WorldWideScience

Sample records for aiiibv semiconductors implanted

  1. Predictions about the behaviour of diamond, silicon, SiC and some AIIIBV semiconductor materials in hadron fields

    CERN Document Server

    Lazanu, Ionel; Lazanu, Ionel; Lazanu, Sorina

    2000-01-01

    The utilisation of crystalline semiconductor materials as detectors and devices operating in high radiation environments, at the future particle colliders, in space applications, in medicine and industry, makes necessary to obtain radiation harder materials. Diamond, SiC and different AIIIBV compounds (GaAs, GaP, InP, InAs, InSb) are possible competitors for silicon to different electronic devices for the up-mentioned applications. The main goal of this paper is to give theoretical predictions about the behaviour of these semiconductors in hadron fields (pions, protons). The effects of the interaction between the incident particle and the semiconductor are characterised in the present paper both from the point of view of the projectile, the relevant quantity being the energy loss by nuclear interactions, and of the target, using the concentration of primary radiation induced defects on unit particle fluence. Some predictions about the damage induced by hadrons in these materials in possible applications in pa...

  2. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  3. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    International Nuclear Information System (INIS)

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers

  4. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (1011 to 1014cm-2); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented

  5. Semiconductor applications of plasma immersion ion implantation technology

    Indian Academy of Sciences (India)

    Mukesh Kumar; Rajkumar; Dinesh Kumar; P J George

    2002-11-01

    Many semiconductor integrated circuit manufacturing processes require high dose of implantation at very low energies. Conventional beam line ion implantation system suffers from low beam current at low energies, therefore, cannot be used economically for high dose applications. Plasma immersion ion implantation (PIII) is emerging as a potential technique for such implantations. This method offers high dose rate irrespective of implantation energy. In the present study nitrogen ions were implanted using PIII in order to modify the properties of silicon and some refractory metal films. Oxidation behaviour of silicon was observed for different implantation doses. Diffusion barrier properties of refractory barrier metals were studied for copper metallization.

  6. Dot-array implantation for patterned doping of semiconductors

    International Nuclear Information System (INIS)

    Novel ion beam processing for microelectronic applications has been performed by doping silicon with a focused ion beam tool. A Ga+ ion beam with a energy between 10 and 50 keV was used for p-doping of Si. The ion beam could be focused to an effective beam diameter in the sub-micron range with the smallest focus own below 10 nm. In contrast to conventional implantation with a broad ion beam where the doped area is assigned by a hardmask the implantation was achieved by scanning a focused ion beam over the designated implantation area. With this approach not only the hardmask becomes obsolete because of the electronic beam guidance. Moreover, different doses may be implanted on the same wafer. An additional feature is the inhomogeneous implantation in a pixel-array, where the distance between exposed pixels can be deliberately varied. Even single spots can be independently doped with the focused gallium beam. Due to lateral scattering of ions in the semiconductor the circular implantation area is larger than the beam diameter. With a variation of the pixel spacing we could intentionally obtain either a overlap or a separation of implantation spots. With a four-point method we have investigated the conductivity of the dot-array implanted area. The conductivity of the p-doped region could be deliberately scaled by varying the pixel spacing, the implantation dose and the ion energy. The effective implantation diameter of a single pixel could be determined. This modified implantation approach was also used to fabricate functional p-channel MOSFET's. The Ga implantation with a focused ion beam was used for p-doping of source and drain regions of the transistor device. The utilization of this dot-array implantation with a FIB for semiconductor circuitry demonstrates the potential application of this approach. With the laterally inhomogeneous implantation dot-arrays of doped zones in the nanometer range could be fabricated

  7. Phase diagram calculation of AIIIBV binary solutions of the eutectic type in the generalized lattice model

    Science.gov (United States)

    Panov, G. A.; Zakharov, M. A.

    2015-11-01

    The present work is devoted to the phase diagrams calculation of AIIIBV systems within the framework of the generalized lattice model taking account of volume effects. The theoretically calculated phase diagram is compared with the corresponding experimental diagrams.

  8. Lattice damage during ion implantation of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.E.

    1993-08-01

    The temperature dependence of the lattice damage created during ion implantation of Si, Ge, Si-Ge alloys, and various III-V compounds is reviewed and interpreted in terms of a transition between two different damage formation mechanisms. Implications of this transition for control of damage, annealing, and electrical activation are discussed, particularly in GaAs.

  9. Current capabilities and future needs for semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    For many years the largest commercial application for particle accelerators has been semiconductor ion implantation. These tools differ from other accelerators in many respects. In particular they are automated to a very high degree and, in addition to technical performance requirements their success depends on other key metrics including productivity, availability and cost of ownership. These tools also operate with a large variety of species, four orders of magnitude of energy range and five orders of magnitude of dose range. The ion source is a key component of implanters with its own performance metrics that include beam current, lifetime, and materials cost. In this paper, we describe the primary applications for ion implantation and some of the beam line architectures that are used. We describe the ion source that has evolved for this application. Some key future challenges for implanter ion source development are also discussed.

  10. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  11. Molecular ion sources for low energy semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described

  12. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  13. Method for Providing Semiconductors Having Self-Aligned Ion Implant

    Science.gov (United States)

    Neudeck, Philip G. (Inventor)

    2014-01-01

    A method is disclosed that provides a self-aligned nitrogen-implant particularly suited for a Junction Field Effect Transistor (JFET) semiconductor device preferably comprised of a silicon carbide (SiC). This self-aligned nitrogen-implant allows for the realization of durable and stable electrical functionality of high temperature transistors such as JFETs. The method implements the self-aligned nitrogen-implant having predetermined dimensions, at a particular step in the fabrication process, so that the SiC junction field effect transistors are capable of being electrically operating continuously at 500.degree. C. for over 10,000 hours in an air ambient with less than a 10% change in operational transistor parameters.

  14. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  15. A theory of the ion-implanted metal semiconductor contact

    International Nuclear Information System (INIS)

    A one-dimensional diffusion theory has been used for calculating the current-voltage characteristic of an ion-implanted aluminium-p-silicon contact. The characteristic feature of this contact is the presence of a disordered intermediate layer of about 1,000 A between the pure metal and the semiconductor substrate. The contact resistance of this MaS structure is two orders of magnitude lower than that of an abrupt system. A variation method is given to evaluate the internal potential PHI and the width L of space charge in the case of thermodynamic equilibrium. From the non-linear system of basic equations of diffusion theory a compact expression for the stationary current density is derived in a self-consitent way. (author)

  16. Effect of disorder and defects in ion-implanted semiconductors electrical and physiochemical characterization

    CERN Document Server

    Willardson, Robert K; Christofides, Constantinos; Ghibaudo, Gerard

    2014-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance in the future as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer afterhigh temperature annealing.Electrical and Physicochemical Characterization focuses on the physics of the annealing kine

  17. Emission Channeling Investigation of Implantation Defects and Impurities in II-VI-Semiconductors

    CERN Multimedia

    Trojahn, I; Malamud, G; Straver, J; Ronnqvist, C; Jahn, S-G; Restle, M

    2002-01-01

    Detailed knowledge on the behaviour of implantation damage and its influence on the lattice position and environment of implanted dopants in II-VI-compound semiconductors is necessary for a clear interpretation of results from other investigation methods and finally for technical utilization. Besides, a precise localization of impurities could help to clarify the discussion about the instability of the electrical properties of some dopants, called " aging ".\\\\ \\\\We intend to use the emission channeling method to investigate: \\\\ \\\\i) The behaviour of implantation damage which shall be probed by the lattice location of isoelectronic isotopes (Zn,Cd,Hg,Se,Te) directly after implantation at different temperatures, doses and vacancy densities and after annealing treatments, and ii) the precise lattice sites of the acceptor Ag and donor In under different conditions by implanting precursors Cd and In isotopes. \\\\ \\\\Further on we would like to test the application of a two-dimensional position and energy sensitive e...

  18. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  19. Mining for high Tc ferromagnetism in ion-implanted dilute magnetic semiconductors

    International Nuclear Information System (INIS)

    Ion implantation is a valuable tool for introducing transition metal ions such as Cr, Mn, Fe, Co and Ni into a variety of semiconductors including AlN, GaN, GaP and SiC. High-transition-temperature ferromagnetic behaviour is found to be the rule rather than the exception. Implantation combined with magnetic screening techniques to determine hysteretic transition temperatures provides an effective procedure for rapidly determining whether particular combinations of magnetic dopants and host semiconductors are likely to display high-temperature ferromagnetic properties. Recent results on Cr, Mn and Co implanted into wide-bandgap AlN are presented and discussed with respect to their promise as carrier-mediated ferromagnets that might be useful for spintronics applications

  20. Ion implantation facility for precision doping of semiconductor devices

    International Nuclear Information System (INIS)

    Full text: We have developed an ion implantation system for application to: the nano-fabrication of p-type and n-type silicon devices; the fabrication of silicon nano-resistors; single phosphorus doping of silicon-based quantum computer devices; the doping of diamond-based devices; the study of ion beam physics of low energy ion interactions with solids. The system reliably delivers a wide range of ion spices, including B+, Te+, P+, C+, N+ and H+ with an energy up to 15 keV. The ion implanter operates in the mode of beam-on-demand control triggered by signals from the substrate and the beam current is adjustable in a wide range from ∼mA to a few ions per-second. The beam purity of each ion species is routinely monitored and analysed using micro-ERDA/PIXE/RBS. Copyright (2005) Australian Institute of Physics

  1. Dopants Ion Current Effect On The Semiconductor Electrical Properties Of Implanted

    International Nuclear Information System (INIS)

    Measurement of the electrical properties of Silicon semiconductor Boron atom implanted has been done. The Boron ion was implanted in a Silicon wafer at the constant voltage of 60 kV. By using an ion implant or of 90 keV at the room temperature. The ion current varied between 20 to 60 μA for constant duration of implantation and for duration of implantation varied from 5 to 45 minutes at constant ion current. Sample of the results of implantation were annealed at temperature of 650oC for 30 minutes in heater tube streamed with Nitrogen gas. Then the resistivity of the sample was measured using a Four Point Probe, the capacitance was measured using an LCR-meter and breakdown voltage was determined by the characteristic of I-V. from the measurement, the optimum electrical properties is obtained at current of dopants ion of 40 μA and for duration of implantation of 5 minutes or dopants 5,952 x 1015 cm-2 (ρs = 322Ω/sq, ρ = 0,816 Ω cm, C/A = 227,6559 pF.cm-2, VB = 26,6 volt)

  2. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue

    Science.gov (United States)

    Takehara, Hiroaki; Katsuragi, Yuji; Ohta, Yasumi; Motoyama, Mayumi; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Optical therapy and diagnostics using photoactivatable molecular tools are promising approaches in medical applications; however, a method for the delivery of light deep inside biological tissues remains a challenge. Here, we present a method of illumination and detection of light using implantable micro-optical semiconductor devices. Unlike in conventional transdermal light delivery methods using low-energy light (>620 nm or near-infrared light), in our method, high-energy light (470 nm) can also be used for illumination. Implanted submillimeter-sized light-emitting diodes were found to provide sufficient illumination (0.6-4.1 mW/cm2), and a complementary metal-oxide-semiconductor image sensor enabled the detection of fluorescence signals.

  3. 2nd International Conference on Ion Implantation in Semiconductors, Physics and Technology, Fundamental and Applied Aspects

    CERN Document Server

    Graul, Jürgen

    1971-01-01

    In recent years great progress has been made in the field of ion implantation, particularly with respect to applications in semiconductors. It would be impos­ sible not to note the growing interest in this field, both by research groups and those directly concerned with production of devices. Furthermore, as several papers have pointed out, ion implantation and its associated technologies promise exciting advances in the development of new kinds of devices and provide power­ ful new tools for materials investigations. It was, therefore, appropriate to arrange the II. International Conference on Ion Implantation in Semiconductors within the rather short time of one year since the first conference was held in 1970 in Thousand Oaks, California. Although ori­ ginally planned on a small scale with a very limited number of participants, more than two hundred scientists from 15 countries participated in the Conference which was held May 24 - 28, 1971 at the Congress Center in Garmisch-Partenkirchen. This volume c...

  4. Method for the fabrication of a semiconductor resistor with implanted ions of a neutral dopant

    International Nuclear Information System (INIS)

    The semiconductor resistor consists of a single-crystal Si-body with a P-conducting resistor part that is doped with B. The P-conducting part forms a PN-transition with the Si-body. Ne-ions with an energy of 100 keV and an ion dose of 2 x 1013 to 2 x 1015 ions/cm2 are implanted in the area below the PN-transition to increase the voltage linearity. The film resistance amounts at least to 30 kOhm/square. (RW)

  5. Synthesis, optical properties, and microstructure of semiconductor nanocrystals formed by ion implantation

    International Nuclear Information System (INIS)

    High-dose ion implantation, followed by annealing, has been shown to provide a versatile technique for creating semiconductor nanocrystals encapsulated in the surface region of a substrate material. The authors have successfully formed nanocrystalline precipitates from groups IV (Si, Ge, SiGe), III-V (GaAs, InAs, GaP, InP, GaN), and II-VI (CdS, CdSe, CdSxSe1-x, CdTe, ZnS, ZnSe) in fused silica, Al2O3 and Si substrates. Representative examples will be presented in order to illustrate the synthesis, microstructure, and optical properties of the nanostructured composite systems. The optical spectra reveal blue-shifts in good agreement with theoretical estimates of size-dependent quantum-confinement energies of electrons and holes. When formed in crystalline substrates, the nanocrystal lattice structure and orientation can be reproducibly controlled by adjusting the implantation conditions

  6. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    International Nuclear Information System (INIS)

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm−2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (∼1012 ions cm−2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm−2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm−2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm−2). (invited article)

  7. KBr superstructure templates self-assembled on reconstructed AIIIBV semiconductor surfaces

    International Nuclear Information System (INIS)

    In this report we present results of combined high resolution LT-STM and LEED studies of ultrathin epitaxial KBr films grown on an InSb(0 0 1) c(8 x 2) substrate. Based on atomically resolved STM maps and LEED diffractograms the film structure as well as superimposed electronic effects are explained. The origin of additional 4 x 4 superstructure observed on ultrathin films is discussed. Possible application of the KBr/InSb system as a template for growing organic molecule structures is suggested.

  8. MOVPE growth of AIIIBV-N semiconductor compounds for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sciana, B.; Radziewicz, D.; Pucicki, D.; Zborowska-Lindert, I.; Serafinczuk, J.; Tlaczala, M. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology (Poland); Latkowska, M. [Institute of Physics, Wroclaw University of Technology (Poland); Kovac, J.; Srnanek, R. [Department of Microelectronics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava (Slovakia)

    2012-03-15

    The present work presents the influence of the growth parameters on the structural and optical properties of undoped GaAsN epilayers and triple quantum wells 3 x InGaAsN/GaAs obtained by atmospheric pressure metal organic vapour phase epitaxy APMOVPE. The structures were examined using high resolution X-Ray diffraction HRXRD, contactless electroreflectance CER, photocurrent PC and Raman RS spectroscopies. The influence of the growth temperature and the gas phase composition on the material quality and alloy composition of the investigated structures as well as the growth and calibration characteristics are presented and discussed. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Copper ion implanted aluminum nitride dilute magnetic semiconductors (DMS) prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Highlights: • AlN:Cu dilute magnetic semiconductors were successfully prepared by molecular beam epitaxy followed by Cu+ implantation. • Room temperature ferromagnetism was observed after annealing the samples at appropriate temperature. • XRD and Raman spectrometry excluded the possibility of formation of any secondary phases. • By doping intrinsically nonmagnetic dopants (Cu), it has been proved experimentally that their precipitates do not contribute to ferromagnetism. • The reason for ferromagnetism in Cu-doped AlN as observed was explained on the basis of p–d hybridization mechanism (Wu et al.). - Abstract: Diluted magnetic semiconductor (DMS) AlN:Cu films were fabricated by implanting Cu+ ions into AlN thin films at various ion fluxes. AlN films were deposited on c-plane sapphire by molecular beam epitaxy followed by Cu+ ion implantation. The structural and magnetic characterization of the samples was performed through Rutherford backscattering and channeling spectrometry (RBS/C), X-ray diffraction (XRD), Raman spectroscopy, vibrating sample magnetometer (VSM) and SQUID. Incorporation of copper into the AlN lattice was confirmed by RBS, while XRD revealed that no new phase was formed as a result of ion implantation. RBS also indicated formation of defects as a result of implantation process and the depth and degree of damage increased with an increase in ion fluence. Raman spectra showed only E2 (high) and A1 (LO) modes of wurtzite AlN crystal structure and confirmed that no secondary phases were formed. It was found that both Raman modes shift with Cu+ fluences, indicating that Cu ion may go to interstitial or substitutional sites resulting in distortion or damage of lattice. Although as implanted samples showed no magnetization, annealing of the samples resulted in appearance of room temperature ferromagnetism. The saturation magnetization increased with both the annealing temperature as well as with ion fluence. FC/ZFC measurements indicated

  10. Doping Properties of Ferromagnetic Semiconductors Investigated by the Hyperfine Interaction of Implanted Radioisotopes

    CERN Multimedia

    2002-01-01

    One of the most promising prospective applications of semiconductors will be in the field of spinelectronics. Thereby polarized spins must be injected into semiconductor structures. Ferromagnetic semiconductors (FMS) have a potential for such applications because of the coexistence of semiconducting and ferromagnetic properties. A special group of such FMS are the chromium chalcogenides of type AB$_{2}$C$_{4}$ with B = Cr. They crystallise in the structure of normal spinel. In this Proposal the application of the perturbed angular correlation technique (= PAC) for the investigation of nuclear probes in these substances is described. The radioactive probes will be implanted at the ISOLDE separator. We will start these investigations with the substances CdCr$_{2}$Se$_{4}$, CdCr$_{2}$S$_{4}$, HgCr$_{2}$Se$_{4}$, CuCr$_{2}$Se$_{4}$ and CuCr$_{2}$S$_{4}$ which are ferromagnetic with Curie temperatures between 84.5 and 460 K. In addition to the popular $^{111}$In($^{111}$Cd), which we get from other facilities, we ...

  11. Enhanced beam currents of P2+, P3+, and P4+ for use in semiconductor ion implanters

    International Nuclear Information System (INIS)

    Considerably enhanced yields of P2+ (8.6 pmA), P3+ (1.9 pmA), and P4+ (0.12 pmA) were obtained using a modified Bernas-Calutron ion source. The source design, experimental layout, and results of extensive optimization studies are described. The improved production of multiply charged ions is of particular interest for applications in semiconductor ion implantation facilities

  12. Characterization of n-GaN dilute magnetic semiconductors by cobalt ions implantation at high-fluence

    International Nuclear Information System (INIS)

    In this study, we present the structural and magnetic characteristics of cobalt ions implantation at a high-fluence (5×1016 cm−2) into n-GaN epilayer of thickness about 1.6 μm. The n-GaN was grown on sapphire by metal organic chemical vapor deposition (MOCVD). Rutherford backscattering channeling was used for the structural study. After implantation, samples were annealed at 700, 800 and 900 °C by rapid thermal annealing in ambient N2. XRD measurements did not show any secondary phase or metal related-peaks. High resolution X-ray diffraction (HRXRD) was performed as well to characterize structures. Well-defined hysteresis loops were observed at 5 K and room temperature using alternating gradient magnetometer AGM and Superconducting Quantum Interference Device (SQUID) magnetometer. Temperature-dependent magnetization indicated magnetic moment at the lowest temperatures and retained magnetization up to 380 K for cobalt-ion-implanted samples. - Highlights: ► Experiment started with MOCVD grown semiconducting material GaN. ► GaN was implanted with cobalt ions (Co+) of dose 5×1016 cm−2 at room temperature. ► Structural characterization was performed by RBS, XRD and HR-XRD. ► Magnetic properties were observed by AGM and SQUID measurements. ► High TC dilute magnetic semiconductors has been observed up to 380 K for cobalt implanted GaN at high-fluence (5×1016 cm−2).

  13. Characterization of n-GaN dilute magnetic semiconductors by cobalt ions implantation at high-fluence

    Energy Technology Data Exchange (ETDEWEB)

    Husnain, G., E-mail: husnain78@gmail.com [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Experimental Physics Labs, National Centre for Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Yao Shude [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ahmad, Ishaq [Experimental Physics Labs, National Centre for Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Rafique, H.M. [Department of Physics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590 (Pakistan); Mahmood, Arshad [National Institute of Lasers and Optronics, P.O. Nilore, Islamabad (Pakistan)

    2012-03-15

    In this study, we present the structural and magnetic characteristics of cobalt ions implantation at a high-fluence (5 Multiplication-Sign 10{sup 16} cm{sup -2}) into n-GaN epilayer of thickness about 1.6 {mu}m. The n-GaN was grown on sapphire by metal organic chemical vapor deposition (MOCVD). Rutherford backscattering channeling was used for the structural study. After implantation, samples were annealed at 700, 800 and 900 Degree-Sign C by rapid thermal annealing in ambient N{sub 2}. XRD measurements did not show any secondary phase or metal related-peaks. High resolution X-ray diffraction (HRXRD) was performed as well to characterize structures. Well-defined hysteresis loops were observed at 5 K and room temperature using alternating gradient magnetometer AGM and Superconducting Quantum Interference Device (SQUID) magnetometer. Temperature-dependent magnetization indicated magnetic moment at the lowest temperatures and retained magnetization up to 380 K for cobalt-ion-implanted samples. - Highlights: Black-Right-Pointing-Pointer Experiment started with MOCVD grown semiconducting material GaN. Black-Right-Pointing-Pointer GaN was implanted with cobalt ions (Co{sup +}) of dose 5 Multiplication-Sign 10{sup 16} cm{sup -2} at room temperature. Black-Right-Pointing-Pointer Structural characterization was performed by RBS, XRD and HR-XRD. Black-Right-Pointing-Pointer Magnetic properties were observed by AGM and SQUID measurements. Black-Right-Pointing-Pointer High T{sub C} dilute magnetic semiconductors has been observed up to 380 K for cobalt implanted GaN at high-fluence (5 Multiplication-Sign 10{sup 16} cm{sup -2}).

  14. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    Science.gov (United States)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E.; Ben Sedrine, N.; Rodrigues, J.; Correia, M. R.; Monteiro, T.; Boćkowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.

    2016-07-01

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p-n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  15. The Development and Evolution of Ion Implanters in the Semiconductor Industry

    Science.gov (United States)

    Armour, Dave G.

    2008-11-01

    By the end of the 1960's, the development of ion beam systems for isotope separation and materials research had reached the stage at which knowledge bases in the areas of ion beam formation and transport and the physics of atomic collisions in solids made it practical to consider the use of ion implantation as a means of modifying the near surface properties of solid materials. The beam currents and energies available made the technique particularly compatible with the doping requirements of the silicon devices being produced at that time. However, incorporation of the technique into a high volume manufacturing environment required the immediate development of new target handling facilities and improvements in machine reliability. While the manner in which ion implanters have evolved over the past forty years has continued to be dictated by the changing demands of the silicon processing industry, the dramatic reduction in transistor size and the increase in integrated circuit complexity have had significant implications for the qualities of the ion beams themselves, particularly in high current, ultra-low energy applications. Since the first commercial implanters were introduced, highly developed medium current, high current and high energy machines have evolved. In the medium current and high energy sectors, well understood ion optical principles have enabled ingenious and highly effective beam formation and transport systems to be designed. As these machines evolved, extensive studies of the implanted material using ion beam based techniques such as Rutherford backscattering and channelling provided a growing understanding of the fundamental radiation damage and annealing processes that are inevitably associated with the implantation process. For high current machines, particularly those operating in the so-called eV implantation range, beam formation and transport processes become considerably more complex and established ion optical design principles must be

  16. Dispersion and absorption of longitudinal electro-kinetic wave in ion-implanted GaN semiconductor plasmas

    International Nuclear Information System (INIS)

    An analytical study on propagation characteristics of longitudinal electro-kinetic (LEK) waves is presented. Based on multi-fluid model of plasma, we have derived a dispersion relation for LEK waves in colloid laden GaN semiconductor plasmas. It is assumed that ions are implanted to form colloids in the GaN sample. The colloids are continuously bombarded by the plasma particles and stick on them, but they acquire a net negative charge due to relatively higher mobility of electrons. It is found from the dispersion relation that the presence of charged colloids not only modifies the existing modes but also supports new novel modes of LEKWs. It is hoped that the study would enhance understanding on dispersion and absorption of LEKWs and help in singling out the appropriate configurations in which GaN crystal would be better suited for fabrication of microwave devices

  17. Trapping and desorption of deuterium during high fluence D-implants of insulators and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boergesen, P.; Moeller, W.; Maurette, M.; Monart, B.

    1986-09-01

    The trapping and desorption of deuterium during high fluence D implantation at 5 keV/atom has been investigated at room temperature in silicon, ilmenite, sapphire and 3 inorganic nuclear track detectors (oligoclase, olivine and glass). The comparison of the whole range of solids investigated as yet yields the following conclusions: (i) silicon, sapphire and ilmenite, as well as the varieties of graphite, carbide and nitride previously investigated, would behave like metals at low temperature when diffusion processes are quenched. In particular in these solids there is no reemission of D during implantation up to the critical fluence of about 5 x 10/sup 17/ D/cm/sup 2/, corresponding to the onset of a deuterium saturation. (ii) in constrast the two alkali-rich inorganic nuclear track detectors start loosing deuterium at much lower implanted fluence (approx. 10/sup 15//cm/sup 2/). A few preliminary implications of these results in lunar sciences are briefly outlined.

  18. Structural and magnetic properties of Co + implanted n-GaN dilute magnetic semiconductors

    Science.gov (United States)

    Husnain, G.; Tao, Fa; Yao, Shu-De

    2010-05-01

    The n-type GaN epilayer was grown on sapphire prepared by metal organic chemical vapour deposition and subsequently Co + ions implanted. The properties of Co + ions implanted GaN epilayer were investigated by structural and magnetic measurements. The results of Rutherford backscattering spectrometry and channeling illustrate that an excellent crystalline quality ( χmin=1.3%) of as-grown GaN. After the implantation of 150 keV Co + ions with dose 3×10 16 cm -2 into GaN and subsequently annealed at 700, 800 and 900 °C, no secondary phase or metal related-peaks were detected by typical XRD. In addition high-resolution X-ray diffraction (HRXRD) was performed to study structural related properties. The magnetization curves were obtained by SQUID and AGM measurements, a well-defined hysteresis loop was observed even at 300 K. The temperature dependence of magnetization was taken in FC and ZFC conditions showed the highest Curie temperature ( TC) ∼370 K recorded for Co + implanted GaN.

  19. Are Fe and Co implanted ZnO and III-nitride semiconductors magnetic?

    CERN Document Server

    AUTHOR|(CDS)2081284; Bharuth-Ram, Krish

    The chemical nature, lattice site locations and magnetic behaviour of Fe and/or Co ions implanted in nitrides (GaN, AlN, and InN) and in ZnO have been investigated using Mössbauer spectroscopy and vibrating sample magnetometer (VSM) techniques. Mössbauer data on nitride and $^{56}$Fe pre-implanted ZnO samples were obtained from emission Mössbauer spectroscopy (eMS) measurements at the ISOLDE facility, CERN, following the implantation of radioactive $^{57}$Mn$^{*}$ which $\\beta$$^{-}$decays to the 14.4 keV Mössbauer state of $^{57}$Fe. In addition, conversion electron Mössbauer spectroscopy (CEMS) data were collected on ZnO single crystals co-implanted with $^{57}$Fe + $^{56}$Fe and $^{57}$Fe + $^{59}$Co ions in a box profile. Emission Mössbauer spectra obtained for GaN and AlN reveal magnetic structure in the ‘wings’ assigned to high spin Fe$^{3+}$ weakly coupled to the lattice showing spin-lattice relaxation effects. The observed spin-relaxation rate (τ$^{-1}$) closely follows a ${T}^{2}$ temperat...

