein two branch companies inAtlas Copco (China), Atlas Copco (Nanjing) Construction and Mining Equipment Ltd. andWuxi Pneumatech Air/Gas Purity Equipment Ltd.Interviews were made separately with company staff, including employees from management level and staff from workshop. ISO 26000 was adoptedas aguiding standard...

  19. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    OpenAIRE

    Ho-Seong Lee; Moo-Yeon Lee

    2013-01-01

    This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2) for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experim...

  20. MAGNETOHYDRODYNAMICS: A METHOD FOR PERFORMANCE ENHANCEMENT IN AIR CONDITIONING AND REFRIGERATION

    OpenAIRE

    N.S.Mane; , H.M.Dange; P. P. Awate

    2015-01-01

    The refrigeration and air conditioning system having low energy consumption and environment friendliness is the main focus of the research department Refrigeration and Air conditioning industry and technical institutes. Efficiency of the refrigeration or air conditioning system working on vapour compression refrigeration cycle can be increased by using the Magneto hydrodynamic principles. Many researchers indicated that the behavior of the refrigerant flowing through vapour compre...

  1. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H2O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH3–H2O) was used in the absorption cycle, rather than H2O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH3–H2O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H2O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH3–H2O is adopted for absorption refrigeration instead of H2O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  2. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    Science.gov (United States)

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  3. Impact of air conditioning system operation on increasing gases emissions from automobile

    Science.gov (United States)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  4. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed

  5. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  6. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  7. Francisella guangzhouensis sp. nov., isolated from air-conditioning systems.

    Science.gov (United States)

    Qu, Ping-Hua; Chen, Shou-Yi; Scholz, Holger C; Busse, Hans-Jürgen; Gu, Quan; Kämpfer, Peter; Foster, Jeffrey T; Glaeser, Stefanie P; Chen, Cha; Yang, Zhi-Chong

    2013-10-01

    Four strains (08HL01032(T), 09HG994, 10HP82-6 and 10HL1960) were isolated from water of air-conditioning systems of various cooling towers in Guangzhou city, China. Cells were Gram-stain-negative coccobacilli without flagella, catalase-positive and oxidase-negative, showing no reduction of nitrate, no hydrolysis of urea and no production of H2S. Growth was characteristically enhanced in the presence of l-cysteine, which was consistent with the properties of members of the genus Francisella. The quinone system was composed of ubiquinone Q-8 with minor amounts of Q-9. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids (PL2, PL3), an unidentified aminophospholipid and an unidentified glycolipid (GL2). The polyamine pattern consisted of the major compounds spermidine, cadaverine and spermine. The major cellular fatty acids were C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 1 3-OH. A draft whole-genome sequence of the proposed type strain 08HL01032(T) was generated. Comparative sequence analysis of the complete 16S and 23S rRNA genes confirmed affiliation to the genus Francisella, with 95 % sequence identity to the closest relatives in the database, the type strains of Francisella philomiragia and Francisella noatunensis subsp. orientalis. Full-length deduced amino acid sequences of various housekeeping genes, recA, gyrB, groEL, dnaK, rpoA, rpoB, rpoD, rpoH, fopA and sdhA, exhibited similarities of 67-92 % to strains of other species of the genus Francisella. Strains 08HL01032(T), 09HG994, 10HP82-6 and 10HL1960 exhibited highly similar pan-genome PCR profiles. Both the phenotypic and molecular data support the conclusion that the four strains belong to the genus Francisella but exhibit considerable divergence from all recognized Francisella species. Therefore, we propose the name Francisella guangzhouensis sp

  8. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  9. Classification and terms of evaporative air conditioning technology%蒸发冷却空调技术分类及术语探讨

    Institute of Scientific and Technical Information of China (English)

    黄翔; 夏青; 孙铁柱

    2012-01-01

    提出了蒸发冷却空调术语标准化的基础性框架,按照技术形式将蒸发冷却空调技术分为直接蒸发冷却空调技术、间接蒸发冷却空调技术、间接-直接蒸发冷却复合空调技术及蒸发冷却-机械制冷联合空调技术;按照产出介质(获得冷量)形式分为:风侧蒸发冷却空调技术和水侧蒸发冷却空调技术,并结合相关机组设备探讨了这些术语的定义,以图文形式介绍了各种蒸发冷却技术的工作原理.%Puts forward the basic framework for standardization of evaporative air conditioning terms. According to technical forms, the evaporative air conditioning technology is divided into direct evaporative air conditioning technology, indirect evaporative air conditioning technology, indirect-direct complex evaporative air conditioning technology and evaporative-cooling combined with mechanical-refrigeration air conditioning technology. In accordance with the forms of the output medium (cooling quantity obtained), it is divided into air side evaporative air conditioning technology and water side evaporative air conditioning technology. In the light of relevant unit equipment, discusses the definition of these terms. Presents the operating principles of various evaporative air conditioning technologies with charts and words.

  10. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  11. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  12. Air Filtration as Protection against Fouling of Ventilation and Air Conditioning Units

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Lajčíková, Ariana

    2005-01-01

    Currently, air filters are one of the most critical components of air treatment systems as they decontaminate the air delivered to living space. During the operation, however, the level of harmful surface deposits increases, and at certain times, an uncleaned filter can itself become a source...... of undesirable contaminents influencing negatively the IAQ of a living space. This is the phenomenon that has been a subject of the current research. The article presents a new, alternative view on indoor air contaminents and filtration requirements. It describes alternative means of filtration and assesses...... issues of inadequate maintenance and/or long term use of applied air filters. An experimental method of evealuating the air quality by means of chemical analysis and state-of-the-art spectrometer is also described....

  13. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  14. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  15. Control of residual life in industrial equipment operating under creep conditions

    International Nuclear Information System (INIS)

    The end of the useful life of equipment operating at high temperature may be assoociated with some event which depends upon the creep behaviour of the material. The control of the residual life of equipment which shows a certain level of accumulated deformation is of interest as a guide to maintenance decisions. This evaluation may be made in different ways: starting from the thermo-mechanical history of the material in service, through physical tests and by observations of structure. The mechanisms controlling creep strain and fracture are explained and some methods of forecasting residual life are discussed, the limitations of each being pointed out. (Author)

  16. Investigation on the Energy Consumption of a Communications Room Using Fresh Air and Air Condition System%新风和空调系统应用于通信机房的能耗研究

    Institute of Scientific and Technical Information of China (English)

    范轩; 曹小林; 黄晓峰; 谭诒煌

    2015-01-01

    以通信机房的空调能耗为研究对象,利用 TRNSYS 模拟软件建立未利用/利用新风系统时的通信机房的空调能耗模型。模拟研究通信机房的空调负荷、围护结构传热量等数据,将2种模型进行对比,并分析围护结构对空调负荷及围护结构传热量的影响趋势及变化规律。%The energy consumption of communication equipment room is the main study object,establishing the air conditioning energy consumption model of the communication equipment room when not using/using the new air system utilizing TRNSYS sim-ulation software.Numerical simulations were used to investigate the air conditioning load and the wall gain load of communication equipment room,the two models are compared,and analyse impact trend and change rule of meteorological parameters and build-ing envelope to air conditioning load and heat transmission capacity of building envelope.

  17. New principle of organization of working process of air conditioning systems at railway and sea transport

    OpenAIRE

    Andrey KRAJNIUK; Aleksander KRAJNIUK

    2008-01-01

    An indispensable component of ensuring safe control of railway and sea transport in conditions of hot climate is maintenance of comfortable temperature of air in control cabins and living spaces. Now the interest is restored to use the Air Refrigerating Plants (ARP) as they have a wide potential of low-temperature cooling without use of ozone-destructive cooling agents prohibited by decision of the Montreal meeting. At the same time, air conditioning installations on the basis of turbo-expand...

  18. Simulation of Solar Air-Conditioning System with Salinity Gradient Solar Pond

    OpenAIRE

    Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

    2015-01-01

    In hot dry climates, due to the high demand for space air conditioning during summer and the abundance of solar radiation, solar air conditioning is a promising approach to reduce the energy consumption and negative environmental impact of buildings. Solar cooling systems have used various types of collectors to drive chillers. In this paper, a salinity gradient solar pond is suggested as a collector to drive an absorption chiller, to provide cool air for a house during hot and dry weather. A...

  19. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    Science.gov (United States)

    Strogen, Bret Michael

    trucking is found to be approximately twice as harmful as rail (while trucking is five times more energy intensive). Transporting fuel from the Midwest to California would result in slightly lower human health impacts than transportation to New Jersey, even though California is more than 50% farther from the Midwest than most coastal Northeast states. In summary, this dissertation integrated concepts from infrastructure management, climate and renewable fuel policy, fuel chemistry and combustion science, air pollution modeling, public health impact assessment, network optimization and geospatial analysis. In identifying and quantifying opportunities to minimize damage to the global climate and regional air quality from fuel distribution, results in this dissertation provide credence to the urgency of harmonizing policies and programs that address national and global energy and environmental goals. Under optimal future policy and economic conditions, infrastructure will be highly utilized and transportation minimized in order to reduce total economic, health, and environmental burdens associated with the entire supply and distribution chain for transportation fuels. (Abstract shortened by UMI.)

  20. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  1. The Effect of Air-Conditioning on Student and Teacher Performance.

    Science.gov (United States)

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  2. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    Science.gov (United States)

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  3. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  4. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    Science.gov (United States)

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home.

  5. Shakedown Test and Function of Removable Onboard Air-conditioning System%车载移动式空调机的性能与调试

    Institute of Scientific and Technical Information of China (English)

    孙琦; 嵇翠川

    2011-01-01

    This article introduces the main functions and applications of removable onboard air-conditioning system, introduces the design of vehicles equipped with removable onboard air-conditioning, introduces the integrated debug methods and results.%介绍了研制车载移动式空调机的用途、主要技术性能,叙述了移动式空调机装载厢车的设计、设备联合调试的方法和调试结果。

  6. Application of Fuzzy Comprehensive Evaluation to Air-conditioning Competitive Power Analysis

    Institute of Scientific and Technical Information of China (English)

    LU Congda; LIU Gaojin; JIANG Shaofei; LV Chaoqun

    2006-01-01

    As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD), customer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product designing. Lots of information in the process of this research is fuzzy and uncertain, but traditional QFD can not deal with it well. Fuzzy theory can solve the problem. So a fuzzy model for analyzing product competitive power is formulated in this paper to improve traditional QFD, after that it is applied to analyze air-conditioning competitive power. When air-conditioning competitive power is analyzed using this model, firstly the importance weight of the customer requirements of air-conditioning is determined using the Analytic Hierarchy Process (AHP) weighting process, then air-conditioning competitive power is evaluated using fuzzy comprehensive evaluation. It is proved that the model is feasible and has good applicability.

  7. The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit

    International Nuclear Information System (INIS)

    PV (Photovoltaic) plants are widely used to produce power in either large or small scales all around the world. In addition, CAES (compressed air energy storage) system has attracted considerable attention as one of the most efficient candidates for large scales energy storage applications in the recent years. In this work, detailed energy and exergy analysis of a 100 MWp (megawatt peak) grid connected PV plant equipped with a CAES system is carried out. The PV plant is assumed to be located in Brazil. The formulations related to the first and the second laws of thermodynamic for all components as well as detailed solar engineering formulations for both the PV farm and the solar heating unit are presented. The performance of the power plant is comprehensively investigated for one entire year in real circumstances. The results revealed that the energy and exergy efficiencies of the CAES system are very close and vary from 35% up to 65% during the year. Also, the annual average exergy and energy efficiencies of the power plant are calculated to be 17.9% and 16.2%, respectively. - Highlights: • This article presents a thorough thermodynamic analysis on a PV farm equipped with a CAES unit. • Energy performance of all components in the system are investigated. • Exergy analysis formulation for of all components in the system is given. • Energy and exergy destruction origins are found and reported. • Detailed energy and exergy efficiency report for the power plant and its subsystems is presented

  8. Reduction of air ion mobility to standard conditions

    Science.gov (United States)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  9. Introduction of water chemistry conditions of the secondary coolant circuit with metering organic amines at nuclear power stations equipped with VVER-1000 reactors

    Science.gov (United States)

    Tyapkov, V. F.; Erpyleva, S. F.; Bykova, V. V.

    2009-05-01

    Results from introduction of new water chemistry conditions involving metering of organic amines (morpholine and ethanolamine) at nuclear power stations equipped with VVER-1000 reactors are presented.

  10. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  11. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor;

    2014-01-01

    was evaluated as deodorant materials neutralising ammonia in air. The deodorant material efficiency was tested in a special experimental set-up consisting of a straight pipe section, an ammonia gas generator, a fan and a textile frame. The deodorant materials, placed in the pipe, were exposed to a flow of air......Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...

  12. Laminar flow operation room air quality on intraoperative equipment safety study%层流手术室动态空气质量对术中器械安全性的研究

    Institute of Scientific and Technical Information of China (English)

    白晓霞

    2013-01-01

    objective:Analyze the effect of laminar flow operation room air quality change on intraoperative equipment of bacterial colony growth ,take effective measures to ensure the air quality of laminar flow operation room , prevent intraoperative equipment pollution, improve the quality and safety of operation. Methods:Choose the area of 30M2, air cleanliness class of 100 laminar flow operation room to take 40 operations, operation time are more than 6 hours, the 40 operations were randomly divided into intervention group and control group. By monitoring the surface colony number of two groups of instruments, compare the bacterial colony number and intraoperative air colony number. Results:There is no bacterial growth in the intervention group or bacterial number was minimal, and no correlation with operation time. The gloves and intraoperative equipment of control group in 2 hours have bacterial growth, equipment covered have no bacterial growth. Conclusion:In the laminar flow purification air conditioning equipment running under good conditions, if we strictly control the operation flow and reduce the times of opening number in operation process ,we can ensure the air quality,and prevent equipment pollution.%目的:分析手术过程中细菌生长繁殖数量与手术时间的变化规律,采取有效措施减少各种感染因素,提高手术质量与安全。方法:通过空气培养监测手术过程中细菌菌落数,将细菌菌落数量与手术时间进行统计分析,得出两者之间的关系。结果:细菌数量与手术时间呈非线性关系,菌落数先增长后下降。结论:了解手术时间与细菌繁殖数量之间的规律对控制手术感染有较好的参考意义。

  13. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin

    2015-10-01

    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  14. Refrigerating and air conditioning systems in the Republic of Macedonia regarding to the use of CFC fluids

    International Nuclear Information System (INIS)

    Classification of refrigerating systems and their condition in the Republic of Macedonia, by the capacity and application. Review of the subjects involved in refrigeration in the Republic of Macedonia: manufactures of refrigerating systems, distributors of refrigerating equipment, distributors of (CFC) refrigerants, maintenance and servicing of refrigerating systems regarding to the quality and the weak points. Measures and projects in the Republic of Macedonia in the field of the protection of the ozone layer. Regulations by the Montreal protocol. Regulations in the Republic of macedonia concerning refrigerating systems and CFC fluids in them. Country programme of the Republic of Macedonia and institutional activities. Projects in 'Frinko; and 'Sileks' where the manufacturing technologies are changed. Project 'Refrigerant management plan' in which are included: forming of training centers, training of service technicians and engineers involved in refrigeration and air conditioning, equipping of services and companies with on equipment for good practice in refrigeration and refrigerant's recovery, forming of recycling centers for purification of used refrigerants, training of custom officers. (Author)

  15. The Design of Research Laboratories. Part I: A General Assessment. Part II: Air Conditioning and Conditioned Rooms.

    Science.gov (United States)

    Legget, R. F.; Hutcheon, N. B.

    Design factors in the planning of research laboratories are described which include--(1) location, (2) future expansion, (3) internal flexibility, (4) provision of services, (5) laboratory furnishing, (6) internal traffic, (7) space requirements, and (8) building costs. A second part discusses air-conditioning and conditioned rooms--(1)…

  16. Ventilation and air conditioning systems in maritime productions units; Panorama dos sistemas de VAC em unidades maritimas de producao

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Fernando Pedrosa; Sztajnbok, Ernani Luis [PETROBRAS, Rio de Janeiro, RJ (Brazil); Padua, Carlos Eduardo Dantas de; Passos, Alfredo Silveira [DUOVAC Engenharia Ltda. (Brazil)

    2004-07-01

    In an Offshore Stationary Production Unit (SPU), the adequate project of the Ventilation and Air Conditioning (VAC) System is not only a thermal comfort requirement but part of the essential safety services of the installation and complement for area classification requirements associated with electrical equipment. The VAC installations are sometimes the object of complaints by onboard team. Problems such as unsatisfactory system performance, high noise levels in the accommodation quarters, offices and other areas and the discomfort caused by unbalanced ventilation and air conditioning systems, are some of the most frequent complaints. Air Conditioning systems are classified as Direct and Indirect Expansion. Decentralized systems with Indirect Expansion has been adopted in PETROBRAS projects. This conception is not used in VAC Systems for platforms installed in North Sea, where the use of Centralized Systems with Direct Expansion are more common. The objective of this work is to compare the VAC conception projects, analyzing their advantages and disadvantages . The evaluation of VAC System in PETROBRAS project, and their steps in SPU development, is also scope of this paper. (author)

  17. Study of the simulation of working of ultrasonic equipment in order to optimize the nondestructive control conditions

    International Nuclear Information System (INIS)

    The aim of this study is, for the long run, to define one or several procedures of ultrasonic nondestructive testing, allowing the use of the equipment, at their best conditions. In this work, the behaviour of the testing system is simulated. The water bounded by a reflector plane is taken as a propagation medium. The testing equipment is considered as a system composed by a set of sub-systems (generator, cable, transducers and reception amplifier). Each of these sub-systems is modelled by its respective transfer functions. Thus, an experimental procedure for measuring sub-system characteristics is given in order to calculate the different transfer functions. With this model, we have the possibility to obtain, by calculation, all signals given by testing system for any combination of these parameters: damping, attenuation, cable length... So, it is possible to establish prior to the test, the adequate conditions for the testing system (high sensitivity, good resolution or good compromise between both)

  18. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  19. Parametric Analysis of a Rotary Type Liquid Desiccant Air Conditioning System

    Directory of Open Access Journals (Sweden)

    M. Mujahid Rafique

    2016-04-01

    Full Text Available Now days, air conditioning systems are a must for almost every commercial and residential building to achieve comfortable indoor conditions. The increasing energy demand, and increasing oil prices and pollution levels raise the need for alternative air conditioning systems which can efficiently utilize renewable energy resources. The liquid desiccant-based air conditioning method is pollution free and thermal energy-based cooling techniques can use low grade thermal energy resources like solar energy, waste heat, etc. These systems have an additional advantage of cleaning bacteria and fungi from the air. In this paper, a newly proposed rotary liquid desiccant air conditioning system has been investigated theoretically. Most direct contact liquid desiccant cooling systems have the problem of desiccant carryover which can be eliminated using the proposed system. The effects of various key parameters and climatic conditions on the performance of the system have been evaluated. The results showed that if the key parameters of the system are controlled effectively, the proposed cooling system has the ability to achieve the desired supply air conditions. The system can achieve high coefficient of performance (COP under different conditions. The dehumidifier has a sensible heat ratio (SHR in the range of 0.3–0.6 for different design, climatic, and operating conditions. The system can remove latent load efficiently in applications which require good humidity control.

  20. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Science.gov (United States)

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  1. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Science.gov (United States)

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  2. Microwave Disinfection in a Ventilation and Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    LU Zhen; ZHANG Ji-li; MA Liang-dong; HE Juan

    2009-01-01

    Because of its broad spectrum and high efficiency,the microwave disinfection was used to control the airborne microbial contaminates in VAC system.Some microwave disinfection devices were developed com-bined with air filter,the design and calculation method was presented,and the disinfection effects on White staphylococcus,Staphylococcus aureus,Bacillus Subtilis,Escherichi coli were measured.The results show that the major influence factors on disinfection effect are microwave power,water-content of filter material,dis-infecting duration.After 15 min,the kill ratio is>90%,and the log value is>1.The microwave field is uni-form and the kill effect of bacteria on each surface of filter is the same,without statistically significant differ-ence.

  3. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants

    Science.gov (United States)

    Factor, H. M.; Grossman, G.

    1980-01-01

    A packed column air-liquid contactor has been studied in application to air dehumidification and regeneration in solar air conditioning with liquid desiccants. A theoretical model has been developed to predict the performance of the device under various operating conditions. Computer simulations based on the model are presented which indicate the practical range of air to liquid flux ratios and associated changes in air humidity and desiccant concentration. An experimental apparatus has been constructed and experiments performed with Monoethylene Glycol (MEG) and Lithium Bromide as desiccants. MEG experiments have yielded inaccurate results and have pointed out some practical problems associated with the use of Glycols. LiBr experiments show very good agreement with the theoretical model. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.

  4. Computerized Simulation of Automotive Air-Conditioning System: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2013-01-01

    Full Text Available This paper presents results of a parametric study performed on an automotive air-conditioning (AAC system of a passenger car. The goals are to assess the effects of varying the volumetric flow rate of supply air, number of occupants, vehicle speed, and the fractional ventilation air intake (XOA, on the dry-bulb temperature and specific humidity of the air inside the passengers cabin, and on the evaporator coil cooling load of the AAC system. Results of the parametric study show that increasing the supply air flow rate reduces the dry-bulb temperature of the cabin air, increases both the specific humidity of the air and the evaporator coil load. Increasing the number of occupants in the passenger cabin causes the cabin air temperature, specific humidity and the evaporator coil load to increase. Increasing the vehicle speed causes the specific humidity of the cabin air and the evaporator coil cooling load to increase but the dry-bulb temperature of the air is not significantly affected. Increasing the fractional fresh air intake (XOA also increases the cabin air specific humidity and the evaporator coil cooling load.

  5. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  6. System and method for conditioning intake air to an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  7. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California

    OpenAIRE

    Delamater, Paul L.; Andrew O. Finley; Banerjee, Sudipto

    2012-01-01

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollut...

  8. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  9. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  10. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  11. Method for acquiring part load distribution coefficient of air conditioning system

    Institute of Scientific and Technical Information of China (English)

    丁勇; 李百战; 谭颖

    2009-01-01

    This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.

  12. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    Science.gov (United States)

    The report, Phase 1 of a two-phase research project, gives results of a literature search into theeffectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  13. The new exchangers in refrigeration and air, conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [CEA, 38 - Grenoble (France). GRETh

    1997-12-31

    The investigation carried out by the `heat exchangers` network has revealed a number of points which should be noted here at the beginning of this presentation. It has been observed that most of today`s products (fin and tube heat exchangers) are designed along traditional lines. However despite this `conservatism`, a lot of attention is found on the technical and innovative techniques used in other areas of the world (particularly in Japan). Moreover, some of these innovative techniques (micro fin tubes, louvered fins) tend to be more frequently applied than others, and their gradual introduction into products which are `made in the EEC` is to be expected. The purpose of this paper is to respond, at least partially, to the interest shown by the industries contacted. during this investigation in these new techniques. In the first chapter, an overview of the information available today on high performance thermal heat exchange surfaces will be given. Micro-fin tubes and louvered fins will be the two surfaces considered in the first part of this document. According to this investigation, the fin and tube heat exchanger remains the only product available today for evaporating and condensing refrigerant applications using air as the fluid to be treated. Other technological solutions exist, however; brazed fin and plate heat exchangers commonly used in applications where compactness is an essential quality will be examined in the second part of this document. Moreover, the use of fluids which will replace CFCS in the years to come, and the possible comeback of ammonia will certainly have consequences on the design of evaporators and condensers. In the third part of this document the effects of these changes on fin and tube heat exchangers will be evaluated, and the first published results of the use of substitution fluids will be discussed. (author) 16 refs.

  14. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  15. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  16. hermetically sealed compressor unit, temperature level, mathematical model, marine air conditioning syste

    OpenAIRE

    Lytosh, Olena V.; Dorosh, Vadym S.

    2014-01-01

    The mathematical model and calculation method of the temperature level of the hermetically sealed compressor unit for the marine self-contained air conditioners taking into account the operating conditions and machine design parameters have been given.

  17. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  18. Computerized Simulation of Automotive Air-Conditioning System: A Parametric Study

    OpenAIRE

    Haslinda Mohamed Kamar; Nazri Kamsah; Mohd Yusoff Senawi

    2013-01-01

    This paper presents results of a parametric study performed on an automotive air-conditioning (AAC) system of a passenger car. The goals are to assess the effects of varying the volumetric flow rate of supply air, number of occupants, vehicle speed, and the fractional ventilation air intake (XOA), on the dry-bulb temperature and specific humidity of the air inside the passengers cabin, and on the evaporator coil cooling load of the AAC system. Results of the parametric study show that increas...

  19. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    OpenAIRE

    Silvia Cocchi; Sonia Castellucci; Andrea Tucci

    2013-01-01

    The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling), through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP) uses the shallow ground a...

  20. Computerized Simulation of Automotive Air-Conditioning System: Development of Mathematical Model and Its Validation

    OpenAIRE

    Haslinda Mohamed Kamar; Mohd Yusoff Senawi; Nazri Kamsah

    2012-01-01

    A semi-empirical model for simulating thermal and energy performance of an automotive air-conditioning (AAC) system in passenger vehicles has been developed. The model consists of two sections, namely empirical evaporator correlations and dynamic load simulation. The correlations used consider sensible and latent heat transfer performance of the evaporator coil. The correlations were obtained from the experimental data of actual air conditioning system for a compact size passenger car. The se...

  1. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    OpenAIRE

    Jing-Nang Lee; Chien-Chih Chen; Chen-Ching Ting

    2014-01-01

    The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the...

  2. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    Science.gov (United States)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  3. New Energy-Efficient Electromagnetic Clutch for Automotive Air Conditioning Compressors

    OpenAIRE

    Baumgart, Rico; van der Seylberg, Frank; Aurich, Joerg; von Unwerth, Thomas

    2012-01-01

    Even if the air conditioning is switched off, the internal combustion engine in today’s cars continues to drive the common compressor. To avoid resulting power losses, the automotive industry aspires to apply electromagnetic clutches. When the air conditioning is used, however, CO2-emission increases significantly because the electromag-netic coil consumes electricity. The CO2-reduction per year is consequently very low, which is why new compressor clutches were developed that do not require ...

  4. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    OpenAIRE

    Jing-Nang Lee; Tsung-Min Lin; Chien-Chih Chen

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for con...

  5. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  6. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  7. Fault-tolerant supervisory control of VAV air-conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.-F.; Dexter, A. [Department of Engineering Science, University of Oxford, Oxford (United Kingdom)

    2001-07-01

    The paper describes a supervisory control scheme that adapts to the presence of degradation faults and minimises any resulting increase in energy consumption or deterioration in occupant comfort. Since there is a high degree of uncertainty associated with the results of any fault identification scheme in information-poor systems of this type, the supervisory control scheme uses fuzzy models to predict the control performance and a computationally undemanding optimisation scheme to determine the most appropriate set-points. The fault-tolerant control scheme is developed and evaluated using a detailed computer simulation of a multi-zone, variable-air-volume (VAV), air-conditioning system. The fuzzy models relate the performance of the terminal-boxes, the air-handling unit and the chiller to fuzzy descriptions of the cooling load, the supply air and chilled water temperature set-points, and the amount of air-side and water-side fouling. Results are presented that demonstrate the ability of the fuzzy models to predict the performance and show how the power consumption of the air-conditioning system varies with set-point changes and the presence of both water-side and air-side fouling. The main factors that determine the suitability of a particular air-conditioning system for fault-tolerant control are also discussed. (author)

  8. Refrigerant Control Strategies for Residential Air-Conditioning and Heat-Pump System

    Institute of Scientific and Technical Information of China (English)

    SU Shun-yu; ZHANG Chun-zhi; CHEN Jian

    2009-01-01

    This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-con-ditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of dif-ferent refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-eonditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump-The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.

  9. Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; DU Bin; ZHAO Yun

    2007-01-01

    Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant.In this paper regeneration and energy storage characteristics were studied theoretically and experimentally.Two criterion equations for heat and mass transfer in the regeneration process were obtained.The main factors that influence the regeneration process were analyzed.A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

  10. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    OpenAIRE

    Musbah Mohamed H.; Živković Branislav D.; Kosi Franc F.; Abdulgalil Mohamed M.; Sretenović Aleksandra A.

    2014-01-01

    The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar...

  11. A statistical model for characterizing common air pollutants in air-conditioned offices

    Science.gov (United States)

    Wong, L. T.; Mui, K. W.; Hui, P. S.

    Maintaining acceptable indoor air quality (IAQ) for a healthy environment is of primary concern, policymakers have developed different strategies to address the performance of it based on proper assessment methodologies and monitoring plans. It could be cost prohibitive to sample all toxic pollutants in a building. In search of a more manageable number of parameters for cost-effective IAQ assessment, this study investigated the probable correlations among the 12 indoor environmental parameters listed in the IAQ certification scheme of the Hong Kong Environment Protection Department (HKEPD) in 422 Hong Kong offices. These 12 parameters consists of nine indoor air pollutants: carbon dioxide (CO 2), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO 2), ozone (O 3), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), airborne bacteria count (ABC); and three thermal comfort parameters: temperature ( T), relative humidity (RH) and air velocity ( V). The relative importance of the correlations derived, from largest to smallest loadings, was ABC, Rn, CO, RH, RSP, CO 2, TVOC, O 3, T, V, NO 2 and HCHO. Together with the mathematical expressions derived, an alternative sampling protocol for IAQ assessment with the three 'most representative and independent' parameters namely RSP, CO 2 and TVOC measured in an office environment was proposed. The model validity was verified with on site measurements from 43 other offices in Hong Kong. The measured CO 2, RSP and TVOC concentrations were used to predict the probable levels of the other nine parameters and good agreement was found between the predictions and measurements. This simplified protocol provides an easy tool for performing IAQ monitoring in workplaces and will be useful for determining appropriate mitigation measures to finally honor the certification scheme in a cost-effective way.