  20. Structure and magnetism of transition-metal implanted dilute magnetic semiconductors

    CERN Document Server

    Pereira, Lino; Temst, K; Araújo, JP; Wahl, U

    The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a critical step towards the development of semiconductor-based spintronics. Among the many types of DMS materials which have been investigated, the current research interest can be narrowed down to two main classes of materials: (1) narrow-gap III-V semiconductors, mostly GaAs and InAs, doped with Mn; (2) wide-gap oxides and nitrides doped with 3d transition metals, mostly Mn- and Co-doped ZnO and Mn-doped GaN. With a number of interesting functionalities deriving from the carrier-mediated ferromagnetism and demonstrated in various proof-of-concept devices, Mn-doped GaAs has become, among DMS materials, one of the best candidates for technological application. However, despite major developments over the last 15 years, the maximum Curie temperature (185 K) remains well below room temperature. On the other hand, wide-gap DMS materials appear to exhibit ferromagnetic behavior...

  1. Nuclear polarization of implanted atoms with radiation-detected optical pumping in semiconductors

    International Nuclear Information System (INIS)

    Significant nuclear Polarization has been obtained by optical pumping in solids. Specifically the detection of optical pumping in solids via the anisotoropy of nuclear radiation and the measurement of magnetic resonance with applied radio-frequency have been found to be a quite sensitive method for the spectroscopic study of unstable nuclei. We proposed to the CERN/ISOLDE to apply the method for mass separated and implanted p-shell atoms in solids. As first test candidates 75Br and 114mIn are implanted into a GaAs and a AlGaInP crystals. After implantation, the samples are sent back to RIKEN and Osaka, Japan and the daughter nucleus 75Se and the γ-decay products 114In are off-line polarized with laser optical pumping and the hyperfine coupling constants in solids and also magnetic moments are measured with radiation detected magnetic resonance. In addition to get more accurate data of the previously known magnetic moments of these nuclei, we hope this test experiment may open the way to determine unambiguously the nuclear spins and the magnetic moments of the so-called spin-gap isomers in 211Po and 212Po isotopes which have been long-standing open problems related to shell model predictions. (author)

  2. Propagation of magnetosonic wave in ion implanted semiconductor: Effects of nano-sized grains

    International Nuclear Information System (INIS)

    We have derived a linear dispersion relation for magnetosonic wave (MSW) in compensated semiconductor plasma, like Ge, embedded with nano-sized grains (NSGs) of ions. These NSGs are bombarded by electrons and holes in the plasma medium and usually acquire net negative charge on account of higher mobility of electrons as compared to that of the holes [1]. The process of charging of NSGs depletes the electron density and creates a charge imbalance, which modifies the propagation characteristics of MSW even if NSGs do not participate in wave perturbation.

  3. Application of the Boltzmann transport equation to ion implantation in semiconductors and multilayer targets

    International Nuclear Information System (INIS)

    Calculations and comparisons with experimental data indicate that the Boltzmann transport equation provides a comprehensive treatment of the general ion implantation problem. The primary ion distribution in a multilayer target can be calculated directly and is found to be in good agreement with experiments. The transport equation predicts the spatial distribution of recoils and thus provides the theoretical information needed to determine the fractional atomic displacement necessary for amorphization of silicon and the degree of stoichiometric imbalance that is produced when energetic ions are incident on a target having more than one type of host atom

  4. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Science.gov (United States)

    Sun, Shichuang; Fu, Kai; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Qi, Zhiqiang; Li, Shuiming; Sun, Qian; Cai, Yong; Dai, Jiangnan; Chen, Changqing; Zhang, Baoshun

    2016-01-01

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal-organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 1014 cm-2) and 90 keV (dose: 1 × 1014 cm-2), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current IDSmax at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance gmmax was 83 mS/mm.

  5. Investigation of ferromagnetic spinel semiconductors by hyperfine interactions of implanted nuclear probes

    CERN Document Server

    Samokhvalov, V; Dietrich, M; Schneider, F; Tiginyanu, I M; Tsurkan, V; Unterricker, S

    2003-01-01

    The semiconducting ferromagnetic spinel compounds CdCr//2Se //4, CdCr //2S//4, HgCr//2Se//4 and CuCr//2Se//4 (metallic) were investigated by the perturbed angular correlations (PAC) method with the radioactive probes **1**1**1In, **1**1**1**mCd, **1**1**1Ag, **1**1**7Cd, **1**9**9**mHg and **7**7Br. The probes were implanted at the ISOLDE on-line separator (CERN-Geneva) into single crystals. From the time dependence of the PAC spectra and the measured hyperfine interaction parameters: electric field gradient and magnetic hyperfine field, the probe positions and the thermal behavior of the probes could be determined. Cd, Ag and Hg are substituted at the A-site, In at the A- and B-site in the semiconducting compounds and Br at the anion position. Electric and magnetic hyperfine fields were used as test quantities for theoretical charge and spin density distributions of LAPW calculations (WIEN97).

  6. Preparation of Si sub 1 sub - sub x sub - sub y Ge sub x C sub y semiconductor films on Si by ion implantation and solid phase epitaxy

    CERN Document Server

    Liu Xue Qin; Zhen Cong Mian; Zhang Jing; Yang Yi; Guo Yong

    2002-01-01

    Si sub 1 sub - sub x sub - sub y Ge sub x C sub y ternary alloy semiconductor films were prepared on Si(100) substrates by C ion implanting SiGe films and subsequent solid phase epitaxy (SPE). Two-step annealing technique was employed in the SPE processing. The properties of the alloy films were determined using Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and High-resolution x-ray diffraction (HRXRD) measurements. It is shown that C atoms are located at substitutional sites and the incorporation of C relieves the compressive strain in the SiGe layer

  7. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    International Nuclear Information System (INIS)

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 1014 cm−2) and 90 keV (dose: 1 × 1014 cm−2), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current IDSmax at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance gmmax was 83 mS/mm

  8. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shichuang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Fu, Kai, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-04

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10{sup 14} cm{sup −2}) and 90 keV (dose: 1 × 10{sup 14} cm{sup −2}), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I{sub DSmax} at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g{sub mmax} was 83 mS/mm.

  9. Characterization of n-GaN dilute magnetic semiconductors by cobalt ions implantation at high-fluence

    Science.gov (United States)

    Husnain, G.; Shu-De, Yao; Ahmad, Ishaq; Rafique, H. M.; Mahmood, Arshad

    2012-03-01

    In this study, we present the structural and magnetic characteristics of cobalt ions implantation at a high-fluence (5×1016 cm-2) into n-GaN epilayer of thickness about 1.6 μm. The n-GaN was grown on sapphire by metal organic chemical vapor deposition (MOCVD). Rutherford backscattering channeling was used for the structural study. After implantation, samples were annealed at 700, 800 and 900 °C by rapid thermal annealing in ambient N2. XRD measurements did not show any secondary phase or metal related-peaks. High resolution X-ray diffraction (HRXRD) was performed as well to characterize structures. Well-defined hysteresis loops were observed at 5 K and room temperature using alternating gradient magnetometer AGM and Superconducting Quantum Interference Device (SQUID) magnetometer. Temperature-dependent magnetization indicated magnetic moment at the lowest temperatures and retained magnetization up to 380 K for cobalt-ion-implanted samples.

  10. The development of deuterium implantation method applicable to the standard semiconductor manufacturing process for the improvement of device reliability

    International Nuclear Information System (INIS)

    The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at SiO2/Si interface and SiO2 bulk. Experimental results are presented for the degradation of 3-nm-thick gate oxide (SiO2) under both negative-bias temperature instability (NBTI), hot-carrier injection (HCI), and constant voltage stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. This paper is focused on the improvement of MOS device reliability related to deuterium process. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Especially, we found that PMOSFET experienced the high voltage stress shows a giant isotope effect. This is likely because the reaction between 'hot' hole and deuterium is involved in the generation of oxide trap.

  11. Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: a magnet/semiconductor hybrid synthesized by ion implantation

    OpenAIRE

    Zhou, Shengqiang; Zhang, Wenxu; Shalimov, Artem; Wang, Yutian; Huang, Zhisuo; Buerger, Danilo; Mücklich, Arndt; Zhang, WanLi; Schmidt, Heidemarie; Helm, Manfred

    2012-01-01

    The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ion implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is a 3d 6 configuration, w...

  12. Investigation of Low-Energy Tilted Ion Implantation for Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor Extension Doping

    Science.gov (United States)

    Yongxun Liu,; Takashi Matsukawa,; Kazuhiko Endo,; Shinich O'uchi,; Kunihiro Sakamoto,; Junichi Tsukada,; Yuki Ishikawa,; Hiromi Yamauchi,; Meishoku Masahara,

    2010-04-01

    The low-energy tilted ion implantation (I/I) for fin-type double-gate metal-oxide-semiconductor field-effect transistor (FinFET) source-drain (SD) extension doping is systematically investigated experimentally by fabricating a series of n+-polycrystalline silicon (poly-Si) gate n-channel FinFETs under different I/I conditions. The on-state current (ION) versus off-state current (IOFF) and the SD parasitic resistance (Rp) are used for benchmarking the performance of the fabricated devices to investigate the optimal extension I/I conditions, including dose (D) and tilted angle (θ), at a fixed low energy of 5 keV. It is experimentally found that the best extension I/I conditions are D = 4× 1014 cm-2 and θ = 60°. With further increasing D, the device performance deteriorates owing to the incomplete recrystallization of amorphous regions in the thin extension regions. In the case of θ = 0°, marked increment and fluctuations in Rp are observed because the implant atoms scatter out randomly from each extension region. The Rp value of the FinFETs fabricated under the above best I/I conditions is comparable to that of devices fabricated by the solid-phase diffusion of phosphors from phosphosilicate glass (PSG). This indicates that the extension I/I conditions of D = 4× 1014 cm-2 and θ = 60° are almost optimal and is very effective for high-performance FinFET fabrication.

  13. Development of Ion-Implanted Si-PIN Semiconductor Radiation Detector%离子注入型Si-PIN半导体探测器的研制

    Institute of Scientific and Technical Information of China (English)

    宋明东; 卜忍安

    2011-01-01

    本文系统地介绍了Si-PIN探测器对带电粒子、中子、射线的探测原理.针对灵敏面积为φ30mm×420μm的Si-PIN探测器,详细地介绍了设计方法和工艺流程,并指出了影响探测器性能的关键工艺.采用离子注入和平面工艺不仅能够降低漏电流,提高探测器的能量分辨率,而且使得探测器对高温环境和真空都很稳定.最后初步介绍了探测器的电特性(I-V特性,C-V特性)的变化趋势,以及探测特性参数的测量方法.%The principle of Si-PIN semiconductor detector detecting charged particle, neutron and radiation are introduced systematically in this article. The design procedures and technology process of the detector whose sensitive area is φ30 mm X 420 um are introduced. The key technologies which affect performance of the detector are also presented. The ion-implanted planar technology could reduce leakage current and enhance resolution of the detector as well as improves stability of the detector in high-temperature and vacuum environment. At last, I-V and C-V characteristics curves as well as detecting characteristic parameters are also introduced preliminarily.

  14. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  15. Investigation of trap properties in high-k/metal gate p-type metal-oxide-semiconductor field-effect-transistors with aluminum ion implantation using random telegraph noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Tsung-Hsien; Chang, Shoou-Jinn, E-mail: changsj@mail.ncku.edu.tw; Fang, Yean-Kuen; Huang, Po-Chin [Institute of Microelectronics and Department of Electrical Engineering, Advanced Optoelectronic Technology Center, Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan (China); Lai, Chien-Ming; Hsu, Chia-Wei; Chen, Yi-Wen; Cheng, Osbert [Central R and D Division, United Microelectronics Corporation, Ltd., Tainan Science-Based Industrial Park, Tainan 74145, Taiwan (China); Wu, Chung-Yi; Wu, San-Lein [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Road, Niaosong, Kaohsiung 833, Taiwan (China)

    2014-08-11

    In this study, the impact of aluminum ion implantation (Al I/I) on random telegraph noise (RTN) in high-k/metal gate (HK/MG) p-type metal-oxide-semiconductor field-effect-transistors (pMOSFETs) was investigated. The trap parameters of HK/MG pMOSFETs with Al I/I, such as trap energy level, capture time and emission time, activation energies for capture and emission, and trap location in the gate dielectric, were determined. The configuration coordinate diagram was also established. It was observed that the implanted Al could fill defects and form a thin Al{sub 2}O{sub 3} layer and thus increase the tunneling barrier height for holes. It was also observed that the trap position in the Al I/I samples was lower due to the Al I/I-induced dipole at the HfO{sub 2}/SiO{sub 2} interface.

  16. Investigation of trap properties in high-k/metal gate p-type metal-oxide-semiconductor field-effect-transistors with aluminum ion implantation using random telegraph noise analysis

    International Nuclear Information System (INIS)

    In this study, the impact of aluminum ion implantation (Al I/I) on random telegraph noise (RTN) in high-k/metal gate (HK/MG) p-type metal-oxide-semiconductor field-effect-transistors (pMOSFETs) was investigated. The trap parameters of HK/MG pMOSFETs with Al I/I, such as trap energy level, capture time and emission time, activation energies for capture and emission, and trap location in the gate dielectric, were determined. The configuration coordinate diagram was also established. It was observed that the implanted Al could fill defects and form a thin Al2O3 layer and thus increase the tunneling barrier height for holes. It was also observed that the trap position in the Al I/I samples was lower due to the Al I/I-induced dipole at the HfO2/SiO2 interface

  17. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  18. Back-side readout semiconductor photomultiplier

    Science.gov (United States)

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  19. Dental Implants

    Medline Plus

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental implants ...

  20. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  1. Low energy semiconductor laser irradiation in the treatment of exposed hydroxyapatite orbital implants%低功率半导体激光治疗羟基磷灰石义眼座暴露

    Institute of Scientific and Technical Information of China (English)

    廖洪斐; 陈蔷娟; 易敬林; 冯珍; 张向荣; 聂萍萍

    2003-01-01

    Aim To evaluate the value of low energy level of semiconductor laser irradiation in treatment of exposured hydroxyapatite orbital implants. Methods Twenty-two patients who suffered from the exposure were treated with multifunctional semiconductor laser therapy apparatus. They were divided into 3 groups according to the size of the exposure zone (vertical diameter: mild, ≤ 3mm; moderate:4-7mm; severe: 8-10mm). Every patient was treated for 5 minutes per day for 5 to 15 days. And the results were compared with another 20 patients suffering from the same disease who were treated by pharmacotherapy and/or operative therapy. Results All of the 22 patients treated by laser therapy were cured (100%), while the cure rates of the control who was further divided according to the severity of exposure size, i.e. mild, moderate and severe, were 83.3%, 63.6% and 0 respectively. So laser therapy was statistically superior to pharmacotherapy and/or operative therapy in the treatment of moderate and severe states of exposure. Conclusion Laser therapy is more effective than pharmacotherapy and/or operative therapy in treatment of the exposed hydroxyapatite orbital implants. Laser therapy can prevent the enlargement of the exposure zone.%目的探讨低功率半导体激光治疗羟基磷灰石义眼座暴露的疗效.方法采用JAM-II型多功能半导体激光治疗仪(激光物质为GaA1As,激光波长650nm)对22例不同程度的义眼座暴露患者进行激光照射治疗,并将结果与既往采用药物及手术治疗的20例义眼座暴露患者比较.结果 激光组22例全部愈合(100%);药物及手术组中轻、中、重度的愈合率分别为83.3%,63.6%和0.经采用X2检验之四格表精确检验法处理,2组间轻度患者的愈合率在统计学上差异无显著性意义(P=0.545),而2组间中度和重度患者的愈合率在统计学上差异有显著性意义(P<0.05).结论低功率半导体激光治疗羟基磷灰石义眼座暴露的疗效优于药物

  2. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn2, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe)

    International Nuclear Information System (INIS)

    In line with this work the strucural and magnetic properties of the exchange coupled layered systems Fe/FeSn2 and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective 57Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the 57Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn2(001) films and of the exchange-bias system Fe/FeSn2(001) on InSb(001) were investigated. With the application of 57Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (Bhf) of FeSn2 could be examined. The evaporation of Fe films on the FeSn2 films produced in the latter ones a high perpendicular spin component at the Fe/FeSn2 interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore 57Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn2. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures TB*, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures TB of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of tFeSi=10-12 A of the ''lower'' FeSi layers the interdiffusion of Fe is inhibited. For thicker FeSi layers (tFeSi ∼ 20 A

  3. Macroporous Semiconductors

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2010-05-01

    Full Text Available Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  4. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  5. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  6. Dental Implants

    Medline Plus

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental ...

  7. Dental Implants

    Science.gov (United States)

    Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide ... whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental ...

  8. Electrical doping of Hg Cd Te by ion implantation and heat treatments

    International Nuclear Information System (INIS)

    The general properties of junctions made by ion implantation in Hg Cd Te semiconductor are recalled structure of junctions made by implantation damage, defects, anneals, junctions made by active impurities. The effect of acceptor evolution in this semiconductor after heat treatments and a study of the kinetics are presented. Very high quality devices with very small size and large two-dimensional arrays are shown to be possibly achieved using ion implantation technique of junction formation in the semiconductor epilayers grown by LPE

  9. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  10. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  11. Dental Implants

    Medline Plus

    Full Text Available ... helpful facts so you can make an informed decision as to whether dental implants are right for your situation. Dental Implants and Roots The key benefit of dental implants over other tooth replacement systems is that an implant connects directly to the ...

  12. Ion implantation: Science and technology

    International Nuclear Information System (INIS)

    This book is a tutorial presentation of the science, techniques, and machines of ion implantation. The first section of this book concerns the science of ion implantation. It covers the historical development of the field, and the basic theory of energetic ion penetration of solids. The major concentration of this section is to explain the nature of the creation of damage in crystaline silicon during ion implantation, and the methods which can be used to recover the original crystalinity. Especially helpful are the TEM photographs scattered throughout this section which show the many phases of the morphology of ion implantation damage. Methods are described which allow the quantitative evaluation of the success of the implantation and the recovery of the semiconductor. The last half of this book describes the ion accelerators (implanters) used in ion implantation, with a detailed presentation of the major components which require maintenance. A large part of this section concerns the methods of quantitatively evaluating the performance of ion implanters. A chapter is devoted to the extensive safety hazards of implanters and methods to maintain safe operation

  13. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  14. Semiconductor Thermistors

    CERN Document Server

    McCammon, D

    2005-01-01

    Semiconductor thermistors operating in the variable range hopping conduction regime have been used in thermal detectors of all kinds for more than fifty years. Their use in sensitive bolometers for infrared astronomy was a highly developed empirical art even before the basic physics of the conduction mechanism was understood. Today we are gradually obtaining a better understanding of these devices, and with improvements in fabrication technologies thermometers can now be designed and built with predictable characteristics. There are still surprises, however, and it is clear that the theory of their operation is not yet complete. In this chapter we give an overview of the basic operation of doped semiconductor thermometers, outline performance considerations, give references for empirical design and performance data, and discuss fabrication issues.

  15. Carmustine Implant

    Science.gov (United States)

    Carmustine implant is used along with surgery and sometimes radiation therapy to treat malignant glioma (a certain type of ... Carmustine implant comes as a small wafer that is placed in the brain by a doctor during surgery to ...

  16. Goserelin Implant

    Science.gov (United States)

    Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer and is ... treatment of abnormal bleeding of the uterus. Goserelin implant is in a class of medications called gonadotropin- ...

  17. Dental Implants

    Medline Plus

    Full Text Available ... is lost for the most predictable esthetic outcome. Timeline Replacing a tooth with an implant and a ... months to complete the process . Due to the timeline, dental implants are actually a series of steps; ...

  18. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  19. Current trends in ion implantation

    International Nuclear Information System (INIS)

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  20. Compositional changes of ZnSe during implantation measured by SIMS and AES

    International Nuclear Information System (INIS)

    Using a specially designed system it is possible to observe the compositional changes of a surface during implantation. The results of implantation with Ag, Cl, Na into ZnSe will be presented. From the measured intensity of the secondary ions produced by ion implantation into the compound semiconductor ZnSe we will infer to the stoichiometric disturbance of the implanted layer. After implantation the changes can be observed quantitatively by AES, too. (author)

  1. PAC investigations of ferromagnetic spinel semiconductors

    OpenAIRE

    Samohvalov, Veaceslav

    2009-01-01

    The ternary spinel-type compounds CdCr2Se4, CdCr2S4, HgCr2Se4, and CuCr2Se4 with Cr as transition metal form a special group of ferromagnetic semiconductors with Curie temperatures up to 430 K. They have particular perspectives in spintronics due to the coexistence of semiconducting and ferromagnetic properties. In this work the ferromagnetic semiconductors were investigated by the hyperfine interactions of implanted nuclear probes using the PAC (perturbed angular correlations) spectroscopy. ...

  2. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  3. Workshop report and presentations from the Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop

    Science.gov (United States)

    The Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop was held in Oak ridge, Tennessee, on November 2-3, 1987. It was to provide a forum for representatives of the national laboratories, DOE, and the semiconductor industry in which to discuss capabilities of the national laboratories which could contribute to the future competitiveness of the US semiconductor industry, to identify specific large and small projects at the national laboratories which would be of direct benefit to the semiconductor industry, and to find ways of implementing these projects. Numerous small projects were identified which would utilize unique capabilities of the national laboratories in advanced ion implantation, plasma processing (including electron cyclotron resonance plasmas), ion and cluster beam deposition, materials characterization, electronic packaging, and laser processing and deposition. Five large-scale candidate projects were identified in synchrotron x-ray lithography, silicon process integration, advanced materials processing science, process analysis and diagnostics, and ultra clean room engineering. The major obstacle to implementing these projects if the lack of appropriate funds to initiate and stimulate interactions between the national laboratories and the semiconductor industry. SEMATECH and the federal government are potential sources of seed funds for these projects. The Semiconductor Research Corporation is ideally suited to interface the semiconductor industry and the national laboratories for many of these interactions.

  4. Ion implantation

    International Nuclear Information System (INIS)

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  5. Semiconductor integrated circuits

    International Nuclear Information System (INIS)

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  6. Plasma immersion ion implantation for silicon processing

    Science.gov (United States)

    Yankov, Rossen A.; Mändl, Stephan

    2001-04-01

    Plasma Immersion Ion Implantation (PIII) is a technology which is currently widely investigated as an alternative to conventional beam line implantation for ultrashallow doping beyond the 0.15 m technology. However, there are several other application areas in modern semiconductor processing. In this paper a detailed discussion of the PIII process for semiconductors and of actual as well as future applications is given. Besides the well known advantages of PIII - fast process, implantation of the whole surface, low cost of ownership - several peculiarities - like spread of the implantation energy due to finite rise time or collisions, no mass separation, high secondary electron emission - must be mentioned. However, they can be overcome by adjusting the system and the process parameters. Considering the applications, ultrashallow junction formation by PIII is an established industrial process, whereas SIMOX and Smart-Cut by oxygen and hydrogen implantation are current topics between research and introduction into industry. Further applications of PIII, of which some already are research topics and some are only investigated by conventional ion implantation, include seeding for metal deposition, gettering of metal impurities, etch stop layers and helium implantation for localized lifetime control.

  7. Single atom devices by ion implantation

    International Nuclear Information System (INIS)

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling. (paper)

  8. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  9. Mechanisms of damage formation in semiconductors

    International Nuclear Information System (INIS)

    The damage accumulation in ion-implanted semiconductors is analysed using Rutherford backscattering spectrometry (RBS). When energetic ions are implanted in a material, they transfer their energy mainly into atomic collision processes (nuclear energy loss) and in electronic excitations (electronic energy loss). For a given material this primary energy deposition is determined by the mass and energy of the implanted ions and the ion fluence (number of ions per unit area). However, the damage concentration which is measured after implantation does not only depend on the primary energy deposition, but is strongly influenced by secondary effects like defect annealing and defect transformation. For the latter processes the target temperature and the ion flux (number of ions per unit area and time) play an important role. In this presentation the influence of the various parameters mentioned above on the damage accumulation is demonstrated for various materials. Simple empirical models are applied to get information about the processes occurring and to systematize the results for the various semiconductors.

  10. Mechanisms of damage formation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, E. [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Max-Wien-Platz 1, 07743 Jena (Germany)], E-mail: elke.wendler@uni-jena.de

    2009-08-15

    The damage accumulation in ion-implanted semiconductors is analysed using Rutherford backscattering spectrometry (RBS). When energetic ions are implanted in a material, they transfer their energy mainly into atomic collision processes (nuclear energy loss) and in electronic excitations (electronic energy loss). For a given material this primary energy deposition is determined by the mass and energy of the implanted ions and the ion fluence (number of ions per unit area). However, the damage concentration which is measured after implantation does not only depend on the primary energy deposition, but is strongly influenced by secondary effects like defect annealing and defect transformation. For the latter processes the target temperature and the ion flux (number of ions per unit area and time) play an important role. In this presentation the influence of the various parameters mentioned above on the damage accumulation is demonstrated for various materials. Simple empirical models are applied to get information about the processes occurring and to systematize the results for the various semiconductors.

  11. Dental Implants

    Medline Plus

    Full Text Available ... are lost, it’s not uncommon to suffer from social consequences and poor nutrition. Rebuilding Bone When the ... not a one-day procedure. The implant needs time to properly adhere to the bone and create ...

  12. Cochlear Implants

    Science.gov (United States)

    ... on this topic can be found in our Audiology Information Series [PDF]. How does a cochlear implant ... speech-language pathologists; speech, language, and hearing scientists; audiology and speech-language pathology support personnel; and students. ...

  13. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin

    2010-01-01

    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  14. Semiconductor circuits worked examples

    CERN Document Server

    Abrahams, J R; Hiller, N

    1966-01-01

    Semiconductor Circuits: Worked Examples is a companion volume to Semiconductor Circuits: Theory, Design and Experiment. This book is a presentation of many questions at the undergraduate and technical level centering on the transistor. The problems concern basic physical theories of energy bands, covalent bond, and crystal lattice. Questions regarding the intrinsic property and impurity of semiconductors are also asked after the book presents a brief discussion of semiconductors. This book addresses the physical principles of semiconductor devices by presenting questions and worked examples o

  15. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  16. Electrostatically defined silicon quantum dots with counted antimony donor implants

    International Nuclear Information System (INIS)

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants

  17. Cochlear Implant

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this text, the authors recall the main principles and data ruling cochlear implants. Then, a first circle of technical equipment for assistance is presented. This circle includes: device setting (DS), Electrically evoked Auditory Brainstem Responses (EABR), Neural Response Telemetry (NRT), Stapedial Reflex (SR) and Electrodogram Acquisition (EA). This first cycle becomes more and more important as children are implanted younger and younger; the amount of data available with this assistance makes necessary the use of models (implicit or explicit) to handle this information. Consequently, this field is more open than ever.