  12. A prediction method based on grey system theory in equipment condition based maintenance

    International Nuclear Information System (INIS)

    Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)

  13. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  14. Energy-smart calculation of thermal loads in mobile and stationary heating, ventilation, air conditioning, and refrigeration systems

    OpenAIRE

    Fayazbakhsh, Mohammad Ali

    2015-01-01

    The energy consumption by heating, ventilation, air conditioning, and refrigeration systems forms a large portion of the total energy usage in buildings. Vehicle fuel consumption and emissions are also significantly affected by air conditioning. Air conditioning is also a critical system for hybrid electric vehicles and electric vehicles as the second most energy consuming system after the electric motor. Proper design and efficient operation of air conditioning systems require accurate calcu...

  15. Influences of the Indoor Environment on Heat, Air, and Moisture Conditions in the Component

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Rode, Carsten; Janssen, Hans

    2008-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. The heat and moisture surface...... and relative humidity in the adjacent air are seldom uniform. In order to obtain a reliable prediction of the HAM conditions in a building component, an accurate description of the indoor (and outdoor) boundary conditions is required. The objective of the present paper is to analyze the influence...... of the variations of the surface transfer coefficients near the surface of a building component on the HAM conditions in the component. A parameter study has been used to investigate this influence. The research showed that the surface transfer coefficients have a relatively large influence on the redicted HAM...

  16. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  17. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    Science.gov (United States)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the

  18. 蒸发冷却空调技术的诠释(2)%Explanation of evaporative air-conditioning technology (2)

    Institute of Scientific and Technical Information of China (English)

    黄翔; 孙铁柱; 汪超

    2012-01-01

    Three basic heat and moisture processes of evaporative air-conditioning technology processing outdoor air are analyzed which are equal-enthalpy humidifying, constant humidity cooling and dehumidifying cooling process, as well as purification function. The centralized, semi-centralized, decentralized evaporative air-conditioning systems and their corresponding equipments are introduced.%分析蒸发冷却空调技术对室外空气可实现的3种基本热湿处理过程:等焓加湿、等湿冷却和减湿冷却过程,以及对室外空气的净化功能,并详细介绍集中式、半集中式和分散式蒸发冷却空调系统及其相应设备.

  19. Effective Ventilation Parameters and Thermal Comfort Study of Air-conditioned Offices

    Directory of Open Access Journals (Sweden)

    Roonak Daghigh

    2009-01-01

    Full Text Available The study presents objective and subjective studies of thermal comfort levels and ventilation characteristics of two air-conditioned postgraduate study offices. The observations were performed at the offices of Department of Electrical and Electronic Engineering, in University Putra Malaysia. Thermal comfort variables were measured while the students answered a survey on their sensation of the indoor climate. Concurrently, tracer gas analysis, based on concentration decay method, is employed to determine air exchange rate, age of air and air exchange effectiveness. During the air conditioner is working, the study offices had not conditions within the comfort zone, of ASHRAE standard 55 causing occupants to report cold thermal sensations and the objective data analysis showed that the offices were uncomfortable. The thermal neutralities were significantly higher that proposed by ASHRAE Standard 55:1992. The monitored air exchange rates are indicated that the provisions of outside air for ventilation based on design occupancy are adequate for these two study offices. In addition, questionnaires were completed by the students in order to provide a subjective assessment of thermal comfort and indoor air quality. Finally, the outcomes of over 30 surveys for each office responses to the thermal comfort questions are presented and discussed.

  20. Effect of Harvest of Air Relative Humidity on Water and Heat Transfer in Soil With Crops Under Arid Climatic Conditions

    Directory of Open Access Journals (Sweden)

    El Khadir LAKHAL

    2015-05-01

    Full Text Available In this work, the main objective is to analyze the effect of the harvest of air relative humidity on soil temperature, soil water storage and evaporation. An experiment work was conducted in order to evaluate the quantity of soil water adsorbed by harvesting of relative air humidity. This experimental work was conducted on hilly areas with various hypsographic and microclimatic conditions greatly affecting daily fluctuations of air humidity and soil characteristics. The metrological data needed by SISPAT model were obtained by using a Campbell Scientific equipments Station recorder on data loggers every half hour. A numerical model based on SiSPAT (Système d’Interaction Sol Plante Atmosphère formulation is adopted. The general equations of the proposed model are based on heat and mass transfer in the soil, atmosphere and plant system. This study shows that Soil Water Adsorption (SWA induce an increasing in the total evaporation and in soil water storage especially on the upper layers. The effect of Soil Water Adsorption on soil temperature appears for the first layers of soil and become absent in the profound zone because the vapour condensation phenomenon is very important at night for the first layers.

  1. HUMAN RESOURCE MANAGEMENT PRACTICES IN REFRIGERATION AND AIR CONDITIONING INDUSTRY IN INDIA

    Directory of Open Access Journals (Sweden)

    Dr.Nisar Ahamad Nalband

    2010-11-01

    Full Text Available Over the last 150 years or so, refrigeration’s great strides offered us ways to preserve and cool food, other substances and ourselves. Refrigeration brought distant production centers. It tore down the barriers of climates and seasons. And while it helped to rev up industrial process, it became an industry itself It is understood that the refrigeration and air conditioning industry has been a promising industry for the development of Indian economy and one of the old industry in India too. Indian refrigeration and air conditioning Industry has been playing a very vital role in the growth of Indian economy. The employees of refrigeration and airconditioning Industry are mostly knowledge workers. Knowledge workers are skilled, use intuition and past experience, as well as creating the new knowledge which resides in their heads and which is also evident in their commitment, attitude and relationship. However, the projected growth of Indian refrigeration and air conditioning industry will largely depend upon the Industries’ ability to manage its human resources Though research has been done on HRD/HRM in refrigeration and air conditioning industry, a considerable study has yet to be made on Indian refrigeration and air conditioning industry. The literature on Indian refrigeration and air conditioning industry consists mainly in the form of Books, Annual Reports, and other web based reports. The Technical, Engineering and Management journals also published articles on the subject. A great amount of research work has to be carried on in the country. There is a promising and potential scope for the researchers to investigate more and inform more to Indian air conditioning and refrigeration industry to adapt to new techniques of HRM/HRD.

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  3. Air conditioning system of indoor ski dome. Okunai ski jo no kuki chowa

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S. (Mitsui Fudosan Co. Ltd., Tokyo (Japan)); Kayo, M. (Kajima Corp., Tokyo (Japan)); Suzuki, T. (NKK Corp., Tokyo (Japan)); Tsutsumi, M. (Sanki Engineering Co. Ltd., Tokyo (Japan))

    1994-04-05

    A indoor ski dome was opened near Tokyo on July 15, 1993. The facilities named Lalaport Ski Dome 'SSAWS' are located at Minami-Funabashi Tokyo-Bay front area, about 20km east of metropolitan Tokyo. This ski dome is characterized by indoor artificial snow making and round-year operation among other indoor ski domes already in operation worldwide. The snow making method applied to this ski dome is world new, and the slope size with 100m width and 490m length is world largest. In order to realize the present facilities, various considerations were employed for energy and resources conservation. The facilities have a refrigerating system, an air conditioning system, and a snow making system. Especially, a co-generation system is introduced for the air conditioning system. The air conditioning system is operated under the fully automatic conditions using a computer. 5 refs., 15 figs., 2 tabs.

  4. Numerical Analysis on Ventilating and Air Conditioning Scheme of Shenyang Subway Station

    Institute of Scientific and Technical Information of China (English)

    LI Wei; NA Yanling

    2007-01-01

    Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.

  5. Discussion on outdoor air design conditions for summer air conditioning%关于夏季空气调节室外空气计算参数的讨论

    Institute of Scientific and Technical Information of China (English)

    赵康; 刘晓华; 张涛; 江亿

    2011-01-01

    根据我国室外气象数据,比较了由历年平均不保证50 h干、湿球温度计算得到的含湿量与根据气象数据历年平均不保证50 h统计得到的含湿量的差异.考虑到室外气候条件对建筑热环境和不同设备空气热湿处理过程的影响,建议在空调设计中根据影响因素不同选取相应的室外空气设计参数.采用国家气象局1971-2003年的气象数据,得到全国31个主要城市分别以空气干、湿球温度和露点温度为主的3种设计指标.%According to the outdoor meteorological data of China, compares the difference between the humidity ratio calculated based on annual dry-bulb and wet-bulb temperature under the condition of not guaranteeing 50 hours everage per year and the annual statistical humidity ratio under the condition of not guaranteeing 50 hours everage per year. Comprehensively considering the influence of outdoor conditions on indoor thermal environment and the air handling process of different equipment, suggests that corresponding outdoor design conditions should be selected according to different influence factors in air conditioning design. Using the meteorological data from 1971 to 2003 by the China Meteorological Bureau,gains three design indices of 31 China's main cities in which dry-bulb, wet-bulb and dew-point temperature are respectively used as a key factor.

  6. Development and test of continuous combined mid-infrared with hot air drying equipment%连续式中红外-热风组合干燥设备的研制与试验

    Institute of Scientific and Technical Information of China (English)

    谢小雷; 张春晖; 贾伟; 李侠; 王兆进; 穆国锋

    2015-01-01

    Drying efficiency was always considered to be the most important factor by factories, however, low thermal conductivity and case hardening of the material slowed the moisture migration in hot air drying, and resulted in more time and energy consumption. So to solve the existing problems of present drying equipment, a continuous drying equipment of combined mid-infrared and hot air (CMIHA) was developed in this paper. This drying equipment included feed section, heating sections and cooling section, of which each heating section was made up of four parts, i.e. conveying system, heating system, convective circulation system and control system. As we all know, since infrared energy is converted into heat only when material absorbs the radiation, it was essential to select a heat source emitting radiation with the range in which the material to be processed had maximum absorption. So, the radiation wavelength of infrared was selected by the infrared spectra of meats, and the radiation intensity could be controlled by changing the amount of working lamps to make good use of the radiation energy. At the same time, this equipment was developed by calculating the main technological parameters of convection system, cooling system and heating system, and then the production verification test was also done to compare the difference between CMIHA drying and hot air drying on beef jerky. Results showed that, in the same conditions (heating power 105 kW, heating temperature 70℃, wind velocity 1 m/s, cooling wind velocity 3 m/s, heating distance 8 cm), compared with hot air drying, the continuous CMIHA drying equipment could speed up muscle protein denaturation, reduce activation energy, reduce the energy that jerky needed to accelerate moisture migration, and improve drying efficiency. The time consumption that the beef samples in the first row on the conveyor dehydrated from raw to weight reduction by 50%for CMIHA drying equipment was 120 min, and the production efficiency

  7. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  8. Minor contributions of the maxillary sinus to the air-conditioning performance in macaque monkeys.

    Science.gov (United States)

    Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Miyabe-Nishiwaki, Takako; Suzuki, Juri; Matsuzawa, Teruo; Nishimura, Takeshi D

    2015-08-01

    The nasal passages mainly adjust the temperature and humidity of inhaled air to reach the alveolar condition required in the lungs. By contrast to most other non-human primates, macaque monkeys are distributed widely among tropical, temperate and subarctic regions, and thus some species need to condition the inhaled air in cool and dry ambient atmospheric areas. The internal nasal anatomy is believed to have undergone adaptive modifications to improve the air-conditioning performance. Furthermore, the maxillary sinus (MS), an accessory hollow communicating with the nasal cavity, is found in macaques, whereas it is absent in most other extant Old World monkeys, including savanna monkeys. In this study, we used computational fluid dynamics simulations to simulate the airflow and heat and water exchange over the mucosal surface in the nasal passage. Using the topology models of the nasal cavity with and without the MS, we demonstrated that the MS makes little contribution to the airflow pattern and the air-conditioning performance within the nasal cavity in macaques. Instead, the inhaled air is conditioned well in the anterior portion of the nasal cavity before reaching the MS in both macaques and savanna monkeys. These findings suggest that the evolutionary modifications and coetaneous variations in the nasal anatomy are rather independent of transitions and variations in the climate and atmospheric environment found in the habitats of macaques.

  9. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji (Energy International, Inc., Bellevue, WA (USA))

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  10. Ventilation conditions and air-borne bacteria and particles in operating theatres: proposed safe economies.

    OpenAIRE

    Clark, R. P.; Reed, P. J.; Seal, D V; Stephenson, M. L.

    1985-01-01

    Concentrations of air-borne bacteria and particles have been measured in turbulently ventilated operating theatres in full flow, half flow and zero flow conditions. Increased air-borne challenge produced by human activity and by mechanical cleaning procedures is demonstrated: die-away of this contamination is shown to be related to the ventilation rate. Ventilation can be reduced or turned off at night and during weekends, and cleaning can also be carried out, without increased risk of infect...

  11. The analysis and improvement of the humidity problem on air-condition system of SSRF

    International Nuclear Information System (INIS)

    In this work, efforts were made to solve the problem of high relative humidity in some areas of the Shanghai Synchrotron Radiation Facility (SSRF). Based on data analysis, theoretical demonstration and field tests, we found that the problem of high humidity was caused by two factors. The high humidity problem was solved by appropriate measures of keeping the actual operation load match to the design load of the air-conditioning systems and minimizing the outdoor air infiltration. (authors)

  12. Preliminary thermodynamic design of a stirling cooler for mobile air conditioning systems : Technical report

    OpenAIRE

    Kaufmann, André; Ylinen, Hannu

    2015-01-01

    The present discussion on refrigerants used in mobile air conditioning (MAC) units leads to the question whether a stirling cycle based heat pump could replace the present technology. An experimental and simulative study is carried out to determine the design parameters of such a heat pump. It is found that the targeted power density cannot be reached with air as a working fluid. The power require-ments would lead to machine sizes too large for a passenger vehicle.

  13. Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities

    OpenAIRE

    Sharma, Dev

    2013-01-01

    Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities Conventional air-conditioners need high grade energy i.e. electricity, which in India, is primarily produced from fossil fuels. In spite of several emission restraints exercised by many countries under Kyoto protocol, energy consumption and pollution levels are higher than ever. Therefore, an assessment from the ecological point of view needs to be implemented as the greenhouse gases effect remains a threa...

  14. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures...

  15. 一种新型空气消毒净化设备的消毒效果观察%Disinfection effects of a new type of air disinfection and purification equipment

    Institute of Scientific and Technical Information of China (English)

    谈书勤; 罗雅丽; 谢昭聪; 胡贵方; 顾大勇

    2013-01-01

    Objective: To investigate the indoor air disinfection effects of a new type of air disinfection and purification equipment based on high - voltage pulsed electric field sterilization technology. Methods: Experiments on the disinfection effects were carried out under the laboratory simulation and field test. Results: The new high - voltage pulsed electric field sterilization technology - based air sterilization purification equipment produced an average killing rate of 98.62%, 98.65% and 97.93%, respectively for artificial simulated aerosol of Serratia marcescens, Staphylococcus albus and Candida albicans in the laboratory simulation test, and 90.58% for the natural bacteria aerosols in the port field test. Conclusion: Under specified using conditions, the new high - voltage pulsed electric field sterilization technology - based air sterilization purification equipment had a great killing effect on air microbial aerosols, and was worthy to promote as a new type of air disinfection and purification equipment.%目的:观察基于高压脉冲电场杀菌技术的新型空气消毒净化设备对室内空气的消毒效果.方法:在实验室模拟和现场两种情况下对设备的空气消毒效果进行相关试验.结果:在实验室模拟试验条件下,基于高压脉冲电场杀菌技术的新型空气消毒净化设备对人工模拟产生的粘质沙雷氏菌、白色葡萄球菌和白色念珠菌气溶胶的平均杀灭率分别为98.62%、98.65%和97.93%;在口岸现场试验条件下,设备对自然菌气溶胶的平均杀灭率为90.58%.结论:基于高压脉冲电场杀菌技术的新型空气消毒净化设备在规定的使用条件下,对空气微生物气溶胶具有良好的杀灭效果,是一种值得推广新型空气消毒净化设备.