  18. Semiconductors for terahertz photonics applications

    Energy Technology Data Exchange (ETDEWEB)

    Krotkus, Arunas [Semiconductor Physics Institute, 01800, A. Gostauto 11, Vilnius (Lithuania)

    2010-07-14

    Generation and measurement of ultrashort, subpicosecond pulses of electromagnetic radiation with their characteristic Fourier spectra that reach far into terahertz (THz) frequency range has recently become a versatile tool of far-infrared spectroscopy and imaging. This technique, THz time-domain spectroscopy, in addition to a femtosecond pulse laser, requires semiconductor components manufactured from materials with a short photoexcited carrier lifetime, high carrier mobility and large dark resistivity. Here we will review the most important developments in the field of investigation of such materials. The main characteristics of low-temperature-grown or ion-implanted GaAs and semiconducting compounds sensitive in the wavelength ranges around 1 {mu}m and 1.5 {mu}m will be surveyed. The second part of the paper is devoted to the effect of surface emission of THz transients from semiconductors illuminated by femtosecond laser pulses. The main physical mechanisms leading to this emission as well as their manifestation in various crystals will be described. (topical review)

  19. Cochlear implant

    Science.gov (United States)

    ... are sent along the auditory nerve to the brain. A deaf person does not have a functioning inner ear. A cochlear implant tries to replace the function of the inner ear by ... signals to the brain. Sound is picked up by a microphone worn ...

  20. Cochlear Implants

    Science.gov (United States)

    ... an optimal period to develop speech and language skills. Research has shown that when these children receive a cochlear implant followed by intensive therapy before they are 18 months ... age develop language skills at a rate comparable to children with normal ...

  1. Dental Implants

    Medline Plus

    Full Text Available ... suffer from social consequences and poor nutrition. Rebuilding Bone When the supporting alveolar bone melts away , it’s gone for good, but through grafting, a skilled dental professional can recreate bone to fuse with and support an implant. This ...

  2. Dental Implants

    Medline Plus

    Full Text Available ... an implant connects directly to the jaw bone. It’s obviously not the same as the original connection , ... may feel you don’t need to replace it, since no one can see that it’s missing ...

  3. Dental Implants

    Medline Plus

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful facts so you ... found in nature. What Happens When You Lose a Tooth? When you lose a tooth, especially a ...

  4. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  5. Interconnected semiconductor devices

    Science.gov (United States)

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  7. Cochlear implants

    OpenAIRE

    Despotović, Adrijana

    2011-01-01

    The aim of the thesis is to analyze the performance of the child with cochlear implant (CI) at language, math and movement activities. For the purpose of research exercises from all three above mentioned activities are prepared. Results of the exercises constitute the ground for the comparison of a child with CI and children with no hearing disability. Testing language skills was performed with exercises that included understanding, diction and identifying syllables. Mathematic skills...

  8. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  9. Spin injection into semiconductors

    Science.gov (United States)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  10. Semiconductor Research Experimental Techniques

    CERN Document Server

    Balkan, Naci

    2012-01-01

    The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.

  11. Molecular Semiconductors: An Introduction

    Science.gov (United States)

    de Mello, John; Halls, Jonathan James Michael

    2005-10-01

    Introducing the fundamental ideas and concepts behind organic semiconductors, this book provides a clear impression of the broad range of research activities currently underway. Aimed specifically at new entrant doctoral students from a wide variety of backgrounds, including chemistry, physics, electrical engineering and materials science, it also represents an ideal companion text to undergraduate courses in organic semiconductors.

  12. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  13. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.

  14. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  15. Electrochemical investigation of ion implanted p-Si

    OpenAIRE

    Spiegel, Adrian; Schmuki, Patrick

    2005-01-01

    The present work investigates the possibility of selective electrochemical metal deposition on ion implanted p-Si. The idea is that defects introduced into the substrate by ion implantation make it more susceptible to electrochemical reactions compared to intact Si; this increased sensitivity is to be used for selective reactions at the defect sites. It is believed that the increased reactivity is due to a lowering of the Schottky barrier breakdown potential, Ubd, of the semiconductor-electro...

  16. Electrochemical investigation of ion implanted p-Si

    OpenAIRE

    Spiegel, Adrian

    2003-01-01

    The present work investigates the possibility of selective electrochemical metal deposition on ion implanted p-Si. The idea is that defects introduced into the substrate by ion implantation make it more susceptible to electrochemical reactions compared to intact Si; this increased sensitivity is to be used for selective reactions at the defect sites. It is believed that the increased reactivity is due to a lowering of the Schottky barrier breakdown potential, Ubd, of the semiconductor-electro...

  17. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads to a...... decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate the...

  18. Semiconductor materials: From gemstone to semiconductor

    Science.gov (United States)

    Nebel, Christoph E.

    2003-07-01

    For diamond to be a viable semiconductor it must be possible to change its conductivity by adding impurities - known as dopants. With the discovery of a new dopant that generates electron conductivity at room temperature, diamond emerges as an electronic-grade material.

  19. Ion Implantation in Ge: Structural and electrical investigation of the induced lattice damage & Study of the lattice location of implanted impurities

    CERN Document Server

    Decoster, Stefan; Wahl, Ulrich

    The past two decades, germanium has drawn international attention as one of the most promising materials to replace silicon in semiconductor applications. Due to important advantages with respect to Si, such as the increased electron and hole mobility, Ge is well on its way to become an important material in future high-speed integrated circuits. Although the interest in this elemental group IV semiconductor is increasing rapidly nowadays, the number of publications about this material is still relatively scarce, especially when compared to Si. The most widely used technique to dope semiconductors is ion implantation, due to its good control of the dopant concentration and profile, and the isotopic purity of the implanted species. However, there is a major lack of knowledge of the fundamental properties of ion implantation in Ge, which has triggered the research presented in this thesis. One of the most important and generally unwanted properties of ion implantation is the creation of damage to the crystal la...

  20. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  1. Implantable Cardioverter Defibrillator

    Science.gov (United States)

    ... NHLBI on Twitter. What Is an Implantable Cardioverter Defibrillator? An implantable cardioverter defibrillator (ICD) is a small ... pacemakers and defibrillators. Comparison of an Implantable Cardioverter Defibrillator and a Pacemaker The image compares an ICD ...

  2. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  3. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  4. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  5. Nanotechnology and Dental Implants

    OpenAIRE

    Sandrine Lavenus; Guy Louarn; Pierre Layrolle

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of i...

  6. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  7. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  8. Adjustment of threshold voltage of MOS devices by ion implantation

    International Nuclear Information System (INIS)

    In this paper we report the effect of oxide thickness, implant energy and dose on threshold voltage shift Δ Vsub(T). The implant parameters e.g. stopping power, projected range, straggle and the energy loss per micron for an ion in the substrate lattice are calculated using the WHB potential. The junction depth beneath the oxide semiconductor surface is calculated using a two layer model. The parameters are then used in a theoretical calculation of threshold shift of MOS devices. Experimental threshold voltages for unimplanted and implanted samples were obtained from C-V plots, showing fairly good agreement with theory. (author)

  9. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  10. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  11. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  12. Electrowetting on a semiconductor

    CERN Document Server

    Arscott, Steve

    2012-01-01

    We report electrowetting on a semiconductor using of a mercury droplet resting on a silicon surface. The effect is demonstrated using commercial n-type and p-type single-crystal (100) silicon wafers of different doping levels. The electrowetting is reversible - the voltage-dependent wetting contact angle variation of the mercury droplet is observed to depend on both the underlying semiconductor doping density and type. The electrowetting behaviour is explained by the voltage-dependent modulation of the space-charge capacitance at the metal-semiconductor junction - current-voltage and capacitance-voltage-frequency measurements indicate this to be the case. A model combining the metal-semiconductor junction capacitance and the Young-Lippmann electrowetting equation agrees well with the observations.

  13. Semiconductor solar superabsorbers.

    Science.gov (United States)

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  14. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  15. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  16. VECSEL Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    SHANXiao-nan; LUGuo-guang; HEChun-feng; SUNYan-fang; LITe; QINLi; NINGYong-qiang; WANGLi-jun

    2005-01-01

    Surface-emitting semiconductor lasers can make use of external cavities and optical pumping techniques to achieve a combination of high continuous-wave output power and near-diffraction-limited beam quality that is not matched by any other type of semiconductor source. The ready access to the laser mode that the external cavity provides has been exploited for applications such as intra-cavity frequency doubling and passive mode-locking.

  17. Market survey of semiconductors

    International Nuclear Information System (INIS)

    Examination of technology and product trends over the range of current and future products in integrated circuits and optoelectronic displays. Analysis and forecast of major economic influences that affect the production costs of integrated circuits and optoelectronic displays. Forecast of the applications and markets for integrated circuits up to 1985 in West Europe, the USA and Japan. Historic development of the semiconductor industry and the prevailing tendencies - factors which influence success in the semiconductor industry. (orig.)

  18. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  19. X-ray irradiation of ion-implanted MOS capacitors

    International Nuclear Information System (INIS)

    He+ ion-implanted metal-oxide-semiconductor (MOS) capacitors with two different oxide thickness have been irradiated by X-rays and the depth distribution of the implant damage in the Si-SiO2 structures have been examined. The efficiency of X-ray annealing of electronic traps caused by implantation and changes in charge populations are reported. The experiment shows that (in the case when defects introduced by implantation are located at the Si-SiO2 interface) only defects corresponding to the deep levels in the Si can be affected by X-ray irradiation. When defects introduced by ion implantation are located deeper within the Si substrate complete annealing of these defects is observed

  20. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... Over the next hour you'll see the implantation of an automated implantable cardiac defibrillator. The surgery ... evening we're going to be discussing the implantation of a defibrillator. It’s a battery-powered implantable ...

  1. Retrograde peri-implantitis.

    Science.gov (United States)

    Mohamed, Jumshad B; Shivakumar, B; Sudarsan, Sabitha; Arun, K V; Kumar, T S S

    2010-01-01

    Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to) retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation. PMID:20922082

  2. Manufacture of ribbon and solar cells of material of semiconductor grade

    International Nuclear Information System (INIS)

    A method is described of producing ribbon-like substantially monocrystalline bodies of silicon or other materials of semiconductor grade suitable for use in solar cells or other semiconductor devices. A tube of the material is made and a photovoltaic junction formed in it. The tube is then divided lengthwise into a number of ribbon-like bodies. The photovoltaic junction can be formed either by diffusion or by ion-implantation. (U.K.)

  3. Electrical properties of Bi-implanted amorphous chalcogenide films

    International Nuclear Information System (INIS)

    The impact of Bi implantation on the conductivity and the thermopower of GeTe, Ge–Sb–Te, and Ga–La–S films is investigated. The enhanced conductivity appears to be notably sensitive to a dose of an implant. Incorporation of Bi in amorphous chalcogenide films at doses up to 1 × 1015 cm−2 is seen not to change the majority carrier type and activation energy for the conduction process. Higher implantation doses may reverse the majority carrier type in the studied films. Electron conductivity was observed in GeTe films implanted with Bi at a dose of 2 × 1016 cm−2. These studies indicate that native coordination defects present in amorphous chalcogenide semiconductors can be deactivated by means of ion implantation. A substantial density of implantation-induced traps in the studied films and their interfaces with silicon is inferred from analysis of the space-charge-limited current and capacitance-voltage characteristics taken on Au/amorphous chalcogenide/Si structures. - Highlights: • Electron conductivity is observed in Bi-implanted GeTe films. • Higher conductivity in Bi-implanted films stems from increased density of electrically active defects. • Bi implanted in amorphous chalcogenides may promote formation of a more chemically ordered alloy

  4. Electrical properties of Bi-implanted amorphous chalcogenide films

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Yanina G.

    2015-08-31

    The impact of Bi implantation on the conductivity and the thermopower of GeTe, Ge–Sb–Te, and Ga–La–S films is investigated. The enhanced conductivity appears to be notably sensitive to a dose of an implant. Incorporation of Bi in amorphous chalcogenide films at doses up to 1 × 10{sup 15} cm{sup −2} is seen not to change the majority carrier type and activation energy for the conduction process. Higher implantation doses may reverse the majority carrier type in the studied films. Electron conductivity was observed in GeTe films implanted with Bi at a dose of 2 × 10{sup 16} cm{sup −2}. These studies indicate that native coordination defects present in amorphous chalcogenide semiconductors can be deactivated by means of ion implantation. A substantial density of implantation-induced traps in the studied films and their interfaces with silicon is inferred from analysis of the space-charge-limited current and capacitance-voltage characteristics taken on Au/amorphous chalcogenide/Si structures. - Highlights: • Electron conductivity is observed in Bi-implanted GeTe films. • Higher conductivity in Bi-implanted films stems from increased density of electrically active defects. • Bi implanted in amorphous chalcogenides may promote formation of a more chemically ordered alloy.

  5. Implant success!!!.....simplified

    OpenAIRE

    Luthra Kaushal

    2009-01-01

    The endeavor towards life-like restoration has helped nurture new vistas in the art and science of implant dentistry. The protocol of “restoration-driven implant placement” ensures that the implant is an apical extension of the ideal future restoration and not the opposite. Meticulous pre-implant evaluation of soft and hard tissues, diagnostic cast and use of aesthetic wax-up and radiographic template combined with surgical template can simplify the intricate roadmap for appropriate implant t...

  6. Lattice Location of Radioactive Probes in Semiconductors and Metals by Electron and Positron Channelling

    CERN Multimedia

    2002-01-01

    The channelling effect of decay-electrons and positrons is used for the localization of radioactive impurities implanted into single crystals. Because of the low implantation doses and the variety of different isotopes available at ISOLDE, this technique is especially suited for applications in semiconducting materials. \\\\ \\\\ Channelling measurements in Si, GaAs and GaP implanted with In-, Cd- and Xe-isotopes have demonstrated that impurity lattice sites can be studied directly after implantation without any annealing. The electron-channelling technique can be ideally combined with hyperfine interaction techniques like Moessbauer s This was shown for the formation of In-vacancy complexes in ion-implanted Ni. \\\\ \\\\ We intend to continue the lattice location measurements in semiconductors implanted with various radioactive impurities of Cd, In, Sn, Sb and Te.

  7. Temperature elevations in endosseous dental implants and the peri-implant bone during diode-laser-assisted surface decontamination

    Science.gov (United States)

    Kreisler, Matthias; Schoof, Juergen; Langnau, Ernst; Al Haj, Haitham; d'Hoedt, Bernd

    2002-06-01

    The aim of the study was to investigate temperature elevations in the implant surface and the peri-implant bone during simulated surface decontamination of endosseous dental implants with an 809 nm semiconductor laser. Stepped cylinder implants were inserted into bone blocks cut from resected pig femurs. An artificial peri-implant bone defect provided access for the irradiation of the implant surface. A 600 micron optic fiber was used at a distance of 0.5 mm from the implant surface. Power output varied between 0.5 and 2.5 W in the cw-mode. Power density was between 176.9 and 884.6 Wcm-2. The bone block was placed into a 37 degree(s)C water bath in order to simulate in vivo thermal conductivity and diffusitivity of heat. Temperature elevations during irradiation were registered by means of K-Type thermocouples and a short wave thermocamera. In a time and energy-dependant manner, the critical threshold of 47 degree(s)C was exceeded in the peri-implant bone. Surface peak temperatures in the focus of up to 427.8 degree(s)C were observed. Implant surface decontamination with an 809 nm GaAlAs laser must be limited to a maximum of 10 s at an energy density below 350 wcm-2 to ensure a safe clinical treatment.

  8. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  9. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  10. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip

    2013-01-01

    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  11. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  12. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  13. Engineering magnetism in semiconductors

    Directory of Open Access Journals (Sweden)

    Tomasz Dietl

    2006-11-01

    Full Text Available Transition metal doped III-V, II-VI, and group IV compounds offer an unprecedented opportunity to explore ferromagnetism in semiconductors. Because ferromagnetic spin-spin interactions are mediated by holes in the valence band, changing the Fermi level using co-doping, electric fields, or light can directly manipulate the magnetic ordering. Moreover, engineering the Fermi level position by co-doping makes it possible to modify solubility and self-compensation limits, affecting magnetic characteristics in a number of surprising ways. The Fermi energy can even control the aggregation of magnetic ions, providing a new route to self-organization of magnetic nanostructures in a semiconductor host.

  14. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg

    2004-01-01

    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  15. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  16. Diluted magnetic semiconductors

    CERN Document Server

    Jain, Mukesh

    1991-01-01

    This review volume presents both basic and applied aspects of diluted magnetic semiconductors (DMS). The term DMS applies generally to semiconductors in which a fraction of its constituent ions are replaced by magnetic ions. This book is only the second to review DMS materials. It presents a detailed treatment of the current state of knowledge of the established properties of DMS in the form of single crystals, quantum wells and superlattices. It also brings together recent work on new DMS materials and presents discussions on a wide range of possible DMS applications.

  17. Semiconductor optical amplifiers

    CERN Document Server

    Dutta, Niloy K

    2013-01-01

    This invaluable look provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections rep

  18. Method For Silicon Surface Texturing Using Ion Implantation

    Science.gov (United States)

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang, Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods—ion implantation—is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  19. On the thermal mobility of lithium in metals and semiconductors

    International Nuclear Information System (INIS)

    Only little information is hitherto available on the thermal mobility of lithium in metals and semiconductors. Therefore, we undertook a study on the thermal behavior of lithium, implanted into various solids, by means of the NDP technique. In the majority of cases, the Li mobility is strongly influenced by trapping at damage sites, which were either induced by the previous irradiation or preexisting in the target material. In those cases, a more or less complete transition from the regular range profile shape to the nuclear damage profile shape is observed. Finally, in several systems, regular thermal diffusion is found, which can be described well by Fick's law. Frequently, a fraction of the implanted Li is found to be much more mobile than the majority of the implanted material, which gives rise to surface precipitations at relatively low temperatures. The surface precipitations vanish when Li sublimation sets in. (author)

  20. Investigation of magnetism in Fe and Cu ion implanted indium oxide films

    International Nuclear Information System (INIS)

    Diluted magnetic semiconductor based on indium oxide has been prepared by transition metal ion implantation. Fe and Cu ions have been implanted into pulsed laser deposition prepared pure In2O3 films by metal vapor vacuum arc source with doses from 5 × 1015 cm−2 to 1 × 1017 cm−2, respectively. The implanted samples are annealed in the air subsequently. The structure of In2O3 films is characterized by X-ray diffraction. X-ray photoelectron spectroscopy measurements are applied to confirm the electronic state of the implanted ions. Superconducting quantum interference device measurements at room temperature disclose that the diamagnetic In2O3 films turned to be ferromagnetic after Fe and Cu ion implantation. The correlation between ferromagnetism and implantation conditions is tested. The ferromagnetism is attributed to the bound magnetic polarons formed by Fe, Cu ion implantation

  1. Semiconductors for Plasmonics and Metamaterials

    OpenAIRE

    Naik, Gururaj V.; Boltasseva, Alexandra

    2011-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity i...

  2. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  3. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  4. Biexcitons in semiconductor microcavities

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.;

    2003-01-01

    In this paper, the present status of the experimental study of the optical properties of biexcitons in semiconductor microcavities is reviewed. In particular, a detailed investigation of a polariton-biexciton transition in a high-quality single quantum well GaAs/AlGaAs microcavity is reported. The...

  5. Effects of Techniques of Implanting Nitrogen into Buried Oxide on the Characteristics of Partially Depleted SOI PMOSFET

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhong-Shan; LIU Zhong-Li; ZHANG Guo-Qiang; LI Ning; FAN Kai; ZHANG En-Xia; YI Wan-Bing; CHEN Meng; WANG Xi

    2005-01-01

    @@ Effects of techniques of implanting nitrogen into buried oxide on the characteristics of the partially depleted silicon-on-insulator (SOI) p-channel metal-oxide-semiconductor field-effect transistors (PMOSFETs) have beenstudied with three different nitrogen implantation doses, 8 × 1015, 2 × 1016, and 1 × 1017 cm-2.

  6. Fundamentals of power semiconductor devices

    CERN Document Server

    Baliga, BJayant

    2010-01-01

    Offers an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. This book shows analytical models for explaining the operation of various power semiconductor devices. It is suitable for practicing engineers in the power semiconductor device community.

  7. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... discussing the implantation of a defibrillator. It’s a battery-powered implantable device that saves patients from deadly ... next doctor or whoever come to replace the battery and then to change the generator, they cannot -- ...

  8. Implantable cardioverter defibrillator - discharge

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000108.htm Implantable cardioverter defibrillator - discharge To use the sharing features on this ... chest wall. A device called an implantable cardioverter-defibrillator (ICD) was inserted under your skin and muscle. ...

  9. Pacemakers and Implantable Defibrillators

    Science.gov (United States)

    ... need a cardiac pacemaker or an implantable cardioverter defibrillator (ICD). They are devices that are implanted in ... can act as both a pacemaker and a defibrillator. Many ICDs also record the heart's electrical patterns ...

  10. Implantable cardioverter-defibrillator

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007370.htm Implantable cardioverter-defibrillator To use the sharing features on this page, please enable JavaScript. An implantable cardioverter-defibrillator (ICD) is a device that detects any life- ...

  11. Urinary incontinence - injectable implant

    Science.gov (United States)

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  12. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... quality healthcare for all patients. "OR Live" makes it easy for you to learn more. Just click ... to be discussing the implantation of a defibrillator. It’s a battery-powered implantable device that saves patients ...

  13. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L., E-mail: TA@asu.edu [School of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); David Theodore, N. [CHD-Fab, Freescale Semiconductor Inc., 1300 N. Alma School Rd., Chandler, Arizona 85224 (United States); Lu, Wei; Lau, S. S. [Department of Electrical Engineering, University of California, San Diego, California 92093 (United States); Lanz, A. [Department of Mathematics, Norfolk State University, Norfolk, Virginia 23504 (United States)

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  14. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  15. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  16. Industrial applications of ion implantation into metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  17. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  18. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means of...... evaluating bone-implant fixation with HA coatings....

  19. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  20. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  1. Semiconductor physics an introduction

    CERN Document Server

    Seeger, Karlheinz

    1999-01-01

    Semiconductor Physics - An Introduction - is suitable for the senior undergraduate or new graduate student majoring in electrical engineering or physics. It will also be useful to solid-state scientists and device engineers involved in semiconductor design and technology. The text provides a lucid account of charge transport, energy transport and optical processes, and a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, the quantum Hall effect and the calculation of the influence of a magnetic field on the carrier distribution function. This 6th edition has been revised and corrected, and new sections have been added to different chapters.

  2. How semiconductor nanoplatelets form

    OpenAIRE

    Riedinger, Andreas; Ott, Florian D.; Mule, Aniket; Mazzotti, Sergio; Knuesel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2016-01-01

    Colloidal nanoplatelets - quasi-two-dimensional sheets of semiconductor exhibiting efficient, spectrally pure fluorescence - form when liquid-phase syntheses of spherical quantum dots are modified. Despite intense interest in their properties, the mechanism behind their anisotropic shape and precise atomic-scale thickness remains unclear, and even counterintuitive when their crystal structure is isotropic. One commonly accepted explanation is that nanoclusters nucleate within molecular templa...

  3. Polymer semiconductor crystals

    OpenAIRE

    Jung Ah Lim; Feng Liu; Sunzida Ferdous; Murugappan Muthukumar; Briseno, Alejandro L.

    2010-01-01

    One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understa...

  4. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  5. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  6. Survey of semiconductor physics

    CERN Document Server

    Böer, Karl W

    1992-01-01

    Any book that covers a large variety of subjects and is written by one author lacks by necessity the depth provided by an expert in his or her own field of specialization. This book is no exception. It has been written with the encouragement of my students and colleagues, who felt that an extensive card file I had accumulated over the years of teaching solid state and semiconductor physics would be helpful to more than just a few of us. This file, updated from time to time, contained lecture notes and other entries that were useful in my research and permitted me to give to my students a broader spectrum of information than is available in typical textbooks. When assembling this material into a book, I divided the top­ ics into material dealing with the homogeneous semiconductor, the subject of the previously published Volume 1, and the inhomoge­ neous semiconductor, the subject of this Volume 2. In order to keep the book to a manageable size, sections of tutorial character which can be used as text for a g...

  7. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  8. Multi-wavelength lasers by an implantation

    International Nuclear Information System (INIS)

    Full text: Ion implantation is well known technique to induce intermixing in multilayer semiconductors. One major application of this technique is to selectively fine-tune the band structure of quantum well devices. This effect is achieved by modifying the shape of the quantum well and hence the ground state of excitons in the well. Although, ion implantation is not the only technique available to create intermixing, it has the advantage of reproducibility and the ability to introduce a controllable amount of defects to enhance the intermixing process. The introduction of defects must be carefully controlled, as they must not degrade the device properties. In this paper, we will demonstrate the use of proton bombardment to create intermixing in GaAs-AlGaAs quantum well structures. Very large energy shifts (up to 200 me V) are observed from these samples by low temperature photoluminescence spectroscopy. This process is then extended to modify the emission wavelengths of Graded-Index Separate Confinement Heterostructure (GRINSCH) GaAs quantum well lasers with minimal degradation in the device characteristics. Up to 40 nm shift in wavelength is observed in devices implanted with protons to a dose of 1.5x1016 cm -2. These results demonstrate the viability and usefulness of ion implantation to fabricate the next generation of wavelength-division-multiplexing (WDM) devices

  9. Parametric interactions in presence of different size colloids in semiconductor quantum plasmas

    International Nuclear Information System (INIS)

    Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal

  10. COCHLEAR IMPLANTATION: MY EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Shankar

    2015-12-01

    Full Text Available Cochlear implant is a small, surgically implanted complex electronic device that can help to provide a sense of sound to a person with severe to profound sensorineural hearing loss. This type of hearing loss, typically involves damage to hair cells in the cochlea, as a result sound cannot reach the auditory nerve which usually receives information from hair cells. A cochlear implant skips the damaged hair cells and to stimulate the auditory nerve directly. An implant does not restore normal hearing, instead it can give a deaf person a useful representation of sounds in the environment and help him or her to understand speech. I am here presenting this article in relation to the indications, intraoperative and postoperative complications of cochlear implantation in our institute since January 2013. Children who receive implants at earlier age, outperform their peers who are implanted at a later age. This is reflected in all the areas of speech and language development.

  11. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  12. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  13. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  14. Development of a keV single-ion-implanter for nanofabrication

    International Nuclear Information System (INIS)

    Traditional methods of doping semiconductors have a difficulty meeting the demand for high precision doping due to large statistical fluctuations in the numbers of dopant atoms introduced in the ever shrinking volume in micro- and nano-electronics devices, especially when the fabrication process approaches the nanometre scale. The statistical fluctuations in doping semiconductors for the fabrication of devices with a very small feature size may lead to inconsistent and unreliable performance. This paper describes the adaptation of a commercial ion implanter into a single-ion-implantation system for the accurate delivery of dopants into a nanometre or micrometre area in a silicon substrate. All the implanted ions can be accurately counted with near 100% certainty through online detection using the silicon substrate itself as an ion detector. A variety of ion species including B+, N+, P+ at the energy range of 10-15 keV can be delivered in the single ion implantation system. (author). 6 refs., 6 figs

  15. Simulation of charging phenomena in ion implantation into the micro structure pattern

    International Nuclear Information System (INIS)

    The charging of devices in high current ion implantation has become a serious problem. We have suggested that the negative ion has an effect on this problem. We have calculated the charging-up potential of insulated region considering the micro device structure, and compared the positive and negative ion implantation. We have reached the following results: the larger the grounded area and the bigger the secondary electron emission factor of grounded region, the surface potential of insulated region is lower in both positive and negative ion implantation. Especially in negative ion implantation the saturated surface potential is getting near zero volt. In negative ion implantation to the micro structure pattern, the surface voltage saturates at a low voltage, which is suitable to the ion implantation into semiconductor devices. (author)

  16. Improvement of device isolation using field implantation for GaN MOSFETs

    International Nuclear Information System (INIS)

    Gallium nitride (GaN) metal-oxide-semiconductor field-effect transistors (MOSFETs) with boron field implantation isolation and mesa isolation were fabricated and characterized. The process of boron field implantation was altered and subsequently conducted after performing high-temperature ohmic annealing and gate oxide thermal treatment. Implanted regions with high resistivity were achieved. The circular MOSFET fabricated in the implanted region showed an extremely low current of 6.5 × 10−12 A under a gate voltage value up to 10 V, thus demonstrating that the parasitic MOSFET in the isolation region was eliminated by boron field implantation. The off-state drain current of the rectangular MOSFET with boron field implantation was 5.5 × 10−11 A, which was only one order of magnitude higher than the 6.6 × 10−12 A of the circular device. By contrast, the rectangular MOSFET with mesa isolation presented an off-state drain current of 3.2 × 10−9 A. The field isolation for GaN MOSFETs was achieved by using boron field implantation. The implantation did not reduce the field-effect mobility. The isolation structure of both mesa and implantation did not influence the subthreshold swing, whereas the isolation structure of only the implantation increased the subthreshold swing. The breakdown voltage of the implanted region with 5 μm spacing was up to 901.5 V. (paper)

  17. Implanted bottom gate for epitaxial graphene on silicon carbide

    International Nuclear Information System (INIS)

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between. (paper)

  18. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  19. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic and...... as a tool to study the coherent exciton dynamics, and the importance of performing transform limited spectroscopy is demonstrated throughout....

  20. Physics of Organic Semiconductors

    CERN Document Server

    Brütting, Wolfgang

    2005-01-01

    Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents:. * Excitation Dynamics in O

  1. Compound semiconductor integrated circuits

    CERN Document Server

    Vu, Tho T

    2003-01-01

    This is the book version of a special issue of the International Journal of High Speed Electronics and Systems , reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth

  2. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1991-01-01

    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  3. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  4. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT

    2013-01-01

    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  5. n-type chalcogenides by ion implantation.

    Science.gov (United States)

    Hughes, Mark A; Fedorenko, Yanina; Gholipour, Behrad; Yao, Jin; Lee, Tae-Hoon; Gwilliam, Russell M; Homewood, Kevin P; Hinder, Steven; Hewak, Daniel W; Elliott, Stephen R; Curry, Richard J

    2014-01-01

    Carrier-type reversal to enable the formation of semiconductor p-n junctions is a prerequisite for many electronic applications. Chalcogenide glasses are p-type semiconductors and their applications have been limited by the extraordinary difficulty in obtaining n-type conductivity. The ability to form chalcogenide glass p-n junctions could improve the performance of phase-change memory and thermoelectric devices and allow the direct electronic control of nonlinear optical devices. Previously, carrier-type reversal has been restricted to the GeCh (Ch=S, Se, Te) family of glasses, with very high Bi or Pb 'doping' concentrations (~5-11 at.%), incorporated during high-temperature glass melting. Here we report the first n-type doping of chalcogenide glasses by ion implantation of Bi into GeTe and GaLaSO amorphous films, demonstrating rectification and photocurrent in a Bi-implanted GaLaSO device. The electrical doping effect of Bi is observed at a 100 times lower concentration than for Bi melt-doped GeCh glasses. PMID:25376988

  6. On the magnetic properties of Gd implanted GAN

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Maryško, Miroslav; Jirák, Zdeněk; Sedmidubský, D.; Sofer, Z.; Peřina, Vratislav; Hardtdegen, H.; Buchal, C.

    2008-01-01

    Roč. 103, č. 7 (2008), 07D107/1-07D107/3. ISSN 0021-8979 R&D Projects: GA ČR GA104/06/0642 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : ferromagnetic materials * gadolinium * gallium compounds * III-V semiconductors * ion implantation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.201, year: 2008

  7. Dental Implant Systems

    OpenAIRE

    Yoshiki Oshida; Tuna, Elif B.; Oya Aktören; Koray Gençay

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with...

  8. Implants in adolescents

    Directory of Open Access Journals (Sweden)

    Rohit A Shah

    2013-01-01

    Full Text Available Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature.

  9. Implants in adolescents

    Science.gov (United States)

    Shah, Rohit A.; Mitra, Dipika K.; Rodrigues, Silvia V.; Pathare, Pragalbha N.; Podar, Rajesh S.; Vijayakar, Harshad N.

    2013-01-01

    Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature. PMID:24174743

  10. Implants in adolescents

    OpenAIRE

    Shah, Rohit A.; Dipika K Mitra; Rodrigues, Silvia V.; Pathare, Pragalbha N.; Podar, Rajesh S.; Vijayakar, Harshad N.

    2013-01-01

    Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature.

  11. Maintenance in dental implants

    OpenAIRE

    Giselle Póvoa Gomes; Ronaldo Mendes Assis Lucena; Patrícia Barcelos Bastos; José Bernardes das Neves

    2008-01-01

    In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the...

  12. Trends in Cochlear Implants

    OpenAIRE

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic as...

  13. Integrated semiconductor configuration and method for its production

    International Nuclear Information System (INIS)

    The invention concerns a semiconductor micro-circuit where at least two zones of a second type of conductivity, separated from one another, are inserted into the surface of a semiconducting layer of a first type of conductivity. A method is proposed for preventing inversion and, caused by it, formation of paths of leakage current in the region of the semiconducting layer between the two zones covered with an insulating layer and above it with a conducting layer. For this purpose charges belonging to the second type of conductivity are embedded within the insulating layer in the boundary surface along the semiconducting layer. In case of positive charges they consist of large alkali ions. In order to achieve this the semiconductor wafers are either immersed in aqueous solutions of cesium chloride, magnesium chloride, barium nitride, or rubidium chloride or an alkalihaloid salt is evaporated under vacuum, or alkali ions will be implanted. (ORU)

  14. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  15. Temporary ectopic hand implantation

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2015-03-01

    Full Text Available Severe crushing injuries to the distal forearm can preclude immediate hand replantation, with temporary ectopic implantation as a practicable option under special circumstances. This report describes a case of temporary ectopic hand implantation for a crush injury extending from the wrist to the middle third of the forearm, using the left foot as the recipient site. The hand was replanted onto the left forearm 3 months after the ectopic implantation, with functional gains seen by 18 months. Satisfactory ambulation was retained, with no reported foot pain. Temporary ectopic implantation is a pragmatic alternative under select circumstances.

  16. Doping semiconductor nanocrystals.

    Science.gov (United States)

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  17. Squeezed light in semiconductors

    CERN Document Server

    Ward, M B

    2001-01-01

    Experimental evidence is presented for the generation of photon-number squeezed states of light as a result of multi-photon absorption. Photon-number squeezing as a result of non-linear absorption has long been predicted and results have been obtained utilising two very different material systems: (i) an AIGaAs waveguide in which high optical intensities can be maintained over a relatively long interaction length of 2 mm; (ii) the organic polymer p-toluene sulphonate polydiacetylene that is essentially a one-dimensional semiconductor possessing a highly nonlinear optical susceptibility. The resulting nonlinear absorption is shown to leave the transmitted light in a state that is clearly nonclassical, exhibiting photon-number fluctuations below the shot-noise limit. Tuning the laser wavelength across the half-bandgap energy has enabled a comparison between two- and three-photon processes in the semiconductor waveguide. The correlations created between different spectral components of a pulsed beam of light as ...

  18. Semiconductor Laser with Aperiodic Photonic Lattice

    OpenAIRE

    Subhasish Chakraborty

    2008-01-01

    A semiconductor laser and method for selecting laser frequency emission from the semiconductor laser are disclosed. The semiconductor laser provides selectable frequency emission and includes an aperiodic photonic lattice.

  19. Quasiferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Ferromagnetic hysteresis has been observed at room temperature in materials not consisting of elements commonly associated with ferromagnetism, such as Co, Ni, Fe, or Mn-containing alloys. In particular, we report on magnetic hysteresis seen in silicon prepared by two different techniques: ion implantation (Si and Ar) and neutron irradiation. Because the material investigated contains no ferromagnetic elements, we tentatively call it ''quasiferromagnetic.'' The paramagnetic defects present in these materials were investigated using electron paramagnetic resonance. We suggest that these defects are one of the factors responsible for the observed macroscopic magnetic hysteresis loop

  20. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  1. Optical coherent control in semiconductors

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase...

  2. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....

  3. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author)

  4. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS) growt

  5. Handbook for cleaning for semiconductor manufacturing fundamentals and applications

    CERN Document Server

    Reinhardt, Karen A

    2011-01-01

    This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This

  6. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    In line with this work the structural and magnetic properties of the exchange coupled layered systems Fe/FeSn{sub 2} and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the {sup 57}Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn{sub 2}(001) films and of the exchange-bias system Fe/FeSn{sub 2}(001) on InSb(001) were investigated. With the application of {sup 57}Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (B{sub hf}) of FeSn{sub 2} could be examined. The evaporation of Fe films on the FeSn{sub 2} films produced in the latter ones a high perpendicular spin component at the Fe/FeSn{sub 2} interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore {sup 57}Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn{sub 2}. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures T{sub B}{sup *}, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures T{sub B} of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of t{sub FeSi}=10-12 A of the

  7. Development of vertical compact ion implanter for gemstones applications

    International Nuclear Information System (INIS)

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented

  8. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  9. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  10. Incorporation of oxygen in SiC implanted with hydrogen

    Science.gov (United States)

    Barcz, A.; Jakieła, R.; Kozubal, M.; Dyczewski, J.; Celler, G. K.

    2015-12-01

    Oxygen accumulation at buried implantation-damage layers was studied after post-implantation annealing of hydrogen- or deuterium-implanted 4H-SiC. In this study H+ or 2H+ implantation was carried out at energies E, from 200 keV to 1 MeV, to fluences D, ranging from 2 × 1016/cm2 to 1 × 1017/cm2. For comparison, the implantation was also done into float-zone (FZ) and Czochralski (CZ) silicon wafers. Post-implantation annealing at temperatures from 400 °C to 1150 °C was performed either in pure argon or in a water vapor. Characterization methods included SIMS, RBS and TEM. At sufficiently high doses, hydrogen implantation into semiconductors leads to the irreversible formation of a planar zone of microcavities, bubbles and other extended defects located at the maximum of deposited energy. This kind of highly perturbed layer, containing large amounts of agglomerated hydrogen is known to efficiently getter a number of impurities. Oxygen was detected in both CZ and FZ silicon subjected to Smart-Cut™ processing. We have identified, by SIMS profiling, a considerable oxygen peak situated at the interface between the SiC substrate and a layer implanted with 1 × 1017 H ions/cm2 and heated to 1150 °C in either H2O vapor or in a nominally pure Ar. In view of a lack of convincing evidence that a hexagonal SiC might contain substantial amounts of oxygen, the objective of the present study was to identify the source and possible transport mechanism of oxygen species to the cavity band. Through the analysis of several implants annealed at various conditions, we conclude that, besides diffusion from the bulk or from surface oxides, an alternative path for oxygen agglomeration is migration of gaseous O2 or H2O from the edge of the sample through the porous layer.

  11. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  12. Semiconductors for Plasmonics and Metamaterials

    CERN Document Server

    Naik, Gururaj V; 10.1002/pssr.201004269

    2011-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 um. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths.

  13. Helium-3 and boron-10 concentration and depth measurements in alloys and semiconductors using NDP

    Science.gov (United States)

    Ünlü, Kenan; Saglam, Mehmet; Wehring, Bernard W.

    1999-02-01

    Neutron Depth Profiling (NDP) is a nondestructive near surface technique that is used to measure concentration versus absolute depth of several isotopes of light mass elements in various substrates. NDP is based on absorption reaction of thermal neutrons with the isotope of interest. Charged particles and recoil atoms are generated in the reaction. The depth profiles are determined by measuring the residual energy of the charged particles or the recoil atoms. The NDP technique has became an increasingly important method to measure depth profiles of 3He and 10B in alloys and semiconductor materials. A permanent NDP facility has been installed on the tangential beam port of the University of Texas (UT) TRIGA Mark-II research reactor. One of the standard applications of the UT-NDP facility involves the determination of boron profiles of borophosphosilicate glass (BPSG) samples. NDP is also being used in combination with electron microscopy measurements to determine radiation damage and microstructural changes in stainless steel samples. This is done to study the long-term effects of high-dose alpha irradiation for weapons grade plutonium encapsulation. Measurements of implanted boron-10 concentration and depth profiles of semiconductor materials in order to calibrate commercial implanters is another application at the UT-NDP facility. The concentration and depth profiles measured with NDP and SIMS are compared with reported data given by various vendors or different implanters in order to verify implant quality of semiconductor wafers. The results of the measurements and other possible applications of NDP are presented.

  14. Evolution of secondary defects in arsenic implanted Si

    Science.gov (United States)

    Zhu, He; Wang, Miao; Zhang, Bingpo; Wu, Huizhen; Sun, Yan; Hu, Gujin; Dai, Ning

    2016-04-01

    Behavior of defects in ion-implanted semiconductors is an everlasting topic and becomes even more critical as semiconductor devices continuously shrink and ion implantation technique has been increasingly employed. High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) were employed to investigate the structural evolution of arsenic (As) implanted silicon (Si). Project range (PR) defects and end of range (EOR) dislocations are observed via HRTEM. EDX characterization proves the two types of defects are related to dopant atoms precipitations. The sizes of both PR defects and EOR dislocations enlarge at the expense of small ones with the elevation of annealing temperature. The characterizations of electrochemical capacitance-voltage and EDX conclude that the SiO2/Si interface is playing an indispensable role in the deactivation of dopant atoms during the annealing process. As atoms are detected in the As-implanted Si region near the SiO2/Si interface but not in the silica layer. Nanoparticles composed of Si atoms in the silica layer are observed in the 1150 °C-annealed samples, which proves the migration of oxygen atoms at the SiO2/Si interface.

  15. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  16. Simulation and Performance Test Technology Development for Semiconductor Radiation Detection Instrument Fabrication

    International Nuclear Information System (INIS)

    - Analysis on the Absorbed Dose and Electron Generation by Using MCNPX Code - Analysis on the Change of Measured Energy Spectrum As a Function of Bias Voltage Applied in Semiconductor Detector - Comparison of Monte Carlo Simulation Considering the Charge Collection Efficiency and Experimental Result - Development of Semiconductor Sensor Design Code Based on the Graphic User Interface - Analysis on Depth Profile of Ion-implanted Semiconductor Wafer Surface and Naturally Generated SiO2 Insulation Layer Using Auger Electron Spectroscopy - Measurement of AFM Images and Roughness to Abalyze Surface of Semiconductor Wafer with respect to Annealing and Cleaning Process - Measurement of Physical Properties for Semiconductor Detector Surface after CZT Passivation Process - Evaluation of Crystal Structure and Specific Resistance of CZT - Measurement/Analysis on Band Structure of CZT Crystal - Evaluation of Neutron Convertor Layer with respect to Change in Temperature - Measurement/Evaluation of physical characteristics for lattice parameter, specific resistance, and band structure of CZT crystal - Measurement/Evaluation of lattice transition of SiC semiconductor detector after radiation irradiation - Measurement/Evaluation of performance of semiconductor detector with respect to exposure in high temperature environment

  17. Donor level of interstitial hydrogen in semiconductors: Deep level transient spectroscopy

    International Nuclear Information System (INIS)

    The behaviour of hydrogen in crystalline semiconductors has attracted considerable interest during several decades. Due to its high diffusion rate and ability to react with a wide variety of lattice imperfections such as intrinsic point defects, impurities, interfaces and surfaces, hydrogen is an impurity of fundamental importance in semiconductor materials. It has been already evidenced in previous investigations that the most fundamental hydrogen-related defects in-group IV semiconductors are interstitial hydrogen atoms occupying the bond-centre site (BC) or the interstitial tetrahedral site (T). Using first-principles calculations Van de Walle predicted similar properties of isolated hydrogen in other II-VI and III-V semiconductors. Another interesting prediction shown in that work was the existence of a universal alignment for the hydrogen electronic (-/+) level. Until now there is no direct experimental information regarding the individual isolated hydrogen states in compound semiconductors and most reported properties have been inferred indirectly. In the present work in-situ conventional deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS techniques are used to analyse hydrogen-related levels after low-temperature proton implantation in different II-VI and III-V semiconductors including GaAs, ZnO and CdTe. From these experimental observations the donor level of isolated hydrogen is found to keep almost a constant value in the absolute energy scale taking into account different band-offsets calculated for the whole group of semiconductors.

  18. Donor level of interstitial hydrogen in semiconductors: Deep level transient spectroscopy

    Science.gov (United States)

    Kolkovsky, Vl.; Dobaczewski, L.; Nielsen, K. Bonde; Kolkovsky, V.; Larsen, A. Nylandsted; Weber, J.

    2009-12-01

    The behaviour of hydrogen in crystalline semiconductors has attracted considerable interest during several decades. Due to its high diffusion rate and ability to react with a wide variety of lattice imperfections such as intrinsic point defects, impurities, interfaces and surfaces, hydrogen is an impurity of fundamental importance in semiconductor materials. It has been already evidenced in previous investigations that the most fundamental hydrogen-related defects in-group IV semiconductors are interstitial hydrogen atoms occupying the bond-centre site ( BC) or the interstitial tetrahedral site ( T). Using first-principles calculations Van de Walle predicted similar properties of isolated hydrogen in other II-VI and III-V semiconductors. Another interesting prediction shown in that work was the existence of a universal alignment for the hydrogen electronic (-/+) level. Until now there is no direct experimental information regarding the individual isolated hydrogen states in compound semiconductors and most reported properties have been inferred indirectly. In the present work in-situ conventional deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS techniques are used to analyse hydrogen-related levels after low-temperature proton implantation in different II-VI and III-V semiconductors including GaAs, ZnO and CdTe. From these experimental observations the donor level of isolated hydrogen is found to keep almost a constant value in the absolute energy scale taking into account different band-offsets calculated for the whole group of semiconductors.

  19. Semiconductor Nanomaterials and Nanocrystals

    Directory of Open Access Journals (Sweden)

    N.V. Stetsyk

    2015-06-01

    Full Text Available This article introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This work also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important application.

  20. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  1. Hydrogen in compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    1993-05-01

    Progress in the understanding of hydrogen and its interactions in III/V and II/VI compound semiconductors is reviewed. Donor, acceptor and deep level passivation is well established in III/V compounds based on electrical measurements and on spectroscopic studies. The hydrogen donor levels in GaAs and GaP are estimated to lie near E{sub v}+0.5 eV and E{sub v}+0.3 eV, respectively. Arsenic acceptors have been passivated by hydrogen in CdTe and the very first nitrogen-hydrogen local vibrational model spectra in ZnSe have been reported. This long awaited result may lead to an explanation for the poor activation of nitrogen acceptors in ZnSe grown by techniques which involve high concentrations of hydrogen.

  2. Semiconductor testing method

    International Nuclear Information System (INIS)

    In a method of avoiding use of nuclear radiation, eg gamma rays, X-rays, electron beams, for testing semiconductor components for resistance to hard radiation, which hard radiation causes data corruption in some memory devices and 'latch-up' in others, similar fault effects can be achieved using a xenon or other 'light' flash gun even though the penetration of light is significantly less than that of gamma rays. The method involves treating a device with gamma radiation, measuring a particular fault current at the onset of a fault event, repeating the test with light to confirm the occurrence of the fault event at the same measured fault current, and using the fault current value as a reference for future tests using light on similar devices. (author)

  3. Semiconductor device. Handotai sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ebe, K.

    1993-10-15

    The wavelength area of the solar cell ranges widely from 0.3[mu]m short wavelength light to 2.4[mu]m long wavelength light, and semiconductor devices are desired to be developed which can absorb those wide range wavelength lights effectively for photoelectrical transfer. This invention is concerned with provision of a wide energy gap superlattice layer, which can absorb short wave light energy of the sunlight, and a narrow energy gap superlattice layer which can absorb long wavelength light energy of the sunlight, by stacking or by interposing the substrate. The energy gap of the formed superlattice layer is varied by gradual or continuous changing of the thickness of the barrier layer and the well layer of the narrow energy gap superlattice layer. As a result, high efficient solar cell is structured which can efficiently absorb the light of the sunlight ranging from short wavelength to long wavelength. 6 figs., 2 tabs.

  4. Nanoindentation of ion-implanted crystalline germanium

    International Nuclear Information System (INIS)

    Most indentation studies to date on crystalline germanium (c-Ge) and related covalent semiconductors have been carried out on pristine defect-free material. This paper addresses the paucity of studies on imperfect crystalline materials by exploring the impact of defects generated by ion implantation, prior to contact damage, upon the mechanical properties of c-Ge. Implantation with Ge ions is carried out to generate a layer of highly defective but still-crystalline Ge. Under nanoindentation with a sharp diamond tip, enhanced plasticity is observed relative to pristine material. Characterization by cross-sectional transmission electron microscopy, atomic force microscopy, and load curve analysis shows softening, quasiductile extrusion, and cracking suppression taking place. These changes can be explained by the high density of defects, and dangling bonds in particular, created by ion implantation and revealed by positron-annihilation spectroscopy, and are proportional to the fraction of 'missing bonds' or vacancies in the material. A thermal annealing step at 200 deg. C is sufficient to restore the mechanical response of pristine material, despite incomplete recovery of the original pristine crystal structure.

  5. ADFA/ANU 150 keV radioactive ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.X.; Chaplin, D.H.; Hutchinson, W.D.; Stewart, G.A. [University College, UNSW, Sydney, NSW (Australia). School of Physics; Byrne, A.P. [Australian National University, Canberra, ACT (Australia). Department of Nuclear Physics, RSPhysSE and Department of Physics, the Faculties

    1998-12-31

    Full text: As foreshadowed at the 10th Australian Conference on Nuclear Techniques of Analysis (Byrne et al), the collaborative project to build a radioactive ion implanter, within the custom designed Radiation Laboratories at Australian Defence Force Academy (ADFA), has recently led to the initial commissioning tests of the instrument described in that report. Primary aims are to serve the hyperfine interactions community interested in Materials Science with particular emphasis on magnetic and semiconductor materials. 2.8 day {sup 111}In will be the first radioactive probe implanted following optimization of beam transport with stable indium. The implanted {sup 111}In samples will be prepared for both time-differential, gamma-gamma, PAC studies at ANU and bruteforce NMRON spectroscopies using the top loading dilution refrigerator at ADFA. In this paper we provide further information on the capabilities of the instrument and the results of the initial commissioning tests

  6. MIS diode structure in As/+/ implanted CdS

    Science.gov (United States)

    Hutchby, J. A.

    1977-01-01

    Structure made by As implantation of carefully prepared high-conductivity CdS surfaces followed by Pt deposition and 450 C anneal display rectifying, although substantially different, I-V characteristics in the dark and during illumination with subband-gap light. Structures prepared in the same way on an unimplanted portion of the substrate have similar I-V characteristics, except that the forward turnover voltage for an illuminated unimplanted diode is much smaller than that for an implanted diode. It is suggested that the charge conduction in both structures is dominated by hole and/or electron tunneling through a metal-semiconductor potential barrier. The tunneling processes appear to be quite sensitive to subband-gap illumination, which causes the dramatic decreases of turnover voltages and apparent series resistances. The difference in turnover voltage appears to be caused by interface states between the Pt electrode and the implanted layer, which suggests a MIS model.

  7. SIMS system for the analysis of sputtered ions during ion implantation

    International Nuclear Information System (INIS)

    A system is described which allows secondary ion mass spectroscopy (SIMS) measurements during implantation at primary energies up to 170 keV. The secondary ions are produced by the implantation beam itself. The system has been assembled to study the stoichiometric disturbances near the surface of compound semiconductors caused by the bombardment with ions. Furthermore it is possible to examine the influence of sputter effects during implantation on the doping profile. The arrangement also provides means for standard SIMS and Auger electron spectroscopy (AES). (Auth.)

  8. Formation and annealing of radiation damage in boron ion implanted MOS structures

    International Nuclear Information System (INIS)

    Processes of accumulation of defects induced by radiation and annealing characteristics of 1.25 x 1012 cm-2 boron implanted MOS structures are investigated at implantation energy varied from 30 to 125 keV. Parameters of centres formed under these conditions at the SiO2-Si interface and in a thin surface region of silicon are determined by the method of thermally stimulated charge release. The anneal temperatures required to remove some types of defects are established. The dielectric-semiconductor interface is shown to affect significantly the anneal processes of traps induced by implantation. (author)

  9. MUSIC AND COCHLEAR IMPLANTS

    Institute of Scientific and Technical Information of China (English)

    Mao Yitao; Xu Li

    2013-01-01

    Currently, most people with modern multichannel cochlear implant systems can understand speech in qui-et environment very well. However, studies in recent decades reported a lack of satisfaction in music percep-tion with cochlear implants. This article reviews the literature on music ability of cochlear implant users by presenting a systematic outline of the capabilities and limitations of cochlear implant recipients with regard to their music perception as well as production. The review also evaluates the similarities and differences be-tween electric hearing and acoustic hearing regarding music perception. We summarize the research results in terms of the individual components of music (e.g., rhythm, pitch, and timbre). Finally, we briefly intro-duce the vocal singing of prelingually-deafened children with cochlear implants as evaluated by acoustic measures.

  10. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  11. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J

    2007-01-01

    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  12. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  13. Dental Implant Systems

    Directory of Open Access Journals (Sweden)

    Yoshiki Oshida

    2010-04-01

    Full Text Available Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.

  14. Implants in the hand; Implantate der Hand

    Energy Technology Data Exchange (ETDEWEB)

    Wanivenhaus, A. [Medizinische Universitaet, Universitaetsklinik fuer Orthopaedie, Wien (Austria)

    2006-09-15

    Increasingly, implants in the region of hand joints and the wrist represent an alternative for the treatment of post-traumatic, inflamed, or degenerative joint damage. The diversity of hand functions also results in varied solutions, which are effective in their stability, mobility, and distraction. Different materials are necessary for this, and they require subtile radiological control. The native X-ray represents the substantial method to observe migration of the implants. Each interface between titanium, ceramic, zirconium, pyrocarbon, and silicon to the bone has to be assessed differently in order to obtain a relevant statement. The finger joints and to a limited extent the wrist represent the artificial joints with limited alternative therapy. Other implants in the hand should only be applied after strict indication and patient compliance, as arthrodesis and resection arthroplasty have shown very good long-term results. (orig.) [German] Implantate im Bereich der Gelenke der Hand und des Handgelenks stellen zunehmend Alternativen bei der Versorgung posttraumatischer, entzuendlicher oder degenerativer Gelenkschaeden dar. Die Vielfalt der Handfunktionen fuehrt auch zu unterschiedlichen Loesungen, die durch Stabilitaet, Mobilitaet und Distraktion wirksam werden. Dafuer sind unterschiedliche Materialien erforderlich, die eine subtile radiologische Kontrolle erfordern. Das Nativroentgen stellt das wesentlichste Verfahren zur Verlaufsbeobachtung von Implantaten dar. Das Interface zwischen Titan, Keramik, Zirkonium, Pyrokarbon und Silikon zum Knochen muss unterschiedlich bewertet werden, um relevante Aussagen treffen zu koennen. Die Fingergelenke und in begrenztem Ausmass auch das Handgelenk stellen Kunstgelenke mit geringen Alternativtherapiemoeglichkeiten dar. Die uebrigen Implantate der Hand sollten nur bei strenger Indikationsstellung und hoher Patientencompliance Anwendung finden, da Arthrodese oder Resektionsarthroplastik gute Langzeitresultate aufweisen. (orig.)