  16. Effect of cleaning procedure and hygienic condition of milking equipment on bacterial count of bulk tank milk.

    Science.gov (United States)

    Bava, Luciana; Zucali, Maddalena; Sandrucci, Anna; Brasca, Milena; Vanoni, Laura; Zanini, Lucio; Tamburini, Alberto

    2011-05-01

    The aim of the study was to describe the characteristics of cleaning procedures for milking equipment applied in intensive dairy farms in Lombardy (Italy) and to study their relationships with bacterial count of bulk milk and hygienic condition of milking machine components. A group of 22 dairy farms was visited twice (winter and summer) in order to collect bulk tank milk and post-rinse water samples and swabs from liners and milk receiver. Samples were analysed to determine: standard plate count (SPC), laboratory pasteurization count (LPC), psychrotrophic bacteria count (PBC), coliform count (CC) and Escherichia coli. Cleaning procedures were monitored using electronic milk flow meters with specific software for the measurement of the duration of each cleaning phase, circulating solution temperature and electrical conductivity, turbulence and water filling percentage of pipelines. The results showed that farms classified as high and low milk total bacteria count significantly differed both in terms of liners and receiver bacterial contamination and in terms of water temperature reached during the detergent phase of cleaning milking equipment. Significant positive correlations were found among total bacteria count in milk and bacterial contamination of the liners. Maximum water temperature reached during the cleaning cycle of milking equipment was very low (34.4±8.9°C on average); most of the observations (88.6%) corresponded to water temperatures count of milk and post-rinse water and coliform count in liners. Routine check and regulation of water temperature during the washing phase of the milking machine can be a simple and effective way to control one of the main risk factors for bacteriological quality of bulk tank milk.

  17. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M; Morse, T

    1981-02-01

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  18. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  19. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  20. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  1. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  2. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  3. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    Science.gov (United States)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  4. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  5. Transmission Conditions of Vibration Stresses to Welding Specimens of Ultrasonic Plastic Welding using Various Two-Vibration-System Equipments

    Science.gov (United States)

    Tsujino, Jiromaru; Uchida, Takako; Ohkusa, Kunifumi; Adachi, Tatsuya; Ueoka, Tetsugi

    1998-05-01

    Ultrasonic plastic welding is applied for welding various thermoplastic materials and is widely used in various industrial fields. The two-vibration-system welding method and a high frequency equipment are effective in improving the welding characteristics. A high frequency 90 kHz system can weld plastic sheets under a 1/3 velocity amplitude as compared with that of a low 27 kHz system, but it is difficult to weld large specimens successfully because a high frequency vibration stress cannot be transmitted uniformly due to the stress relaxation effect by the small vibration displacement. To improve the direct welding characteristics, three types of two-vibration-system ultrasonic welding equipments using linear vibration loci of (1) 90 kHz and 27 kHz longitudinal vibration systems, (2) 90 kHz longitudinal and 20 kHz torsional vibration systems, and elliptical vibration loci of (3) 27 kHz complex vibration systems are studied. Transmission conditions of the vibration stresses are measured by pressure sensitive films (Prescale) which are inserted between the plastic sheets. It was shown that a high frequency vibration stress with a small displacement amplitude may be induced uniformly in the welding specimens by combining a low frequency vibration with large displacement amplitude. These welding systems are effectively used to join plastic sheets successfully.

  6. SUMMARY OF ELECTRIC SERVICE COSTS FOR TOTALLY AIR CONDITIONED SCHOOLS PREPARED FOR HOUSTON INDEPENDENT SCHOOL DISTRICT, MAY 31, 1967.

    Science.gov (United States)

    WHITESIDES, M.M.

    THIS REPORT IS A COMPILATION OF DATA ON ELECTRIC AIR CONDITIONING COSTS, OPERATIONS AND MAINTENANCE. AIR CONDITIONING UNITS ARE COMPARED IN TERMS OF ELECTRIC VERSUS NON-ELECTRIC, AUTOMATIC VERSUS OPERATED, AIR COOLED VERSUS WATER COOLED, RECIPROCATING VERSUS CENTRIFUGAL COMPRESSORS, SPACE AND NOISE, REHEAT, MAINTENANCE AND ORIGINAL COST. DATA ARE…

  7. Providing better thermal and air quality conditions in school classrooms would be cost-effective

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2013-01-01

    This paper is an overall summary of research by the authors on how classroom conditions affect the performance of schoolwork by children, motivated by the fact that the thermal and air quality conditions in school classrooms are now almost universally worse than the relevant standards and building...... and allowing outdoor air supply rates to remain so low that carbon dioxide (CO2) levels during school hours exceed 1000 ppm for long periods, in order to conserve energy. The research that is summarized in this paper shows that the indoor environmental consequences of either of these investment-free but ill...

  8. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    OpenAIRE

    Chi-Chun Lo; Shang-Ho Tsai; Bor-Shyh Lin

    2016-01-01

    This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR) is used to obtain the polynomial function for the c...

  9. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect

  10. Conditioning the middle ear reflex at sensation levels below reflex threshold: air jet and electrical stimulation.

    Science.gov (United States)

    McDaniel-Bacon, L; Fulton, R T; Laskowski, R P

    1980-01-01

    An ABAB functional analysis, conditioning and generalization, design was used in 3 experiments (2 were formal studies and 1 was empirical in nature) to investigate the conditionability of the middle ear reflex. The conditioned stimuli were subreflex threshold pure tones of various frequencies and intensities. The unconditioned stimulus (UCS) was an auricular air jet to the contralateral ear in the first experiment and cutaneous electrical stimulation to the ipsolateral, probe ear in the last 2 experiments. Reflexes were monitored by an otoadmittance meter, storage oscilloscope, and strip chart recorder. In the first experiment (air jet UCS), no subjects met the conditioning criterion within the maximum presentation of 400 paired trials, despite pilot evidence which indicated conditioning was feasible. In the second experiment (electrical stimulation UCS), 2 subjects met conditioning criterion; however, only one subject reconditioned and demonstrated partial generalization to other conditioned stimuli. In the third experiment (electrical stimulation UCS), one of 3 subjects who had previously been unconditionable with the air jet UCS met conditioning and reconditioning criterion and demonstrated partial generalization. Results indicate that the middle ear reflex can be conditioned to be elicited by subreflex threshold pure tones, however, results are limited.

  11. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  12. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    Science.gov (United States)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  13. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    Science.gov (United States)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  14. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  15. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  16. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  17. Sulfate Attack Resistance of Air-entrained Silica Fume Concrete under Dry-Wet Cycle Condition

    Institute of Scientific and Technical Information of China (English)

    YANG Jiansen; WANG Peiming; LI Haoxin; YANG Xu

    2016-01-01

    Based on the erosion resistant coefficient, the effects of water-cement ratio, air-entrained, silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition. A more signiifcant model of concrete resistance to sulfate attack was also established, thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete. The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack, and leads to the remarkable declines of concrete strength and sulfate resistance. Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt. However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure, and then the air bubbles are iflled with sulfate salt crystallization. The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio, 6.0% air-entrained, 5% silica fume and 30% sand ratio. The erosion resistant coefifcientsK80 andK150 of this concrete are increased by 9%, 7%, 9%, and 5% respectively as compared with those of concretes without silica fume and air entraining.

  18. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    Science.gov (United States)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each

  19. Prediction of air temperature in the aircraft cabin under different operational conditions

    Directory of Open Access Journals (Sweden)

    Fišer J.

    2013-04-01

    Full Text Available This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  20. Prediction of air temperature in the aircraft cabin under different operational conditions

    Science.gov (United States)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  1. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  2. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment

    Directory of Open Access Journals (Sweden)

    Marcin Bekas

    2013-12-01

    Full Text Available Background: Implementation of X-ray dental examination is associated with the patient's exposure to ionizing radiation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment. Materials and Methods: The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland accredited for the certification of compliance with PN-EN 17025. Results: The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD ranged from 72.8 to 2430 μGy with the average value of 689.1 μGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. Conclusions: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body. Med Pr 2013;64(6:755–759

  3. The history of refrigeration and air conditioning - journals in refrigeration and air conditioning engineering; Geschichte der Kaelte- und Klimatechnik - Die Entwicklung der Fachzeitschriften in der Kaelte- und Klimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Apart from publishing new scientific findings, many journals also deal with the practical aspects of refrigeration and air conditioning engineering. The contribution presents a historical outline of journals in this field along with their points of focus yesterday and today. [German] Neben der Verbreitung wissenschaftlicher Erkenntnisse fuer den Bereich der Kaelte- und Klimatechnik hat sich eine grosse Anzahl der Zeitschriften mit der praktischen Kaelte- und Klimatechnik beschaeftigt. Dieser Bericht stellt umfassend dar, wie sich die Fachzeitschriften der Kaelte- und Klimatechnik entwickelt haben und welchen Schwerpunkt die einzelnen Zeitschriften hatten und haben. (orig.)

  4. 2013 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2013. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These proceedings cover the following main topics: cryoengineering - superconduction / energy storage; cryoapplications in biology and medicine; metrology; adsorption processes; condensation/evaporation; working fluids / simulation; ice production; plants and compressors; expansion and ejectors or recooling; use of cooling (passenger car air conditioning, supermarket); refrigerants; plant efficiency; emissions and legislation; air conditioning and use of heat pumps; air quality and control; building technology and block-type thermal power stations. [German] Dieser Tagungsbericht enthaelt folgende Themenschwerpunkte: Kryotechnik - Supraleitung/Energiespeicher; Kryoanwendungen in der Biologie und Medizin; Messtechnik; Adsorptionsprozesse; Kondensation/Verdampfung; Arbeitsfluide/Simulation; Eiserzeugung; Anlagen und Verdichter; Expansion und Ejektoren bzw. Rueckkuehlung; Kaelteanwendung (PKW-Klimatisierung; Supermarkt); Kaeltemittel; Anlageneffizienz; Emissionen und Gesetzgebung; Klimatechnik und Waermepumpenanwendung; Luftqualitaet und Regelung; Gebaeudetechnik und BHKW.

  5. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    Science.gov (United States)

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.

  6. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    OpenAIRE

    Li Hai-Jun; Zhou Guang-Hui; Li An-Gui; Li Xu-Ge; Li Ya-Nan; Chen Jie

    2014-01-01

    When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system i...

  7. Simulation based energy consumption calculation of an office building using solar-assisted air conditioning

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2008-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning system operation, it is reasonable to evaluate the prospects of a clean energy source. The targets of the study are to evaluate cooling energy consumption to maintain thermal comfort in an office building and to point out solar energy to satisfy these cooling needs. Simulations were carried out with three different cooling systems in the same operating conditions to determine as accurately as possible the pot...

  8. Application of Dual Throttling Air-Conditioning System to Explosion-Proof Frequency Converter

    Institute of Scientific and Technical Information of China (English)

    张于峰; 高岩; 盛颖

    2015-01-01

    An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inves-tigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning sys-tem was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrig-eration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experi-mental data.

  9. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Research on performance of mixed absorption refrigeration for solar air-conditioning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the drawbacks of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented.The accessorial high pressure generator was added in the cycle.The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber.The performance of a mixed absorption refrigeration cycle was analyzed.The theoretical analysis shows that the highest COP is 0.61,while the highest available temperature difference of heat resource is 33.2℃.The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption.The advantages of solar air-conditioning can be markedly made use of by the cycle.

  11. 76 FR 17487 - Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector...

    Science.gov (United States)

    2011-03-29

    ... Association JAPIA--Japan Auto Parts Industries Association LCA--Lifecycle Analysis LCCP--Lifecycle Climate... Science and Technology of Japan ASHRAE--American Society for Heating, Refrigerating, and Air- Conditioning... Order FMEA--Failure Mode and Effect Analysis FR--Federal Register GWP--Global Warming Potential...

  12. Exploring policy strategies for mitigating HFC emissions from refrigeration and air conditioning

    NARCIS (Netherlands)

    Hekkenberg, M.; Uiterkamp, Anton J. M. Schoot

    2007-01-01

    The growing demand for cooling throughout the world, possibly increased by global climate change, requires the implementation of policies to mitigate the related greenhouse gas (GHG) emissions from energy and refrigerant use in the refrigeration and air conditioning (RAC) sector. This article aims t

  13. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  14. Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each...

  15. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    Science.gov (United States)

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  16. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    Science.gov (United States)

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  17. Human requirements in future air-conditioned environments: a search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even though existing st...

  18. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    Science.gov (United States)

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  19. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  20. Air conditioning a vaccine laboratory. [Connaught Medical Research Laboratory, Toronto, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Ross J.

    1976-05-01

    In 1974, the new Bacterial Vaccine Building of Connaught Medical Research Laboratories, Toronto, Canada, was opened to produce such vaccines as pertussis, typhoid, paratyphoids, and cholera and such toxoids as staphylococcus, diphtheria, and tetanus. It also produces other medicinal products. The layout of the complex and the air conditioning system necessary in all zones are described and schematically shown. (MCW)

  1. HFC perspectives in air-conditioning and refrigeration; Perspectives HFC en A/C et refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, P. [ELF Atochem, Centre d`Application de Lavallois, 92 (France)

    1997-12-31

    This paper is a series of transparencies dealing with the development of substitutes for the replacement of the R-22 refrigerant in air-conditioning systems (R-134a, R-407C, R-410A), and in industrial refrigeration systems of agriculture and food industry (R-134a and R-404A). (J.S.)

  2. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE... plutonium. (a) Test conditions—Sequence of tests. A package must be physically tested to the...

  3. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    Directory of Open Access Journals (Sweden)

    Musbah Mohamed H.

    2014-01-01

    Full Text Available The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector’s slope angle and collector area. The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation and the time of day when the plant was operated.

  4. 空调列车内空气品质改善途径探讨%Approaching Ways to Improve Air Quality of Air-conditioning Train

    Institute of Scientific and Technical Information of China (English)

    李红民

    2011-01-01

    Strengthening fresh air effect is one of the best ways to improve air quality of air-conditioning train in our country. In view of the problems exiting in fresh air treatment of the current passenger train air conditioning system, setting up independent fresh air treatment system and sending high quality fresh air to passenger directly is supposed to attain that goal.%加强新风效应是改善我国铁路空调客车空气品质最有效的途径之一。针对现有的客车空调系统在处理新风上存在的问题,提出设置独立的新风处理系统,将高品质的新风直接送入乘客呼吸区,以达到加强新风效应的目的。

  5. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  6. Genetic Optimization Algorithm of PID Decoupling Control for VAV Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    WANG Jiangjiang; AN Dawei; ZHANG Chunfa; JING Youyin

    2009-01-01

    Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multi-variable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified l0 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.