  15. Smoking and dental implants

    OpenAIRE

    Kasat, V.; Ladda, R

    2012-01-01

    Smoking is a prevalent behaviour in the population. The aim of this review is to bring to light the effects of smoking on dental implants. These facts will assist dental professionals when implants are planned in tobacco users. A search of “PubMed” was made with the key words “dental implant,” “nicotine,” “smoking,” “tobacco,” and “osseointegration.” Also, publications on tobacco control by the Government of India were considered. For review, only those articles published from 1988 onward in ...

  16. Bioceramics for implant coatings

    Directory of Open Access Journals (Sweden)

    Allison A Campbell

    2003-11-01

    Early research in this field focused on understanding the biomechanical properties of metal implants, but recent work has turned toward improving the biological properties of these devices. This has led to the introduction of calcium phosphate (CaP bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first CaP coatings were produced via vapor phase processes, but more recently solution-based and biomimetic methods have emerged. While each approach has its own intrinsic materials and biological properties, in general CaP coatings promise to improve implant biocompatibility and ultimately implant longevity.

  17. Signal processing for semiconductor detectors

    International Nuclear Information System (INIS)

    A balanced perspective is provided on the processing of signals produced by semiconductor detectors. The general problems of pulse shaping to optimize resolution with constraints imposed by noise, counting rate and rise time fluctuations are discussed

  18. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  19. Semiconductor Lasers and Kolmogorov Spectra

    CERN Document Server

    Lvov, Yu V; Lvov, Yuri V.; Newell, Alan C.

    1997-01-01

    In this article, we make a prima facie case that there could be distinct advantages to exploiting a new class of finite flux equilibrium solutions of the Quantum Boltzmann equation in semiconductor lasers.

  20. Spatial semiconductor-resonator solitons

    OpenAIRE

    Taranenko, V. B.; C. O. Weiss

    2002-01-01

    We demonstrate experimentally and numerically the existence spatial solitons in multiple-quantum-well semiconductor microresonators driven by an external coherent optical field. We discuss stability of the semiconductor-resonator solitons over a wide spectral range around the band edge. We demonstrate the manipulation of such solitons: switching solitons on and off by coherent as well as incoherent light; reducing the light power necessary to sustain and switch a soliton, by optical pumping.

  1. Simulation in Semiconductor Manufacturing Facilities

    OpenAIRE

    Arisha, Amr; Young, Paul

    2005-01-01

    Semiconductor manufacturing is one of the most complex industries in terms of technology and manufacturing procedure. The life cycle of a semiconductor facility (FAB) has many phases, in their life cycle including capacity planning, new products introduction, variation of products/technologies, and decline phase. The complexity of the manufacturing and the external forces from markets and technology growth make predicting the effects of changes in the manufacturing system problematic. Simulat...

  2. Quantum transport in semiconductor nanowires

    OpenAIRE

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS) growth. The huge versatility of this material system (e.g. in size and materials) results in a wide range of potential applications in (opto-)electronics. During the last few years many important proofs...

  3. Statistical Methods for Semiconductor Manufacturing

    OpenAIRE

    Susto, Gian Antonio

    2013-01-01

    In this thesis techniques for non-parametric modeling, machine learning, filtering and prediction and run-to-run control for semiconductor manufacturing are described. In particular, algorithms have been developed for two major applications area: - Virtual Metrology (VM) systems; - Predictive Maintenance (PdM) systems. Both technologies have proliferated in the past recent years in the semiconductor industries, called fabs, in order to increment productivity and decrease costs. ...

  4. The ATLAS semiconductor tracker

    CERN Document Server

    Mikuz, Marko

    2003-01-01

    The ATLAS Semiconductor Tracker (SCT) is presented. About 16000 silicon micro-strip sensors with a total active surface of over 60 m **2 and with 6.3 million read-out channels are built into 4088 modules arranged into four barrel layers and nine disks covering each of the forward regions up to an eta of 2.5. Challenges are imposed by the hostile radiation environment with particle fluences up to 2 multiplied by 10**1**4 cm**-**2 1 MeV neutron NIEL equivalent and 100 kGy TID, the 25 ns LHC bunch crossing time and the need for a hermetic, lightweight tracker. The solution adopted is carefully designed strip detectors operated at -7 degree C, biased up to 500 V and read out by binary radhard fast BiCMOS electronics. A zero-CTE carbon fibre structure provides mechanical support. 30 kW of power are supplied on aluminiutn/Kapton tapes and cooled by C//3F//8 evaporative cooling. Data and commands are transferred by optical links. Prototypes of detector modules have been built, irradiated to the maximum expected flue...

  5. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  6. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with...... semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  7. Semiconductor packaging materials interaction and reliability

    CERN Document Server

    Chen, Andrea

    2012-01-01

    In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. The book focuses on an important step in semiconductor manufacturing--package assembly and testing. It covers the basics of material properties and explains how to determine which behaviors are important to package performance. The authors also discuss how

  8. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available Automatic Implantable Cardiac Defibrillator February 19, 2009 Halifax Health Medical Center, Daytona Beach, FL Welcome to Halifax Health Daytona Beach, Florida. Over the next hour you' ...

  9. Wireless cortical implantable systems

    CERN Document Server

    Majidzadeh Bafar, Vahid

    2013-01-01

    Wireless Cortical Implantable Systems examines the design for data acquisition and transmission in cortical implants. The first part of the book covers existing system-level cortical implants, as well as future devices. The authors discuss the major constraints in terms of microelectronic integration. The second part of the book focuses on system-level as well as circuit and system level solutions to the development of ultra low-power and low-noise microelectronics for cortical implants. Existing solutions are presented and novel methods and solutions proposed. The third part of the book focuses on the usage of digital impulse radio ultra wide-band transmission as an efficient method to transmit cortically neural recorded data at high data-rate to the outside world. Original architectural and circuit and system solutions are discussed.

  10. Superelastic Orthopedic Implant Coatings

    Science.gov (United States)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  11. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... rate of infection, how many device, how many experience the implanter has. That's make a different because every case, you learning from every single case. Every patient different. There ...

  12. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  13. Biocompatibility of surgical implants

    Science.gov (United States)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  14. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  15. Ion implantation at elevated temperatures

    International Nuclear Information System (INIS)

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al+ and Si+ ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail

  16. BREAST IMPLANT SURFACE DEVELOPMENT

    OpenAIRE

    Valencia Lazenco, Anai Alicia

    2015-01-01

    Bilateral breast augmentation is one of the most common cosmetic surgical procedures carried out on women in the western world. Breast augmentation involves increasing the volume of a woman‘s breasts through surgery by placing a silicone implant in the subglandular or subpectoral cavity. Although a capsule forms inevitably around breast implants as a natural part of healing, it can cause significant morbidity if the capsule becomes firm and contracted, a condition known as breast capsular con...

  17. Bioceramics for implant coatings

    OpenAIRE

    Allison A Campbell

    2003-01-01

    During the past century, synthetic materials and devices have been developed to the point at which they can be used successfully to replace and/or restore function to diseased or damaged tissues. In the field of orthopedics, the use of metal implants has significantly improved the quality of life for countless individuals. Critical factors for implant success include proper design, material selection, and biocompatibility. Early research in this field focused on understanding the biomechan...

  18. Contraceptive implants: current perspectives

    Directory of Open Access Journals (Sweden)

    Rowlands S

    2014-09-01

    Full Text Available Sam Rowlands,1,2 Stephen Searle3 1Centre of Postgraduate Medical Research and Education, School of Health and Social Care, Bournemouth University, Bournemouth, United Kingdom; 2Dorset HealthCare, Bournemouth, United Kingdom; 3Sexual Health Services, Chesterfield, United KingdomAbstract: Progestin-only contraceptive implants are a highly cost-effective form of long-acting reversible contraception. They are the most effective reversible contraceptives and are of a similar effectiveness to sterilization. Pregnancies are rare in women using this method of contraception, and those that do occur must be fully investigated, with an ultrasound scan of the arm and serum etonogestrel level if the implant cannot be located. There are very few contraindications to use of implants, and they have an excellent safety profile. Both acceptability and continuation with the method are high. Noncontraceptive benefits include improvements in dysmenorrhea, ovulatory pain, and endometriosis. Problematic bleeding is a relatively common adverse effect that must be covered in preinsertion information-giving and supported adequately if it occurs. Recognized training for both insertion and removal should be undertaken. Care needs to be taken at both insertion and removal to avoid neurovascular injury. Implants should always be palpable; if they are not, noninsertion should be assumed until disproven. Etonogestrel implants are now radiopaque, which aids localization. Anticipated difficult removals should be performed by specially trained experts. Keywords: contraceptive, subdermal implant, etonogestrel, levonorgestrel, progestin-only, long-acting reversible contraception

  19. Biomaterials in cochlear implants

    Directory of Open Access Journals (Sweden)

    Lenarz, Thomas

    2009-01-01

    Full Text Available The cochlear implant (CI represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development.

  20. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  1. Nano-rattling semiconductors

    International Nuclear Information System (INIS)

    The efficiency of a thermoelectric material is given by its figure of merit, Z=S2σ/κ, where Z is in unit of (K)-1, S is its Seebeck coefficient, σ is its electrical conductivity and κ is its thermal conductivity. A good thermoelectric material must have high electrical conductivity and low thermal conductivity. Semiconducting clathrates are promising thermoelectric materials. The clathrate lattices are open frameworks containing large 'cages'. These cages can contain loosly bound impurity atoms or 'guests'. The guest atoms are 'rattling' in the cages and scatter the heat carry phonons, resulting in the amorphous like low thermal conductivity. The improvement of the thermoelectric properties of clathrates was attempted by the modification of electronic properties through the transition element substitution at the 6c site of the host lattice. The substitution of Pt atoms brings about an increase of Seebeck coefficient but only a slight decrease of carrier mobilities. The calculated electronic structure shows that transition element substituting clathrates Ba8TMGe40 (TM=Ni, Pd, Pt, Cu, Ag, Au) are p-type semiconductors and have large thermoelectric power in spite of relatively low mobilities of the charge carriers. The electronic structure and thermoelectric properties are also calculated for guest-substituted clathrates Ba6R2Au6Ge40 (R=Eu, Yb). When the Ba 2a site is replaced by Eu and Yb, the lowest conduction bands at x-point shift to lower energy side. The multivally effect in M and X points yields the increase in the density of states near the conduction band edge, resulting in the increase in the Seebeck coefficient for n-type doping. The lattice thermal conductivity decreases gradually with the increasing x of all the YbxBa8-xGa16Ge30 compounds. (Y. K.)

  2. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  3. Surface modification by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    After its successful applications in the semiconductor industry, ion implantation is being employed for other technical applications. The main process in ion implantation is the introduction of additive elements to change the composition and properties of the surface region of a material. We present results demonstrating the important improvement of the wear resistance and friction in a NiTi alloy implanted with nitrogen. The formation of hard TiN precipitates embedded in an amorphous layer is responsible for such modifications. The generation of many atomic displacements in collision cascades during implantation can be also employed as a modification process itself. For instance, the chemical disordering in an implanted Fe60Al40 alloy induces a para- to ferromagnetic transition. The formation of an amorphous surface alloy by ion irradiation at a temperature of 15 K has been shown in Ni50Al50 by in situ RBS, channelling and TEM. The new method of dynamic ion mixing (DIM) combines ion bombardment with simultaneous material deposition and allows thicker adherent coatings to be built up, this is shown for both metallic Cu50Ni50 and ceramic TiB2 coatings. Recent results demonstrating a significant increase in fatigue lifetime of a coated 316 L stainless steel are also reported and discussed. (orig.)

  4. Cathodoluminescence characterization of ion implanted GaAs

    Science.gov (United States)

    Cone, M. L.

    1980-03-01

    The unique properties of GaAs make it possible to construct integrated circuit devices that are impossible in Si. The Air Force Avionics Laboratory/AADR has been developing this technology for a number of years. The difficulty of introducing dopants by diffusion has lead ion implantation to play an increasing role in the fabrication process. The present production technique for high performance devices is to fabricate large quantities and select those few that meet the desired specifications. Having a nondestructive technique that can be used to characterize the implantation process during fabrication of the device so as to reject faulty device structures can save valuable time as well as money. Depth-resolved cathodoluminescence is a process that can be used for this purpose. This research develops and verifies a model of cathodoluminescence in ion implanted GaAs. This model can now be used as a tool for further study of ion implanted GaAs. This is the first step in developing cathodoluminescence as a tool for deducing the shape of the ion implanted depth profile in semiconductor materials.

  5. Iatrogenic Tumor Implantation

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Ping Bai

    2008-01-01

    Iatrogenic tumor implantation is a condition that results from various medical procedures used during diagnosis or treatment of a malignancy. It involves desquamation and dissemination of tumor cells that develop into a local recurrence or distant metastasis from the tumor under treatment. The main clinical feature of the condition is nodules at the operation's porous channel or incision, which is easily diagnosed in accordance with the case history. Final diagnosis can be made based on pathological examination. Tumor implantation may occur in various puncturing porous channels, including a laparoscopic port, abdominal wall incision, and perineal incision, etc. Besides a malignant tumor,implantation potential exists with diseases, such as a borderline tumor and endometriosis etc. Once a tumor implantation is diagnosed, or suspected, surgical resection is usually conducted.During the diagnosis and treatment of diseases, avoiding and reducing iatrogenic implantation and dissemination has been regarded as an important principle for surgical treatment of tumors. In a clinical practice setting, if possible, excisional biopsy should be employed, if a biopsy is needed. Repeated puncturing should be avoided during a paracentesis. In a laparoscopic procedure, the tissue is first put into a sample bag and then is taken out from the point of incision. After a laparoscopic procedure, the peritoneum, abdominal muscular fasciae, and skin should be carefully closed, and/or the punctured porous channel be excised. In addition, the sample/tissue should be rinsed with distilled water before surgical closure of the abdominal cavity,allowing the exfoliated tumor cells to swell and rupture in the hypo-osmolar solution. Then surgical closure can be conducted following a change of gloves and equipment. The extent of hysteromyomectomy should as far as possible be away from the uterine cavity. The purpose of this study is to make clinicians aware of the possibility of tumor implantation

  6. BF3 PIII modeling: Implantation, amorphisation and diffusion

    International Nuclear Information System (INIS)

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF3 PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5×1015 cm−2), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF3 implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  7. Refractive Indices of Semiconductors from Energy gaps

    CERN Document Server

    Tripathy, S K

    2015-01-01

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  8. Imaging for cochlear implants.

    Science.gov (United States)

    Phelps, P D; Annis, J A; Robinson, P J

    1990-07-01

    Insertion of a sound amplification device into the round window niche (extracochlear implant) or into the coils of the cochlea (intracochlear implant) can give significant benefits to some carefully selected, severely deaf patients. Imaging has an essential role in selective and pre-operative assessment. Severe otosclerosis and post-meningitic labyrinthitis ossificans are common causes of deafness in these patients and can be demonstrated by computed tomography (CT). The most suitable side for operation can be assessed. We describe our experiences with 165 patients, 69 of whom were found suitable for implants. Thin (1 mm) section CT in axial and coronal planes is the best imaging investigation of the petrous temporal bones but the place of magnetic resonance scanning to confirm that the inner ear is fluid-filled and polytomography to show a multichannel implant in the cochlea is discussed. No implants were used for congenital deformities, but some observations are made of this type of structural deformity of the inner ear. PMID:2390686

  9. Psychological intervention following implantation of an implantable defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Sears, Samuel F

    2007-01-01

    The medical benefits of the implantable cardioverter defibrillator (ICD) are unequivocal, but a subgroup of patients experiences emotional difficulties following implantation. For this subgroup, some form of psychological intervention may be warranted. This review provides an overview of current...

  10. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-12-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V-1 s-1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m-2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics.

  11. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  12. Selenium semiconductor core optical fibers

    Directory of Open Access Journals (Sweden)

    G. W. Tang

    2015-02-01

    Full Text Available Phosphate glass-clad optical fibers containing selenium (Se semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  13. Selenium semiconductor core optical fibers

    International Nuclear Information System (INIS)

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array

  14. Defects in semiconductors

    International Nuclear Information System (INIS)

    In this thesis, experimental results of the transition metals Ti, V, Nb, Mo, and W as impurity centres in silicon are presented. Transition metal doping was accomplished by ion implantation. Emphasis is put on energy level position, electrical and optical properties of the encountered defect levels. Junction space charge methods (JSCM) such as DLTS, photocapacitance and photocurrent techniques are employed. Three energy levels are found for the 3d-transition metals Ti(Ec-0.06eV, Ec-0.30eV, Ev+0.26) and V(Ec-0.21eV, Ec-0,48e, Ev+0.36eV), and for the 4d-element Nb(Ec-0.29eV, Ec-0.58eV, Ev+0.163eV) in Silicon, whereas only one transition metal induced level is found for Mo(Ev+0.30eV) and W(Ev+0.38eV) respectively. Electrical and optical characteristics of Si1-xGex,0.77cm-2. The solvent Bi, used in the LPE-process, is found to be the dominant impurity element. Furthermore, liquid phase epitaxy of high purity In0.53Ga0.57As on InP, together with the properties of the Cu-induced acceptor in this material are examined. Free electron concentrations of n=5x1014cm-3 and electron Hall-mobilities of μ77K = 44000 cm2/Vs are achieved. The energy level position of the Cu-acceptor is found to be Ev+0.025eV. Photoluminescence and Hall-effect measurements, together with JSCM are the main characterization methods used. The band linups of In0.53Ga0.47As with GaAs and with InP are determined according to the Cu-acceptor energy level position in these materials. Additionally, the hydrostatic pressure dependence of the Cu-acceptor energy level position in In0.53Ga0.47As is examined. (103 refs.)

  15. Exciton Transport in Organic Semiconductors

    Science.gov (United States)

    Menke, Stephen Matthew

    Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.

  16. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  17. The Novel Semiconductor Nanowire Heterostructures

    Institute of Scientific and Technical Information of China (English)

    J.Q.Hu; Y.Bando; J.H.Zhan; D.Golberg

    2007-01-01

    1 Results If one-dimensional heterostructures with a well-defined compositional profile along the wire radial or axial direction can be realized within semiconductor nanowires, new nano-electronic devices,such as nano-waveguide and nano-capcipator, might be obtained. Here,we report the novel semiconducting nanowire heterostructures:(1) Si/ZnS side-to-side biaxial nanowires and ZnS/Si/ZnS sandwich-like triaxial nanowires[1],(2) Ga-Mg3N2 and Ga-ZnS metal-semiconductor nanowire heterojunctions[2-3]and (3) ...

  18. III-nitride semiconductor materials

    CERN Document Server

    Feng, Zhe Chuan

    2006-01-01

    III-Nitride semiconductor materials - (Al, In, Ga)N - are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field. Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the

  19. Wide band gap semiconductor templates

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  20. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  1. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  2. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther;

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  3. Bonds and bands in semiconductors

    CERN Document Server

    Phillips, Jim

    2009-01-01

    This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s

  4. Semiconductor device physics and simulation

    CERN Document Server

    Yuan, J S

    1998-01-01

    This volume provides thorough coverage of modern semiconductor devices -including hetero- and homo-junction devices-using a two-dimensional simulator (MEDICI) to perform the analysis and generate simulation results Each device is examined in terms of dc, ac, and transient simulator results; relevant device physics; and implications for design and analysis Two hundred forty-four useful figures illustrate the physical mechanisms and characteristics of the devices simulated Comprehensive and carefully organized, Semiconductor Device Physics and Simulation is the ideal bridge from device physics to practical device design

  5. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  6. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  7. Effects of oxygen ion implantation in spray-pyrolyzed ZnO thin films

    Science.gov (United States)

    Vijayakumar, K. P.; Ratheesh Kumar, P. M.; Sudha Kartha, C.; Wilson, K. C.; Singh, F.; Nair, K. G. M.; Kashiwaba, Y.

    2006-04-01

    ZnO thin films, prepared using the chemical spray pyrolysis technique, were implanted using 100 keV O+ ions. Both pristine and ion-implanted samples were characterized using X-ray diffraction, optical absorption, electrical resistivity measurements, thermally stimulated current measurements and photoluminescence. Samples retained their crystallinity even after irradiation at a fluence of 1015 ions/cm2. However, at a still higher fluence of 2 × 1016 ions/cm2, the films became totally amorphous. The optical absorption edge remained unaffected by implantation and optical absorption spectra indicated two levels at 460 and 510 nm. These were attributed to defect levels corresponding to zinc vacancies (VZn) and oxygen antisites (OZn), respectively. Pristine samples had a broad photoluminescence emission centred at 517 nm, which was depleted on implantation. In the case of implanted samples, two additional emissions appeared at 425 and 590 nm. These levels were identified as due to zinc vacancies (VZn) and oxygen vacancies (VO), respectively. The electrical resistivity of implanted samples was much higher than that of pristine, while photosensitivity decreased to a very low value on implantation. This can be utilized in semiconductor device technology for interdevice isolation. Hall measurements showed a marked decrease in mobility due to ion implantation, while carrier concentration slightly increased.

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    Science.gov (United States)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  9. Difficulties in Cochlear Implantation

    OpenAIRE

    Santa Cruz Ruiz, Santiago; Batuecas Caletrío, Ángel; Santa Cruz Ruiz, Paloma

    2014-01-01

    [ES] Introducción y objetivo: Tras 25 años de experiencia distinguimos dos grupos de pacientes frente a la cirugía de implante coclear, en función de la dificultad de los casos. Discusión: Presentamos diferentes situaciones de patología de oído medio, malformación de oído interno y neuropatías, que suponen una dificultad en esta cirugía. Conclusiones: Aconsejamos derivar a centros experimentados en casos difíciles de implante coclear los casos complejos. [EN] Introductio...

  10. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2011-01-01

    -stage procedures. From the Danish Registry for Plastic Surgery of the Breast, which has prospectively registered data for women undergoing breast implantations since 1999, we identified 559 women without a history of radiation therapy undergoing 592 delayed breast reconstructions following breast cancer during the......Studies of complications following reconstructive surgery with implants among women with breast cancer are needed. As the, to our knowledge, first prospective long-term study we evaluated the occurrence of complications following delayed breast reconstruction separately for one- and two...

  11. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  12. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  13. Fe-implanted SiC as a potential DMS: X-ray diffraction and rutherford backscattering and channelling study

    International Nuclear Information System (INIS)

    Single crystalline (0 0 0 1)-oriented 6H-SiC samples were implanted at 380 oC with low-energy Fe ions (in the 100 keV range) with the aim of synthesizing so-called diluted magnetic semiconductors. X-ray diffraction and Rutherford backscattering spectrometry and channeling are used to study the microstructural changes in these Fe-implanted SiC crystals submitted to furnace annealing and laser processing, both treatments being performed in order to eliminate the implantation-induced defects.

  14. Fe-implanted SiC as a potential DMS: X-ray diffraction and rutherford backscattering and channelling study

    Energy Technology Data Exchange (ETDEWEB)

    Dupeyrat, C., E-mail: cyril.dupeyrat@etu.univ-poitiers.f [Laboratoire de Physique des Materiaux (PhyMat), SP2MI, teleport 2, Bvd M. et P. Curie, 86962 Chasseneuil-Futuroscope (France); Declemy, A.; Drouet, M. [Laboratoire de Physique des Materiaux (PhyMat), SP2MI, teleport 2, Bvd M. et P. Curie, 86962 Chasseneuil-Futuroscope (France); Debelle, A.; Thome, L. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse (CSNSM), Universite Paris-Sud 11, Bat 104, 91405 Orsay (France)

    2010-10-01

    Single crystalline (0 0 0 1)-oriented 6H-SiC samples were implanted at 380 {sup o}C with low-energy Fe ions (in the 100 keV range) with the aim of synthesizing so-called diluted magnetic semiconductors. X-ray diffraction and Rutherford backscattering spectrometry and channeling are used to study the microstructural changes in these Fe-implanted SiC crystals submitted to furnace annealing and laser processing, both treatments being performed in order to eliminate the implantation-induced defects.

  15. Effect of phosphorus ion implantation on back gate effect of partially depleted SOI NMOS under total dose radiation

    International Nuclear Information System (INIS)

    The mechanism of improving the TID radiation hardened ability of partially depleted silicon-on-insulator (SOI) devices by using the back-gate phosphorus ion implantation technology is studied. The electron traps introduced in SiO2 near back SiO2/Si interface by phosphorus ions implantation can offset positive trapped charges near the back-gate interface. The implanted high concentration phosphorus ions can greatly reduce the back-gate effect of a partially depleted SOI NMOS device, and anti-total-dose radiation ability can reach the level of 1 Mrad(Si) for experimental devices. (semiconductor devices)

  16. Optimization of dental implant treatment

    OpenAIRE

    Dmitriy V. Ivanov; Aleksandr V. Dol; Dmitriy A. Smirnov

    2016-01-01

    Aim ― Modern dentistry cannot exist without dental implantation. The lifetime of the installed implants depends on condition of the bone and on the quality of the treatment planning and surgery technique. Usually, complications during the implant treatment are related to the inability to accurately predict the condition and location of intraosseous structure that entails the selection of the wrong type of implant and installation position. Methods ― This work is devoted to the "bone-implan...

  17. Dental implants in growing children

    OpenAIRE

    S.K. Mishra; Chowdhary, N.; Chowdhary, R.

    2013-01-01

    The replacement of teeth by implants is usually restricted to patients with completed craniofacial growth. The aim of this literature review is to discuss the use of dental implants in normal growing patients and in patients with ectodermal dysplasia and the influence of maxillary and mandibular skeletal and dental growth on the stability of those implants. It is recommended that while deciding the optimal individual time point of implant insertion, the status of skeletal growth, the degree o...

  18. Osseointegration of Immediate Transalveolar Implants

    OpenAIRE

    Yoel González Beriau; Eduardo Enrique Castillo Betancourt; Bienvenido Mesa Reinaldo

    2016-01-01

    Background: osseointegration is critical to start prosthetic rehabilitation. Objective: to describe osseointegration of immediate transalveolar implants. Methods: a prospective case series study was conducted from January 2012 to December 2013. It included all patients (75 patients with 79 implants) who attended the Prosthodontics service. Age, sex, osseointegration, cause of tooth loss, region of the implant, specific tooth, bone level and keratinized gingiva around the implant, were the var...