  7. Dust deposition in ventilation and air-conditioning duct bend flows

    International Nuclear Information System (INIS)

    Highlights: ► We study particle deposition on the four inner surface of the duct bend. ► We analyse the effect of five ways of placements of the bend on particle deposition. ► Gravity and inertia force enhance the deposition as relaxation time rises. ► Deposition coefficient increases as air velocity or particle diameter increases. - Abstract: Particles carried by airflows in ventilation and air-conditioning systems have adverse effects on the quality of air in buildings and hence the health of building occupants. Gaining insight on particle deposition onto ventilation and air-conditioning duct bends is important for controlling pollutant dispersion. Based on the Reynolds stress transport model (RSM), this paper has taken into account the effects of drag, lift force, gravity, inertia force, turbulent diffusions, particle size and air velocity on the dimensionless deposition velocity of particles in smooth duct bends using fully developed velocity profiles. At two different air velocities of 3.0 m/s and 7.0 m/s, the aforementioned effects were predicted by Reynolds-averaged Navier–Stokes (RANS)-Lagrangian simulation on square shaped duct bends with different ways of placement. Preliminary results suggest that gravity and inertia force enhance the dimensionless deposition as dimensionless relaxation time rises. Change tendency of the dimensionless particle deposition velocity on different surfaces of bend duct agrees well with previous studies. As air velocity and particle diameter increase, a significant increase of particle deposition coefficient in the duct bends is observed. Particle deposition to intrados can be intensified by the combined action of gravity and inertia force in different direction.

  8. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  9. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  10. Research on frequency conversion technology of metro station's ventilation and air-conditioning system

    International Nuclear Information System (INIS)

    Ventilation and air-conditioning system (VAC) is the most energy-saving potential system in the metro. This paper analyzes the passenger traffic, air-conditioning load and station air supply on the initial, recent and long-term phase of metro station. And it proposes that it is necessary to run chilled-water pumps, air handing unit (AHU) fans and back/exhaust fans with frequency conversion technology (FCT). Then it uses the thermodynamic method to analyze the impact of running chilled-water pumps with FCT. The results show that running chilled-water pumps with FCT can reduce the total power consumption of system, although increases chiller energy consumption. Then the temperature and velocity fields of the platform and station hall are simulated by CFD software according to the variable air volume. And the results show that under the condition of running the VAC system with FCT, temperature and velocity fields distribution are both in the comfortable range. Finally, by taking a typical summer day for example, this paper analyzes the energy savings of chilled-water pumps, AHU fans and back/exhaust fans on the initial, recent and long-term phase, and the calculation results show that the respective total energy savings are 1103.4 kWh, 1064.3 kWh and 926.2 kWh, and the respective total power saving ratio is 73.4%, 71.2% and 59.5%. - Highlights: •Use the FCT to reduce energy consumption of metro VAC is necessary and possible. •Analyze the influence of running the chilled-water pumps with FCT. •Results show that variable air volume of station public area is feasible. •Calculations indicate that energy-saving effect of using the FCT is considerable

  11. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  12. Design guides for solar assisted air conditioning; Auslegungshinweise fuer die Solargestuetzte Klimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Franzke, U.; Seifert, C. [Institut fuer Luft- und Kaeltetechnik gGmbH, Dresden (Germany)

    2005-10-01

    The design of solar assisted air conditioning systems required a detailed consideration of the whole system, which consist of the building, the use, the air handling unit and the solar energy production. The decision about the application of solar energy is necessary in an earlier phase of the design process of the building. But at this moment, the necessary information are not available. With help of the simulation tool SOLAC it's possible to define an optimised system on a low level of information input. (orig.)

  13. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    Science.gov (United States)

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi.

  14. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    Science.gov (United States)

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. PMID:27055570

  15. The effects of ambient conditions on the calibration of air flow plate standards

    Directory of Open Access Journals (Sweden)

    Miao Qian

    2013-01-01

    Full Text Available The volume flow rate measured by air flow plate is influenced by the ambient conditions during the calibration. A series of numerical examples are conducted for the relationship and the outcomes demonstrated that the calibration is quite sensitive to the atmospheric pressure and the ambient temperature, but insensitive to relative humidity. The experiment model has been applied to calibration results with wide ranging ambient conditions. In conclusion, the results of this study demonstrate the benefits to calibration data of minimizing the effects of ambient conditions.

  16. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition.

    Science.gov (United States)

    Fougère, Bertrand; Vellas, Bruno; Billet, Sylvain; Martin, Perrine J; Gallucci, Maurizio; Cesari, Matteo

    2015-11-01

    The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions.

  17. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K;

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...... is the pore-gas velocity) were determined by fitting the advection–dispersion equation to the measured breakthrough curves. For all test conditions, DH increased linearly with v. The test results showed that neither soil column length nor diameter had significant effect on gas dispersivity. Under air...

  18. The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (RP-1257)

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2007-01-01

    Two independent field intervention experiments were carried out in mechanically ventilated classrooms receiving 100% outdoor air. Outdoor air supply rate and filter condition were manipulated to modify indoor air quality, and the performance of schoolwork was measured The conditions were...... scales to indicate their environmental perceptions and the intensity of any symptoms. The children indicated that the air was fresher but otherwise perceived little difference when the outdoor air supply rate increased from 3.0 to 8.5 L/s (6.4-18 cfm) per person, while the speed at which they performed...... two numerical and two language-based tasks improved significantly. A significant effect of ventilation rate was observed in 70% of all the statistical tests for an effect on work rate, but there were no significant effects on errors. The effects were probably due to improved air quality...

  19. CERIT air-conditioning system powered by solar energy: Two years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Romagnoni, P.; Casasola, L. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici CERIT S.p.A., Pordenone (Italy) Padova Univ. (Italy). Ist. di Fisica Tecnica)

    The largest European solar air conditioner (equipped with 440 square meters of aluminized Myler reflection panels; 440 square meters of Cortec evacuated tube solar collectors; 150 and 43 cubic meter, respectively, cold and hot water storage tanks; 50 kW absorption machine; 4 cylinder compression chiller; and natural gas fired boiler for winter space heating) was built at the CERIT (Regional Technological Research Center) of Pordenone, Italy. This article, with the aid of flowsheets, outlines the plant's key design and operational features, and tables performance and energy consumption data to back up a discussion of the major results achieved during two years of operation. Particular attention is given to the plant's seasonal performance.

  20. Development of Temperature-Humidity Independent Control Air-Conditioning Unit for Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    HAN Xing; ZHANG Xu; LIU Jin-tao; GA Si-yun; KANG yue

    2009-01-01

    Cooling panels are increasingly used in domestic residential buildings.To provide medium temper-ature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent eontrol systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the mois-ture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then, experimental work was carried out to in-vestigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrig-erant distribution can control the dehumidification capacity,but the former influences the EER more than the latter.while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion.valve.The energy consumption of this kind of unit was estimated and compared with present room air condition-ers,which shows that it can save about 41% cooling energy consumption.

  1. On the automotive air conditioning system%汽车空调系统浅谈

    Institute of Scientific and Technical Information of China (English)

    刘春明

    2014-01-01

    As people for the car ride comfort requirements continue to increase, automotive air conditioning has made rapid progress, the definition of automobile air-conditioning, development, work characteristics described in this article do, and in accordance with the power source and the structure of its classification is different, do finally focuses on the automotive air conditioning system components and working process, describes the structure, working conditions in the illustrations, clear, easy to understand.%随着人们对于汽车乘坐舒适性要求的不断提高,汽车空调得到长足发展,本文对汽车空调的定义、发展历程、工作特点做了说明,并按照动力源和结构形式的不同对其进行了分类,最后着重介绍了汽车空调系统组成及工作过程,介绍结构、工作情况时做到图文并茂,条理清晰,通俗易懂。

  2. Refrigeration engineering and air conditioning: answers to climatic changes; Froid et conditionnement d'air: reponses aux changements climatiques

    Energy Technology Data Exchange (ETDEWEB)

    Heap, R.D.

    2002-07-01

    This paper examines the nature of climatic changes and their possible environmental consequences, and gives a summary of the policy approach adopted to tackle this question. Greenhouse gases include the traditional refrigerants and the recent ones. The impact of the Montreal protocol on the abatement of the climatic change is examined and the consequences of the Kyoto protocol on the refrigeration and air conditioning engineering are presented. The actions the industry should carry out in order to reduce the climatic changes are listed and the article stresses on the progresses made so far. Many actions remain to be implemented, in particular in the domain of good practices promotion and training. The international institute of refrigeration engineering (IIF) has un important role to play in this task. (J.S.)

  3. Children's well-being at schools: Impact of climatic conditions and air pollution.

    Science.gov (United States)

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  4. Heat recovery in air conditioning systems in frost-free season with using adiabatic cooling. Capacities overview

    Directory of Open Access Journals (Sweden)

    S.V. Chuduk

    2011-01-01

    Full Text Available In article the review of the information on possibilities of use of recuperators of heat is presented for the warm period of year for air-conditioning system. Aim of heat exchanger work in frost-free season is indirect cooling of incoming air before its input into maintainable premises. It is possible if exhaust air is cooled before its input into heat exchanger . In the article the operational principle of air conditioning system with using of adiabatic air cooling is considered. The data concerned system functioning depending on parameters of microclimate in maintainable premises are given.

  5. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  6. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jongsoo; Yamaguchi, Seiichi; Saito, Kiyoshi; Kawai, Sunao [Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1-58-210 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-05-15

    A desiccant dehumidification system with air can decrease energy consumption because it can be driven by low-grade waste heat below 80 C. If this system can be driven by low-temperature heat sources whose temperature is below 50 C, exhausted heat from fuel cells or air conditioners that exist everywhere can be used as heat sources. This could lead to considerable energy saving. This study provides a detailed evaluation of the performance of a four-partition desiccant wheel to make a low-temperature driving heat source possible and achieve considerable energy saving by the simulation and experiment. Further, the study investigates the in-depth performance of a hybrid air-conditioning system with a four-partition desiccant wheel by simulation. As a result, it was clear that there exists an optimum rotational speed to maximize the dehumidification performance and that the hybrid air-conditioning system improves COP by approximately 94% as compared to the conventional vapour compression-type refrigerator. (author)

  7. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    Science.gov (United States)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  8. Assessment of productivity loss in air-conditioned buildings using PMV index

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, R. [Halton OY, Kausala (Finland); Tan, F. [CapitaLand Commercial Limited, Singapore (Singapore)

    2004-07-01

    This theoretical study reports on the assessment of productivity loss in air-conditioned office buildings using the PMV approach and makes use of Wyon's reviews [D.P. Wyon, P.O. Fanger, B.W. Olesen, C.J.K. Pedersen, The mental performance of subjects clothed for comfort at two different air temperatures, Ergonomics 18 (1975) 358-374; D.P. Wyon, Individual microclimate control: required range, probable benefits and current feasibility, in: Proceedings of Indoor Air '96, Institute of Public Health, Tokyo, 1996; D.P. Wyon, Indoor environmental effects on productivity. IAQ 96 Paths to better building environments/Keynote address. Y. Kevin. Atlanta, ASHRAE, pp. 5-15] as the basis to compare and to relate how the productivity loss could be minimised through improved thermal comfort design criteria. The finding shows that task-related performance is significantly correlated with the human perception of thermal environment that in turn is dependent on temperatures. Different combinations of thermal criteria (air velocity, clo, metabolic, etc.) can lead to similar PMV value and the PMV equation is useful to predict productivity loss that is due to the rate of change in thermal conditions. The study also highlights the issues that remain to be resolved in future research. (author)

  9. Air conditioning impact on the dynamics of radon and its daughters concentration.

    Science.gov (United States)

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation.

  10. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    Institute of Scientific and Technical Information of China (English)

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  11. Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Shen, H.G. [School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China)

    2009-02-15

    A lumped method combined with dynamic model is proposed for use in investigating the performance and solar fraction of a solar-driven ejector refrigeration system (SERS) using R134a, for office air conditioning application for buildings in Shanghai, China. Classical hourly outdoor temperature and solar radiation model were used to provide basic data for accurate analysis of the system performance. Results indicate that during the office working-time, i.e., from 9:00 to 17:00, the average COP and the average solar fraction of the system were 0.48 and 0.82 respectively when the operating conditions were: generator temperature (85 C), evaporator temperature (8 C) and condenser temperature varying with ambient temperature. Compared with traditional compressor based air conditioner, the system can save upto 80% electric energy when providing the same cooling capacity for office buildings. Hence, the system offers a good energy conservation method for office buildings. (author)

  12. Private air conditioning systems - just a matter of conscience?; Ist eine private Klimaanlage nur eine Gewissensfrage?

    Energy Technology Data Exchange (ETDEWEB)

    Rogg, W. [NOK-Energieanwendung, Baden (Switzerland)

    1996-08-01

    Until recently, air conditioning systems in private buildings and single office rooms were an exception in this country rather than the rule, but it seems that the hot summer of 1995 brought about a change in this field. Confronted with the choice of raising their energy consumption and having to face the extreme heat, many house owners decided to install an air conditioning system. (orig.) [Deutsch] Bis vor kurzem bildeten Raumkuehlgeraete in Privathaushalten und Einzelbueros hierzulande eher die Ausnahme. Dies scheint seit dem letzten Sommer der Vergangenheit anzugehoeren, will man den Verkaufszahlen des Handels Glauben schenken. Im Gewissenskonflikt zwischen Energiesparen und Hitzekollaps moegen sich so manche schweissgeplagten Mitbuerger beim Kauf eines solchen Geraets in thermischer Notwehr befunden haben. (orig.)

  13. Optimization of Selecting Air Conditioning Cold/Heat Sources with Grey Relation Analysis

    Institute of Scientific and Technical Information of China (English)

    CAO Guoqing; TU Guangbei

    2006-01-01

    Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems.Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information.It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management.Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible.Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sources.

  14. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    Science.gov (United States)

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems.

  15. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  16. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    Science.gov (United States)

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  17. Investigation on thermal comfort response space and energy saving potential of summer air-conditioning system%夏季空调热舒适响应空间及节能潜力研究

    Institute of Scientific and Technical Information of China (English)

    雍静; 文充; 曾礼强

    2012-01-01

    Air-conditioning system as the power system user side of one high-power electrical equipment,heavy use of air conditioning system in summer has become the cause power shortage in the peak power one of the reasons. Paper to meet the requirements of human thermal comfort under the premise of air through the simulation of thermal comfort equation,established a comfortable air-conditioning system of space environment parameters and establish the parameters on the extent of comfort index. Through constructs the room cold load computation analysis to the air conditioning,confirmed the air-conditioning system to hare certain energy conservation potential in the thermal comfortable environment parameter space. Provide evidence for energy efficient operation of air conditioning system.%在满足人体热舒适要求的前提下,通过对空调热舒适方程的仿真分析,建立了空调系统环境参数的舒适空间,确立各参数对舒适性指标的影响程度;通过对空调建筑房间冷负荷计算分析,验证了空调系统在热舒适环境参数空间内存在一定节能潜力.

  18. Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005

    OpenAIRE

    Izquierdo, M.; Lizarte, R.; Marcos, J.D.; Gutiérrez, G.

    2008-01-01

    Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005 correspondence: Corresponding author. Tel.: + 34 91 871 32 48; fax: + 34 91 871 32 48. (Izquierdo, M.) (Izquierdo, M.) Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC) c/Serrano Galvache 4 - 28033 Madrid--> - SPAIN (Izquierdo, M.) SPAIN (Izquierdo, M.)...

  19. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    OpenAIRE

    Karin Lundgren; Tord Kjellstrom

    2013-01-01

    Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly elect...

  20. Review on Conventional Air Conditioning, Alternative Refrigerants, and CO2 Heat Pumps for Vehicles

    OpenAIRE

    Moo-Yeon Lee; Dong-Yeon Lee

    2013-01-01

    With the reinforced ODP and GWP regulations, clean refrigerants including CO2, energy saving technology for fuel economy, especially focused on development and control strategy for the effective air conditioning system, and heat pump for vehicles have been widely investigated. Recently, the automotive CO2 heat pump for the next generation vehicles as an alternative to that of internal combustion engines has been evaluated and studied as a good option. In this paper, first part is reviewed on ...

  1. Performance Evaluation of an Air-Conditioning Compressor Part I: Measurement and Design Modeling

    OpenAIRE

    Thomas W. Bein; Yu-Tai Lee

    1999-01-01

    In order to comply with legislation to eliminate the use of refrigerants that damage the ozone layer, it is necessary to redesign centrifugal compressors, used by the US Navy for shipboard air-conditioning systems, to use an environmentally acceptable refrigerant. This paper describes an evaluation of a 125-ton compressor designed to use HCFC-124 as the refrigerant. The objectives are not only conducting the performance evaluation, but also pinpointing the design problems for achieving a high...

  2. R32 Compressor for Air conditioning and Refrigeration applications in China

    OpenAIRE

    Guo, Weihua; Ji, GaoFeng; Zhan, Honghong; Wang, Dan

    2012-01-01

    This paper evaluates the compressor performance and reliability impact by using R32 refrigerant for air conditioning (residential and commercial system); Performance and reliability impacts are compared with different popular refrigerants used in China, for example, R410A & R22 for AC. The design improvement on the scroll compressor will be discussed in order to reach required efficiency and reliability; these improvements include lubrication, internal heat management, motor design, and vapor...

  3. Using Vibration Analysis to Determine Refrigerant Levels In an Automotive Air Conditioning System

    OpenAIRE

    Stasiunas, Eric Carl

    2002-01-01

    Presently, auto manufacturers do not have do not have efficient or accurate methods to determine the amount of refrigerant (R-134a) in an air conditioning system of an automobile. In the research presented, vibration analysis is examined as a possible method to determine this R-134a amount. Initial laboratory tests were completed and experimental modal analysis methods were investigated. This approach is based on the hypothesis that the natural frequency of the accumulator bott...

  4. Performance Evaluation of an Air-Conditioning Compressor Part II: Volute Flow Predictions

    OpenAIRE

    Yu-Tai Lee; Thomas W. Bein

    1999-01-01

    A numerical method that solves the Reynolds-averaged Navier-Stokes equations is used to study an inefficient component of a shipboard air-conditioning HCFC-124 compressor system. This high-loss component of the centrifugal compressor was identified as the volute through a series of measurements given in Part I of the paper. The predictions were made using three grid topologies. The first grid closes the connection between the cutwater and the discharge diffuser. The other two grids connect th...

  5. A novel air-conditioning system for proactive power demand response to smart grid

    International Nuclear Information System (INIS)

    Highlights: • A novel air-conditioning system with proactive demand response is proposed. • The system can significantly reduce the storage volume of the chilled water tank. • Demand side bidding and demand as frequency controlled reserve can be implemented. • No impact on occupants when demand response is used in the proposed system. - Abstract: Power demand response is considered as one of the most promising solutions in relieving the power imbalance of an electrical grid that results a series of critical problems to the gird and end-users. In order to effectively make use of the demand response potentials of buildings, this paper presents a novel air-conditioning system with proactive demand control for daily load shifting and real time power balance in the developing smart grid. This system consists of a chilled water storage system (CWS) and a temperature and humidity independent control (THIC) air-conditioning system, which can significantly reduce the storage volume of the chilled water tank and effectively enable a building with more flexibility in changing its electricity usage patterns. The power demand of the proposed air-conditioning system can be flexibly controlled as desired by implementing two types of demand response strategies: demand side bidding (DSB) strategy and demand as frequency controlled reserve (DFR) strategy, in respond to the day-ahead and hour-ahead power change requirements of the grid, respectively. Considerable benefits (e.g., energy and cost savings) can be achieved for both the electricity utilities and building owners under incentive pricing or tariffs. A case study is conducted in a simulation platform to demonstrate the application of the proposed system in an office building

  6. Combination of experimental and simulated small scale solar air-conditioning system

    OpenAIRE

    Thomas, Sébastien; Hennaut, Samuel; Andre, Philippe

    2010-01-01

    It is now clearly assumed that solar assisted air conditioning is able to decrease CO2 production of building operation. One way to evaluate the energy savings potential is the simulation of airconditioning systems. On the other hand, it is also crucial to assess system performance by experimentations. The operation of a solar cooling system in its real environment is considered here. The objective is to evaluate if sun radiation in our region (Western Europe – Belgium) in summ...

  7. An Investigation Into Operating Strategy of Panasonic and LG Electronic in Chinas Air Conditioning Market

    OpenAIRE

    Kong, Wenzhou

    2006-01-01

    Abstract The dissertation investigates into operating strategy of Panasonic and LG Electronic in Chinas air conditioning market. It focuses on studying their entry modes, competitive strategy, and marketing strategy. Due to the characteristics of the study, qualitative research was chosen as research method. Data was collected mainly from published literature, textbooks, company annual report, interviews, and selected cases. The results of the research indicate both Panasonic and LG ...

  8. Ant-nest corrosion of copper tubing in air-conditioning units

    OpenAIRE

    Bastidas, D. M.; Cayuela, I.; Bastidas, J. M.

    2006-01-01

    Ant-nest corrosion is a specific type of premature failure (2-3 months) of copper tubes used in air-conditioning units causing the loss of refrigerant liquid and the consequent environment pollution. It is known that attack requires the simultaneous presence of moisture, oxygen and a corrodent, usually an organic acid, such as formic, acetic, propionic or butyric acid or other volatile organic substances like methanol, ethanol, formaldehyde or acetoaldehyde. Approximately 10% of all premature...

  9. HUMAN RESOURCE MANAGEMENT PRACTICES IN REFRIGERATION AND AIR CONDITIONING INDUSTRY IN INDIA

    OpenAIRE

    Dr.Nisar Ahamad Nalband

    2010-01-01

    Over the last 150 years or so, refrigeration’s great strides offered us ways to preserve and cool food, other substances and ourselves. Refrigeration brought distant production centers. It tore down the barriers of climates and seasons. And while it helped to rev up industrial process, it became an industry itself It is understood that the refrigeration and air conditioning industry has been a promising industry for the development of Indian economy and one of the old industry in India too. I...

  10. Performance Study of Adsorption Cooling Cycle for Automotive Air-conditioning

    OpenAIRE

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Exhaust gas from automobile can be used to drive adsorption cooling based air conditioning system for the vehicle cabin. This study describes the thermodynamic framework of a two stage indirect exhaust heat recovery system of automotive engine and an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. Silica gel and water are used as adsorbent-adsorbate pair. The adsorption chiller model is dev...

  11. Experimental Study of Air Conditioning Unit of Evaporative Cooling Assisted Mechanical Refrigeration

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiang; XU Fang-cheng; WU Jun-mei

    2009-01-01

    The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was con-ducted and analyzed.The test shows that making full use of the evaporative cooling"free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the ener-gY efficiency ratio of the Unit(EER) is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the newwind ratio up to 50 percent.more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.

  12. Optimal Energy Reduction Schedules for Ice Storage Air-Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Whei-Min Lin

    2015-09-01

    Full Text Available This paper proposes a hybrid algorithm to solve the optimal energy dispatch of an ice storage air-conditioning system. Based on a real air-conditioning system, the data, including the return temperature of chilled water, the supply temperature of chilled water, the return temperature of ice storage water, and the supply temperature of ice storage water, are measured. The least-squares regression (LSR is used to obtain the input-output (I/O curve for the cooling load and power consumption of chillers and ice storage tank. The objective is to minimize overall cost in a daily schedule while satisfying all constraints, including cooling loading under the time-of-use (TOU rate. Based on the Radial Basis Function Network (RBFN and Ant Colony Optimization, an Ant-Based Radial Basis Function Network (ARBFN is constructed in the searching process. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the economic dispatch of ice storage air-conditioning systems, and offering greater energy efficiency in dispatching chillers.

  13. Tourists’ attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand

    Science.gov (United States)

    Viriyachaiyo, V; Lim, A

    2009-01-01

    Background: Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists’ attitudes toward the ban was conducted. Methods: A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Results: Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Conclusion: Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand. PMID:19364754

  14. 'TEWI' concept for estimation of the global warming from the refrigerating and air conditioning systems

    International Nuclear Information System (INIS)

    The most applied CFC refrigerants and their HFC alternatives. values of ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) of the most used refrigerants. natural working fluids and their properties. Montreal Protocol and Kyoto Protocol, illogical relations between them concerning to the HFC fluids. Confusion and polemics on the international level about the appliance of HFCs which, by the Kyoto Protocol, are liable to reduction. Introduction of the TEWI concept as a method for estimating the overall influence of refrigerating and air conditioning systems on the greenhouse effect: the direct emission (refrigerant leakage in the atmosphere) and indirect emission as a result of the electrical energy consumption. A demonstration of the TEWI concept on the concrete example in several variants. A discussion about the appliance of the TEWI concept. Meaning of the energy efficiency of the refrigerating systems (indirect CO2 emission). One of the main measures: prevention of refrigerant leakage (direct CO2 emission). A need of permanent education and training courses of the people who work on refrigerating and air conditioning systems. A necessity for constitution of an expert body in the country, preparation of a strategy to lay obligations on the new changes of the Kyoto Protocol and news on the world market. Introduction of country regulations, certification of the companies and people involved in refrigeration and air conditioning. (Author)

  15. Auditing the European room air-conditioning systems and potential energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Daniela; Adnot, Jerome; Greco, Carmelo; Marchio, Dominique [Ecole des Mines de Paris, Center for Energy and Processes (France)

    2007-07-01

    Nowadays, the European Community promotes the energy improvement of the air-conditioning (AC) systems through the compulsory inspection of these facilities in the frame of the Energy Performance of Buildings Directive [EPBD, 2002]. Inspection itself is just a motivating mean for the AC actors to improve the energy efficiency of the systems and reduce energy. Therefore, the aim of the inspection is to follow periodically the correct management of the facility through a quick visit of the plant and a study of the available documentation while the aim of the audit is the research of best efficiency improvements which requires further investigations to evaluate and quantify the savings. Audit differs from the common maintenance activities of the facilities, the aim of which is limited to guarantee the basic operation of the plant. There is an overall lack of methodologies specific for air-conditioning and the improvements proposed are seldom proven with scientific rigour. For room air conditioning systems, the impacts of defect during operation due to ageing and neglected maintenance are considered: fouled condenser, charge leaks, compressor performances reduced, fans degradation, filter fouling and additional pressure drop in liquid line are explored. The over consumption due to these defects is evaluated for different building types and French climates. The results allow to define simple methods that can be used by the auditors to estimate the energy savings due to the correction of the defects.

  16. A basic condition-based maintenance strategy for air-cooled turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Laird, T; Griffith, G [Mechanical Dynamics and Analysis LLC, Generator Repair Services, Sunset Hills, MO (United States); Hoof, M. [Univ. of Applied Sciences, High Voltage and Power Systems Lab, Kaiserslautern (Germany)

    2005-07-01

    Generator components require regular maintenance to prevent failures. It is important to detect degradation of critical generator components such as stator windings, stator core, rotor windings, rotor retaining rings, generator bearings and high voltage bushings which are all exposed to high stresses. The methods of using condition-based maintenance (CBM) for turbine generators was discussed with particular focus on the maintenance strategy for air-cooled generators. Higher unit rated air-cooled machines typically designed as hydrogen-cooled machines are being used more frequently by the power industry to reduce costs. Since more compact machines are being built to reduce material costs, thermal and electrical design stresses have increased, resulting in higher utilization of the machines and reduced long-term reliability in service. It was noted that CBM will not completely eliminate all forced outage situations, but will greatly reduce their occurrence and will help avoid catastrophic machine situations. This paper outlined basic maintenance strategies for nuclear power plants, major utilities including fossil-fuel power plants, and minor utilities including industrial power plant producers. The economic strategy for air-cooled turbine generators was outlined with reference to unit condition assessment, trending assessed condition of major generator components, and unknown component weaknesses. The CBM maintenance can be applied to all types of power producers that can benefit from an improved, low cost maintenance strategy. Detailed knowledge of the unit design, operational weakness, cost of maintenance and operational capabilities is needed in order to conduct a reliable assessment. 19 refs., 2 figs.

  17. An Investigation of Refrigerant Oil Retention in an Air Conditioning System with Two Inverter Compressors in Parallel

    OpenAIRE

    Kuo, Cheng-Shu; Cheng, Wei-Yueh; Hsieh, Wen-Der; Liu, Yangguang

    2012-01-01

    A VRF (variable refrigerant flow) air conditioning, having a number of air handling units connected to an external condensing unit, commonly uses two or more compressors in the system. The complicated piping system of the VRF air conditioning causes difficulties for refrigerant oils to return back to each compressor, especially for compressors operating in different frequencies. Compressors need lubrication in operation process, otherwise the compressor will burn out because of wearing and ov...

  18. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    Science.gov (United States)

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  19. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature

    Directory of Open Access Journals (Sweden)

    Li Hai-Jun

    2014-01-01

    Full Text Available When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.

  20. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  1. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  2. Greenhouse effect: an issue for the refrigeration and air conditioning sector; Effet de serre: quelle problematique pour le froid et le conditionnement de l`air?

    Energy Technology Data Exchange (ETDEWEB)

    Billiard, F. [Institut International du Froid, 75 - Paris (France)

    1997-12-31

    The principles of greenhouse effect and the greenhouse gas main direct and indirect emission sources due to refrigeration and air conditioning systems are first reviewed. Evolution scenarios from 1992 to 2020 and 2100 for the emissions of CFC, HCFC and HFC are presented and related to the Kyoto protocol project limitations; technical improvements in refrigerating and air conditioning systems (lower refrigerant utilization, fluid confinement, alternative technologies, natural refrigerant utilization, etc.) could lead to substantial diminutions of these greenhouse gases

  3. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S [ORNL; Vineyard, Edward Allan [ORNL; Mumpower, Kevin [Bristol Compressors International, Inc.

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  4. Evaluation Method on Air Quality inside Air-Conditioned Passenger Cars%空调客车车内空气品质的评价方法

    Institute of Scientific and Technical Information of China (English)

    张吉光; 史自强; 王利; 王书傲

    2001-01-01

    提出了将客观评价与主观评价相结合的方法来评价空调客车车内空气品质,并结合国内外空气品质评价的研究成果,给出了空调客车空气品质评价数据的处理方法。%A method to evaluate air quality inside air-conditioned passenger cars with combination of the objective evaluation and the subjective evaluation is put forward.The method to process the evaluation data of air quality inside air-conditioned passenger cars is given with combination of research achievements on air quality evaluation both in our country and abroad.