  19. The ruptured PIP breast implant

    International Nuclear Information System (INIS)

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant

  20. Semiconductor nanocrystal-based phagokinetic tracking

    Science.gov (United States)

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  1. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  2. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  3. Diode having trenches in a semiconductor region

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  4. Optical power transfer and communication methods for wireless implantable sensing platforms

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  5. A transmission electron microscopy investigation of sulfide nanocrystals formed by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation was used to form compound semiconductor nanocrystal precipitates of ZnS, CdS, and PbS in both glass and crystalline matrices. The precipitate microstructures and size distributions were investigated by cross-sectional transmission electron microscopy techniques. Several unusual features were observed, including strongly depth-dependent size variations of the ZnS precipitates and central void features in the CdS nanocrystals. The morphology and crystal structure of the nanocrystal precipitates could be controlled by selection of the host material. The size distribution and microstructural complexity were significantly reduced by implanting a low concentration of ions into a noncrystalline host, and by using multi-energy implants to give a flat concentration profile of the implanted elements. (c) 1999 Materials Research Society

  6. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications. PMID:26405820

  7. Investigation of Donor and Acceptor Ion Implantation in AlN

    Energy Technology Data Exchange (ETDEWEB)

    Osinsky, Andrei [Agnitron Technology Inc., Eden Prairie, MN (United States)

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  8. Untreated silicone breast implant rupture

    DEFF Research Database (Denmark)

    Hölmich, Lisbet R; Vejborg, Ilse M; Conrad, Carsten;

    2004-01-01

    Implant rupture is a well-known complication of breast implant surgery that can pass unnoticed by both patient and physician. To date, no prospective study has addressed the possible health implications of silicone breast implant rupture. The aim of the present study was to evaluate whether untre...

  9. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  10. Radiation damage in semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

  11. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in...

  12. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long ran

  13. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.;

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  14. Semiconductor lasers for medical applications

    Czech Academy of Sciences Publication Activity Database

    Hulicius, Eduard; Kubeček, V.

    Cambridge: Woodhead Publishing Limited, 2013 - (Jelínková, H.), s. 222-250. (Woodhead Publishing Series in Electronic and Optical Materials. 37). ISBN 978-0-85709-237-3 Institutional support: RVO:68378271 Keywords : semiconductor laser * LED * MBE * MOVPE * optical spectra * optical power Subject RIV: BH - Optics, Masers, Laser s

  15. Semiconductor Spintronics: Progress and Challenges

    OpenAIRE

    Rashba, Emmanuel I.

    2006-01-01

    Brief review of the recent progress in semiconductor spintronics (theory and experiment) and the current theoretical problems in it is presented. Invited paper at the 2006 Advanced Research Workshop "Future Trends in Microelectronics: Up to Nano Creek" (Aghia Pelaghia, Crete, June 26-30, 2006). To be published in Workshop Proceedings (Wiley)

  16. Excitons in semiconductor nano structures

    International Nuclear Information System (INIS)

    A formation of excitons is studied in semiconductor nano structures where electrons and holes are spatially separated by a potential barrier. The disorder present within electron-hole interface is due to structural imperfections which are unavoidable in the course of fabrication. The exciton density is calculated as a function of the disorder and of the hopping integral value. (Author)

  17. Semiconductor DC amplifier AEP 1487

    International Nuclear Information System (INIS)

    A semiconductor dc amplifier has been designed with the object of achieving low drift without component selection or special temperature-balancing adjustments. Modulator and ac-amplifier techniques have been adopted in order to avoid the drifts that occur when transistors are directly coupled. The diode-ring modulator described in CREL-902 has been used as the input chopper. (author)

  18. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.; Mullane, Mark; Houlihan, John; O'Neill, Eamonn; Moloney, Jerome V.; Indik, Robert A.

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  19. Automation and Integration in Semiconductor Manufacturing

    OpenAIRE

    Liao, Da-Yin

    2010-01-01

    Semiconductor automation originates from the prevention and avoidance of frauds in daily fab operations. As semiconductor technology and business continuously advance and grow, manufacturing systems must aggressively evolve to meet the changing technical and business requirements in this industry. Semiconductor manufacturing has been suffering pains from islands of automation. The problems associated with these systems are limited

  20. Semiconductor films on flexible iridium substrates

    Science.gov (United States)

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  1. New Source Heterojunction Structures with Relaxed/Strained Semiconductors for Quasi-Ballistic Complementary Metal-Oxide-Semiconductor Transistors: Relaxation Technique of Strained Substrates and Design of Sub-10 nm Devices

    Science.gov (United States)

    Tomohisa Mizuno,; Naoki Mizoguchi,; Kotaro Tanimoto,; Tomoaki Yamauchi,; Mitsuo Hasegawa,; Toshiyuki Sameshima,; Tsutomu Tezuka,

    2010-04-01

    We have studied new abrupt-source-relaxed/strained semiconductor-heterojunction structures for quasi-ballistic complementary metal-oxide-semiconductor (CMOS) devices, by locally controlling the strain of a single strained semiconductor. Appling O+ ion implantation recoil energy to the strained semiconductor/buried oxide interface, Raman analysis of the strained layers indicates that we have successfully relaxed both strained-Si-on-insulator (SSOI) substrates for n-MOS and SiGe-on-insulator (SGOI) substrates for p-MOS without polycrystallizing the semiconductor layers, by optimizing O+ ion implantation conditions. As a result, it is considered that the source conduction and valence band offsets Δ EC and Δ EV can be realized by the energy difference in the source Si/channel-strained Si and the source-relaxed SiGe/channel-strained SiGe layers, respectively. The device simulator, considering the tunneling effects at the source heterojunction, shows that the transconductance of sub-10 nm source heterojunction MOS transistors (SHOT) continues to increase with increasing Δ EC. Therefore, SHOT structures with the novel source heterojunction are very promising for future quasi-ballistic CMOS devices.

  2. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... Health’s commitment to provide quality healthcare for all patients. "OR Live" makes it easy for you to ... It’s a battery-powered implantable device that saves patients from deadly arrhythmias in the heart. If at ...

  3. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... they're implanted. And then, depending on the recommendations for that specific device, eventually that goes over ... them say, “I feel so great.” And they travel, they forget to take your -- they stop taking ...

  4. Remote actuated valve implant

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  5. Corrosion of bio implants

    Indian Academy of Sciences (India)

    U Kamachi Mudali; T M Sridhar; Baldev Raj

    2003-06-01

    Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co–Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

  6. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  7. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... to see tonight the implantation of a very complex, sophisticated device to save people’s lives. But the ... It doesn't require a device that’s this complex to get the heart back into rhythm and ...

  8. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  9. Magnetism in GaN layers implanted by La, Gd, Dy and Lu

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Sedmidubský, D.; Moram, M.; Macková, Anna; Buchal, C.; Hardtdegen, H.; Václavů, M.; Peřina, Vratislav; Groetzschel, R.; Mikulics, M.; Hejtmánek, Jiří; Maryško, Miroslav

    2011-01-01

    Roč. 519, č. 18 (2011), s. 6120-6125. ISSN 0040-6090 R&D Projects: GA ČR GA104/09/1269; GA ČR GA106/09/0125; GA ČR GA104/09/0621 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : Magnetic semiconductors * III-V semiconductors * Ion implantation * X-ray diffraction * Rutherford backscattering spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.890, year: 2011

  10. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0-12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10-12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  11. The effects of cosmic radiation on implantable medical devices

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, P. [Wollongong Univ., NSW (Australia)

    1996-12-31

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 G{gamma}) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0{sup -12} upsets/(bit hr) compared to an observed upset rate of 8.5 x 10{sup -12} upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation.

  12. Prosthodontic management of implant therapy.

    Science.gov (United States)

    Thalji, Ghadeer; Bryington, Matthew; De Kok, Ingeborg J; Cooper, Lyndon F

    2014-01-01

    Implant-supported dental restorations can be screw-retained, cement-retained, or a combination of both, whereby a metal superstructure is screwed to the implants and crowns are individually cemented to the metal frame. Each treatment modality has advantages and disadvantages. The use of computer-aided design/computer-assisted manufacture technologies for the manufacture of implant superstructures has proved to be advantageous in the quality of materials, precision of the milled superstructures, and passive fit. Maintenance and recall evaluations are an essential component of implant therapy. The longevity of implant restorations is limited by their biological and prosthetic maintenance requirements. PMID:24286654

  13. A high-energy, high-current ion implantation system

    International Nuclear Information System (INIS)

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160. (orig.)

  14. A high-energy, high-current ion implantation system

    Science.gov (United States)

    Rose, Peter H.; Faretra, Ronald; Ryding, Geoffery

    1985-01-01

    High current (Pre-DepTM) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-DepTM Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. DatalockTM, a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 × 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  15. Mössbauer Studies of dilute Magnetic Semiconductors

    CERN Multimedia

    Gislason, H P; Debernardi, A; Dlamini, W B

    2002-01-01

    The recent discovery of (dilute) magnetic semiconductors with wide band gaps, e.g. GaN, ZnO and other oxides, having Curie temperatures, T$_{\\textrm{c}}$, well above room temperature, has prompted extraordinary experimental and theoretical efforts to understand, control and exploit this unexpected finding not least in view of the obvious potential of such materials for the fabrication of "spin-(elec)tronic" or magneto-optic devices. Ferromagnetism (FM) was achieved mostly by doping with dilute 3d transition metal impurities, notably Mn, Fe, and Co (in \\% concentrations), during growth or by subsequent ion implantation. However, it is fair to state that experimentally the conditions for the occurrence of ferro-, antiferro- or paramagnetism with these impurities are not yet controlled as generally at least two conflicting forms of magnetism or none have been reported for each system - albeit often produced by different techniques. Theory is challenged as "conventional" models seem to fail and no generally accep...

  16. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  17. Microscopic defect level characterization of semi-insulating compound semiconductors by TSC and PICTS. Application to the effect of hydrogen in CdTe

    Science.gov (United States)

    Hage-Ali, M.; Yaacoub, B.; Mergui, S.; Samimi, M.; Biglari, B.; Siffert, P.

    1991-06-01

    Thermally stimulated current (TSC) and photo-induced current transient spectroscopy (PICTS) methods have been developed for the microscopic defect characterization in semi-insulating compound semiconductors. The capabilities of these methods are demonstrated by investigating the effects of hydrogen implantation or diffusion into semi-insulating cadmium telluride.

  18. Optimization of the Profiles in MeV Implanted Silicon Through the Modification of Electronic Stopping Power

    Directory of Open Access Journals (Sweden)

    Won-Chae Jung

    2013-04-01

    Full Text Available The elements B, P and As can each be implanted in silicon; for the fabrication of integrated semiconductor devicesand the wells in CMOS (complementary metal oxide semiconductor. The implanted range due to different implantedspecies calculated using TRIM (Transport of Ions in Matter simulation results was considered. The profiles ofimplanted samples could be measured using SIMS (secondary ion mass spectrometry. In the comparison betweenthe measured and simulated data, some deviations were shown in the profiles of MeV implanted silicon. The Moliere,C-Kr, and ZBL potentials were used for the range calculations, and the results showed almost no change in the MeVenergy region. However, the calculations showed remarkably improved results through the modification of theelectronic stopping power. The results also matched very well with SIMS data. The calculated tolerances of Rp and ΔRpbetween the modified Se of TRIM and SIMS data were remarkably better than the tolerances between the TRIM andSIMS data.

  19. X-ray photoelectron spectroscopic depth profilometry of nitrogen implanted in materials for modification of their surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, A.H.; Paynter, R.; Stansfield, B.L. [Univ. du Quebec, Varennes, Quebec (Canada). INRS-Energie et Materiaux; Leblanc, J.B.; Paradis, E. [Univ. of Sherbrooke, Quebec (Canada)

    1996-12-31

    The modification of the surface properties of materials has a wide range of industrial applications. For example, the authors change the electrical characteristics of semiconductors, improve surface hardness, decrease friction, increase resistance to corrosion, improve adhesion, etc. Nitriding is one of the most common processes used in industry for surface treatment. Nitrogen ion implantation is one technique often used to achieve this goal. Ion implantation offers the power to control the deposition profile, and can be achieved by either conventional ion beam implantation or plasma assisted ion implantation. They have used the technique of plasma assisted ion implantation to implant nitrogen in several materials, including titanium, silicon and stainless steel. The plasma source is a surface ECR source developed at INRS-Energie et Materiaux. The depth profile of the implanted ions has been measured by X-ray photoelectron spectroscopy. They have also conducted simulations using the TRIM-95 code to predict the depth profile of the implanted ions. Comparisons of the measured results with those from simulations are used to deduce information regarding the plasma composition and the collisional effects in the plasma. A fast responding, current and voltage measuring circuit with fiber optic links is being developed, which allows more accurate quantitative measurements. Further experiments to study the characteristics of the plasma, and their effects on the characteristics of the implanted surfaces are in progress, and the results are presented at this meeting.

  20. Peri-implant hastalıklar

    OpenAIRE

    Dilsiz, Alparslan; Zihni, Meltem; Yavuz, M Selim

    2011-01-01

    The treatment of partially or totally edentulous subjects with oral implants is a common procedure. Biological complications are occur around implants which are peri-implant mucositis and periimplantitis. Peri-implant mucositis is pathological condition which is normally localized in the soft tissues surrounding an oral implant. Peri-implantitis surrounding oral implants is an inflammatory process affecting the soft and hard tissues resulting in rapid loss of supporting bone associated with b...

  1. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  2. Squeezing of phonoritons in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huong, N Q [Physics Department, Marshall University, One John Marshall Drive, Huntington WV 25701 (United States); Hau, N N [Stony Brook University, Stony Brook NY 11794 (United States); Birman, J L [Physics Department, City College of New York, CUNY, 160 Convent Avenue, NY, NY 10031 (United States)

    2007-12-15

    If a semiconductor sample is illuminated by hight-intensity electro-magnetic radiation near the resonance, the occupation number of polaritons in the same mode is large and the interaction between polaritons and phonons become very important. This interaction leads to the formation of a new kind of elementary excitation called phonoriton, which actually is a coherent superposition of excitons, photons, and longitudinal acoustic phonons under Brillouin scattering of an intense polariton. The phonoritons have been studied theoretically and experimentally and have been found in Cu2O. In this work we discuss the squeezing of phonoritons inside semiconductors from a theoretical point of view. We found the squeezed states, or so called 'low-noise' states- the states of reduced quantum noise with reducing effect of vacuum fluctuation, for phonoritons. It shows that the phonoritons are intrinsically squeezed. From our results we also have the possibility to tune the squeeze amplitude, what is important both theoretically and experimentally.

  3. Octave-spanning semiconductor laser

    CERN Document Server

    Rösch, Markus; Beck, Mattias; Faist, Jérôme

    2014-01-01

    We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneous quantum cascade structure operating in the THz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the mW range and more than 80 modes above threshold. Free-running beatnote investigations on narrow waveguides with linewidths of 980 Hz limited by jitter indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based THz frequency combs.

  4. Cameras for semiconductor process control

    Science.gov (United States)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  5. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  6. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  7. High dose proton implantations into silicon: a combined EBIC, SRP and TEM study

    Energy Technology Data Exchange (ETDEWEB)

    Kirnstoetter, Stefan [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Infineon Technologies Austria AG, Villach (Austria); Faccinelli, Martin; Hadley, Peter [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Gspan, Christian; Grogger, Werner [Institute for Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Graz (Austria); Jelinek, Moriz; Schustereder, Werner [Infineon Technologies Austria AG, Villach (Austria); Laven, Johannes G.; Schulze, Hans-Joachim [Infineon Technologies AG, Munich (Germany)

    2014-11-15

    Proton (H{sup +}) implantations are used in power semiconductor devices to introduce recombination centers (Hazdra et al., Microelectron. J. 32(5), 449-456 (2001)) or to form hydrogen related donor complexes (Zohta et al., Jpn. J. Appl. Phys. 10, 532-533 (1991)). Proton implantations are also used in the 'smart cut' process to generate defects that can be used to cleave thin wafers (Romani and Evans, Nucl. Instrum. Methods Phys. Res. B 44, 313-317 (1990)). However, the implantation damage resulting from H{sup +}implantations is not completely understood. In this study, protons with energies from 400 keV up to 4 MeV and doses up to 10{sup 16} H{sup +}/cm{sup 2} were implanted into highly ohmic boron doped m:Cz silicon (100). Electron Beam Induced Current (EBIC) measurements were performed to locally determine the minority charge carrier diffusion length. The diffusion length decreases with increasing implantation dose and incorporated damage. Spreading Resistance Profiling (SRP) measurements were performed to analyze the charge carrier concentration profiles for different annealing procedures. The electrical activation and growth of the defect complexes varies strongly with the annealing parameters. Transmission Electron Microscopy measurements were made to investigate the microscopic structures formed by the high dose implantation processes. Due to the high local damage density resulting from low energy and high dose H{sup +} implants, platelet structures are formed. During high-energy high-dose H{sup +}implantations, the implanted hydrogen generates strain in the crystal lattice resulting in changes in the distances between atomic planes. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. High dose proton implantations into silicon: a combined EBIC, SRP and TEM study

    International Nuclear Information System (INIS)

    Proton (H+) implantations are used in power semiconductor devices to introduce recombination centers (Hazdra et al., Microelectron. J. 32(5), 449-456 (2001)) or to form hydrogen related donor complexes (Zohta et al., Jpn. J. Appl. Phys. 10, 532-533 (1991)). Proton implantations are also used in the 'smart cut' process to generate defects that can be used to cleave thin wafers (Romani and Evans, Nucl. Instrum. Methods Phys. Res. B 44, 313-317 (1990)). However, the implantation damage resulting from H+implantations is not completely understood. In this study, protons with energies from 400 keV up to 4 MeV and doses up to 1016 H+/cm2 were implanted into highly ohmic boron doped m:Cz silicon (100). Electron Beam Induced Current (EBIC) measurements were performed to locally determine the minority charge carrier diffusion length. The diffusion length decreases with increasing implantation dose and incorporated damage. Spreading Resistance Profiling (SRP) measurements were performed to analyze the charge carrier concentration profiles for different annealing procedures. The electrical activation and growth of the defect complexes varies strongly with the annealing parameters. Transmission Electron Microscopy measurements were made to investigate the microscopic structures formed by the high dose implantation processes. Due to the high local damage density resulting from low energy and high dose H+ implants, platelet structures are formed. During high-energy high-dose H+implantations, the implanted hydrogen generates strain in the crystal lattice resulting in changes in the distances between atomic planes. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Hormonal control of implantation.

    Science.gov (United States)

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. PMID:27172870

  10. Study of ICT implanter

    International Nuclear Information System (INIS)

    A compact new low cost ion implantation facility using an ICT (insulated core type) high voltage supply and capable of handling beam currents upto 10 mA is described. Following a systematic investigation of the numerous parameters of the ion implanter, a practical method has been developed for controlling them and to optimise the performance of the machine. Relationship between beam divergence and the extraction parameters has been found. With this machine a stable and typical operation, using 15 mil cathode, yields of 2 μA of boron, 4 μA of argon and 2.5 μA of antimony have been found on the target using B2O3 + Sb (powdered mix) solid feed and argon as support gas. (author)

  11. Efter cochlear implant

    DEFF Research Database (Denmark)

    Højen, Anders

    2007-01-01

      Dit barn har netop fået et cochlear implant. Hvad nu? Skal barnet fokusere udelukkende på at lære talt sprog, eller skal det også lære/fortsætte med tegnsprog eller støttetegn? Det er et vanskeligt spørgsmål, og før valget foretages, er det vigtigt at vurdere hvilke konsekvenser valget har, dels...... for den sproglige udvikling isoleret set, og dels for barnets udvikling ud fra en helhedsbetragtning. Dette indlæg fokuserer på, hvilke forventninger man kan have til cochlear implant-brugeres sproglige udvikling med talt sprog alene, hhv. med to sprog (tale og tegn). Disse forventninger er baseret på...

  12. Efter cochlear implant

    DEFF Research Database (Denmark)

    Højen, Anders

    Dit barn har netop fået et cochlear implant. Hvad nu? Skal barnet fokusere udelukkende på at lære talt sprog, eller skal det også lære/fortsætte med tegnsprog eller støttetegn? Det er et vanskeligt spørgsmål, og før valget foretages, er det vigtigt at vurdere hvilke konsekvenser valget har, dels...... for den sproglige udvikling isoleret set, og dels for barnets udvikling ud fra en helhedsbetragtning. Dette indlæg fokuserer på, hvilke forventninger man kan have til cochlear implant-brugeres sproglige udvikling med talt sprog alene, hhv. med to sprog (tale og tegn). Disse forventninger er baseret på...

  13. Low Molecular Weight Organic Semiconductors

    CERN Document Server

    Kampen, Thorsten U

    2010-01-01

    This up-to-date reference for students and researchers in the field is the first systematic treatment on the property measurements of organic semiconductor materials. Following an introduction, the book goes on to treat the structural analysis of thin films and spectroscopy of electronic states. Subsequent sections deal with optical spectroscopy and charge transport. An invaluable source for understanding, handling and applying this key type of material for physicists, materials scientists, graduate students, and analytical laboratories

  14. Semiconductor-laser modulation techniques

    International Nuclear Information System (INIS)

    Three simple modulation techniques for semiconductor lasers have been described. The first technique employs a single constant current source and is suitable for low frequency modulation up to 500 Khz. The second and third techniques employ two constant current sources each with current summing of subtraction and are suitable for higher frequency modulation up to several MHz. Schematic diagrams of designed, developed and tested circuits, implementing each of the above mentioned schemes, have also been presented. (author)

  15. A completely cofacial organic semiconductor

    OpenAIRE

    Ellman, Brett; Twieg, Robert

    2013-01-01

    Crystals of 1,3,5-tripyrrolebenzene (TPB) contain closely packed, perfectly cofacial stacks of benzene rings with large wavefunction overlap, making it an interesting candidate organic semiconductor. We study TPB using a variety of ab-initio and band-structure techniques, and find very large $\\pi$ overlap in the benzene stacks, broad bands (especially for electrons), and relatively small binding energies for polarons of both signs, making TPB a promising quasi-one dimensional electron-transpo...

  16. Phonon sidebands in semiconductor luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, T.; Kira, M.; Koch, S.W. [Department of Physics and Materials Sciences Center, Philipps University, Marburg (Germany)

    2009-02-15

    A microscopic theory of LO-phonon assisted photoluminescence in semiconductors is presented. In order to systematically describe Coulomb and light-matter interaction, a cluster-expansion scheme is employed. The carrier-phonon coupling is treated non-perturbatively within the polaron picture. Luminescence equations are derived, which produces phonon sidebands to arbitrary order. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Plasma etching in semiconductor fabrication

    International Nuclear Information System (INIS)

    The contents of this book are: Introduction; Plasma Excitation and Reactor Design; Silicon and Silicon Dioxide Etching in Plasmas; Aluminium Etching in Chlorinated Plasmas; The Plasma Etching of III/V Compound Semiconductors; Operating Frequency and the Plasma; Probe Characteristics and Plasma Measurements of an Electrotech Planar Plasma Etcher; The RF Voltage/Current Characteristics and Related DC Negative Bias Properties of an Electrotech Flat Bed Planar Plasma Etcher; and Methods of Reducing the Etch Rate of Positive Photoresist Masks During Plasma Etching

  18. Semiconductors for terahertz photonics applications

    OpenAIRE

    Krotkus, Arūnas

    2010-01-01

    Abstract Generation and measurement of ultrashort, sub-picosecond pulses of electromagnetic radiation with their characteristic Fourier spectra that reach far into terahertz (THz) frequency range has recently become a versatile tool of the far-infrared spectroscopy and imaging. This technique ? THz time-domain spectroscopy, in addition to a femtosecond pulse laser, requires semiconductor components manufactured from materials with a short photoexcited carrier lifetime, high carrier mobilit...

  19. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  20. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  1. Optoelectronics with 2D semiconductors

    Science.gov (United States)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  2. Plasma Processes for Semiconductor Fabrication

    Science.gov (United States)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  3. Model of diffusion of ion-implanted impurities, taking into account the effect of radiation defects created by ion implantation on the diffusion process

    International Nuclear Information System (INIS)

    Radiation defects created during implantation appreciably affect the process of redistribution of impurities during subsequent heat treatments. The development of models of diffusion of ion-implanted impurities, taking into account radiation defects, will substantially increase the adequacy of the modeling of doping processes at the design stage and at the stage of testing of modern semiconductor device and IMS technology. The authors propose such a model. For the model, the authors studied the diffusion of boron, gallium, arsenic, and antimony implanted in silicon. Thermal diffusion of these impurities is described under the assumption that the neutral and singly charged equilibrium vacancy-impurity complexes (VIC), formed correspondingly by singly charged and neutral vacancies and impurity atoms at the position of substitution, migrate. It is assumed that the different charge states of the vacancies and vacancy-impurity complexes as well as the impurity atoms, vacancies, and VIC are in local thermodynamic equilibrium

  4. Transition metal implanted ZnO. A correlation between structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang

    2008-07-01

    Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases. (orig.)

  5. Bone Substitutes for Peri-Implant Defects of Postextraction Implants

    OpenAIRE

    Pâmela Letícia Santos; Jéssica Lemos Gulinelli; Cristino da Silva Telles; Walter Betoni Júnior; Roberta Okamoto; Vivian Chiacchio Buchignani; Thallita Pereira Queiroz

    2013-01-01

    Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immed...

  6. Validation of implant stability: A measure of implant permanence

    OpenAIRE

    Neha Mall; B Dhanasekar; I. N. Aparna

    2011-01-01

    Implant stability is a requisite characteristic of osseointegration. Without it, long-term success cannot be achieved. Continuous monitoring in a quantitative and objective manner is important to determine the status of implant stability. Measurement of implant stability is a valuable tool for making decisions pertaining to treatment protocol and also improves dentist-patient communication. Owing to the invasive nature of histological analysis, various others methods have been proposed like r...

  7. The change of rotational freedom following different insertion torques in three implant systems with implant driver

    OpenAIRE

    Kwon, Joo-Hyun; Han, Chong-Hyun; Kim, Sun-Jai; Chang, Jae-Seung

    2009-01-01

    STATEMENT OF PROBLEM Implant drivers are getting popular in clinical dentistry. Unlike to implant systems with external hex connection, implant drivers directly engage the implant/abutment interface. The deformation of the implant/abutment interface can be introduced while placing an implant with its implant driver in clinical situations. PURPOSE This study evaluated the change of rotational freedom between an implant and its abutment after application of different insertion torques. MATERIAL...

  8. Current trends in dental implants

    OpenAIRE

    Gaviria, Laura; Salcido, John Paul; Guda, Teja; Ong, Joo L.

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evoluti...

  9. Dental Implants: Dual Stabilization Technology

    OpenAIRE

    Saini, Rajiv

    2015-01-01

    More recent epidemiological data seem to show an increasing trend of tooth loss due to periodontal reasons rather than caries; the presence of initial attachment loss, bone height and the habit of smoking significantly increase the risk of tooth mortality. A dental implant is a titanium screw which is placed into bone to replace missing teeth. The implant mimics the root of a tooth in function. Dental Implants have changed the face of dentistry over the last three decades. Success of dental i...

  10. Short implants in oral rehabilitation

    OpenAIRE

    Emmanuel Panobianco Chizolini; Ana Cláudia Rossi; Alexandre Rodrigues Freire; Mario Roberto Perussi; Paulo Henrique Ferreira Caria; Felippe Bevilacqua Prado

    2011-01-01

    Introduction and objective: The placement of short dental implants is used as an alternative treatment modality to bone grafting procedures. The aim of this study was to discuss, through a literature review, the features, indications and biomechanical aspects of short implants, as well as to report the clinical factors that influence on their indication. Literature review and conclusion: It was found that short implants osseointegration can be compromised by risk factors that must be controll...

  11. Nanostructured Surfaces of Dental Implants

    OpenAIRE

    Stefano Sivolella; Barbara Zavan; Letizia Ferroni; Chiara Gardin; Vincenzo Vindigni; Edoardo Stellini; Marco Roman; Ilaria Tocco; Riccardo Guazzo; Luca Sbricoli; Eriberto Bressan

    2013-01-01

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical process...

  12. Paediatric cataract implant surgery outcome

    OpenAIRE

    Istiantoro Istiantoro

    2003-01-01

    This study evaluated the surgical outcome of various surgical technique in paediatric cataract implant surgery, at Jakarta Eye Center, Jakarta, Indonesia. This was a retrospective study of 57 eyes in 44 children who had primary cataract implants surgery. Three surgical techniques used were : 1. Extracapsular cataract extraction with intraocular lens implantation with intact posterior capsule which was performed on 21 eyes (group 1). 2. Extracapsular cataract extraction with intraocular lens i...

  13. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  14. Lasing and ion beam doping of semiconductor nanowires

    International Nuclear Information System (INIS)

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  15. Lasing and ion beam doping of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geburt, Sebastian

    2013-01-31

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  16. Cochlear implants in genetic deafness

    Institute of Scientific and Technical Information of China (English)

    Xuezhong Liu

    2014-01-01

    Genetic defects are one of the most important etiologies of severe to profound sensorineural hearing loss and play an important role in determining cochlear implantation outcomes. While the pathogenic mutation types of a number of deafness genes have been cloned, the pathogenesis mechanisms and their relationship to the outcomes of cochlear implantation remain a hot research area. The auditory performance is considered to be affected by the etiology of hearing loss and the number of surviving spiral ganglion cells, as well as others. Current research advances in cochlear implantation for hereditary deafness, especially the relationship among clinic-types, genotypes and outcomes of cochlear implantation, will be discussed in this review.

  17. Short implants: A systematic review

    OpenAIRE

    Karthikeyan, I.; Shrikar R. Desai; Singh, Rika

    2012-01-01

    Background: Short implants are manufactured for use in atrophic regions of the jaws. Although many studies report on short implants as ≤10 mm length with considerable success, the literature regarding survival rate of ≤7 mm is sparse. Purpose: The purpose of this study was to systematically evaluate the publications concerning short dental implants defined as an implant with a length of ≤7 mm placed in the maxilla or in the mandible. Materials and Methods: A Medline and manual search was cond...

  18. Intelligent shop scheduling for semiconductor manufacturing

    OpenAIRE

    Arisha, Amr

    2003-01-01

    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense ne...

  19. Semiconductor High-Energy Radiation Scintillation Detector

    OpenAIRE

    Kastalsky, A.; Luryi, S.; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on d...

  20. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  1. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika;

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  2. Semiconductor power devices physics, characteristics, reliability

    CERN Document Server

    Lutz, Josef; Scheuermann, Uwe; De Doncker, Rik

    2011-01-01

    Semiconductor power devices are the heart of power electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are esse

  3. Optical transitions in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions.

  4. Analytical chemistry and semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, P.W. (Univ. of Illinois at Urbana-Champaign (USA)); Harris, T.D. (AT T Bell Laboratories, Murray Hill, NJ (USA))

    1990-07-15

    Advances in analytical chemistry are crucial to the continued expansion of electronic and optoelectronic materials in device applications. This report explains the critical role that the defect chemistry of semiconductor material in a device and the difficulty of extracting chemical information about defects. The authors focus on the generic class of chemical analysis problems resulting from the fact that the spatial distribution of chemical composition is the single most important factor in determining the operative properties of electronic and optoelectronic materials. 31 refs., 7 figs., 1 tabs.

  5. High-Performance Thermoelectric Semiconductors

    Science.gov (United States)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  6. Optical transitions in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions

  7. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

  8. Trace analysis of semiconductor materials

    CERN Document Server

    Cali, J Paul; Gordon, L

    1964-01-01

    Trace Analysis of Semiconductor Materials is a guidebook concerned with procedures of ultra-trace analysis. This book discusses six distinct techniques of trace analysis. These techniques are the most common and can be applied to various problems compared to other methods. Each of the four chapters basically includes an introduction to the principles and general statements. The theoretical basis for the technique involved is then briefly discussed. Practical applications of the techniques and the different instrumentations are explained. Then, the applications to trace analysis as pertaining

  9. Implant periapical lesion: Diagnosis and treatment

    OpenAIRE

    Peñarrocha Diago, María; Maestre Ferrín, Laura; Cervera Ballester, Juan; Peñarrocha Oltra, David

    2012-01-01

    The implant periapical lesion is the infectious-inflammatory process of the tissues surrounding the implant apex. It may be caused by different factors: contamination of the implant surface, overheating of bone during drilling, preparation of a longer implant bed than the implant itself, and pre-existing bone disease. Diagnosis is achieved by studying the presence of symptoms and signs such us pain, swelling, suppuration or fistula; in the radiograph an implant periapical radiolucency may app...

  10. Management of dislocated intraocular implants.

    Science.gov (United States)

    Chan, C K; Agarwal, A; Agarwal, S; Agarwal, A

    2001-12-01

    Implant dislocation may occur in the absence of appropriate capsular or zonular support (PCIOL) (11,35,53) or following traumatic injury to anterior ocular tissues (ACIOL). (11,19,20) Other factors (e.g., advanced patient age, high myopia, previous vitrectomy, pseudoexfoliation syndrome, and certain connective tissue disorders) also may predispose implant dislocation. (9,52) Although reported for all types of IOLs, implant dislocation is becoming more manageable because of the advancement of surgical techniques. A dislocated ACIOL or PCIOL may be explanted, exchanged, or repositioned. (11,48,71) Repositioning the dislocated PCIOL in the ciliary sulcus with modern vitreoretinal techniques provides an optimal environment for visual recovery. (11,71) Implant repositioning techniques generally may be categorized into the external or the internal approaches. (8,11) The former involves external suturing methods for a primary or secondary implant in the absence of adequate capsular or zonular support (15,16,31,42,56,60,61,64,66,73,76) and the latter is achieved through modern pars plana techniques. 8,11,62,69) Recently, several implant repositioning methods gaining increasing acceptance include the scleral loop fixation, (45) the snare approach, (43) the use of the 25-gauge implant forceps, (13) temporary haptic externalization, (8,11,36,71) and the use of perfluorocarbon liquids. (1,28,40,41,44) The temporary haptic externalization method combines the best features of the external and the internal approaches, avoids complex intraocular maneuvers, and allows precise scleral fixation of the dislocated IOL on a consistent basis. (8,11,71) Endoscopy provides the surgeon with optimal viewing of the anterior retropupillary anatomy that is often difficult to appreciate (e.g., capsular-zonular complex, ciliary sulcus, anterior retina, and vitreous base). (6,11) As a result, precise haptic placement is possible during the repositioning process. (6,11) However, a three

  11. Ion beam induced amorphisation in semiconductors studied using perturbed angular correlations

    International Nuclear Information System (INIS)

    Ion implantation is an increasingly important technique in the fabrication of semiconductor devices. The understanding of irradiation produced disorder is thus of important scientific and technological significance. While many techniques have been applied to the study of semiconductor materials, no single method can provide a full characterisation and a detailed understanding of the physical processes relies on the application of a diverse range of complimentary techniques. In this paper we discuss the application of the Perturbed Angular Correlation technique to the study of ion beam amorphisation in semiconductor materials. The Perturbed Angular Correlations (PAC) method uses radioactive atoms at very low concentrations to provide information about the local electronic or magnetic structure around the probe atom. It relies on the change in the radiation pattern observed when an excited nucleus decays in an extra-nuclear field. A good description of the fundamental principles of the PAC method and its application to semiconductors is provided by the recent review of Wishart. The current measurements have used the 111In probe nucleus. This nucleus decays via electron capture to the daughter, 111Cd which is formed in an excited state. This nucleus then de-excites by the emission of two γ -rays. It is the perturbation of the γ-γ angular correlation of these two γ-rays by the presence of non zero electric field gradients at the probe site which is observed in the current measurements

  12. Proton implanted silicon wafers investigated by electron beam induced current measurements

    International Nuclear Information System (INIS)

    Full text: Electron Beam Induced Current (EBIC) is an analysis method used in a Scanning Electron Microscope (SEM) to investigate buried junctions or defects in semiconductors. During an EBIC measurement, the electron beam enters a semiconductor and generates electron-hole pairs. If the charge carriers diffuse into a region where there is a built-in electric eld, such as a pn junction or a Schottky contact, charge separation will occur and a current will flow. This is similar to what happens in a solar cell except in an EBIC measurement the electron-hole pairs are generated by the electron beam instead of by light. We have used EBIC to investigate proton implanted silicon wafers with implantation doses from 1 x 1013 p+/cm2 to 1 x 1015 p+/cm2 and with implantation energies from 500 keV to 5 MeV. The implantation introduces vacancies, silicon interstitials, and hydrogen into the crystal. The sample is then annealed in the temperature range from room temperature to 10000C and defect complexes form. The microscopic structure of these defect complexes is not completely understood. There is a class of oxygen-vacancy defect complexes called thermal donors that are known to act as donors in silicon. Since electron-hole pairs recombine at defects, the EBIC signal is decreased if the charge carriers have to diffuse past defects on their way to the measurement contacts. (author)

  13. Damage formation and recovery in Fe implanted 6H–SiC

    CERN Document Server

    Miranda, Pedro; Catarino, Norberto; Lorenz, Katharina; Correia, João Guilherme; Alves, Eduardo

    2012-01-01

    Silicon carbide doped with magnetic ions such as Fe, Mn, Ni or Co could make this wide band gap semiconductor part of the diluted magnetic semiconductor family. In this study, we report the implantation of 6H-SiC single crystals with magnetic $^{56}$Fe$^{+}$ ions with an energy of 150 keV. The samples were implanted with 5E14 Fe$^+$/cm$^{2}$ and 1E16 Fe$^+$/cm$^{2}$ at different temperatures to study the damage formation and lattice site location. The samples were subsequently annealed up to 1500°C in vacuum in order to remove the implantation damage. The effect of the annealing was followed by Rutherford Backscattering/Channeling (RBS/C) measurements. The results show that samples implanted above the critical amorphization temperature reveal a high fraction of Fe incorporated into regular sites along the [0001] axis. After the annealing at 1000°C, a maximum fraction of 75%, corresponding to a total of 3.8E14 Fe$^{+}$/cm$^{2}$, was measured in regular sites along the [0001] axis. A comparison is made betwee...

  14. Imaging breasts with silicone implants

    International Nuclear Information System (INIS)

    Over the last two decades, the use of breast implants both for breast augmentation and for breast reconstruction following mastectomy has increased substantially. It is estimated that around two million women have undergone breast augmentation, while hundreds of thousands have had breast reconstruction surgery. Different types of material have been used for breast implants, but silicone gel implants have been the dominating implant type. Many implants can lead to complications, such as hardening and rupture, and may therefore need in vivo evaluation by imaging, particularly if they lead to clinical symptoms. They can also pose problems in the assessment of surrounding breast tissue by conventional mammography. In this respect, imaging modalities such as ultrasound, computed tomography and magnetic resonance imaging offer greater possibilities to assess a failing implant, as well as surrounding breast tissue. Several factors, mainly of a psychological nature, lead to requests for breast implants. In this review article, only the imaging aspects of breasts with silicone gel implants will be dealt with. Each modality is concisely presented with its possibilities and limitations. (orig.)

  15. Implantable Antennas for Biomedical Applications

    OpenAIRE

    Merli, Francesco

    2011-01-01

    Since the introduction of implantable pacemakers in the early 1960s, implantable medical devices have become more and more interesting for healthcare services. Nowadays, the devices designed to monitor physiological data from inside the human body have great promises to provide major contributions to disease prevention, diagnosis and therapy. Furthermore, minimally invasive devices allow reducing hospitalization terms, thus improving the patients' qua...

  16. Endometrium implantation and ectopic pregnancy

    Institute of Scientific and Technical Information of China (English)

    LIU; Yixun

    2004-01-01

    Embryo in uterine implantation is a complex and multifactor-related process and is a downstream and ideal point for woman fertility control.Understanding the cellular and molecular mechanism of implantation is a prerequisite for development of anti-implantation contraceptives.In spite of considerable accumulation of information from the laboratory animals that has been achieved,it is difficult to generate such information in human due to ethical restriction and experimental limitation,and the present knowledge for understanding the definitive mechanisms which control these events remains elusive.Embryo implantation can also occur outside uterus.Some women with abdominal pregnancies could successfully complete the processes of gestation and bear normal babies,implying that implantation itself may be not an endometrium-specific process.Reproductive biologists should cooperate with gynecologists to further comparatively study the molecular and cellular mechanisms of implantation normally occurring in endometrium and abnormally appearing outside uterine cavity.Such collaborative studies may generate new important information for developing anti-implantation contraceptive and for techniques of accurate diagnosis of ectopic pregnancy.A specially designed GnRH-2 analog and a combination use of Iow dose RU486 and gossypol as anti-implantation contraceptives have been suggested.

  17. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    International Nuclear Information System (INIS)

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered

  18. Research and development of semiconductor-based instrumentation with application to medical physics

    International Nuclear Information System (INIS)

    Full text: Over the last ten years the Centre for Medical Radiation Physics at the University of Wollongong has established a research programme in the area of medical physics that is centred on new and novel silicon semiconductor detectors. Arising from this research is the development of innovative instrumentation with application to radiation medicine. This paper will describe the motivation and background research of several instruments, that are at different stages of development and commercialisation, including the Semiconductor Microdosimeter, Radiation Damage Monitoring System, MOSFET dosimetry System, Urethra Probe Mini-Spectroscopy System and Anti-Compton Probe These instruments have found application in a wide variety of radiation medicine related areas includng Proton Therapy, Fast Neutron Therapy, Microbeam Radiation Therapy, Intensity Modulated Radiation Therapy, Permanent Seed Implant Prostate Brachytherapy and Radionuclide Image Guided Surgery. Copyright (2005) Australian Institute of Physics

  19. First order Raman scattering analysis of transition metal ions implanted GaN

    Science.gov (United States)

    Majid, Abdul; Rana, Usman Ali; Shakoor, Abdul; Ahmad, Naeem; Hassan, Najam al; Khan, Salah Ud-Din

    2016-03-01

    Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm-2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm-1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm-1 for TM ions implanted at 5×1014 cm-2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.

  20. Semiconductor Switching Devices. .Future Trends

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    1998-01-01

    Full Text Available A variety of semiconductor devices and circuits have been successfully developed usingconduction properties of electrons and holes in a number of elemental and compound semiconductors.Carriers confinement in a potential well, formed out of a thin layer of lower band gap materialsandwitched between two layers of a higher band gap material, has been extended from one to two andthree dimensions. Resultant of two-dimensional carrier sheet, quantum wire and quantum dot havingdiscrete energy levels arising out of quantisation are being presently explored for possible device applications. A number of devices have been fabricated using resonant tunneling across a thin potentialbarrier. This has opened up several newer possibilities of using such structures for various electronicand optoelectronic devices and circuits applications as tunneling is relatively faster than conductionprocess. While looking into the interband tunneling between two quantum dots, possibility of a singleelectron switching has also been examined carefully. The idea of a single electron switching isconceptually being extended from quantl,lm dots to molecules and atoms ultimately. Simulations basedon transmission of electrons through a chain of molecules and atoms have shown that tens of THz speed and functional device density 1012 devices/mm2 are possible with such schemes. Devices basedon atom relay transistor (ART will be ultimate in its performance of switching speed. A brief onpresent-day situation followed by future proposals of fast switching devices for informationelectronics has been discussed.

  1. The ATLAS semiconductor tracker (SCT)

    CERN Document Server

    Jackson, J N

    2005-01-01

    The ATLAS detector (CERN/LHCC/94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10**3**4 cm**-**2 s**-**1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN/LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN/LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed.

  2. Ultrafast processes in semiconductor structures

    International Nuclear Information System (INIS)

    We review the dynamics of some of the more relevant optical processes in semiconductor quantum wells. We concentrate on the linear regime and study the time evolution of the light emission, using time-resolved photoluminescence spectroscopy. In intrinsic materials, excitonic effects determine their optical properties. Here we describe the formation and recombination of excitons, and the dependence of these processes on lattice temperature, exciton density, and energy of the exciton light pulses. We also describe the dynamics of the exciton's spin by optical orientation experiments. We discuss the principal mechanism s responsible for the spin flip of the excitons and clarify the role of the exciton localization. Finally, we will show that exciton-exciton interaction produces the breaking of the spin degeneracy in two-dimensional semiconductors. In doped quantum wells, we show that the two spin components of an optically created two-dimensional electron gas are well described by the Fermi-Dirac distributions with the common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers. (author)

  3. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  4. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Birner, Stefan

    2011-11-15

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano{sup 3} software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano{sup 3} software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model

  5. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    International Nuclear Information System (INIS)

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano3 software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano3 software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model to recently

  6. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yue [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Yan Feng [College of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang, E-mail: xuyue_cd@163.co [Semiconductor Manufacturing International (Shanghai) Corporation, Shanghai 201203 (China)

    2010-09-15

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  7. Microstructural and magnetic study of Fe-implanted 6H-SiC

    International Nuclear Information System (INIS)

    Single crystalline 6H-SiC near (0 0 0 1)-oriented p-type samples were co-implanted at 550 deg. C with Fe ions at different energies and fluences ranging from 30 to 160 keV and from 2x1015 to 8x1015 ions cm-2 with the aim to get so-called diluted magnetic semiconductors (DMS). Different treatments for implantation-induced damage recovery and iron incorporation and activation in the SiC matrix have been studied: the effects of rapid thermal annealing (RTA) on microstructure and magnetic properties of Fe-implanted 6H-SiC are compared to those of laser processing in the solid phase.

  8. Microstructural and magnetic study of Fe-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Dupeyrat, C., E-mail: cyril.dupeyrat@etu.univ-poitiers.f [Laboratoire de Physique des materiaux (PhyMat), SP2MI, teleport 2, Bvd M. et P. Curie, 86962 Chasseneuil-Futuroscope (France); Declemy, A.; Drouet, M.; Eyidi, D. [Laboratoire de Physique des materiaux (PhyMat), SP2MI, teleport 2, Bvd M. et P. Curie, 86962 Chasseneuil-Futuroscope (France); Thome, L.; Debelle, A. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse (CSNSM), Universite Paris-Sud, Bat 104, 91405 Orsay (France); Viret, M. [Service de Physique de l' Etat Condense (CAPMAG/SPEC), Centre d' Etudes de Saclay, 91191 Gif sur Yvette (France); Ott, F. [Laboratoire Leon Brillouin (CAPMAG/LLB), Centre d' Etudes de Saclay, 91191 Gif sur Yvette (France)

    2009-12-15

    Single crystalline 6H-SiC near (0 0 0 1)-oriented p-type samples were co-implanted at 550 deg. C with Fe ions at different energies and fluences ranging from 30 to 160 keV and from 2x10{sup 15} to 8x10{sup 15} ions cm{sup -2} with the aim to get so-called diluted magnetic semiconductors (DMS). Different treatments for implantation-induced damage recovery and iron incorporation and activation in the SiC matrix have been studied: the effects of rapid thermal annealing (RTA) on microstructure and magnetic properties of Fe-implanted 6H-SiC are compared to those of laser processing in the solid phase.

  9. Ferromagnetism in ZnO doped with Co by ion implantation

    International Nuclear Information System (INIS)

    The importance of doping ZnO with magnetic ions is associated with the fact that this oxide is a good candidate for the formation of a magnetic-diluted semiconductor. Most of the studies reported in Co-doped ZnO were carried out in thin films, but the understanding of the modification of the magnetic behaviour due to doping demands the study of single-crystalline samples. In this work, ZnO single crystals were doped at room temperature with Co by ion implantation with fluences ranging between 2x1016 and 1x1017 ions cm-2 and implantation energy of 100 keV. As implanted samples show a superparamagnetic behaviour attributed to the formation of Co clusters, room temperature ferromagnetism is attained after annealing at 800 deg. C, but no magnetoresistance was detected in the temperature range from 10 to 300 K

  10. Atomic layer deposited TiO2 for implantable brain-chip interfacing devices

    International Nuclear Information System (INIS)

    In this paper we investigated atomic layer deposition (ALD) TiO2 thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 °C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al2O3 buffer layer between TiO2 and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  11. Atomic layer deposited TiO{sub 2} for implantable brain-chip interfacing devices

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, E., E-mail: elena.cianci@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (MB) (Italy); Lattanzio, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Dipartimento di Ingegneria dell' Informazione, Universita di Padova, 35131 Padova (Italy); Seguini, G. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Vassanelli, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano-Bicocca, 20126 Milano (Italy)

    2012-05-01

    In this paper we investigated atomic layer deposition (ALD) TiO{sub 2} thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 Degree-Sign C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al{sub 2}O{sub 3} buffer layer between TiO{sub 2} and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  12. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  13. Short implants in oral rehabilitation

    Directory of Open Access Journals (Sweden)

    Emmanuel Panobianco Chizolini

    2011-07-01

    Full Text Available Introduction and objective: The placement of short dental implants is used as an alternative treatment modality to bone grafting procedures. The aim of this study was to discuss, through a literature review, the features, indications and biomechanical aspects of short implants, as well as to report the clinical factors that influence on their indication. Literature review and conclusion: It was found that short implants osseointegration can be compromised by risk factors that must be controlled to achieve treatment success. In conclusion, the main indication of short implants is to avoid an invasive surgery at atrophic areas of maxilla and mandible. Furthermore, implant design associated with surface treatment are factors that compensate its short length.

  14. Anatomic consideration for preventive implantation.

    Science.gov (United States)

    Denissen, H W; Kalk, W; Veldhuis, H A; van Waas, M A

    1993-01-01

    The aim of preventive implant therapy is to prevent or delay loss of alveolar ridge bone mass. For use in an anatomic study of 60 mandibles, resorption of the alveolar ridge was classified into four preventive stages: (1) after extraction of teeth; (2) after initial resorption; (3) when the ridge has atrophied to a knife-edge shape; and (4) when only basal bone remains. Implantation in stage 3 necessitates removal of the knife-edge ridge to create space for cylindrical implants. Therefore, implantation in stage 2 is advocated to prevent the development of stage 3. The aim of implantation in stage 4 is to prevent total loss of function of the atrophic mandible. PMID:8359876

  15. Collection efficiency and charge transfer optimization for a 4-T pixel with multi n-type implants

    International Nuclear Information System (INIS)

    In order to increase collection efficiency and eliminate image lag, multi n-type implants were introduced into the process of a pinned-photodiode. For the purpose of improving the collection efficiency, multi n-type implants with different implant energies were proposed, which expanded the vertical collection region. To reduce the image lag, a horizontal gradient doping concentration eliminating the potential barrier was also formed by multi n-type implants. The simulation result shows that the collection efficiency can be improved by about 10% in the long wavelength range and the density of the residual charge is reduced from 2.59 × 109 to 2.62 × 107cm−3. (semiconductor devices)

  16. Preliminary evaluation of implantable MOSFET radiation dosimeters

    International Nuclear Information System (INIS)

    In this paper, we report on measurements performed on a new prototype implantable radiation detector that uses metal-oxide semiconductor field effect transistors (MOSFETs) designed for in vivo dosimetry. The dosimeters, which are encapsulated in hermetically sealed glass cylinders, are used in an unbiased mode during irradiation, unlike other MOSFET detectors previously used in radiotherapy applications. They are powered by radio frequency telemetry for dose measurements, obviating the need for a power supply within each capsule. We have studied the dosimetric characteristics of these MOSFET detectors in vitro under irradiation from a 60Co source. The detectors show a dose reproducibility generally within 5% or better, with the main sources of error being temperature fluctuations occurring between the pre- and post-irradiation measurements as well as detector orientation. A better temperature-controlled environment leads to a reproducibility within 2%. Our preliminary in vitro results show clearly that true non-invasive in vivo dosimetry measurements are feasible and can be performed remotely using telemetric technology

  17. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  18. Thermionic gap with p-semiconductor

    International Nuclear Information System (INIS)

    It is shown that the volt-ampere characteristics of the thermoemission transformer with the p-semiconductor in the interelectrode gap should correspond to the characteristics for the case of thermoemission transformer with the n-semiconductor. The difference consists only in the current polarity and electromotive force

  19. Dispersion-induced nonlinearities in semiconductors

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.

    2002-01-01

    A dispersive and saturable medium is shown, under very general conditions, to possess ultrafast dynamic behaviour due to non-adiabatic polarisation dynamics. Simple analytical expressions relating the effect to the refractive index dispersion of a semiconductor ire derived and the magnitude of the...... equivalent Kerr coefficient is shown to be in qualitative agreement with measurements on active semiconductor waveguides....

  20. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  1. Transport properties of ferromagnetic semiconductors (Chapter 4)

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Gallagher, B. L.; Wunderlich, J.

    San Diego: Elsevier/Academic Press, 2008 - (Dietl, T.; Awschalom, D.; Kaminska, M.; Ohno, H.), s. 135-205. (Semiconductors and Semimetals. Vol. 82). ISBN 978-0-08-044956-2 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor * magnetotransport Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  3. Pre-requisites for the formation of unusual diffusion profiles in II-VI semiconductors

    CERN Document Server

    Wolf, H; Kronenberg, J; Wagner, F; ISOLDE Collaboration

    2010-01-01

    The diffusion of the impurities Cu, Ag, Au, and Na in CdTe and CdZnTe exhibits the unusual phenomenon of uphill diffusion if the diffusion of the impurity is performed under external Cd pressure at temperatures typically in the range 700-900 K. A model is proposed that describes these concentration profiles quantitatively and yields pre-requisites for the observation of uphill diffusion. If a metal layer is evaporated onto the implanted surface, the diffusion of the impurity is strongly affected by the generation of intrinsic defects at the metal-semiconductor interface. (C) 2010 WILEY-VCH Verlag GmbH \\& Co. KGaA, Weinheim

  4. Mössbauer and DLTS Investigations of Impurity-Vacancy Complexes in Semiconductors

    CERN Multimedia

    Nylandsted larsen, A

    2002-01-01

    % IS321 \\\\ \\\\ The structure and electronic states of impurity-vacancy complexes formed in silicon-based semiconductors are proposed to be studied by Mössbauer and DLTS techniques utilizing implanted radioactive $^{119}$Sb isotopes. Impurity-vacancy complexes are created thermally at high temperatures, but can also be produced by electron and ion irradiation at low temperatures. By comparing complexes created by both methods we expect to be able to understand the newly discovered, extremely fast diffusion of dopants in n-type extrinsic silicon.

  5. Electrically detected magnetic resonance of semiconductors and semiconductor devices

    International Nuclear Information System (INIS)

    Full text: Electrically detected magnetic resonance (EDMR) is a novel way of detecting resonant changes in the magnetoresistance of semiconductors. In most cases that have been studied to date, the resonant change is due to a change in the spin polarisation of recombination centres due to the resonant absorption of microwave radiation in a scanned magnetic field. In that case, EDMR is similar to electron spin resonance (ESR). EDMR is more sensitive than ESR and also it is specific to electrically active paramagnetic centres. In an entirely different form of EDMR, we have observed small, but well-resolved, features in the magnetoresistance of several semiconductors in the absence of microwave radiation. An explanation of some of these feature is provided in terms of a change in the spin polarisation due to a crossing of the Zeeman-split sub-levels of a recombination centre in the scanned magnetic field. The crossing of Zeeman sub-levels has been observed in optically detected magnetic resonance (ODMR) before. In other cases this explanation is not applicable and other possibilities must be considered. The features of a similar, but not the same, type have been observed so far from several devices: silicon Schottky diodes, InGaAs high electron mobility transistors (HEMT's) and most recently from tunnel diodes. The most notable properties of the features are that they are observable at room temperature and depend very sensitively on the orientation of the magnetic field B: the features move progressively over a range from 0.05 T to more than 1 T with angle. The experimental results will be presented and discussed in terms of theoretical models

  6. Pre implantation psychological functioning preserved in majority of implantable cardioverter defibrillator patients 12 months post implantation

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; Hoogwegt, Madelein T; Jordaens, Luc; Theuns, Dominic A M J

    2013-01-01

    The impact of ICD therapy on patient well being has typically focused on mean differences between groups, thereby neglecting changes within individuals. Using an intra-individual approach, we examined (i) the prevalence of implantable cardioverter defibrillator (ICD) patients maintaining their pr...... implantation level of psychological functioning at 12 months, and (ii) factors associated with deterioration in functioning....