  5. TECNAIRE winter field campaign: turbulent characteristics and their influence on air quality conditions

    Science.gov (United States)

    Yagüe, Carlos; Román Cascón, Carlos; Maqueda, Gregorio; Sastre, Mariano; Arrillaga, Jon A.; Artíñano, Begoña; Diaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier

    2016-04-01

    An urban field campaign was conducted at an air pollution hot spot in Madrid city (Spain) during winter 2015 (from 16th February to 2nd March). The zone selected for the study is a square (Plaza Fernández Ladreda) located in the southern part of the city. This area is an important intersection of several principal routes, and therefore a significant impact in the air quality of the area is found due to the high traffic density. Meteorological data (wind speed and direction, air temperature, relative humidity, pressure, precipitation and global solar radiation) were daily recorded as well as micrometeorological measurements obtained from two sonic anemometers. To characterize this urban atmospheric boundary layer (uABL), micrometeorological parameters (turbulent kinetic energy -TKE-, friction velocity -u∗- and sensible heat flux -H-) are calculated, considering 5-minute average for variance and covariance evaluations. Furthermore, synoptic atmospheric features were analyzed. As a whole, a predominant influence of high pressure systems was found over the Atlantic Ocean and western Spain, affecting Madrid, but during a couple of days (17th and 21st February) some atmospheric instability played a role. The influence of the synoptic situation and specially the evolution of the micrometeorological conditions along the day on air quality characteristics (Particulate Matter concentrations: PM10, PM2.5 and PM1, and NOx concentrations) are analyzed and shown in detail. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).

  6. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions.

    Science.gov (United States)

    Sánchez, Benigno; Sánchez-Muñoz, Marta; Muñoz-Vicente, María; Cobas, Guillermo; Portela, Raquel; Suárez, Silvia; González, Aldo E; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    The photocatalytic elimination of microorganisms from indoor air in realistic conditions and the feasibility of simultaneous elimination of chemical contaminants have been studied at laboratory scale. Transparent polymeric monoliths have been coated with sol-gel TiO(2) films and used as photocatalyst to treat real indoor air in a laboratory-scale single-step annular photocatalytic reactor. The analytical techniques used to characterize the air quality and analyze the results of the photocatalytic tests were: colony counting, microscopy and PCR with subsequent sequencing for microbial quantification and identification; automated thermal desorption coupled to gas chromatography with mass spectrometry detection for chemical analysis. The first experiments performed proved that photocatalysis based on UVA-irradiated TiO(2) for the reduction of the concentration of bacteria in the air could compete with the conventional photolytic treatment with UVC radiation, more expensive and hazardous. Simultaneously to the disinfection, the concentration of volatile organic compounds was greatly reduced, which adds value to this technology for real applications. The fungal colony number was not apparently modified.

  7. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING LINE 6

    Directory of Open Access Journals (Sweden)

    Syahril Ardi

    2015-03-01

    Full Text Available Pada proses produksi pembuatan komponen HVAC (Heating, Ventilating, and Air Conditioning dari perusahaan manufaktur di Indonesia, memerlukan proses pengecekan kebocoran pada bagian HVAC. Proses pengecekan ini dilakukan untuk memastikan tidak ada komponen HVAC yang bocor sebelum dikirim ke pihak pelanggan. Penelitian ini dilakukan untuk membuat system dan alat air leak test. Mesin air leak test ini menggunakan prinsip kerja differential pressure air leak test, yaitu metode yang membandingkan antara tekanan udara yang diberikan ke produk dan master produk. Pada penelitian ini, kami membuat disain mesin air leak test menggunakan sistem kendali berupa air leak tester, PLC, dan HMI. Berdasarkan kondisi dengan kapasitas produksi yang meningkat karena bertambahnya permintaan dari customer, dapat ditanggulangi dengan adanya share loading produksi dari HVAC line 4 ke line baru, yaitu HVAC line 6. Hasil yang didapat dari pengujian deteksi kebocoran produk,didapat nilai parameter kebocoran produk sebesar 2.23 ml/min.

  8. Condenser heat recovery with a PV/T air heating collector to regenerate desiccant for reducing energy use of an air conditioning room

    Energy Technology Data Exchange (ETDEWEB)

    Sukamongkol, Y.; Chungpaibulpatana, S.; Limmeechokchai, B. [Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Thammasat Rangsit Post Office, Klongluang, Patumthani, 12121 (Thailand); Sripadungtham, P. [Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Paholyothin Rd., Chatuchuck, Bangkok, 10900 (Thailand)

    2010-03-15

    This paper presents an experimental test along with procedures to investigate the validity of a developed simulation model in predicting the dynamic performance of a condenser heat recovery with a photovoltaic/thermal (PV/T) air heating collector to regenerate desiccant for reducing energy use of an air conditioning room under the prevailing meteorological conditions in tropical climates. The system consists of five main parts; namely, living space, desiccant dehumidification and regeneration unit, air conditioning system, PV/T collector, and air mixing unit. The comparisons between the experimental results and the simulated results using the same meteorological data of the experiment show that the prediction results simulated by the model agree satisfactorily with those observed from the experiments. The thermal energy generated by the system can produce warm dry air as high as 53 C and 23% relative humidity. Additionally, electricity of about 6% of the daily total solar radiation can be obtained from the PV/T collector in the system. Moreover, the use of a hybrid PV/T air heater, incorporated with the heat recovered from the condenser to regenerate the desiccant for dehumidification, can save the energy use of the air conditioning system by approximately 18%. (author)

  9. Analysis and Choice of Optimal Heating Ventilation Air Conditioning System for a Teaching Unit

    Directory of Open Access Journals (Sweden)

    Marina Verdeş

    2007-01-01

    Full Text Available Under the conditions of present society in which providing an optimum interior comfort is confronted with the necessity of the energy consumption reduction, solving this problem depends on the factors which contribute to the achievements of this comfort. Modern buildings -- implicitly teaching unit -- may be equipped with installations which have low energy consumption, respective a heating, cooling and ventilating integrated system with heat pumps system which can assure all the required comfort conditions. This paper underlines the necessity to use the heat pump in heating system for a teaching unit, energetic and economic guides and the possibility to increase them when using cooling and heating mixed. The solution of heat pumps for heating of the teaching unit and the energetic and economic advantages of the system is made in study.

  10. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  11. Application of a solar refrigeration system by absorption for the air conditioning of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Machielsen, Cees H. M [Delft University of Technology, Mekelweg (Netherlands); Hagendijk, Andre E [Consultancy and Research (Netherlands)

    2000-07-01

    This paper describes the Sofri project, a cooperation between Ceeran Ltd and The Delft University of Technology. The main objective of this project is to develop the necessary knowledge and experience to commercialize solar-assisted air conditioning and dehumidification systems in the Dutch Caribbean. The project is motivated by the present needs of the Dutch Caribbean for renewable energy sources and the fact that the Caribbean has a high and uniform insolation throughout the year. Furthermore, hotels and offices in this area use more than 40% of their energy for air-conditioning purposes. Therefore solar-assisted air conditioning systems are a logic approach in reducing the energy demand and to lower the peak electricity reducing the energy demands for the local power station. Ceeran Ltd has the objective to reach full commercialization of the proposed technologies in the Dutch Caribbean. The research is concentrated on liquid absorption machines and solar collection systems such as flat plates with selective surfaces, heat pipe evacuated tubes flat plate collectors, and Compound Parabolic Concentrators. The first demonstration unit is planned to be installed in an office building in Curacao. The installation consists of a 35 kW LiBr/H{sub 2}O absorption machine driven by 100 m{sup 2} flat pate collectors with a gas backup system. The system will provide comfort air-conditioning for this these type of office buildings during daytime. [Spanish] Este documento describe el proyecto SOFRI, una cooperacion entre Ceeran, Ltd, y la Universidad Tecnologica del Delft. El principal objetivo de este proyecto es el de desarrollar el conocimiento necesario y la experiencia para comercializar los sistemas de aire acondicionado y deshumidificacion ayudados por la energia solar en el Caribe Holandes. Este proyecto ha sido motivado por las actuales necesidades del Caribe Holandes de fuentes de energia renovable y por el hecho de que el Caribe tiene una alta y uniforme insolacion

  12. Absorber and regenerator models for liquid desiccant air conditioning systems. Validation and comparison using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.; Heinzen, R.; Jordan, U.; Vajen, K. [Kassel Univ., Inst. of Thermal Engineering, Kassel (Germany); Saman, W.; Halawa, E. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Solar assisted air conditioning systems using liquid desiccants represent a promising option to decrease high summer energy demand caused by electrically driven vapor compression machines. The main components of liquid desiccant systems are absorbers for dehumidifying and cooling of supply air and regenerators for concentrating the desiccant. However, high efficient and validated reliable components are required and the design and operation have to be adjusted to each respective building design, location, and user demand. Simulation tools can help to optimize component and system design. The present paper presents new developed numerical models for absorbers and regenerators, as well as experimental data of a regenerator prototype. The models have been compared with a finite-difference method model as well as experimental data. The data are gained from the regenerator prototype presented and an absorber presented in the literature. (orig.)

  13. Data mining based sensor fault diagnosis and validation for building air conditioning system

    International Nuclear Information System (INIS)

    A strategy based on the data mining (DM) method is developed to detect and diagnose sensor faults based on the past running performance data in heating, ventilating and air conditioning (HVAC) systems, combining a rough set approach and an artificial neural network (ANN). The reduced information is used to develop classification rules and train the neural network to infer appropriate parameters. The differences between measured thermodynamic states and predicted states obtained from models for normal performance (residuals) are used as performance indices for sensor fault detection and diagnosis. Real test results from a real HVAC system show that only the temperature and humidity measurements of many air handling units (AHU) can work very well as the measurements to distinguish simultaneous temperature sensor faults of the supply chilled water (SCW) and return chilled water (RCW)

  14. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  15. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  16. Air conditioning in the region of Madrid, Spain: an approach to electricity consumption, economics and CO₂emissions

    OpenAIRE

    Izquierdo, Marcelo; Moreno-Rodríguez, A.; González-Gil, A.; García-Hernando, Néstor

    2011-01-01

    An understanding of electricity consumption due to residential air conditioning (AC) may improve production and environmental impact strategy design. This article reports on a study of peak and seasonal electricity consumption for residential air conditioning in the region of Madrid, Spain. Consumption was assessed by simulating the operation of AC units at the outdoor summer temperature characteristics of central Spain. AC unit performance when operating under part load conditions in keep...

  17. Commentary: Air-conditioning as a risk for increased use of healthservices

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  18. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    Science.gov (United States)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  19. Home air-conditioning, traffic exposure, and asthma and allergic symptoms among preschool children.

    Science.gov (United States)

    Zuraimi, Mohamed Sultan; Tham, Kwok-Wai; Chew, Fook-Tim; Ooi, Peng-Lim; Koh, David

    2011-02-01

    Epidemiological data suggest that traffic exposures can influence asthma and allergic symptoms among preschool children; however, there is no information on risk reduction via home air-conditioning (AC). The aim of this study is to evaluate the associations of self-reported traffic densities with asthma and allergic symptoms among preschool children and determine whether AC is an effect modifier. A cross-sectional study adopting an expanded and modified ISAAC--International Study of Asthma and Allergies in Childhood conducted on randomly selected 2994 children living in homes without any indoor risk factors. Specific information on demographics, indoor home risk factors, and traffic variables were obtained. Adjusted prevalence ratios (PR) and 95% confidence interval (CI) were determined by Cox proportional hazard regression model with assumption of a constant risk period controlled for covariates. We found dose-response significant relationships between validated self-reported traffic densities and asthma and rhinitis symptoms. Among children sleeping in non-air-conditioned homes, there were stronger associations between asthma and rhinitis symptoms studied. PRs for heavy traffic density were 2.06 for wheeze (95% CI 0.97-4.38), 2.89 for asthma (1.14-7.32), 1.73 for rhinitis (1.00-2.99), and 3.39 for rhinoconjunctivitis (1.24-9.27). There were no associations found for children sleeping in air-conditioned homes. Our results suggest that AC in the bedroom modifies the health effects of traffic among preschool children. This finding suggests that attention should also be paid to ventilation characteristics of the homes to remediate health-related traffic pollution problems. PMID:20561230

  20. Energy saving measures for automotive air conditioning (AC) system in the tropics

    OpenAIRE

    Subiantoro, Alison; Ooi, Kim Tiow; Stimming, Ulrich

    2014-01-01

    Air conditioning (AC) is an integral component of modern cars in the tropics. However, AC usage in this region consumes a large amount of energy. In conventional internal combustion engine cars, it consumes up to 30% of the fuel, while in battery electric cars, AC may reduce the battery range by up to 40%. Fortunately, there are various ways to improve the efficiency of automotive ACs in the tropics. In this paper, three energy saving measures are discussed. These include a higher indoor temp...

  1. Multi-variable Extremum Seeking Control for Mini-split Air-conditioning System

    OpenAIRE

    Xiao, Yan; Li, Yaoyu; Seem, John E.

    2014-01-01

    In this study, a multi-variable extremum seeking control (ESC) scheme is proposed for a variable-speed mini-split air-conditioning system. The control inputs are the evaporator and condenser fan speeds, respectively, while the total power consumption is used as the feedback. As accurate model is hard and expensive to obtain for the AC system of interest in real time, nearly model-free self-optimizing control methods such as ESC is considered a more feasible solution to practical deployment. R...

  2. Disqualifying Medical Conditions of Flying Personnel in Chinese Army and Air Force

    Institute of Scientific and Technical Information of China (English)

    Chun-wei Wang; Shu-xuan Xu; Xian-rong Xu; Tong-xin Chen

    2008-01-01

    @@ After inpatient aircrews of Chinese Army and Air Force are treated at local hospitals,their health status will be evaluated.If it is aeronantieally adaptable,the conclusion would be flying qualification;if it may impact the flight safety or the flight environment may aggravate the illness,the conclusion would be flight suspension,and then the patient should be forwarded from local hospital to our hospital.After detailed examination,if the conditions of flying personnel are considered not qualified for flight,the conclusion of flying disqualification should be made finally.

  3. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Ramirez, J.; Dorantes Rodriguez, R. [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  4. Study on Cleaning Methods of Central Air Conditioning Water Cystem%中央空调水系统的清洗方法研究

    Institute of Scientific and Technical Information of China (English)

    刘孝刚

    2014-01-01

    为提高换热效率、防止和减少水的腐蚀,中央空调的冷却水系统和冷冻水系统都应定期进行清洗,以除去金属表面上的沉积物和杀灭微生物。对于新建的中央空调,其冷却水和冷冻水系统中的设备在制造加工中和运输储存期间都会发生锈蚀,带入的切削油、防锈油严重影响中央空调水系统的运行,在安装过程中还会下碎屑、油类、泥砂和杂质。因此,对中央空调水系统的清洗方法的研究显得尤为重要。%In order to improve thermal efficiency, prevent and reduce the corrosion of water, the cooling water system and chilled water system of central air conditioning should be regular cleaning, so as to remove sediments on the surface of metals and exterminate microorganisms. In term of the new central air conditioning, the equipments of cooling water system and chilled water system would be easily corroded in the process of manufacturing , storage and transportation, cutting oil, rust-proof oil brought in would seriously affect the operation of central air conditioning water system, during the installation process there will be fallen debris, oil, mud, sand and impurities. Therefore, the study of the central air conditioning water system cleaning methods is particularly important.

  5. Thermal properties in phase change wallboard room based on air conditioning cold storage

    Institute of Scientific and Technical Information of China (English)

    陈其针; 刘鑫; 牛润萍; 王琳

    2009-01-01

    By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.

  6. A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

    Directory of Open Access Journals (Sweden)

    Xiaoqing Hu

    2015-08-01

    Full Text Available Thermostatically controlled loads (TCLs, such as air conditioners (ACs, are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID controller based on the particle swarm optimization (PSO algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

  7. Acaroid mite allergens from the filters of air-conditioning system in China.

    Science.gov (United States)

    Li, Chao-Pin; Guo, Wei; Zhan, Xiao-Dong; Zhao, Bei-Bei; Diao, Ji-Dong; Li, Na; He, Lian-Ping

    2014-01-01

    Accumulation of acaroid mites in the filters of air-conditioners is harmful to human health. It is important to clarify the allergen components of mites from the filters of local air-conditioning system. The present study was to detect the allergen types in the filters of air-conditioners and assesse their allergenicity by asthmatic models. Sixty aliquots of dust samples were collected from air conditioning filters in civil houses in Wuhu area. Total protein was extracted from the dust samples using PBS and quantified by Bradford method. Allergens I and II were also detected by Western blot using primary antibody (anti-Der f1/2, Der p1/Der f2/Der p2, respectively). Ten aliquots of the positive samples were randomly selected for homogenization and sensitized the mice for developing asthmatic animal models. Total serum IgE level and IFN-γ, IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). The allergenicity of the extraction was assessed using pathological sections developed from the mouse pulmonary tissues. The concentration of extract from the 60 samples was ranged from 4.37 μg/ml to 30.76 μg/ml. After analyzing with Western blot, 31 of 60 samples were positive for 4 allergens of acaroid mites, and yet 16 were negative. The levels of total IgE from serum IL-4 and IL-5 from the BALF in the experimental group were apparently higher than that of negative control and PBS group (P 0.05). However,the IFN-γ level in BALF was lower compared with the negative control and PBS group (P 0.05). The pathological changes were evidently emerged in pulmonary tissues, which were similar to those of OVA group, compared with the PBS ground and negative controls. The air-conditioner filters in human dwellings of Wuhu area potentially contain the major group allergen 1 and 2 from D. farinae and D. pteronyssinus, which may be associated with seasonal prevalence of allergic disorders in this area.

  8. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Minds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    Skive City Hall. The Technological Institute has participated closely in preparing the report for subtask A 'Small Systems'. Furthermore The Technological Institute had the role as coordinator of activities around the optimization of 'heat rejection'. In this context it is especially the derived electricity for pumps and fans in the heat emitter (cooling tower, dry cooler, etc.) that are looked at. Traditionally heat driven refrigeration machines are controlled by regulating the driving heat flow (lower regeneration temperature). This has however, for most types of sys-tems, negative impact on the system efficiency and thus the power consumption of auxiliary equipment. This has led to the development of an alternative regulation strategy tested at Skive City Hall plant. In 2009 it was planned to attach adiabatic pre-cooling of the air cooling coils at Skive City Hall, however the solution proved to be quite expensive. Further optimization of the solution was therefore not implemented. The study of adiabatic pre-cooling was instead made in a laboratory setting at the Technological Institute. This was combined with the test of a new air cooling system, based on indirect evaporation of water. The test was conducted on a cooler purchased from the Netherlands and a MST project was demonstrating this technology to heat driven air conditioning in a supermarket. AC Sun has designed and produced an optimized prototype 2 and begun data collection. Prototype (2) is flexibly designed for testing different bearing solutions. The prototype is installed in a buffer tank connected to the heating elements as external heat source acting as a collector. Prototype 2 will be used as the final internal testing station before the final design and manufacture of test facilities for 'field' test in 5 test stations Denmark, Germany, Italy, Spain and Malaysia, respectively. Most of the testing stations are expected operating in spring 2011. Ellehauge and Kildemoes

  9. Feasibility of Remote Ischemic Peri-conditioning during Air Medical Transport of STEMI Patients.

    Science.gov (United States)

    Martin-Gill, Christian; Wayne, Max; Guyette, Francis X; Olafiranye, Oladipupo; Toma, Catalin

    2016-01-01

    Remote ischemic peri-conditioning (RIPC) has gained interest as a means of reducing ischemic injury in patients with acute ST-elevation myocardial infarction (STEMI) who are undergoing emergent primary percutaneous coronary intervention (pPCI). We aimed to evaluate the feasibility, process, and patient-related factors related to the delivery of RIPC during air medical transport of STEMI patients to tertiary pPCI centers. We performed a retrospective review of procedural outcomes of a cohort of STEMI patients who received RIPC as part of a clinical protocol in a multi-state air medical service over 16 months (March 2013 to June 2014). Eligible patients were transported to two tertiary PCI centers and received up to four cycles of RIPC by inflating a blood pressure cuff on an upper arm to 200 mmHg for 5 minutes and subsequently deflating the cuff for 5 minutes. Data regarding feasibility, process variables, patient comfort, and occurrence of hypotension were obtained from prehospital records and prospectively completed quality improvement surveys. The primary outcome was whether at least 3 cycles of RIPC were completed by air medical transport crews prior to pPCI. Secondary outcomes included the number of cycles completed prior to pPCI, time spent with the patient prior to transport (bedside time), patient discomfort level, and incidence of hypotension (systolic blood pressure air medical transport for pPCI, without occurrence of prolonged bedside times. The incidence of excessive RIPC-related discomfort or hemodynamic instability is rare. STEMI patients requiring on average >30 minutes transport for pPCI may be the ideal group for RIPC utilization.

  10. Studies on fungal and bacterial population of air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Claudia Ross

    2004-09-01

    Full Text Available In tropical countries such as Brazil, there is not enough information about microbial contaminants in indoor environments with air conditioning systems. Microbial monitoring of such environments is important for the quality of human life. The aim of this work was to assess the fungal genera and bacterial morphotypes occurring in such environments. Air samples were taken indoors and outdoors from a public auditorium, a hospital, a company and a shopping center during the 2001 winter by using a six-stage impactor Millipore M air T® . Twenty-one fungal genera were identified. Bacterial morphological groups found were Gram positive and negative rods and Gram positive coccus.Em países tropicais como o Brasil, não há informação suficiente sobre contaminantes microbianos em ambientes internos com sistemas de ar condicionado. Monitoramento microbiano em tais ambientes é importante para a qualidade de vida humana. O objetivo deste trabalho foi identificar os gêneros de fungos e morfotipos de bactérias que ocorrem em tais ambientes. Amostras de ar foram coletadas dentro e fora de um auditório público, um hospital, uma empresa e um shopping center durante o inverno de 2001 utilizando um impactador de ar de seis estágios Millipore M air T® . Vinte e um gêneros de fungos foram identificados. Foram encontrados grupos morfológicos de bactérias bastonetes Gram positivos e negativos e cocos Gram positivos.

  11. 下送风空调房间的数值模拟%Numerical Simulation of a under Floor Air Supply Air-conditioned Room

    Institute of Scientific and Technical Information of China (English)

    刘行安; 张国强; 何雪强

    2012-01-01

    A design method for under floor supply air conditioning system is introduced,and an air-conditioned room designed by the method was analyzed through numerical simulation with software Airpak.Three conclusions are drawn from the results: air in the under floor air supply air-conditioned room shows clear temperature stratification in the vertical direction with lower temperature in the working area beneath,which makes it possible to save more energy than conventional whole room air conditioning system;human thermal comfort is improved in the working area beneath;air quality in the working area is improved as a result of lower air age.Simulation results prove that this design method is efficient and reliable.%介绍了一种下送风空调系统的设计方法,利用Airpak软件对该设计方法下的空调房间进行数值模拟分析。通过模拟结果得到,下送风空调房间在垂直方向出现温度分层现象,下部工作区温度较低,这使得下送风空调比传统全室性空调系统节能;下送风空调在下部工作区具有较好的热舒适性;下部工作区空气龄较小,能够改善工作区的空气品质。模拟结果证实了该设计方法可靠有效。

  12. Air conditioning of operating theatres - new strategies; OP-Klimatisierung im Umbruch

    Energy Technology Data Exchange (ETDEWEB)

    Teuber, M. [Ebert-Ingenieure, Nuernberg (Germany)

    2004-04-01

    New air conditioning strategies ensure more hygienic conditions, so that the 'protected area' becomes larger to include the whole inner working area. The result is a clean room of 3.2 x 3.2 m with a H14 filter, tissue outlet and lateral shielding which ensures laminar, low-turbulence displacement flow. (orig.) [German] Die lange bekannten Maengel bei der OP-Klimatisierung koennen nun mit Zustimmung der Hygiene beseitigt werden. Das logische System welches sich daraus ergibt, ist, dass der 'Schutzbereich', in dem operiert wird, wesentlich vergroessert wird, und damit den gesamten inneren Arbeitsbereich erfasst. Es wird ein Reinraumbereich von 3,20 x 3,20 m mit endstaendigem Flaechenfilter Klasse H14, Gewebeauslass und seitlicher Abschirmung geschaffen, welcher eine laminare turbulenzarme Verdraengungsstroemung gewaehrleistet. (orig.)

  13. Experimental investigation on steam condensation in the presence of air and helium: forced convection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, M., E-mail: matteo.bucci@cea.fr [Univ. of Pisa, DIMNP, Pisa (Italy); CEA Saclay, CEA/DEN/DANS/DM2S/SFME/LETR (France); Ambrosini, W.; Forgione, N. [Univ. of Pisa, DIMNP, Pisa (Italy); Lioce, D [Univ. of Pisa, DIMNP, Pisa (Italy); Westinghouse Electric Belguim, Nivelles (Belgium)

    2011-07-01

    This paper discusses the results obtained from recent experimental investigations devoted to the study of steam condensation in the presence of air and a light noncondensable gas. The experiments are intended to provide data for the validation of engineering models and CFD codes. The original experimental data herein discussed focus on forced convection turbulent boundary layer conditions and involve atmospheric pressure, different conditions for mixture velocity (from 1.5 to 3.5 m/s), mixture composition (form 0 to 75 per cent of the light species in the overall amount of noncondensable gases) and two nominal electrical power supply of the steam generator. The experimental data are qualified against correlations based on the heat and mass transfer analogy and to the predictions obtained by an in house condensation model implemented in a commercial CFD code. (author)

  14. A thermodynamic evaluation of chilled water central air conditioning systems using artificial intelligence tools

    Directory of Open Access Journals (Sweden)

    Juan Carlos Armas

    2011-05-01

    Full Text Available  An analysis of a chilled water central air conditioning system is presented. The object was to calculate main cycle component irreversibility, as well as evaluating this indicator’s sensitivity to operational variations. Artificial neural networks (ANN, genetic algorithms (GA and Matlab tools were used to calculate refrigerant thermodynamic properties during each cycle stage. These tools interacted with equations describing the system’s thermodynamic behaviour. Refrigerant temperature, when released from the compressor, was determined by a hybrid model combining the neural model with a simple genetic algorithm used as optimisation tool; the cycle’s components which were most sensitive to changes in working conditions were identified. It was concluded that the compressor, evaporator and expansion mechanism (in that order represented significant exergy losses reaching 85.62% of total system irreversibility. A very useful tool was thus developed for evaluating these systems. 

  15. Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones

    Directory of Open Access Journals (Sweden)

    T.S. Jadhav

    2015-12-01

    Full Text Available Heat pipe heat exchanger (HPHX is an excellent device used for heat recovery in air conditioning systems. The Energy Conservation Building Code (ECBC – Bureau of Energy Efficiency (BEE India classifies Indian climatic zones into five categories viz., Hot and Dry (e.g. Ahmedabad, Jodhpur etc, Warm and Humid (e.g. Mumbai, Chennai etc, Composite (e.g. Nagpur, Jaipur etc, Cold (e.g. Guwahati etc and Temperate (e.g. Bengaluru etc. The literature review indicated that very limited information is available on annual energy saving analysis of air conditioning system with HPHX for Indian climatic zones. The paper investigates the possible energy savings using HPHX for heat recovery in air conditioning system for Indian climatic zones. The analysis is carried out for total 25 Indian cities representing different climatic zones. The analysis is performed for a 6 row HPHX and assuming outdoor air quantity as 1 m3/s, return air dry bulb temperature as 23 °C and compressor power as 1 kW/TR. This paper discusses the use of HPHX only for the heat recovery application (exchange of sensible heat between fresh outdoor air and conditioned return air. The annual energy savings with HPHX for a particular city is calculated for number of hours when outdoor air dry bulb temperature exceeds 25 °C. The maximum energy saving potential is revealed for hot and dry, warm and humid and composite Indian climatic zones.

  16. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    OpenAIRE

    Moo-Yeon Lee; Hong-Phil Won; Ho-Seong Lee

    2012-01-01

    The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas c...

  17. Effect of Refrigerant Charge, Compressor Speed and Air Flow Through the Evaporator on the Performance of an Automotive Air Conditioning System

    OpenAIRE

    Datta, Santanu Prasad; Das, Prasanta Kumar; Mukhopadhyay, Siddhartha

    2014-01-01

    During last few decades research on Automotive Air Conditioning System (AACS) reached a milestone in terms of comfort, safety and economy. However investigation on system performance due to AACS’s variable operating conditions is limited. The performance of any AACS mostly depends on compressor speed, blower speed, refrigerant charge level and ambient condition. However, the combined effect of these parameters on the performance of AACS could be non-intuitive. Reduction in compressor speed an...

  18. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  19. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    Science.gov (United States)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  20. Burnout behaviour of bituminous coals in air-staged combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, F.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. of Process Engineering and Power Plant (IVD)

    2001-07-01

    In order to determine the influence on burnout by the combustion conditions and the coal preparation, three bituminous coals sold on the world market, from three different locations in Poland, South Africa, and Australia, were studied more closely. For this purpose, the coals were ground in two different particle size ranges, which, besides the influence of the combustion conditions, such a temperature, residence time, and stoichiometry, made it possible to also investigate the impact on burnout by the coal preparation. The experiments were carried out in an electrically heated entrained-flow reactor with a thermal input of 8.5 kW. The parameters for the experiments are wall temperature (1000-1350{degree}C), air ratio (0.6-1.15) and two particle sizes (70% {lt} 75 {mu}m, 90% {lt} 75 {mu}m). The results show that in general, for increasing temperatures, the burnout quality will improve. For the Australian Illawara coal, another outcome is increased NOx emissions. Lowering the air ratio in the reduction zone leads to less NOx emission but to increased unburnt matter in ash. For the smaller particle size fraction, the analysis of the different particle sizes shows an improvement of the burnout without a change in NOx emissions. 10 refs., 10 figs., 2 tabs.