  7. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  8. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  9. Creating semiconductor metafilms with designer absorption spectra

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  10. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  11. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  12. Plasma Properties of an Exploding Semiconductor Igniter

    Science.gov (United States)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  13. Semiconductor Laser Low Frequency Noise Characterization

    Science.gov (United States)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  14. Electromechanical phenomena in semiconductor nanostructures

    Science.gov (United States)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  15. Ion beam synthesis and characterization of metastable group-IV alloy semiconductors

    International Nuclear Information System (INIS)

    New Group-IV metastable alloy semiconductors and their heterostructures based on combinations of C-Si-Ge-Sn are recently attracting interest because of feasible new electronic and optoelectronic application in Si-technology and here research works on synthesis and characterization of the epitaxial heterostructures of Si-C, Si-Sn on Si fabricated by ion implantation together either with ion-beam-induced epitaxial crystallization (IBIEC) or solid phase epitaxial growth (SPEG) have been investigated. Formations of layers of Si1-yCy (y=0.014 at peak concentration) on Si(100) have been performed by high-dose implantation of 17 keV C ions and successive IBIEC with 400 keV Ar or Ge ion bombardments at 300-400degC or SPEG up to 750degC. Crystalline growth by IBIEC has shown a lower growth rate in Si1-yCy/Si than in intrinsic Si due mainly to the strain existence, which was observed by the X-ray diffraction (XRD) measurements. Photoluminescence(PL) measurements have revealed I1 or G line emissions that are relevant to small vacancy clusters or C pair formation, respectively. The crystalline growth of Si1-zSnz layers by 110 keV 120Sn ion implantation (z=0.029 and z=0.058 at peak concentration) into Si(100) followed either by IBIEC or by SPEG has been also investigated. PL emission from both IBIEC-grown and SPEG-grown samples with the lower Sn concentration has shown similar peaks to those by ion-implanted and annealed Si samples with intense I1 or I1-related (Ar) peaks. Present results suggest that IBIEC has a feature for the non-thermal equilibrium fabrication of Si-C and Si-Sn alloy semiconductors. (J.P.N.)

  16. Silicone breast implants: complications.

    Science.gov (United States)

    Iwuagwu, F C; Frame, J D

    1997-12-01

    Silicone breast implants have been used for augmentation mammoplasty for cosmetic purposes as well as for breast reconstruction following mastectomy for more than three decades. Though the use of the silicone gel filled variety has been banned in the USA except for special cases, they continue to be available elsewhere in the world including the UK. Despite the immense benefit they provide, their usage is associated with some complications. Most of these are related to the surgery and can be reduced by good surgical management. The major complications associated with their use is adverse capsular contracture, an outcome which can be very frustrating to manage. This article reviews the commonly reported complications and suggested management alternatives. PMID:9613406

  17. Hydrogen implantation into silicon

    International Nuclear Information System (INIS)

    Hydrogen and deuterium implantations into crystalline silicon (c-Si) are carried out at room temperature. Infra-red spectra and electrical property studies are performed on these samples before and following annealing. Analysis of the vibrational spectra shows at least two types of bonding for hydrogen in c-Si, which are identified as SiH1, (SiH2)2 units. A strong evidence of SiH2 group formation is obtained for the relatively low hydrogen concentration in c-Si in comparison with a-Si:H. On the basis of the kinetics of formation and annealing of Si-H vibrations and scanning micrograph data it is concluded that the microvoids with reconstructed inner surfaces, and hydrogen passivating dangling bonds, are effectively produced due to divacancy type defect agglomeration followed by hydrogen trapping. The electrical properties of c-Si:H are discussed also. (author)

  18. Implantation of Hickman catheters

    International Nuclear Information System (INIS)

    Hickmann catheters are used mainly in patients with hematologic diseases, especially lymphatic and myelotic leukemias, and malignant lymphomas. They facilitate the administration of chemotherapeutics, hyperosmolar solutions and other substances with local toxicity as well as frequent taking of blood samples. Usually Hickmann catheters are placed by surgical cutdown on a jugular vein. In lieu of this surgical placement, we recommend the implantation of Hickman catheters by means of interventional radiology techniques. In a period of 13 months 78 Hickman catheters were placed in 67 patients. 37 catheters (=47%) stayed more than one month, 8 catheters (=10%) stayed 5 to 8 months in the central venous system. 26, respectively 6, of these catheters are until now in situ. Lethal or life threatening complications did not occur. There were no infections at the introduction site of the catheter. The main complications were: Pneumothorax without drainage: 3.2%, pneumothorax with drainage: 3.2%, slipping back of the tip of the catheter: 4.8%, thrombosis of the subclavian vein: 3.2%, fluid in the pleural cavity: 1.6%. In correspondance to the literature the complications of Hickman catheter placement by means of interventional radiology are less serious than by means of surgical cutdown. Further advantages are: General anesthesia can be avoided (less strain on severely ill patients, no problems to wean from assisted ventilation in patients with respiratory insufficiency), the smooth curve of the implanted catheter avoids sharp kinking and occlusion of the lumen, very small skin incisions are sufficient (lesser risk of hematomas in patients with thrombopenia), time and cost are reduced in comparison to surgical placement. (orig.)

  19. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  20. Phosphorous doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  1. Phosphorus doping a semiconductor particle

    Science.gov (United States)

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  2. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  3. Optical Properties of Semiconductor Nanocrystals

    Science.gov (United States)

    Gaponenko, S. V.

    1998-10-01

    Low-dimensional semiconductor structures, often referred to as nanocrystals or quantum dots, exhibit fascinating behavior and have a multitude of potential applications, especially in the field of communications. This book examines in detail the optical properties of these structures, gives full coverage of theoretical and experimental results, and discusses their technological applications. The author begins by setting out the basic physics of electron states in crystals (adopting a "cluster-to-crystal" approach), and goes on to discuss the growth of nanocrystals, absorption and emission of light by nanocrystals, optical nonlinearities, interface effects, and photonic crystals. He illustrates the physical principles with references to actual devices such as novel light-emitters and optical switches. The book covers a rapidly developing, interdisciplinary field. It will be of great interest to graduate students of photonics or microelectronics, and to researchers in electrical engineering, physics, chemistry, and materials science.

  4. Photodiodes based on fullerene semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Voz, C. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)], E-mail: cvoz@eel.upc.edu; Puigdollers, J. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO- Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. del Canal Olimpic s/n, 08860-Castelldefels (Spain); Fonrodona, M.; Stella, M.; Andreu, J. [Solar Energy Group, Departament Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, 08028-Barcelona (Spain); Alcubilla, R. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)

    2007-07-16

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum.

  5. Fundamentals of semiconductor processing technology

    CERN Document Server

    El-Kareh, Badih

    1995-01-01

    The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac­ turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil­ ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech­ n...

  6. Basic research on maxillofacial implants

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yoshiro [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-11-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  7. Basic research on maxillofacial implants

    International Nuclear Information System (INIS)

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  8. COCHLEAR IMPLANTATION PREVALENCE IN ELDERLY

    Directory of Open Access Journals (Sweden)

    A. V. Starokha

    2014-01-01

    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  9. Thermionic cooling in semiconductor multilayers

    International Nuclear Information System (INIS)

    Full text: A solid-state refrigerator in which electrons transport heat has advantages over the conventional vapour-cycle, compressor-based domestic refrigerator since it has no moving parts, it is low-maintenance, silent, vibration-free and does not require the use of refrigerant gases. The usual approach to making an all-electrical refrigerator is by thermoelectric refrigeration. After a period of intense research in the 1950s and 60s it was realised that the efficiency of thermoelectric devices was less than, and unlikely to exceed, that of conventional compressor units. While thermoelectric cooling has found specialised applications in cases where reliability, compactness and weight are important considerations, it does not appear that thermo-electrics will ever successfully compete in the domestic market, in spite of recent advances in the design and fabrication of thermoelectric materials. A new approach to an all-electric refrigerator is to employ thermionic emission over potential barriers. A key difference between a thermoelectric device and a thermionic device is that in the former the electrons are scattered in their motion and in the latter they are not. Thus thermionic cooling, in principle, can be much more efficient than thermoelectric cooling. A radical new realisation of the thermionic refrigerator was suggested recently in which a multilayer semiconductor structure would be used. We discuss the optimisation of such a multilayer semiconductor cooling system by considering (1) electron-phonon interactions in the barriers and electrodes; (2) the detailed treatment of thermal conductivity; (3) an exact numerical solution of the heat and energy currents (in contrast to the previous approximate analytic solutions); (4) the effect of varying layer thickness across the device; and (5) the effect of varying current density across the device

  10. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  11. Pediatric cochlear implantation: an update.

    Science.gov (United States)

    Vincenti, Vincenzo; Bacciu, Andrea; Guida, Maurizio; Marra, Francesca; Bertoldi, Barbara; Bacciu, Salvatore; Pasanisi, Enrico

    2014-01-01

    Deafness in pediatric age can adversely impact language acquisition as well as educational and social-emotional development. Once diagnosed, hearing loss should be rehabilitated early; the goal is to provide the child with maximum access to the acoustic features of speech within a listening range that is safe and comfortable. In presence of severe to profound deafness, benefit from auditory amplification cannot be enough to allow a proper language development. Cochlear implants are partially implantable electronic devices designed to provide profoundly deafened patients with hearing sensitivity within the speech range. Since their introduction more than 30 years ago, cochlear implants have improved their performance to the extent that are now considered to be standard of care in the treatment of children with severe to profound deafness. Over the years patient candidacy has been expanded and the criteria for implantation continue to evolve within the paediatric population. The minimum age for implantation has progressively reduced; it has been recognized that implantation at a very early age (12-18 months) provides children with the best outcomes, taking advantage of sensitive periods of auditory development. Bilateral implantation offers a better sound localization, as well as a superior ability to understand speech in noisy environments than unilateral cochlear implant. Deafened children with special clinical situations, including inner ear malformation, cochlear nerve deficiency, cochlear ossification, and additional disabilities can be successfully treated, even thogh they require an individualized candidacy evaluation and a complex post-implantation rehabilitation. Benefits from cochlear implantation include not only better abilities to hear and to develop speech and language skills, but also improved academic attainment, improved quality of life, and better employment status. Cochlear implants permit deaf people to hear, but they have a long way to go before

  12. Silicone breast implants and platinum.

    Science.gov (United States)

    Wixtrom, Roger N

    2007-12-01

    Platinum, in a specific form, is used as a catalyst in the cross-linking reactions of the silicone gel and elastomer in breast implants. After manufacture, it remains in the devices at low-parts-per-million levels. Potential concerns have been raised as to whether this platinum might diffuse from silicone breast implants into the body and result in adverse health effects. The weight of evidence indicates that the platinum present is in its most biocompatible (zero valence) form, and the very minute levels (<0.1 percent) that might diffuse from the implants do not represent a significant health risk to patients. PMID:18090821

  13. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...... contributions to the theory of cluster stopping in matter as well as for practical applications requiring ultra-shallow implantation and modification of surfaces on the nanoscale. Metal clusters from the magnetron cluster source are of interest for the production of optical sensors to detect specific biological...

  14. An introduction to single implant abutments.

    LENUS (Irish Health Repository)

    Warreth, Abdulhadi

    2013-01-01

    This article is an introduction to single implant abutments and aims to provide basic information about abutments which are essential for all dental personnel who are involved in dental implantology. Clinical Relevance: This article provides a basic knowledge of implants and implant abutments which are of paramount importance, as replacement of missing teeth with oral implants has become a well-established clinical procedure.

  15. 21 CFR 522.1350 - Melatonin implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melatonin implant. 522.1350 Section 522.1350 Food... Melatonin implant. (a) Specifications. The drug is a silicone rubber elastomer implant containing 2.7...—(1) Amount. One implant per mink. (2) Indications for use. For use in healthy male and female kit...

  16. Accidental Implant Screwdriver Ingestion: A Rare Complication during Implant Placement.

    OpenAIRE

    Anshul Jain; Baliga, Shridhar D

    2014-01-01

    One of the complications during a routine dental implant placement is accidental ingestion of the implant instruments, which can happen when proper precautions are not taken. Appropriate radiographs should be taken to locate the correct position of foreign body; usually the foreign body passes asymptomatically from gastrointestinal tract but sometimes it may lead to intestinal obstruction, perforations and impactions. The aim of this article is to report accidental ingestion of 19 mm long scr...

  17. High-energy, high-current ion implantation system

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.H.; Faretra, R.; Ryding, G. (Eaton Corp., Beverly, MA (USA). Ion Beam Systems Div.)

    1985-01-01

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (10/sup 11/ ions cm/sup -2/) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 10/sup 15/ ions/cm/sup 2/. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  18. Thermodynamics of n-type extrinsic semiconductors

    International Nuclear Information System (INIS)

    In this paper we deepen the study of a thermodynamical model, based on the extended irreversible thermodynamics with internal variables, for a semiconductor doped by impurities of n type, where we take into consideration the density of holes coming from the intrinsic base of the semiconductor and its flux. Furthermore, taking into account a geometric model developed for n and p type semiconductors in a previous paper, we derive, in the same geometrized framework, the dynamical system on the fibre bundle of the processes for simple material elements of anisotropic n-type semiconductors, the transformation induced by the process, the entropy function and the entropy 1-form. The derivation of the entropy 1-form is the starting point to introduce an extended thermodynamical phase space. Then, we exploit Clausius-Duhem inequality for this medium and using Maugin's technique we work out the laws of state, the extra entropy flux, the residual dissipation inequality and the heat equation in the first and the second form. -- Highlights: → The deepened study of a thermodynamical model for n-type semiconductors, in the framework of extended non-equilibrium thermodynamics. → The achievement of linearized constitutive equations for the materials under considerations. → The development, within thermodynamics of simple materials, of a geometrical model for extrinsic semiconductors, with the derivation of a dynamical system and an entropy 1-form. → The investigation of a residual dissipation inequality and the heat equation in a first and second form for n-type semiconductors.

  19. A comparison of the magnetic properties of radiation damaged or Co implanted ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Z. [National Centre for Nuclear Research, Otwock (Poland); Gosk, J. [Faculty of Physics, Warsaw University, Warsaw (Poland); Faculty of Physics, Warsaw Technical University, Warsaw (Poland); Twardowski, A. [Faculty of Physics, Warsaw University, Warsaw (Poland); Barlak, M.; Pochrybniak, C. [National Centre for Nuclear Research, Otwock (Poland)

    2015-09-01

    Highlights: • Co implantation in ZnO single crystal introduces paramagnetic and ferromagnetic phases. • Electron and proton irradiations have no effect on crystal magnetic properties. • Co ions seem to stabilize the radiation defects. - Abstract: To elucidate the interaction between defects and transition metal impurities in creating magnetic properties in wide band-gap semiconductors, single crystals of ZnO were irradiated with high-energy electrons, protons and Co ions. Magnetization of samples was measured before and after room temperature irradiation. The measurements reveal that only Co implantation creates measurable magnetization, which is related to the simultaneous introduction of defects. Consequences of the experimental results are discussed.

  20. Conductivity type and crystal orientation of GaAs nanocrystals fabricated in silicon by ion implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    The integration of III–V semiconductor material within silicon technology is crucial for performance of advanced electronic devices. This paper presents the investigations of microstructural and opto-electronic properties of GaAs quantum dots (QDs) formed in silicon by means of sequential ion implantation and flash lamp annealing (FLA). Formation of crystalline GaAs QDs with well-defined crystal orientation and conductivity type was confirmed by high resolution transmission electron microscopy and μ-Raman spectroscopy. The influence of the post implantation millisecond-range annealing on the evolution of the nanoparticles size, shape, crystallographic orientation and doping type of GaAs QDs is discussed

  1. Improvements in or relating to semiconductor devices

    International Nuclear Information System (INIS)

    A method of producing semiconductor devices is described consisting of a series of physical and chemical techniques which results in the production of semiconductor devices such as IMPATT diodes of DC-RF efficiency and high reliability (lifetime). The diodes can be mass produced without significant variation of the technology. One of the techniques used is the high energy proton bombardment of the semiconductor material in depth to passivate specific zones. The energy of the protons is increased in stages at intervals of less than 0.11 MeV up to a predetermined maximum energy. (UK)

  2. Negative thermal diffusivity enhancement in semiconductor nanofluids

    OpenAIRE

    Martha Patricia González-Araoz; José Francisco Sánchez-Ramírez; José Luis Jiménez-Pérez; Ernesto Chigo-Anota; José Luis Herrera-Pérez; Julio Gregorio Mendoza-Álvarez

    2012-01-01

    Colloidal suspensions of semiconductor InP@ZnS nanoparticles were prepared using single-step procedure without precursor injection. Thermal properties of toluene containing InP@ZnS semiconductor with different sizes (3.1, 4.2, and 4.6 nm) were measured by mode mismatched dualbeam thermal lens technique. This was done in order to measure the effect of the presence of semiconductor nanoparticles and size on the nanofluids thermal diffusivity. The characteristic time constant of the transient th...

  3. Two-Photon Emission from Semiconductors

    CERN Document Server

    Hayat, A; Hayat, Alex; Orenstein, Meir

    2007-01-01

    We report, to the best of our knowledge, the first experimental observation of spontaneous two-photon emission from semiconductors. The overall two-photon emission power is only 4 orders of magnitude smaller than the fundamental one-photon emission power due to the continuous energy band structure of semiconductors. The measured wide-band two-photon emission spectrum is surprisingly blue-shifted in contrast to the two-photon emission from discrete-level atomic systems. This shift can be accounted for by the second-order matrix element k-dependence in semiconductors and the measured spectrum shape appears to be in good agreement with our calculations.

  4. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  5. Absorption of light dark matter in semiconductors

    OpenAIRE

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to e...

  6. Dimensional effects in semiconductor nanowires; Dimensionseffekte in Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, Daniel

    2008-06-23

    Nanomaterials show new physical properties, which are determined by their size and morphology. These new properties can be ascribed to the higher surface to volume ratio, to quantum size effects or to a form anisotropy. They may enable new technologies. The nanowires studied in this work have a diameter of 4 to 400 nm and a length up to 100 {mu}m. The semiconductor material used is mainly zinc oxide (ZnO), zinc sulfide (ZnS) and gallium arsenide (GaAs). All nanowires were synthesized according to the vapor liquid solid mechanism, which was originally postulated for the growth of silicon whiskers. Respective modifications for the growth of compound semiconductor nanowires are discussed. Detailed luminescence studies on ZnO nanowires with different diameters show pronounced size effects which can be attributed to the origins given above. Similar to bulk material, a tuning of the material properties is often essential for a further functionalization of the nanowires. This is typical realized by doping the source material. It becomes apparent, that a controlled doping of nanowires during the growth process is not successful. Here an alternative method is chosen: the doping after the growth by ion implantation. However, the doping by ion implantation goes always along with the creation of crystal defects. The defects have to be annihilated in order to reach an activation of th introduced dopants. At high ion fluences and ion masses the sputtering of surface atoms becomes more important. This results in a characteristic change in the morphology of the nanowires. In detail, the doping of ZnO and ZnS nanowires with color centers (manganese and rare earth elements) is demonstrated. Especially, the intra 3d luminescence of manganese implanted ZnS nanostructures shows a strong dependence of the nanowire diameter and morphology. This dependence can be described by expanding Foersters model (which describes an energy transfer to the color centers) by a dimensional parameter

  7. High dose metal ion implantation

    International Nuclear Information System (INIS)

    To affect non-electronic surface properties (wear, corrosion and so on) the implanted material must reach measureable atom percentages, on the order of 10%, requiring ion implantation does in the range of 1017/cm2. For this reason, the MEVVA metallic ion source, developed at Lawrence Berkeley Laboratory, has been modified to provide metal ions for high dose metal ion implantation. The modifications inlcude increasing the arc efficiency, increasing beam spot size, and increasing beam divergence. The extracted beams have been characterized as to beam cross section and the depth profiles of implants. Time-average beam currents in excess of 20 mA have been extracted. Beams of titanium, tantalum, and other refractory metal ions, plus other refractory materials, such as titanium carbide, have been extracted and used to produce modifications in the surface properties of materials. (orig.)

  8. Photobiomodulation and implants: implications for dentistry

    OpenAIRE

    Tang, Elieza; Arany, Praveen

    2013-01-01

    The use of dental implants has become a mainstay of rehabilitative and restorative dentistry. With an impressive clinical success rate, there remain a few minor clinical issues with the use of implants such as peri-implant mucositis and peri-implantitis. The use of laser technology with implants has a fascinating breadth of applications, beginning from their precision manufacturing to clinical uses for surgical site preparation, reducing pain and inflammation, and promoting osseointegration a...

  9. Peri-implant esthetics assessment and management

    OpenAIRE

    Aarthi S Balasubramaniam; Raja, Sunitha V.; Libby John Thomas

    2013-01-01

    Providing an esthetic restoration in the anterior region of the mouth has been the basis of peri-implant esthetics. To achieve optimal esthetics, in implant supported restorations, various patient and tooth related factors have to be taken into consideration. Peri-implant plastic surgery has been adopted to improve the soft tissue and hard tissue profiles, during and after implant placement. The various factors and the procedures related to enhancement of peri-implant esthetics have been disc...

  10. Computerized implant-dentistry: Advances toward automation

    OpenAIRE

    Minkle Gulati; Vishal Anand; Sanjeev Kumar Salaria; Nikil Jain; Shilpi Gupta

    2015-01-01

    Advancements in the field of implantology such as three-dimensional imaging, implant-planning software, computer-aided-design/computer-aided-manufacturing (CAD/CAM) technology, computer-guided, and navigated implant surgery have led to the computerization of implant-dentistry. This three-dimensional computer-generated implant-planning and surgery has not only enabled accurate preoperative evaluation of the anatomic limitations but has also facilitated preoperative planning of implant position...

  11. Deep level transient spectroscopy studies of charge traps introduced into silicon by channeling ion implantation of phosphorus

    International Nuclear Information System (INIS)

    Full text: The operating conditions of a silicon-based quantum computer are expected to place stringent requirements on the quality of the material and the processes used to make it. In the Special Research Centre for Quantum Computer Technology, ion implantation is one of the principle processing techniques under investigation for forming an ordered array of phosphorus atoms. This technique introduces defect centres in silicon which act as charge traps. Charge traps are expected to be detrimental to operation of the device. These defect centres, their dependence on ion implantation and thermal annealing conditions are being quantified using Deep Level Transient Spectroscopy (DLTS). Since the aspect ratio of the masks required for the top-down fabrication process restrict the incident ions to a range of angles in which they may undergo channeling implantation in the silicon substrate, we have examined the effect of channeling implantation on the nature and quantity of the charge traps produced. This is the first time that DLTS studies have been performed for channeling implantation of a dopant species in silicon. DLTS is well-suited to the dose regime of ∼1011 P/cm3 required for the quantum computer, however, a standard DLTS measurement is unable to probe the shallow depth range of ∼ 20 nm required for the P atoms (∼ 10-15 keV implantation energy). Our aim has therefore been to perform P implants in the appropriate dose regime but using higher implantation energies, ∼ 75-450 keV, where DLTS can directly identify and profile the charge traps induced by the implantation step and monitor their annealing characteristics during subsequent processing. To map the behaviour observed in this energy regime onto the low energy range required for the quantum computer we are comparing the DLTS results to damage profiles predicted by the Monte Carlo code Crystal Trim which is used in the semiconductor industry to simulate ion implantation processes in crystalline targets

  12. Advances in lens implant technology

    OpenAIRE

    Kook, Daniel; Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of imp...

  13. Cochlear Implants and Brain Plasticity

    OpenAIRE

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2002-01-01

    Cochlear implants have been implanted in over 110,000 deaf adults and children worldwide and provide these patients with important auditory cues necessary for auditory awareness and speech perception via electrical stimulation of the auditory nerve (AN). In 1942 Woolsey & Walzl presented the first report of cortical responses to localised electrical stimulation of different sectors of the AN in normal hearing cats, and established the cochleotopic organization of the projections to primary au...

  14. Model Checking Implantable Cardioverter Defibrillators

    OpenAIRE

    Abbas, Houssam; Jang, Kuk Jin; Jiang, Zhihao; Mangharam, Rahul

    2015-01-01

    Ventricular Fibrillation is a disorganized electrical excitation of the heart that results in inadequate blood flow to the body. It usually ends in death within seconds. The most common way to treat the symptoms of fibrillation is to implant a medical device, known as an Implantable Cardioverter Defibrillator (ICD), in the patient's body. Model-based verification can supply rigorous proofs of safety and efficacy. In this paper, we build a hybrid system model of the human heart+ICD closed loop...

  15. Carbon coatings for medical implants

    OpenAIRE

    K. Bakowicz-Mitura; P. Couvrat; I. Kotela; P. Louda; D. Batory; J. Grabarczyk

    2007-01-01

    Purpose: In this paper we report in vitro and in vivo results of Nanocrystalline Diamond Coatings whichare used in medicine onto medical implants The very important property of carbon coatings is the protectionliving organism against the metalosis. Different medical implants with complicated shapes are covering byNanocrystalline Diamond Coatings by RF dense plasma CVD.Design/methodology/approach: 1) Material characterizations of deposited coatings have been evaluated by using:Transmission Ele...

  16. New paradigm in implant osseointegration

    OpenAIRE

    Meyer Ulrich; Joos Ulrich

    2006-01-01

    Abstract During the last years, implant dentistry has seen an dramatic increase as a treatment option in oral rehabilitation. This is based to a large extent on scientific advances and clinical improvements in implantology. The extension of indications has broadened the opprtunities to rehabilitate patients that were formerly considered to posess restricted indications to place implants. Additionally, patient desires (high aesthetic demands, fast prosthetic rehabilitation) were placed more in...

  17. Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts

    Science.gov (United States)

    Yu, Hao; Schaekers, Marc; Barla, Kathy; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron Voon-Yew; De Meyer, Kristin

    2016-04-01

    Applying simulations and experiments, this paper systematically compares contact resistivities (ρc) of metal-insulator-semiconductor (MIS) contacts and metal-semiconductor (MS) contacts with various semiconductor doping concentrations (Nd). Compared with the MS contacts, the MIS contacts with the low Schottky barrier height are more beneficial for ρc on semiconductors with low Nd, but this benefit diminishes gradually when Nd increases. With high Nd, we find that even an "ideal" MIS contact with optimized parameters cannot outperform the MS contact. As a result, the MIS contacts mainly apply to devices that use relatively low doped semiconductors, while we need to focus on the MS contacts to meet the sub-1 × 10-8 Ω cm2 ρc requirement for future Complementary Metal-Oxide-Semiconductor (CMOS) technology.

  18. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  19. Nanostructured Surfaces of Dental Implants

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2013-01-01

    Full Text Available The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  20. Controlling the stoichiometry and doping of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.